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Stage-specific expression of ameloblast-specific genes is controlled by differential
expression of transcription factors. In addition, ameloblasts follow daily rhythms in
their main activities (i.e. enamel protein secretion and enamel mineralization). This
time-related control is orchestrated by oscillations of clock proteins involved in the
regulation of circadian rhythms. Our aim was to identify the potential links between
daily rhythms and developmental controls of ameloblast differentiation. The effects of
the transcription factors distal-less homeobox 3 (D/x3) and runt-related transcription
factor 2 (Runx2), and the clock gene nuclear receptor subfamily 1, group D, member 1
(Nrldl), on secretory and maturation ameloblasts [using stage-specific markers ame-
logenin (Amelx), enamelin (Enam), and kallikrein-related peptidase 4 (K/k4)] were
evaluated in the HAT-7 ameloblast cell line. Amelx and Enam steady-state mRNA
expression levels were down-regulated in Runx2 over-expressing cells and up-regulated
in DI/x3 over-expressing cells. In contrast, K/k4 mRNA was up-regulated by both D/x3
and Runx2. Furthermore, a temporal and spatial relationship between clock genes and
ameloblast differentiation markers was detected. Of interest, clock genes not only
affected rhythmic expression of ameloblast-specific genes but also influenced the
expression of Runx2. Multiscale mathematical modeling is being explored to further
understand the temporal and developmental controls of ameloblast differentiation.
Our study provides novel insights into the regulatory mechanisms sustaining amelo-
blast differentiation.
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Dental enamel is formed mainly during two distinct
developmental stages (1, 2): the secretory stage (at the
end of which the full thickness of enamel is completed),
and the maturation stage (during which residual organic
material is removed and the tissue is eventually occluded
by hydroxyapatite crystals). Ameloblasts, the cells
responsible for making enamel, are specialized epithelial
cells with distinct morphological features that change
during ameloblast differentiation (2). Secretory and
maturation ameloblasts are characterized by restricted
expression of enamel stage-specific genes and by stage-
specific functions (3-8). However, the control of gene
expression in ameloblasts, resulting in specialized func-
tions that direct enamel secretion and maturation, is
unclear (9-13).

Mineralized tissue development results from a complex
temporo-spatial expression of adhesion molecules and
growth and transcription factors. Different mineralized
tissues share common signaling pathways. Runt-related
transcription factor 2 (Runx2) and distal-less homeobox
3 (DIx3) are both key regulatory transcription factors

that control bone formation (14). Runx2 is also expressed
by maturation-stage ameloblasts during enamel forma-
tion and Runx2 mutations result in enamel abnormalities
(15). Similarly to Runx2, DIx3 is strongly expressed in
ameloblasts (16) and DI/x3 mutations are linked to
amelogenesis imperfecta (AI) (17). This study aimed to
elucidate the transcriptional targets of Runx2 and DIx3
during amelogenesis.

In addition to the stage-specific regulation by tran-
scription factors, it has long been suggested that gene
expression and dental tissue formation are under circa-
dian control both in rodents and in humans. Previous
studies demonstrated that the formation of incremental
lines in rat dentin reflect a circadian rhythm in the
synthesis and secretion of collagen (18). Similarly to rat
dentin, human enamel is formed by appositional growth,
leaving growth marks on the enamel surface every 24 h
during the secretory stage (19). In addition, the secretion
of amelogenin (AMELX) clearly shows daily oscillations
(20). At a later stage of development — the maturation
stage — ameloblasts oscillate between smooth-ended and
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ruffle-ended morphologies every 8 h in rat and express a
different set of proteins at each part of their cycle (2).
Therefore, ameloblast differentiation is directly corre-
lated with cyclical gene expression and specialized cell
functions. However, no direct evidence for a ‘dental’
circadian clock exists. It is also unclear if genes expressed
in ameloblasts are under circadian control and how cir-
cadian control affects ameloblast differentiation and en-
amel formation. This is the first study that aims to
elucidate how clock genes regulate formation and mat-
uration of mineralized tissues and how stage-specific
regulation is linked to daily circadian controls.

Material and methods
Cell culture and study of circadian effects

The ameloblast-like cell line, HAT-7 (21), was cultured in
Dulbecco’s modified Eagle’s minimum essential medium
(DMEM)/F12 (1:1, volume by volume) containing L-gluta-
mine, 15 mM HEPES, and 10% fetal bovine serum (Invi-
trogen, Carlsbad, CA, USA). Cells were passaged just
before confluence and plated in six-well plates. For mea-
suring the circadian effects of clock genes, HAT-7 cells were
allowed to reach 80% confluence and then the medium was
supplemented with 0.1 mM forskolin. Forskolin is known
to induce cell cycle synchronization of cultured cells (22).
Total RNA was harvested every 4 h for 28 h using TRIzol
(Invitrogen). Two micrograms of RNA were reverse
transcribed with TaqgMan reverse transcription reagents
(Applied Biosystems, Branchbury, NJ, USA), following
the manufacturer’s recommendations. cDNA was then
quantified and used for real-time quantitative RT-PCR
(qRT-PCR). qRT-PCR was conducted using SYBR Green
(Invitrogen) and specific primers (Table 1) for beta-actin
(Actb), Amelx, enamelin (Enam), ameloblastin (Ambn),
matrix metalloproteinase 20 (Mmp20), kallikrein-related
peptidase 4 (Klk4), aryl hydrocarbon receptor nuclear
translocator-like (Bmlol), nuclear receptor subfamily 1,
group D, member 1 (Nridl), DIx3, and Runx?2.

Transfection and real-time qRT-PCR

HAT-7 cells were cultured in DMEM/F12 (1:1, volume by
volume) containing L-glutamine, 15 mM HEPES, and 10%
fetal bovine serum (Invitrogen), then passaged and plated in
six-well plates. The cells were then transfected at 80%
confluence with 2 mg of Nrld1 or DIx3 (gifts of Dr. Maria
M. Morasso, Developmental Skin Biology Section, NI-
AMS-NIH, DC, USA) or Runx2 (a gift of Dr. Renny
Franceschi, University of Michigan, Ann Arbor, MI, USA)
or control (empty pCDNA) expression vectors using Lipo-
fectamine LTX and Plus Reagent (Invitrogen). Total RNA
was isolated 24 or 48 h later from HAT-7 cells using TRIzol
(Invitrogen), and 2 pug of RNA was reversely transcribed
with following the manufacturer’s recommendations
(Applied Biosystems). The resulting cDNA was then
amplified by qRT-PCR. RT-PCR amplifications were per-
formed at 95°C for 30 s, at 60°C for 30 s, and at 72°C for
30 s using specific primers (Table 1). The relative expression
levels for each gene were calculated based on the expression
levels of Acth and the differences are presented in graphs
using the 2724¢r method. P-values were calculated using
two-sample r-test. RT-PCR products were also subcloned

Table 1
RT-PCR primers
Gene name Sequence 53"
Ambn Forward: GTCCAGAAGGCTCTCCACTG

Reverse: GTCATTGGGGAAAGCAAGAA

Amelx Forward: TACCACCTCATCCTGGAAGC
Reverse: CTGTTGAGACAGCACAGGGA
DIx3 Forward: ACCCAGTGTCGGTGAAAGAG
Reverse: GCCAGATACTGGGCTTTCTG
Enam Forward: GATGCCCATGTGGCCTCCACCA
Reverse: GCCAAATGGTGGGAATGGCTGA
Klk4 Forward: ACAAGGGCTCGTGTCTATGG
Reverse: GTCTCAGGTTCCCTCAGCAG
Mmp20 Forward: AGCTCGTCCTTTGATGCAGT
Reverse: TGGACATTAGCTGGGGAAAG
Nrldl Forward: CTTCCGTGACCTTTCTCAGCA
Reverse: TGTGCGGCTCAGGAACATCAC
Runx2 Forward: CCGTCCATCCACTCTACC

Reverse: TGCCTGGCTCTTCTTACTG
Actb Forward: AAGTACCCCATTGAACACGG
Reverse: ATCACAATGCCAGTGGTACG
Forward: CCAAGAAAGTATGGACACAGACAAA
Reverse: GCATTCTTGATCCTTCCTTGGT

Bmlol

Detailed sequence information is provided here for all the
primers used in this study. The following gene symbols are used
in this table: beta-actin (Acth), amelogenin (Amelx), enamelin
(Enam), ameloblastin (Ambn), matrix metalloproteinase 20
(Mmp20), kallikrein-related peptidase 4 (K/k4), aryl hydrocar-
bon receptor nuclear translocator-like (Bmlx1), nuclear receptor
subfamily 1, group D, member 1 (Nrldl), distal-less homeobox 3
(DIx3), and runt-related transcription factor 2 (Runx?2).

into the pGEM-T Easy vector (Promega, Madison, WI,
USA) and mRNA expression was confirmed by direct
sequencing.

Results

Effects of Runx2 and DIx3 on ameloblast-specific
gene expression

HAT-7 cells were transfected with expression vector
containing Runx2 and the changes in mRNA expression
levels for stage-specific ameloblast genes (i.e. Amelx,
Enam, and Klk4) were evaluated by qRT-PCR. Our data
showed that Runx2 down-regulates Enam mRNA levels
(Fig. 1A) and Amelx mRNA levels (data not shown) and
up-regulates Klk4 mRNA levels (Fig. 1A). HAT-7 cells
were also transfected with the expression vector con-
taining DIx3. The ameloblast-specific mRNA Amelx and
Enam (markers of secretory ameloblasts) and Klk4 (a
marker of maturation-stage ameloblasts) were all
up-regulated upon the over-expression of D/x3 in HAT-7
cells (Fig. 1B). Cells transfected with a control vector
(pCDNA) showed no significant changes.

Effects of Nrid1 on ameloblast-specific gene
expression

Cell cycle synchronized HAT-7 cells were used to eval-
uate the levels of expression of clock genes in ameloblasts
at regular daily intervals. Several clock genes were



>

o

DOcControl
ERunx2

Relative expression levels

> N & O ©

Enam Kik4

(9]

> &

=+=Nr1d1

o N

Relative expression levels

> N A O ®

12 16 20
ZT (h)

4 8

24

O

Relative expression levels

37

Regulation of ameloblast differentiation

DOControl
HWDIx3

Enam Kik4

Amelx

>

DOControl
ENr1d1

IS

el h N § F
cu NG wa sG
o S S i W W W 1

Amelx Runx2 Enam

Klk4  Mmp20

Fig. 1. (A) Effects of runt-related transcription factor 2 (Runx2) on HAT-7 ameloblasts. Over-expression of Runx2 resulted in the
down-regulation of enamelin (Enam) (P < 0.05) and in the up-regulation of kallikrein-related peptidase 4 (Klk4) (P < 0.05).
Experiments were performed in triplicate. (B) Effects of distal-less homeobox 3 (D/x3) on HAT-7 ameloblasts. Over-expression of
DIx3 encoding full-length protein (1-287 amino acids) resulted in the up-regulation of amelogenin (Amelx), Enam, and Klk4
(P < 0.05 for all three genes). All data were evaluated 24 h after transfection. (C) Circadian oscillations at the RNA level were found
for clock genes in ameloblasts after cell cycle synchronization using forskolin. The results are shown here for nuclear receptor
subfamily 1, group D, member 1 (Nrildl), which showed a surge in expression 12 h after cell cycle synchronization ZT, Zeitgeist. (D)
Transfection of HAT-7 cells with Nrldl resulted in statistically significant up-regulation of Amelx (P < 0.05) and down-regulation
of Klk4 (P < 0.056) and Mmp20 (P < 0.05). In addition, the levels of Runx2 mRNA were also up-regulated 24 h after transfection
of HAT-7 cells with NridI (not statistically significant). In contrast, steady-state mRNA levels of Enam remained unchanged upon
the over-expression of Nridl. *Statistically significant changes; TVery close to being statistically significant changes.

detected and found to oscillate at the RNA level. One of
the most regularly oscillated clock mRNA in ameloblasts
was Nrldl (Fig. 1C). We then decided to evaluate if
over-expression of Nrldl changes the expression of
mRNA levels of ameloblast-specific genes. Over-expres-
sion of Nridl resulted in the up-regulation of Amelx and
in the down-regulation of Mmp20 and Klk4 mRNAs
(Fig. 1D). In contrast, the expression of Enam (Fig. 1D)
and Ambn (not shown) mRNAs was unchanged upon the
over-expression of Nrldl. Furthermore, we also evalu-
ated changes in the levels of expression of Runx2, a key
regulator of ameloblast-specific genes (Fig. 1D).

Multilevel and time-dependent control of ameloblast-
specific gene expression and cell functions

We are also analyzing how the stage-specific regulation
and circadian control networks govern ameloblast dif-
ferentiation and enamel formation using a multiscale
modeling approach. In our computational approach,
cells are modeled as discrete entities that respond to
intracellular and extracellular signals, which are modeled
continuously with differential equations. Key circadian
clock genes involved in amelogenesis are being integrated
into a Boolean gene network. In their simplest form,
Boolean models are interaction networks where each
biochemical species is represented as a node in one
of two possible states: expressed (‘on’ or 1) or
non-expressed (‘off or 0) (23). Transfer functions
between states are derived from biochemical interactions
using logical operators (e.g. AND, OR, and NOT). The
response to signals from the intracellular gene network
determines whether each cell differentiates, proliferates

or dies, and therefore directly influences the cellular and
the extracellular tissue scales. The spatial distribution of
cells is computed using a continuous macroscopic tissue
model based on the viscous liquid theory of tissue
dynamics. Finally, the number and spatial configuration
of cells are used to activate tissue signals, which in turn
were input into the Boolean model (Fig. 2). This com-
bination of discrete and continuous modeling of several
steps of amelogenesis will be used to analyze key cellular
events (such as ameloblast extension of differentiation)
and to predict the most important regulatory networks
necessary for enamel formation. This multiscale model-
ing approach provides a powerful tool for addressing
questions of how cells interact with each other and their
environment, and how these interactions, in turn, affect
gene expression.

Discussion

Our laboratory focuses on the study of gene expression
during ameloblast differentiation. Enamel formation
depends largely on a complex temporo-spatial expression
of adhesion molecules and growth and transcription
factors, described in early tooth development (24), which
continues during cell differentiation and enamel forma-
tion. During the first stage of amelogenesis, secretory
ameloblasts delineate the enamel space, and Amelx,
Enam, and Ambn proteins are secreted and assembled to
form an extracellular framework (25). Ameloblasts then
transport calcium and phosphate ions into this frame-
work, forming hydroxyapatite crystallites (4). During
enamel formation, the organic materials in the matrix are
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Fig. 2. A multiscale Boolean model is being designed to predict
the complex interactions between circadian controls and stage-
specific regulators such as runt-related transcription factor 2
(Runx2) and distal-less homeobox 3 (D/x3) that control gene
expression in ameloblasts and ultimately orchestrate ameloblast
differentiation and enamel formation. A schematic view is
presented of the multiscale nature of our model composed of
four different levels. At the genetic level we integrate the main
genes involved in the regulation of amelogenesis within a
Boolean network, which results in regulatory signals that con-
trol differentiation. The response to these signals occurs at the
cellular level, determining whether each cell progresses through
differentiation or dies. Given this information, at the macro-
scopic model the new spatial distribution of the cells is com-
puted at the tissue level. The number and spatial configuration
of cells determine the activation of the regulatory signals, which
in turn input to the genetic level. Clock genes induce daily
oscillations of key transcription factors, which, in the model,
activate stage-specific ameloblast genes at the genetic level.

degraded by two proteases — Mmp20 and Klk4 — leaving
behind a fluid-filled porous tissue where secondary
crystal growth and mineral accretion can occur to go on
to produce the final mature enamel. Defects in the for-
mation of enamel are seen in patients with Al, and
mutations in AMELX, ENAM, KLK4, and MMP20
have been implicated in the etiology of Al (26). Of all
these genes, expression of ENAM is exclusive to secre-
tory ameloblasts (27). Amelx and Mmp20 are expressed
in secretory ameloblasts as well as in odontoblasts (5),
whereas K/k4 is mainly expressed in the maturation-stage
ameloblasts (28).

The aim of this study was to test the hypothesis that
Runx2 and DIx3 are involved in ameloblast stage-specific
gene regulation. We found that Runx2 down-regulates
Enam and up-regulates Klk4. This is consistent with the
developmental expression patterns of Enam and Klk4.
The expression of Runx?2 is initiated at the end of the
secretory stage when Enam expression is suppressed.
Runx2 expression continues during the maturation stage
when K/k4 is exclusively expressed. Therefore, we pro-
pose that Runx?2 is a key regulator of ameloblast differ-
entiation with a role which involves suppressing genes
expressed in the secretory stage, such as Amelx and Enam
and up-regulating genes of the maturation stage, such as
Klk4. Further in vivo studies are needed to confirm these

preliminary indications and to identify any partners of
Runx2 that may be involved in the down-regulation or
up-regulation of ameloblast genes studied here.

DIx3 is another major player in amelogenesis. D/x3 is
strongly expressed by ameloblasts (16) and D/x3 muta-
tions result in AI (17). In this study, we showed that D/x3
up-regulates the expression of Amelx, Enam, and Klk4.
These findings are consistent with suggested roles of
DIx3 during both the secretory and the maturation stages
of amelogenesis. Our data are also in accordance with
previous studies that reported Amelx regulation by DIx2
based on gel-shift assays and promoter DIx2-binding site
predictions (29). It is possible that synergistic and/or
competitive relationships between DLX proteins take
place during amelogenesis. More studies are needed to
clarify the precise roles of the DIx family of transcription
factors in amelogenesis. Nevertheless, our data support a
key role of DI/x3 in ameloblast differentiation.

Circadian rhythms are self-sustained endogenous
oscillations that occur over a 24-h period. They corre-
spond to the environmental light-dark cycles of an
organism but persist even after the light—dark stimulus
has been removed. These biological rhythms are involved
in most physiological processes. Although there is a site
in the suprachiasmatic nucleus of the brain that is con-
sidered as the ‘master clock’, peripheral clocks have been
found in several tissues in the body. The relationship
between these two types of circadian biological clocks is,
as yet, unclear (30). Several genes have been identified as
core maintainers of the circadian rhythm. The main
mammalian genes include Circadian Locomotor Output
Cycles Kaput (Clock), Brain and Muscle Aryl Hydro-
carbon Receptor Nuclear Translocation (4ARNT)-like
(Bmall), Period 1 (Perl), Period 2 (Per2), Period 3
(Per3), Cryptochromes (Cryl) and Cry2. The genes
Nrldl, Nrld2, RAR-Related Orphan Receptor Alpha
(Rora), and Albumin D-binding protein (Dbp) also play
a key role in modifying the expression of the main clock
genes (31). Transcription of these ‘clock genes’ oscillates
over a 24-h period and their output signals induce
rhythms of target gene expression that create patterns in
physiological processes. Inducing a rhythm involves the
binding of a clock gene transcription factor to the pro-
moter region of a clock-controlled gene (32).

We have recently shown that clock genes and clock
proteins are expressed during ameloblast differentiation
(20, 33). This present study further supports the concept
that clock genes are expressed in ameloblasts and that
their expression oscillates during 24-h intervals. Fur-
thermore, we presented evidence showing that clock
genes regulate several ameloblast stage-specific genes,
supporting the idea that clock genes are key regulators of
ameloblast differentiation. These data are consistent with
our previous discoveries reporting that the amounts of
AMELX secreted vary during different daily intervals
(20). In addition, we showed that the over-expression of
Nrldl results in the up-regulation of Runx2 mRNA, a
key transcription factor strongly expressed in maturation
ameloblasts. Our data also showed that Runx2 regulates
the expression of Enam and K/k4 mRNAs. We therefore
hypothesize that clock genes may regulate the daily
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Fig. 3. This cartoon summarizes our findings reported here.
Gene regulation in ameloblasts is orchestrated by stage-specific
controls, as shown for amelogenin (4Amelx), enamelin (Enam),
and kallikrein-related peptidase 4 (K/k4) regulation by runt-
related transcription factor 2 (Runx2) and distal-less homeobox
3 (DIx3). Gene expression in ameloblasts is also subject to cir-
cadian controls, as shown for Amelx, matrix metalloproteinase
20 (Mmp20), Klk4, and Runx2 regulation by nuclear receptor
subfamily 1, group D, member 1 (Nrldl). Accordingly, we
postulate that circadian control of ameloblast genes can be
direct but also indirect (e.g. through Runx2). It is currently
unknown if DIx3 is also subject to circadian regulation. It is
also unknown if Runx2 and/or DIx3 can regulate the expression
of clock genes in ameloblasts in a negative-feedback loop.
Another complexity is that clock genes regulate each other,
resulting in complex network interactions. We are currently
analyzing these networks and their effects on ameloblast dif-
ferentiation and enamel formation using mathematical model-
ing.

variations of gene expression in ameloblasts either di-
rectly, by regulating their transcriptional rates, or indi-
rectly, by regulating the expression of key transcription
factors (Runx2 in our case) that regulate the expression
of ameloblast genes. More studies are needed to under-
stand the precise roles of clock genes in enamel forma-
tion. Nevertheless, we suggest that in addition to the
stage-specific controls, amelogenesis is subject to very
precise, rhythmic daily controls of gene-expression levels
and cell activity (Fig. 3).

In conclusion, our study offers novel insights into the
role of clock genes in ameloblast differentiation and ex-
plores the potential links between circadian control and
stage-specific regulation of ameloblast genes. Our
hypothesis, that an ameloblast peripheral clock regulates
enamel formation orchestrating the expression of ame-
loblast-specific genes, is further strengthened. Direct
links between changes in the expression of clock genes
and dental diseases remain to be confirmed using in vivo
models. Nevertheless, this initial study, using an amelo-
blast cell line, lays the foundation for more research in
the chronobiology of tooth development and diseases.
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