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Evolution and Pathophysiology of Chronic Systolic Heart

Failure

Barry E. Bleske, Pharm.D., FCCP

Understanding of the pathophysiology of chronic systolic heart failure evolved
from a purely mechanical model to one in which a cascade of neurohormones
and biologically active molecules are thought to be critical in the development,
maintenance, and progression of the disease. Two important neurohormonal
systems are the sympathetic nervous and renin-angiotensin-aldosterone
systems. Initially, increases in norepinephrine concentrations from the
sympathetic nervous system and in angiotensin Il and aldosterone are
beneficial in the short term to maintain cardiac output after an insult to the
myocardium. However, long-term exposure to these neurohormones causes
alterations of myocytes and interstitial make-up of the heart. These alterations
in myocardium lead to progression of heart failure and, eventually, death.
(Pharmacotherapy 2000;20(11 Pt 2):349S-358S)
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An aging population and increased survival
after myocardial infarction contribute to the
prominent role of chronic heart failure in today’s
society. According to recent statistics, nearly 5
million persons in the United States have heart
failure, with 400,000 new cases diagnosed every
year.! It is estimated that the syndrome accounts
for over 900,000 hospitalizations/year and is the
most common diagnosis in hospital patients aged
65 years and older.! Significant mortality is
associated with the disease. After a diagnosis, 5-
year mortality is 50%; however, in any given
patient, 1-year mortality may range from 5-50%
depending on disease severity. The cost to treat
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heart failure is also staggering, estimated to be
$17.8-56 billion annually, which does not take
into account associated costs endured by
caregivers.> 2 Since heart failure is so prevalent
and devastating, vast amounts of time and energy
have been devoted to understanding its
pathophysiology. Much work has focused on the
role of the sympathetic nervous and renin-
angiotensin-aldosterone (RAA) systems.

Evolution in Pathophysiologic Models

Understanding of the pathophysiology of heart
failure evolved over the years as investigators
pieced together the complex interplay of
mechanical, biologic (endocrine, paracrine,
autocrine), and functional alterations that occur.
As our understanding increased, so did the
complexity of the model to define the disease.
Thirty to 40 years ago heart failure was looked at
as a syndrome of salt and water retention that
was due in part to abnormalities of renal blood
flow. This cardiorenal model evolved into a
cardiocirculatory model when hemodynamic
measurements revealed a decrease in cardiac
output and increase in peripheral vascular
resistance.®> * Based on these models, diuretics
were administered to treat sodium and water
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retention, and vasodilators and inotropic agents
were administered to improve hemodynamics by
increasing cardiac output and decreasing
peripheral vascular resistance.

Although these models explain clinical
manifestations and rationalize drug therapy, they
do not adequately describe the devastating
progression that occurs in treated patients with
either asymptomatic or symptomatic heart
failure. In attempt to describe disease
progression in addition to renal and circulatory
change, the neurohormonal model was put
forward in the 1980s (Figure 1).>" Heart failure
begins with an insult or damage to the heart that
results in a sustained decrease in cardiac function
and output. This insult varies and may include
coronary artery disease (ischemic dilated
cardiomyopathy, which affects approximately
two-thirds of patients), hypertension, and
idiopathic causes (idiopathic dilated cardio-
myopathy). A small number of patients may

have other causes, such as ethanol abuse, drug-
induced cardiomyopathy (doxorubicin), and viral
infections.

After the insult and a sustained decrease in
cardiac output, excessive neurohormonal
activation occurs, specifically with the
sympathetic and RAA systems, that causes
sodium and water retention together with
peripheral vasoconstriction. Initially, these
neurohormones are compensatory and may
maintain relatively normal cardiac output in the
short term. However, long-term elevated
concentrations of neurohormones result in
toxicity, overcompensation, and eventually
inability to maintain a normal cardiac function.
With a sustained decrease in cardiac function,
further neurohormonal activation, sodium and
water retention, and peripheral vasoconstriction
occur. A vicious cycle is created that leads to
more symptoms, disease progression, and,
eventually, death.

Myocardial Insult
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Progression of Heart Failure and Symptoms

Figure 1. Pathophysiology of heart failure in the 1980s.
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The neurohormonal model is still in vogue and
is similar to what was proposed, but it now
includes other neurohormones or biologically
active molecules. The model appears to be
applicable based on the following: experimental
studies showed the ability of neurohormones to
contribute to the development and progression of
heart failure either in an intact or cellular model;
clinical studies proved the benefit of neuro-
hormonal antagonists; and regardless of the cause
or type of heart failure, neurohormonal activation
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appeared to be similar.® 8% |n addition to the
contribution of biologically activated molecules
such as endothelin, vasopressin, tumor necrosis
factor-a, and counterregulatory neurohormones
(atrial and brain natriuretic peptide), the model
describes the role of left ventricular remodeling
in disease progression,® /-1

Left ventricular remodeling occurs due to
alterations in hemodynamics (increase preload)
and load-independent changes in myocyte
biology and chamber geometry (Figure 2). At
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Figure 2. Pathophysiology of chronic systolic heart failure today. Direct effect = ——>; counterregulatory effect = — — —>;
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first it occurs to maintain stroke volume and
contractility by enlarging the ventricle and
increasing myocardial and interstitial mass. At
the cellular level, remodeling may occur by
several mechanisms, including myocyte hyper-
trophy, interstitial growth, and myocyte slippage.
Over time these changes become maladaptive,
leading to increased wall stress and oxygen
demand, together with fibrosis and decreased
contractility. Further discussion relating to
cellular and molecular changes that occur during
heart failure is available elsewhere.? 2021

The current model, as can be expected, is not
complete and continues to evolve. Critical pieces
of information, such as specific roles and
interplay among biologically active molecules,
genetic determinations, and how the transition
from asymptomatic to symptomatic heart failure
occurs, are missing. Fortunately, however, the
sympathetic nervous and RAA systems have
clarified many important aspects of the
pathophysiology of the syndrome.

Sympathetic Nervous System

The significance of the sympathetic nervous
system, specifically norepinephrine, in heart
failure probably has been known for at least 25
years. Classic data from the 1980s showing that
norepinephrine concentrations were elevated and
were a prognostic indicator for mortality further
focused research efforts on the system.?> 2 This
led to therapy with B-adrenergic receptor
antagonists, which once were thought to be
harmful in the treatment of heart failure.

Initially, an increase in norepinephrine
concentrations may have beneficial short-term
effects by increasing heart rate, contractility, and
blood pressure, which maintain normal cardiac
output after an insult to the myocardium.
However, long-term effects have direct adverse
effects on the heart that are mediated by excess
activation of the cardiac adrenergic receptor
pathway.?2° In support of these data, transgenic
animal models in which B- and a-adrenergic
receptors are overexpressed developed cardio-
myopathies and cardiac hypertrophy. In these
models, the Bi-receptor may be the most
important in causing overt heart failure.?®3°

Activation of the sympathetic adrenergic
system occurs early in the syndrome, beginning
with cardiac followed by systemic adrenergic
activation.®* 32 Sustained adrenergic activation
results in alterations in the cardiac adrenergic
receptor profile and in desensitization of signal

transduction through pB-adrenergic receptors,
which results in decreases in myocardial reserve
and exercise capacity. In a nonfailing heart the
B1-:Bo-receptor ratio is approximately 80:20. In
the failing heart, downregulation of the B;-
receptor alters the ratio to approximately 60:40.% 34
In addition to changes in the B-adrenergic pathway,
upregulation of a;-receptors causes a further
change in the overall cardiac adrenergic receptor
profile. 3%

Desensitization or reduction of B-receptor
signal transduction due to excess activation by
norepinephrine may occur through several
mechanisms. One is downregulation of B;-
receptors; another is uncoupling of the B-
receptor from its effector site, adenylyl
cyclase.?=*® Both Bi- and B,-receptors are
coupled to adenylyl cyclase through the
stimulatory G protein. Adenylyl cyclase converts
adenosine triphosphate to cyclic adenosine
monophosphate (CAMP), which acts on protein
kinase A, which leads to phosphorylation of
cellular proteins, resulting in an increase in
intracellular calcium from, in part, sarcoplasmic
reticulum. The increase in intracellular calcium
causes myocardial inotropic and chronotropic
response. Therefore, uncoupling of the B-
receptor to adenylyl cyclase leads to myocardial
dysfunction. Uncoupling of the B,-adrenergic
receptor occurs in ischemic and idiopathic
dilated cardiomyopathy, and uncoupling of ;-
adrenergic receptor in ischemic dilated
cardiomyopathy.?* %

Another mechanism for abnormal signal
transduction is upregulation of B-adrenergic
receptor kinase (BARK-1).44 Increased BARK-
1 activity leads to receptor phosphorylation and
may contribute to receptor uncoupling. An
increase in G-inhibitory (G;) protein activity
causes signal transduction abnormalities,
probably through receptor uncoupling.4-*’
These and other mechanisms may account for
50-60% loss in total signal transducing potential,
resulting in decreased myocardial function.

In addition to desensitization of signal
transduction, sustained adrenergic activation has
a direct adverse biologic effect on cardiac
myocytes that contributes to myocardial
dysfunction. Alteration in myocyte function,
specifically cell loss, may occur by either necrosis
or apoptosis.® *52 Data from cultured cardiac
myocytes indicate that at norepinephrine
concentrations seen clinically, necrosis occurs.*
In addition to a direct effect, ischemia due to
increase oxygen demand and a decrease in
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oxygen delivery may contribute to cell necrosis.
Apoptosis appears to be mediated mainly
through the B;-receptor.5® % Recent data suggest
that stimulation of the B,-receptor and activation
of Gj proteins and mitogen-activated protein
kinase actually may have antiapoptotic
effects.>5¢ A decrease in myocyte function due
to alteration in gene expression also may occur.
This includes alterations in calcium handling by
the myocyte, such as decreased expression of
sarcoplasmic reticulum Ca?-adenosine triphos-
phatase, a protein that is necessary for excitation-
contraction coupling.®” Other effects may
include fetal gene expression, activation of
fibroblast growth factor, myocyte hypertrophy,
and changes in the proteins responsible for -
adrenergic signal transduction.®®%? These factors
are also important in contributing to left
ventricular remodeling that occurs in patients
with systolic failure.

Overall, alteration in both signal transduction
and the biology of myocytes due to activation of
the sympathetic nervous system contributes to
the myocardial dysfunction that is observed in
patients with chronic systolic heart failure and
leads to symptoms and progression of heart
failure.

RAA System

The RAA system is activated in patients with
heart failure. Similar to the sympathetic nervous
system, initial activation may be important to
maintain cardiac output in a damaged heart by
increasing preload through sodium retention and
volume expansion. Perfusion also may be
maintained by vasoconstriction. However, long-
term effects of prolonged activation of the RAA
system are deleterious through excessive
hemodynamic alterations and direct effects on
myocardium. These effects are mediated in part
by production and formation of renin, angio-
tensin 1l (ATII), and aldosterone. Renin, which
is produced in the juxtaglomerular cells of the
kidneys, is increased by three main factors:
decreased blood flow to the kidneys, decreased
serum sodium, and increased sympathetic tone.®
Renin then converts circulating angiotensinogen
to angiotensin I (ATI), which is inactive.
Angiotensin | is converted to ATII by either
angiotensin-converting enzyme (ACE) or a non-
ACE pathway (Figure 3). In this so-called
alternative or independent pathway, chymase and
cathepsin G may convert ATI to ATII; other
molecules such as elastase, tonin, and tissue

plasminogen activator may directly convert
angiotensinogen to ATIL.®" This alternative
pathway may account for significant production
(> 50%) of ATII.”>"® The ACE also effects the
kallikrein-kinin system by inactivating bradykinin,
a potentially important vasodilatory activator.
Neutral endopeptidase also inactivates bradykinin
and natriuretic peptides. In addition to circu-
lating angiotensinogen and ACE, both molecules
may be produced by a variety of tissues, resulting
in local production of ATII, which may have
important autocrine and paracrine actions that
may contribute significantly to the patho-
physiology of heart failure.”*""

Angiotensin 1l

Effects of ATII are mediated by the activation
of specific angiotensin receptors, AT; and AT,.”™®
" Both receptors have high affinity for ATII but
are functionally distinct. They are located
throughout the body including the kidneys,
brain, endothelium, and heart.28* Binding of
ATII to AT, and AT, receptors may produce
biologic effects that may be important to the
pathophysiology of heart failure. The AT,
receptor-signaling pathway interacts with both
adenylate cyclase and the G protein system.
Stimulation of the AT, receptor causes activation
of several phospholipases, leading to an increase
in inositol 1,4,5 triphosphate, which stimulates
intracellular calcium release and vasocon-
striction.®*%8 |n addition, AT stimulation leads
to a decrease in CAMP by G;, which may contribute
to vasoconstriction observed with ATII.8 8
Activation of the AT receptor causes an increase
in the L-type calcium channel opening, resulting
in an increase in intracellular calcium that may
be a stimulus for aldosterone production in
adrenal cells.®” 8 Through this receptor, ATII
also activates Janus kinases (JAK), signal
transducers, and activators of transcription,
which may cause activation of early growth-
response genes, resulting in proliferative effects
(myocardial hypertrophy).?®-% In addition, the
AT, pathway may activate a number of proto-
oncogens that ultimately regulate genes involved
with cell growth and extracellular matrix
proteins.8” %47 This process is important for
myocardial hypertrophy and alteration in the
collagen make-up of the heart.

Overall, the consequences of AT; activation by
ATII is significant with regard to the patho-
physiology of heart failure. They include
vasoconstriction of blood vessels, release of
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aldosterone and catecholamines from adrenal
glands, release of vasopressin from the pituitary
(leading to sodium and water retention),
catecholamine release from the presynaptic
terminal, myocardial hypertrophy, and alteration
in the extracellular matrix of the heart. These
effects may lead to symptoms and, most
significant, progression of heart failure.

The role of the AT, receptor is less well known
but appears to modulate or have the opposite
effects of the AT, receptor. Angiotensin Il
stimulation of the AT, receptor may result in
vasodilation by increasing nitric oxide.%
Activation of the receptor may lead to anti-
proliferative effects and may cause apoptosis.®®-1%
Theoretically, this may be beneficial in heart
failure by counteracting negative effects that
occur by ATII activation of the AT, receptor.

Aldosterone

Aldosterone may play a significant role in the
pathophysiology of heart failure that goes beyond
sodium and water retention. Circulating or
plasma concentrations of aldosterone are
produced in the adrenals. Angiotensin Il
stimulation of the AT; receptor increases
aldosterone secretion, although other mechanisms
also may do this, such as plasma potassium,
adrenocorticotropic hormone, and endothelin,
and decreased metabolic clearance.'®1% These
mechanisms may become important when ATII
concentrations are suppressed by drug therapy
with ACE inhibitors. This may account in part
for the observation that aldosterone levels are
suppressed only transiently but not over the long
term after ACE inhibitor therapy.’®-** This
finding is referred to as aldosterone escape. Local
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Figure 3. The renin-angiotensin-aldosterone system. ACE = angiotensin-converting enzyme.
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synthesis of aldosterone may have important
autocrine and paracrine effects on cardiovascular
tissue because concentrations may be higher
there than circulating aldosterone concen-
trations.12-114

Increased aldosterone concentrations may
contribute significantly to the pathophysiology of
heart failure and appear to be a prognostic
indicator. Post hoc analysis from the Cooperative
North Scandinavian Enalapril Survival Study
(CONSENSUS) showed that plasma levels
elevated at baseline were associated with
increased mortality (p<0.01) in patients with
symptomatic New York Heart Association class
IV disease.!™®

For several reasons, aldosterone may be
important in the prognosis and pathophysiology
of heart failure. It can promote sodium and
water retention while increasing magnesium and
potassium excretion.'® Sodium and water
retention can contribute to the symptoms of
heart failure, and electrolyte loss may promote
arrhythmia formation. Aldosterone also prevents
uptake of norepinephrine by myocardium, which
may be arrhythmogenic especially in the setting
of low magnesium and potassium levels.!% 116 |t
may reduce parasympathetic activity in part by
directly decreasing baroreceptor discharge from
the carotid sinus.!*""'* Reduced parasympathetic
activity may be associated with increased
mortality.?> 121 Another mechanism by which
aldosterone may contribute to the patho-
physiology of heart failure is to stimulate
collagen production, resulting in myocardial
fibrosis that may contribute to left ventricular
remodeling and dysfunction.'?*'* Aldosterone
may cause vascular damage and decrease blood
vessel compliance that may contribute to
ischemia, which may promote arrhythmia
formation and potentially heart failure
progression.*?® 126 Animal data suggest that it
may increase ATII binding and increase ATII
hypertrophic response.*?” Overall, similar to
ATII, and by several mechanisms, aldosterone
significantly alters hemodynamics and has a
direct effect on myocardium.

Conclusion

The pathophysiology of heart failure is
complex and cannot be defined in simple terms.
Based on information from animal and human
studies, both the sympathetic nervous and RAA
systems at many different levels contribute
significantly to disease maintenance and

progression. Therapies targeted at the patho-
physiology of heart failure, or more specifically at
these neurohormonal systems, are effective.
They may not only significantly decrease
morbidity and mortality but attenuate and, on
some levels, actually reverse disease progression.
As our understanding of heart failure continues
to evolve, the approach to treatment will lead to
new therapies including other neurohormonal
antagonists and perhaps even gene therapy
specifically design to arrest and reverse this
devastating syndrome.
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