Lack of an Effect of Oral Iron Administration on
Mycophenolic Acid Pharmacokinetics in
Stable Renal Transplant Recipients
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Study Objectives. To determine if coadministration of polysaccharide iron complex
and slow-release ferrous sulfate alter the absorption of mycophenolic acid (MPA),
and to examine the potential influence of dosing relative to mycophenolate
mofetil (MMF) administration and the effect of immediate- versus sustained-
release iron products on the steady-state pharmacokinetics of MPA.

Design. Prospective, open-label, three-phase, crossover, steady-state
pharmacokinetic study.

Setting. National Institutes of Health—sponsored General Clinical Research
Center at a university medical center.

Patients. Twelve adult (mean age 50 yrs) renal transplant recipients who were
receiving concomitant iron and MMF maintenance therapy.

Intervention. Oral iron therapy was coadministered with MMF on days -6-0,
MMF was administered alone on days 1-8 (control phase), then oral iron
therapy was administered 2 hours after MMF administration on days 9-16.

Measurements and Main Results. Baseline demographics, concurrent drug
regimens, and clinical laboratory values were assessed. Blood samples were
obtained at baseline and at 1, 2, 3, 4, 6, 8, and 12 hours after MMF
administration on days 0, 8, and 16. The MPA levels were measured by
high-performance liquid chromatography. We found no significant
differences in the dose-standardized area under the concentration-time
curve from 0-12 hours (AUCy_1,) for MPA between the control phase
(39.66 = 8.70 mgehr/L) and the concomitant ferrous sulfate or dose-
separated ferrous sulfate (37.56 £ 9.95 or 32.84 =+ 8.43 mgehr/L,
respectively, p>0.05) phases. Dose-standardized AUC_;, values for MPA
did not significantly differ after the concomitant administration of
polysaccharide iron complex from that of the control phase (48.46 + 9.68
and 43.80 + 9.46 mgehr/L, respectively, p=0.065). However, the AUCy_;,
for MPA significantly increased when polysaccharide iron complex was
administered 2 hours after MMF (53.41 = 11.75 mgehr/L, p=0.012).
Maximum concentrations and times to reach maximum concentrations
remained consistent across all study phases in each arm of the trial
(p>0.05).

Conclusion. Multiple doses of iron therapy—slow-release ferrous sulfate, or
polysaccharide iron complex—did not significantly reduce systemic
exposure to MME, as measured by using AUCy_;, values.
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Mycophenolate mofetil (MMF) is a key
component of modern immunosuppression and
is routinely used to prevent rejection in transplant
recipients. Several pivotal multicenter clinical
trials involving kidney transplant recipients
demonstrated a 50% reduction in acute rejection
with MMF-based regimens compared with
azathioprine-based regimens.'” Evidence further
demonstrated a significant correlation between
the probability of rejection and the concentration-
time curve for mycophenolic acid (MPA).**°
Investigators evaluating the relationship between
rejection and systemic exposure to MPA reported
thresholds that minimize the risk of rejection; the
area under the concentration-time curve from
0-12 hours (AUCy_;») for MPA was greater than
30 mgehour/L, and the predose plasma concen-
tration for MPA was greater than 1.0 mg/L." !
However, abbreviated MPA-sampling strategies
have proven preferable over the use of predose
concentrations, particularly in the early period
after transplantation, owing to a strengthened
correlation with the area under the concentration-
time curve and with rejection in the case of
AUCO—IZ-H’ 13

After oral administration, MMF is rapidly
absorbed and presystemically hydrolyzed to its
active form, MPA, in the liver.'* Glucuronyl
transferase then metabolizes MPA to MPA
glucuronide, an inactive metabolite.’> This
metabolite also undergoes considerable
enterohepatic recirculation, which possibly
contributes to the biphasic pharmacokinetic
profile of MPA.'*'%  Although MMF alone offers
excellent bioavailability, it remains potentially
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susceptible to chelation interactions when it is
coadministered with other drugs, including
aluminum- and/or magnesium-containing
antacids or cholestyramine." ' 192! In addition,
data from a crossover, single-dose study of
healthy volunteers suggested that the systemic
exposure to MPA decreased by 89% after iron was
concomitantly administered with a single dose of
MME® This effect was attributed to the theoretical
development of an insoluble iron-MMF complex.
Given the concentration-efficacy relationship
reported in the literature, transplant recipients
receiving an MMF-based regimen who require
iron supplementation may incur an increased
risk for acute rejection secondary to reduced
overall systemic exposure to MPA from such an
interaction.

This study was designed to determine if
coadministration of two commonly prescribed
iron formulations—polysaccharide iron complex
and sustained release ferrous sulfate—alter the
absorption of MPA in stable renal transplant
recipients. In addition, we examined the poten-
tial influence of timing of the dosing relative to
MMF administration and the effect of immediate-
versus sustained-release iron products on the
steady-state pharmacokinetics of MPA.

Methods

The institutional review board of the University
of Michigan approved the study protocol. All
patients gave written informed consent before any
study procedures were started.

Study Subjects

Patients were eligible for enrollment if they
were at least 18 years old, if they received renal
allografts from a living or deceased donor, if they
were in stable condition, if at least 6 months had
passed since transplantation, and if they were
concomitantly receiving slow-release ferrous
sulfate or polysaccharide iron complex with
MMF maintenance therapy. Eligibility criteria
also included no acute rejection in the 3 months
before study entry, achievement of therapeutic
trough levels of cyclosporine (usually 100-150
ng/ml) or tacrolimus (usually 5-10 ng/ml) as
defined in the protocol of the transplant center,
and no recent dosage adjustments to cyclosporine
(United States Pharmacopeia, modified) or
tacrolimus within 2 weeks before study entry.

Patients were excluded if they received other
organ transplants in addition to kidney transplants
or if they were pregnant or breastfeeding.
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Immunosuppression consisted of a standard
protocol: a calcineurin inhibitor, cyclosporine
(Neoral, Novartis Pharmaceuticals Corp., East
Hanover, NJ; or Gengraf, Abbott Laboratories,
Abbott Park, IL), or tacrolimus (Prograf, Astellas
Pharma US, Inc., Deerfield, IL) in combination
with twice-daily MMF and daily prednisone.
Previously prescribed formulations of slow-
release ferrous sulfate (Slow-Fe; Novartis
Consumer Health, Inc., Parsippany, NJ) or
polysaccharide iron complex (Niferex-150; Ther-
Rx, Bridgeton, MO) were maintained.

Study Design

This study was a prospective, open-label, three-
phase, crossover, steady-state pharmacokinetic
study. Patients were instructed to avoid drinking
alcohol or taking any new drugs for 1 week
before the study and throughout the trial.

Patients were assigned to study arms according
to their previously prescribed iron formulation of
slow-release ferrous sulfate or polysaccharide
iron complex. In each arm, slow-release ferrous
sulfate or polysaccharide iron complex was
coadministered with the oral morning dose of
MMF on days -6-0. On days 1-8, MMF was
taken alone (washout period). On days 9-16,
iron products were taken 2 hours after the dose
of MME

The AUCs for MPA were measured on days 0,
8, and 16. Before each blood sampling day,
patients fasted overnight for at least 10 hours,
but water was allowed ad libitum.

After completion of the study, patients were
eligible to cross over to the opposite study arm
with the approval of their physician. Patients
continued to fast 4 hours after the morning dose
of MMF but were allowed to drink water ad
libitum. All patients received standardized meals
5 and 10 hours after the administration of MME
Each patient received the same oral MMF dose
(500-1000 mg) twice/day throughout the trial.

Venous blood samples were drawn at baseline
before the morning dose of MMF and at 1, 2, 3,
4, 6, 8, and 12 hours after the ingestion of MME
Samples were immediately centrifuged, and
plasma was frozen at -80°C until analysis.

Renal function was evaluated by measuring
serum creatinine concentrations.

End Points

The primary end point was the AUCy_;, for
MPA. Concentrations of MPA and MPA
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glucuronide were measured by using validated
high-performance liquid chromatography. The
assay for MPA-MPA glucuronide in biologic
specimens was developed in the Drug Laboratory
at the Mayo Clinic, Rochester, Minnesota.

For each sample, two tubes were required. The
test involved direct measurement of serum MPA
levels and replicated analyses of serum treated
with glucuronidase to measure total hydrolyzable
MPA levels. The difference between unconjugated
and total MPA results allowed us to calculate the
concentration of MPA glucuronide. One tube
labeled A was for MPA, and one tube labeled B
was for MPA glucuronide. To tube A, 200 pl of
the standards, controls, and samples were added,
and to tube B, 50 ul and 150 pl of blank serum
were added. To only tube B, 100 pl of 1:10
glusulase in sodium acetate buffer at pH 6.0 were
added and incubated for 10 minutes at 37°C; 100
pl were pipetted into tube B. To both tubes, 100
pl of the internal standard (5 pg/ml zomepirac in
acetonitrile) were added. Excess sodium sulfate
was added and centrifuged, and the supernatant
was removed. The extract was dried under
nitrogen at 30°C and reconstituted in 200 pl of
the mobile phase.

Using a chromatography system (Class-VP LC;
Shimadzu Scientific Instruments, Columbia,
MD), 30 ul of the reconstituted sample were
placed onto an high-performance liquid
chromatography guard column (2 cm x 4.6 mm,
5 pm) and an analytical column (5 cm x 4.6 mm,
5 pm) (both Discovery C18; Supelco, Sigma-
Aldrich, Bellefonte, PA) at ambient temperature.
Chromatographic separation was achieved by
delivering isocratic solvent with a mobile phase
of 20% acetonitrile and 80% triethylamine-
phosphate buffer at pH 7.0 (final concentration
25% triethylamine and 1.875 mmol/L potassium
phosphate buffer) with a flow rate of 2.0
ml/minute. Detection was achieved by monitoring
the absorbance at 213 nm. We eluted MPA at 2.8
minutes and the internal standard at 6.75
minutes.

Concentrations were calculated by comparing
peak-height ratios of the drug with those of the
internal standard. The lower limit of quantifi-
cation was defined as 0.5 pg/ml. Intraday
variability was defined as less than 10%, and
interday variability was not applicable. Secondary
end points were the maximum concentration
(Cmax) and the time to reach Cpax (Tmax). Both
Cmax and Tp,x were determined directly from
measured values.
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Table 1. Baseline Demographic Characteristics

Polysaccharide Slow-Release
Iron Complex Ferrous Sulfate
Group Group
Characteristic (n=7) (n=5)
Mean = SD
Age (yrs) 50.28 + 8.71 51.00 + 14.45
Time after transplantation (mo) 47.00 £ 45.22 51.00 = 29.29
Weight (kg) 87.11 = 18.57 108.54 + 29.29

No. (%) of Patients

Sex

Male 3 (43) 4 (80)

Female 4 (57) 1 (20)
Caucasian 6 (86) 5 (100)
Deceased donor transplant 3(43) 3 (60)
First transplant 6 (86) 5 (100)
Diabetes mellitus 1(14) 3 (60)
Cause of end-stage renal disease

Diabetes mellitus 1(14) 2 (40)

Polycystic kidney disease 2(29) 0 (0)

Glomerulonephritis 4 (57) 2 (40)

Other 0 (0) 1 (20)
Cyclosporine-based regimen® 6 (86) 5 (100)

*Cyclosporine U.S. Pharmacopeia, modified.

Statistical Analysis

The patients’ characteristics were summarized
by using descriptive statistics. Individual
AUCy_1, values were calculated by using the
linear trapezoidal and logarithmic trapezoidal
approximation for increasing and decreasing
plasma concentrations, respectively. Values were
dose normalized to MMF 1 g. A paired t test was
used to compare experimental-phase AUCs for
MMF plus iron products taken concomitantly or
2 hours apart were compared with those from the
control phase of MMF alone. Prospective power
calculations indicated that a minimum of eight
patients in each arm were required to detect a
30% difference in AUCq_1, values for MPA with
80% likelihood if we assumed a two-sided o of
0.05. Statistical analyses were performed by
using software (Statistical Package for the Social
Sciences for Windows, version 11.0; SPSS Inc.,
Chicago, IL).

Results

Twelve patients were screened and enrolled in
the study. One subject was prematurely
withdrawn from the study because of a marked
change in renal function after day 8 of the
pharmacokinetic study. After the sequence for
slow-release ferrous sulfate was completed, one
patient consented to switch iron formulations
and completed the sequence for polysaccharide
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iron complex. Data from seven patients in the
arm for polysaccharide iron complex and five in
the arm for slow-release ferrous sulfate were
analyzed.

Effect of Polysaccharide Iron Complex on the
Pharmacokinetics of MPA

Table 1 summarizes the patients’ baseline
demographics. Immunosuppressive therapy
consisted of primarily cyclosporine (Neoral in
five patients and Gengraf in one), MME, and
prednisone. One patient received tacrolimus,
MME and prednisone. Each patient received 150
mg of elemental iron. The patient population
was primarily Caucasian and first-time transplant
recipients. Serum creatinine concentration
measurements remained constant between each
study phase (p=0.407), with a maximum
difference of 0.2 mg/dl between study phases.

Table 2 shows the calculated pharmacokinetic
parameters reflecting coadministration of MMF
and polysaccharide iron complex. During the
control phase, calculated AUC,_;, values for MPA
were greater than 30 mgehour/L for all subjects
(range 35.4-56.4 mgehr/L) but one, whose value
was 27.8 mgehour/L. The value of 30 mgehour/L
is an established threshold for a diminished risk
of acute rejection.” ' The mean estimated
AUCq_1, value for MPA when MMF was coad-
ministered with polysaccharide iron complex
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Table 2. Pharmacokinetic Parameters from the Polysaccharide Iron Complex Study

Parameter MMEF Alone

MMF + Polysaccharide Iron Complex

Coadministered 2 Hours Apart

Median (Range)

MPA AUCO,H (mg'hr/L)

45.26 (27.84-56.73)

51.91 (36.33-57.75) 57.59 (33.24-69.21)

Mean + SD
MPA AUCy._;, (mgehr/L) 43.80 + 9.46 48.46 + 9.68 53.41+ 11.75*
MPA Cy (mg/L) 251 +1.05 2.84+1.83 2.39 +2.00
Crnax (mg/L) 9.53+£5.12 12.46 + 5.90 12.6 £ 3.77
Tmax (hrs) 1.70 + 1.24 1.57+1.13 1.57+0.98

MMF = mycophenolate mofetil; AUC(_;, = area under the concentration-time curve from 0-12 hours; MPA=
mycophenolic acid; Cy = predose plasma concentration; Cp,x = maximum concentration; Ty, = time to reach Cpyay.

*p=0.012 versus MMF alone.

Table 3. Pharmacokinetic Parameters from the Slow-Release Ferrous Sulfate Study

Parameter MMEF Alone

MMEF + Slow-Release Ferrous Sulfate
Coadministered

2 Hours Apart

Median (Range)

MPA AUCo_lz (mg-hr/L)

38.30 (30.44-54.04)

36.37 (27.14-53.22) 37.77 (23.53-41.21)

Mean + SD
MPA AUCy_;, (mgehr/L) 39.66 + 8.70 37.56 +9.95 32.84+843
MPA Cy (mg/L) 1.80+0.78 1.54+1.28 1.48 + 0.54
Cimax (mg/L) 14.10 + 5.18 10.88 + 4.00 9.40 +3.16
Tnax (hrs) 1.04 + 0.98 1.99 + 2.24 1.00 = 0.00

MMF = mycophenolate mofetil; AUC(_;, = area under the concentration-time curve from 0-12 hours; MPA=
mycophenolic acid; Cy = predose plasma concentration; Cp,x = maximum concentration; Ty = time to reach Cpyay.

(48.46 £ 9.68 mgehr/L) was similar to the control
value for MMF alone (43.80 = 9.46 mgehr/L).
Although the difference was not significantly
different (p=0.065), we observed an 11.8% mean
increase in the AUC(_;; for MPA during the
concomitant-dosing phase versus the MMF-alone
phase. In addition, mean AUCy_;, values were
significantly greater when polysaccharide iron
complex was administered 2 hours after MMF
than in the control phase (p=0.012). This
difference resulted in an observed mean increase
of 22.7% for MPA exposure. Observed Cy,ax and
Tmax Were similar between the control arm and
the concomitant or dose-separation arm; mean
Cmax values were slightly increased in both the
concomitant and dose-separation phases.

Effect of Slow-Release Ferrous Sulfate on the
Pharmacokinetics of MPA

Tables 1 and 3 summarize the patients’
characteristics and calculated pharmacokinetic
parameters, respectively, in the slow-release
ferrous sulfate study. The mean + SD dose of
elemental iron was 83.0 + 42.7 mg. Renal

function, as evaluated by using serum creatinine
concentrations, remained stable throughout all
study phases (p=0.47), with no change exceeding
0.6 mg/dl. All subjects received immunosuppres-
sion based on cyclosporine (Neoral in three and
Gengraf in two) with MMF and prednisone.

All calculated AUCy_;, values for MPA in the
control phase were therapeutic and ranged from
30.4-54.0 mgehour/L. No difference was observed
in mean AUC,_1> values between the control
phase and the concomitant phase (p=0.716).
The mean AUC._;, value for the dose-separation
phase was similar to the control value (p=0.236).
Results for Cpax and T remained consistent
between study phases (control vs concomitant or
separation arm); Cp,x values were slightly
reduced in both the concomitant and dose-
separation phases (p=0.32 and p=0.241,
respectively).

Discussion

The impetus for this trial came from a previous
report that demonstrated an 89% reduction in the
AUCy_1; for MPA after MMF 1000 mg was
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administered with ferrous sulfate (210 mg
elemental iron) in healthy volunteers.”® The
investigators theorized that the decrease was
secondary to the development of an insoluble
iron-MMF complex. However, results of a later
in vitro investigation did not support this
theory.”> Our study was designed to investigate
the effect of two iron formulations—slow-release
ferrous sulfate and polysaccharide iron
complex—on the pharmacokinetics of MPA to
determine true steady-state concentrations of
each drug in renal transplant recipients.

Slow-Release Ferrous Sulfate

Overall systemic exposure to MPA was not
altered with concomitant slow-release ferrous
sulfate and MMF in stable renal transplant
recipients. In addition, 2-hour dosing separation
had no effect on the relative bioavailability of
MME These results are strikingly dissimilar from
those previously reported.”® These differences
were possibly due to the previous trial’s
evaluation of a healthy population, use of twice
the dose of elemental iron, or, most likely, use of
a single-dose design.?® Our study reflected
steady-state MPA exposure in renal transplant
patients (at least 6 mo after transplantation) who
received concomitant or dose-separated ferrous
sulfate with MMF 1000 mg twice/day.

While our study was ongoing, other researchers
tested hypotheses in renal transplant recipients
similar to ours.?>?* One group measured
AUC._1, values for MPA on day 5 after de novo
renal transplantation.”* Another group created a
single-dose design and measured AUC_;, values
for MPA in renal transplant recipients at least 6
months after transplantation.”? Both evaluated a
formulation of ferrous sulfate iron. Our trial was
effectively a hybrid of these two studies.
Although we enrolled somewhat fewer patients
than the others did, our conclusions regarding
ferrous sulfate were similar to theirs.

Investigators recently repeated the nonfed-state
study design previous researchers used” by
administering MMF 1 g alone or with oral slow-
release ferrous sulfate to healthy volunteers.”
Their aim was to confirm the reported interaction
between ferrous sulfate and MME However, the
results were dissimilar to the previous findings.
Like us, they found no notable alteration in the
pharmacokinetic profile of MMF when it was
coadministered with iron. Given the similar
designs of the two trials, the authors suggested
that the difference might have been attributable

to confounders associated with bioanalytic assays
used in the original study.”*

Our trial and the above-mentioned trials add to
the body of robust evidence demonstrating the
lack of interaction when ferrous sulfate is
coadministered with MME

Polysaccharide Iron Complex

The results surprisingly demonstrated a
significant increase in overall systemic exposure
of MPA during the dose-separation phase with
polysaccharide iron complex. In addition, mean
AUCs for MPA increased in the concomitant-
administration phase, although the changes were
not statistically significant. The magnitude of the
difference was similar for the mean and median
values of those groups as well. A peculiar
observation was that the interaction was enhanced
during the dose-separation phase. This finding
was inconsistent with those of our investigation
of a ferrous sulfate product and with the results
of three published reports.” 2> ?* The increased
exposure may be attributed to chemical
differences in the polysaccharide iron complex
compared with the ferrous sulfate salt, to
alterations in the gastric environment that
benefited MMF absorption of this product, to
interpatient variability, or, most likely, to the
small sample size.

Most important, our data suggested that overall
exposure to MPA was not decreased after the
concomitant or delayed administration of ferrous
sulfate and polysaccharide iron complex.
Further in vitro studies may be required to
elucidate the pathway responsible for the
influence of polysaccharide iron complex on the
absorption of MPA.

Study Limitations

Limitations of this trial include the relatively
small sample size, the primarily Caucasian
population, the unavailability of the area under
the concentration-time curve for cyclosporine
when the pharmacokinetics of MPA were being
studied, and the nonfed-state study design. The
limited sample affected the statistical power for
the two pharmacokinetic studies. These flaws
may limit overall generalizability of the results to
the renal transplant population.

Because we did not study cyclosporine
pharmacokinetics, we cannot rule out effects of
cyclosporine on concentrations of MPA.
However, of note, the same dosage regimens for
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calcineurin inhibitors, MME, prednisone, and any
other drugs were maintained in all patients
throughout the study.

Finally, during this study, three other groups of
investigators reported the lack of potential effect
of ferrous sulfate on the pharmacokinetics of
MPA.»-?> However, previous investigations
focused on the effect of a single dose of ferrous
sulfate or reflected the pharmacokinetics of MPA
5 days after transplantation. By contrast, our
trial reflected true steady-state pharmacokinetics
for MPA and iron. In addition, we investigated
the influence of two commonly prescribed
products in the United States.

Conclusion

In stable renal transplant recipients, oral
absorption of MMF was not reduced with
polysaccharide iron complex or slow-release
ferrous sulfate administered with or 2 hours after
MMEF ingestion.

Acknowledgments

We thank the Drug Laboratory at the Mayo Clinic
Rochester and the University of Michigan Transplant
Research Group, specifically Jakob Stodart, R.N., for
his integral role in the completion of this trial.

References

1. European Mycophenolate Mofetil Cooperative Study Group.
Placebo-controlled study of mycophenolate mofetil combined
with cyclosporin and corticosteroids for prevention of acute
rejection. Lancet 1995;345(8961):1321-5.

2. Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L,
Barker C. Mycophenolate mofetil in renal allograft recipients: a
pooled efficacy analysis of three randomized, double-blind,
clinical studies in prevention of rejection. The international
mycophenolate mofetil renal transplant study groups.
Transplantation 1997;63(1):39-47.

3. Sollinger HW. Mycophenolate mofetil for the prevention of
acute rejection in primary cadaveric renal allograft recipients.
U.S. renal transplant mycophenolate mofetil study group.
Transplantation 1995;60(3):225-32.

4. Kobashigawa JA, Meiser BM. Review of major clinical trials
with mycophenolate mofetil in cardiac transplantation.
Transplantation 2005;80(2 suppl):5235-43.

5. Hebert ME, Ascher NL, Lake JR, et al. Four-year follow-up of
mycophenolate mofetil for graft rescue in liver allograft
recipients. Transplantation 1999;67(5):707-12.

6. Pawinski T, Durlik M, Szlaska I, Urbanowicz A, Majchrnak J,
Gralak B. Comparison of mycophenolic acid pharmacokinetic
parameters in kidney transplant patients within the first 3
months post-transplant. J Clin Pharm Ther 2006;31(1):27-34.

7. Pillans PI, Rigby RJ, Kubler P, et al. A retrospective analysis of
mycophenolic acid and cyclosporin concentrations with acute
rejection in renal transplant recipients. Clin Biochem
2001;34(1):77-81.

8. Takahashi K, Ochiai T, Uchida K, et al. Pilot study of
mycophenolate mofetil (RS-61443) in the prevention of acute

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

PHARMACOTHERAPY Volume 27, Number 9, 2007

rejection following renal transplantation in Japanese patients.
RS-61443 investigation committee—Japan. Transplant Proc
1995;27(1):1421-4.

. van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A

randomized double-blind, multicenter plasma concentration
controlled study of the safety and efficacy of oral
mycophenolate mofetil for the prevention of acute rejection
after kidney transplantation. Transplantation 1999;68(2):
261-6.

Weber LT, Shipkova M, Armstrong VW, et al. The
pharmacokinetic-pharmacodynamic relationship for total and
free mycophenolic acid in pediatric renal transplant recipients:
a report of the German study group on mycophenolate mofetil
therapy. ] Am Soc Nephrol 2002;13(3):759-68.

Armstrong VW, Shipkova M, Schutz E, Weber L, Tonshoff B,
Oellerich M. Monitoring of mycophenolic acid in pediatric
renal transplant recipients. Transplant Proc 2001;33(1-2):
1040-3.

Oellerich M, Shipkova M, Schutz E, et al. Pharmacokinetic
and metabolic investigations of mycophenolic acid in pediatric
patients after renal transplantation: implications for therapeutic
drug monitoring. German study group on mycophenolate
mofetil therapy in pediatric renal transplant recipients. Ther
Drug Monit 2000;22(1):20-6.

Nicholls AJ. Opportunities for therapeutic monitoring of
mycophenolate mofetil dose in renal transplantation suggested
by the pharmacokinetic/pharmacodynamic relationship for
mycophenolic acid and suppression of rejection. Clin Biochem
1998;31(5):329-33.

Bullingham R, Monroe S, Nicholls A, Hale M. Pharmaco-
kinetics and bioavailability of mycophenolate mofetil in healthy
subjects after single-dose oral and intravenous administration. J
Clin Pharmacol 1996;36(4):315-24.

Roche Laboratories Inc. CellCept (mycophenolate mofetil)
package insert. Nutley, NJ; 2005.

Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmaco-
kinetics of mycophenolate mofetil. Clin Pharmacokinet
1998;34(6):429-55.

Meiser BM, Pfeiffer M, Schmidt D, et al. Combination therapy
with tacrolimus and mycophenolate mofetil following cardiac
transplantation: importance of mycophenolic acid therapeutic
drug monitoring. ] Heart Lung Transplant 1999;18(2):143-9.
van Gelder T, Meur YL, Shaw LM, et al. Therapeutic drug
monitoring of mycophenolate mofetil in transplantation. Ther
Drug Monit 2006;28(2):145-54.

Bullingham R, Shah J, Goldblum R, Schiff M. Effects of food
and antacid on the pharmacokinetics of single doses of
mycophenolate mofetil in rheumatoid arthritis patients. Br J
Clin Pharmacol 1996;41(6):513-16.

Morii M, Ueno K, Ogawa A, et al. Impairment of
mycophenolate mofetil absorption by iron ion. Clin Pharmacol
Ther 2000;68(6):613-16.

Campbell NR, Hasinoff BB. Iron supplements: a common
cause of drug interactions. Br J Clin Pharmacol 1991;31(3):
251-5.

Lidgate D, Brandl M, Holper M, Abubakari A, Wu X.
Influence of ferrous sulfate on the solubility, partition
coefficient, and stability of mycophenolic acid and the ester
mycophenolate mofetil. Drug Dev Ind Pharm 2002;28(10):
1275-83.

Lorenz M, Wolzt M, Weigel G, et al. Ferrous sulfate does not
affect mycophenolic acid pharmacokinetics in kidney
transplant patients. Am J Kidney Dis 2004;43(6):1098-103.
Mudge DW, Atcheson B, Taylor PJ, et al. The effect of oral iron
administration on mycophenolate mofetil absorption in renal
transplant recipients: a randomized, controlled trial.
Transplantation 2004;77(2):206-9.

Ducray PS, Gerber M, Boutouyrie B, Zandt H. Absence of an
interaction between iron and mycophenolate mofetil
absorption. Br J Clin Pharmacol 2006;62(4):492-5.



