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Objectives. To explain the use of interaction terms in nonlinear models.
Study Design. We discuss the motivation for including interaction terms in multivar-
iate analyses. We then explain how the straightforward interpretation of interaction
terms in linear models changes in nonlinear models, using graphs and equations. We
extend the basic results from logit and probit to difference‐in‐differences models,
models with higher powers of explanatory variables, other nonlinear models (includ-
ing log transformation and ordered models), and panel data models.
Empirical Application. We show how to calculate and interpret interaction effects
using a publicly available Stata data set with a binary outcome. Stata 11 has added
several features whichmake those calculations easier. LIMDEP code also is provided.
Conclusions. It is important to understand why interaction terms are included in
nonlinear models in order to be clear about their substantive interpretation.
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The purpose of this paper is to explain the use of interaction terms in non-
linear models. A paper by Ai and Norton (2003) has received a great deal
of attention due to the importance of interaction terms in applied
research. However, a number of issues regarding interaction terms con-
tinue to be confusing to applied researchers. These issues include under-
standing the conceptual motivations for including interaction terms in
models, defining precisely a policy‐relevant marginal effect based on a
counterfactual, knowing how to interpret interaction terms graphically in
nonlinear models, and knowing how to compute interaction terms with
real data.

We begin by explaining the reasons for interest in interaction terms and
the effect of adding interaction terms in simple linear regression models.
Next, we explain how those effects change when the model is nonlinear.
We also present an odds‐ratio interpretation of the interaction effects and dis-
cuss how to interpret interaction terms in panel data models. In addition, we
show three different ways to compute interaction effects in Stata, along with
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their standard errors. We include LIMDEP code, as well, and illustrate our
points using publicly available data from Stata.

Although the material in the body of the text is primarily narrative, we
provide Appendix S1 that contains a mathematical presentation of all the
points made in the paper. Advanced readers may wish to go directly to
Appendix S1.

BACKGROUND

We assume that the reader is familiar with the basic linear regression model
of the form:

y ¼ b0 þ b1x1 þ u ð1Þ

where y is an outcome (dependent) variable, x1 is an explanatory variable, u is
a random error term, and b0 and b1 are parameters to be estimated.

The effect of a one‐unit change in x1—from a specific value of x1—on
E(y|x1), given byb1, is constant over the entire range of x1. This model is shown
in Figure 1a, where both b0 and b1 are assumed to be positive and x1 is a con-
tinuous variable such as age. The effect of a one‐unit change on the depen-
dent variable is the marginal effect of the explanatory variable on the
dependent variable. The marginal effect is obtained by differentiating the
conditional expected value of the dependent variable with respect to the
explanatory variables: @E ½yjx1�

@x1
¼ b1: When the explanatory variable is a dis-

crete variable, like sex (male or female) or the presence or absence of a
chronic illness, the marginal (or incremental) effect is an arithmetic differ-
ence, E(y|x1 = 1) � E (y|x1 = 0), rather than a derivative.

Let x1 be a continuous variable, such as age. Then, add a binary explan-
atory variable, like female, to the model, which can then be written as
follows:
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y ¼ b0 þ b1age þ b2female þ u ð2Þ

where age is the subject's age in years and female is coded 1 if the subject is
female and 0 if the subject is male. This model with all positive parameters is
shown in Figure 1b. Notice that in Figure 1b, the effect of a one‐unit change
in age on E(y|x), where x refers to the vector of covariates, is the same for men
and women and is constant over the entire range of age. The difference in the
conditional expected value of y between men and women with respect to age
is fully captured by the difference in the y intercept for men and women, esti-
mated by the parameter b2.

The analyst might hypothesize that the marginal effect of age is different
for men and women. Changes in the marginal effect of one variable induced
by changes in another variable's value are represented by cross-partial deriva-
tives or differences, also called interaction effects. In some literatures, variables
that alter the effect of one variable on another are referred to as modifiers. The
hypothesis that female changes the effect of age on E(y|x) (or equivalently that
age changes the effect of female on E(y|x)) can be tested by adding an interaction
term of the form age 9 female to the model:

y ¼ b0 þ b1age þ b2 female þ b12 age � female
� �þ u ð3Þ

A model with an interaction effect allows both the intercept and the
marginal effect (slope) of age on E(y|x) to be different for men and women (see
Figure 1c). At lower values of age, women have higher conditional expected
values of y than men, whereas at higher values of age the reverse is true. The
marginal effect of age for men is b1, whereas the marginal effect for women
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Figure 1: Interaction Terms in LinearModels
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(when female = 1) is b1 + b12. However, the marginal effect of age on E(y|x) for
either men or women is constant over the entire range of age.

If we substitute “treatment group” and “control group” for “women”
and “men,” we see that Figure 1b is a model of homogeneous treatment
effects with respect to age, whereas Figure 1c is a model of heterogeneous
treatment effects with respect to age.

Interaction terms can involve any combination of continuous and dis-
crete explanatory variables. The combination of one continuous variable and
one discrete (binary) variable simply facilitates graphical presentation of the
model.

NONLINEARMODELS

We now explain how the interpretation of interaction terms changes when
the model is not a simple linear model, but instead is a nonlinear model.

Using a general functional form F(.), we can write the conditional
expected value of y to be a general function of the linear index function

E ½yjx1; x2� ¼ F ðb0 þ b1x1 þ b2x2 þ b12ðx1 � x2ÞÞ ð4Þ
The function F could be the simple linear (identity) function, a logit or

probit (normal) transformation, the logarithmic or exponential transforma-
tion, or any other nonlinear function of the linear index function. It is impor-
tant to understand that the issues about interaction terms discussed here
apply to all nonlinear models, including log transformation models. In equa-
tion (4), letting v = b0 + b1x1 + b2x2 + b12(x1 9 x2), the marginal effect of x1
on the conditional expected value of y is as follows:

@E ½yjx1; x2�
@x1

¼ dF
dv

@v
@x1

¼ dF
dv

ðb1 þ b12x2Þ ð5Þ

if x1 is a continuous variable. Appendix S1 includes detailed calculations of
the marginal effects and the cross‐partial derivatives for discrete and continu-
ous variables.

In contrast to a linear model (equation 3), the marginal effect of an
explanatory variable in a nonlinear model is not constant over its entire
range, even in the absence of interaction terms (i.e., b12 = 0). Figure 2 shows
a typical binary logit or probit model with a single continuous explanatory
variable age (as shown on the right‐hand side of equation 1). The dependent
variable is the conditional probability that the binary outcome is equal to
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one, rather than zero. The relationship between age and the conditional
probability that y equals 1 is S‐shaped, indicating that an additional year of age
(e.g., the marginal effect of age) has little effect on the conditional probability
that y equals 1 for extremely high and low values of age, but there is a mid‐
range of age where the effect of an additional year of age is larger. The mar-
ginal effect of age is shown by the slope of the lines tangent to the S‐shaped
curve. In this example, the marginal effects are positive and roughly equal for
subjects who are 20 or 40 years old, but nearly zero for subjects who are 70.

Probability (y = 1|x) 

age 
20 40 70 

Probability (y = 1| x) 

age 
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Figure 2: (a) A Logit or Probit Model with a Single Continuous
Explanatory Variable (age). (b) A Logit or Probit Model with Continuous (age)
and Binary (female) Explanatory Variables. (c) A Logit or Probit Model with
Continuous (age) and Binary (female) Explanatory Variables and Their Inter-
action
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The addition of a binary explanatory variable like female to the logit or
probit model (as shown on the right‐hand side of equation 2) shifts the
S‐shaped curve (see Figure 2b). The marginal effect of age for a 20 year old
now depends on the individual's sex, even though there is no interaction term
in the model.

Adding an interaction term to the model (corresponding to the right‐
hand side of equation 3) yields the relationships shown in Figure 2c. When
all the coefficients are positive, the effect of adding the interaction term is to
make the curve for women more steeply sloped in the middle range of age.
As in Figure 2b with no explicit interaction term, the marginal effect of age is
different for different values of age and for different values of female.

This diagrammatic representation of the effects of interaction terms in
the logit or probit model raises four important questions:

1. Does the change in the relationship between the conditional probabil-
ity that y equals 1 and the explanatory variables permitted by the inclu-
sion of an explicit interaction term really represent the hypothesis that
the analyst wishes to test? Only the analyst can answer that question.

2. Does the inclusion of the interaction term improve the goodness of
fit of the model? That question can be answered simply by examin-
ing the asymptotic z-statistic on the coefficient b12.

3. What is the marginal effect of x1 on the conditional expected value of
y or on the conditional probability that y takes on a particular discrete
value, when an interaction term is added to the model? That ques-
tion requires examination of the mathematical expression specific to
the model the analyst is estimating. We use the probit model as an
example in Appendix S1. We recommend that marginal effects of
the explanatory variables in nonlinear models be calculated in one
of two ways—using the values of age and female corresponding to:

a. specific values for a representative observation, such as a 50-year-
old female;

b. the values of age and female for each subject in the data, and then
the results for every subject averaged to obtain the sample average
marginal effects.

(Some researchers also calculate marginal effects using the values of
age and female corresponding to the average values in the sample,
though others object to marginal effects calculated for a person that is
30 percent female, for example.)
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4. How does the marginal effect of one variable change when the value
of another variable changes (the cross-partial derivative or differ-
ence). Computation of the cross-partial effect also requires examina-
tion of the mathematical expression specific to the model at hand.
Again, we use the probit model as an example in Appendix S1.
The same computational alternatives are available for cross-partial
effects.

As Ai and Norton (2003) explain, in nonlinear models the cross‐partial
effect could be different from zero, even if b12 = 0. To illustrate, if we again let
v = b0 + b1x1 + b2x2 + b12(x1 9 x2) and use the result from equation (5), we
can write:

@2Eðyjx1; x2Þ
@x1@x2

¼ @

@x2

dF
dv

ðb1 þ b12x2Þ
� �

¼ dF
dv

b12

� �
þ d 2F

dv2
ðb1 þ b12x2Þðb2 þ b12x1Þ

� � ð6Þ

Even without an interaction term (b12 = 0), the expression above for
@2Eðyjx1;x2Þ

@x1@x2
still has a nonzero value. Therefore, the statistical significance of the

cross‐partial derivative cannot be tested with a simple asymptotic z‐statistic
on b12. Nor does the sign of b12 necessarily indicate the sign of the cross‐par-
tial effect. Instead, the cross‐partial effect must be evaluated for the specific
nonlinear function in question. The extent to which the addition of an explicit
interaction term changes either the marginal or cross‐partial effects can be
answered by comparing marginal effects from models with and without an
explicit interaction term.

An additional feature of nonlinear models is the need to understand
the distinction between the scale of interest and the scale of estimation.
Some typical examples of the scale of interest in health services research
include expenditures, and out‐of‐pocket costs in dollar amounts; utilization
of health care services measured as inpatient, outpatient, emergency depart-
ment visits, length of hospital stays; as well as probability of various out-
comes such as any health care spending, any doctor visits, and indicators of
unmet needs or other access to care measures. The scale of estimation, on
the other hand, could be log transformation of the outcome variable when it
is a continuous variable, or a nonlinear transformation of the probability that
the outcome equals 1 (e.g., logit or probit of the probability) when the out-
come is binary.
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The appropriate choice of the scale of estimation is a critical decision in
nonlinear modeling, because its misspecification could lead to biased results
(Basu, Arondekar, and Rathouz 2006).

EXTENSIONS

Thus far, the information we have presented is contained in Ai and Norton
(2003) and Norton, Wang, and Ai (2004). Next, we extend the basic model in
several important directions. First, following Puhani (2008), we explain the
interpretation of interaction effects in the special but common case of differ-
ence‐in‐differences (DD) models. Second, we extend the results to include
other nonlinear variables in the model. Third, we discuss the odds ratio inter-
pretation. Fourth, we explain how to interpret interaction terms in panel data
models.

A Special Case: Difference‐in‐Differences Models

When subjects in a treatment group and a control group are observed in both
the pretreatment and posttreatment periods and the pretreatment time trends
in the outcome variable are not significantly different in the two groups, DD
models can be used to estimate the effect of the treatment on the treated. One
way to specify the model is by defining a variable Post that is equal to one if
the observation is from the posttreatment period and zero if from the pretreat-
ment period; and a variable Treat that is equal to one if the observation is from
the treatment group and zero if from the control group.

Letting the vector X represent some additional explanatory variables
including a constant term, the linear DDmodel appears as follows:

y ¼ X bþ b1Post þ b2Treat þ b12ðPost � TreatÞ þ u ð7Þ
EðyjX ;Treat ¼ 1;Post ¼ 1Þ ¼ X bþ b1 þ b2 þ b12
EðyjX ;Treat ¼ 1;Post ¼ 0Þ ¼ X bþ b2
EðyjX ;Treat ¼ 0;Post ¼ 1Þ ¼ X bþ b1
EðyjX ;Treat ¼ 0;Post ¼ 0Þ ¼ X b

Letting x denote the vector of covariates, the difference in E(y|x) from
the pretreatment period to the posttreatment period for the treatment group
is b1 + b12. The difference in E(y|x) from the pretreatment period to the post-
treatment period for the control group is b1, and thus, the difference in the
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differences in E(y|x) between the treatment and control groups from the
pretreatment to the posttreatment periods is b12. Thus, b12 is an estimate of
the treatment effect on the treated.

Again, using the logit or probit model as examples of nonlinear models,
let the conditional probability that y = 1 be expressed as a function of the
same linear index shown in equation (7): Xb + b1Post + b2Treat
+ b12(Post 9 Treat).We can write the nonlinear DDmodel as follows:

P ðy ¼ 1jxÞ ¼ F ðX bþ b1Post þ b2Treat þ b12ðPost � TreatÞÞ ð8Þ
And the sameDD logic can be applied:

P ðy ¼ 1jX ;Treat ¼ 1;Post ¼ 1Þ ¼ F ðX bþ b1 þ b2 þ b12Þ
P ðy ¼ 1jX ;Treat ¼ 1;Post ¼ 0Þ ¼ F ðX bþ b2Þ
P ðy ¼ 1jX ;Treat ¼ 0;Post ¼ 1Þ ¼ F ðX bþ b1Þ
P ðy ¼ 1jX ;Treat ¼ 0;Post ¼ 0Þ ¼ F ðX bÞ

The parameter b1 allows the linear index (and hence the P(y = 1|x))
to be different for all subjects in the posttreatment period compared to the
pretreatment period. b2 allows the linear index (and hence the P(y = 1|x))
to be different for treatment subjects compared to control subjects. b12
allows the linear index to be different in the posttreatment period and
hence the conditional probability that P(y = 1|x) to be different over and
above the difference attributable to the nonlinearity of the model for sub-
jects in the treatment group versus the control group. It is the additional dif-
ference in the differences that provides a measure of the treatment effect
on the treated.

Figures 3 and 4 show the effect of adding the explicit interaction term
to a probit model. Figure 3 shows the relationships between the conditional
probability that y = 1 and a continuous explanatory variable X in a model
with no interaction term:

P ðy ¼ 1jxÞ ¼ F ðX bþ b1Post þ b2TreatÞ ð9Þ
The parameters b, b1, and b12 were set equal to 1, and b2 was set equal

to 2 (b2 needs to be different than b1 so that the lines do not lie on top of each
other). In Figure 3, the curve furthest to the right corresponds to Post = 0,
Treat = 0, thus to the cumulative distribution function of variable Xwhich has
a mean of zero. The curve to its left corresponds to Post = 1, Treat = 0. The
third line from the right corresponds to Post = 0, Treat = 1. Finally, the curve
furthest on the left corresponds to Post = 1, Treat = 1.
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The DD estimate is the difference on vertical axis between the third and
fourth lines from the right (distance A) versus the first and second lines from
the right (distance B) evaluated at a specific value of the explanatory variables
X. Figure 3 shows that in the absence of an explicit interaction term, distance
A and distance B are not equal as they would be in a linear model and thus
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Figure 3: Nonlinear (Probit) Model without an Interaction Term
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Figure 4: Nonlinear (Probit) Model with an Interaction Term (difference‐
in‐differences)
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the nonlinear model will produce a nonzero DD estimate even without an
interaction term. That is, the portion of the DD effect that Puhani (2008)
noted should be held constant when evaluating the DD version of interac-
tions in nonlinear models.

As shown in Figure 4, including the interaction term allows the curve
furthest from the right, corresponding to Post = 1, Treat = 1, to shift even fur-
ther to the left. That additional upward shift in the P (y = 1|x) from the dotted
line to the solid line above it (distance C in Figure 4) is the portion of the DD
effect attributable to the explicit interaction Post 9Treat. In this special case
that holds both Treat constant and Post constant but allows Post 9Treat to
vary, Puhani (2008) showed that the treatment effect on the treated is repre-
sented by the coefficient on the interaction term Post 9Treat.

Nonlinear Models with Higher Powers of the Explanatory Variables

An additional source of nonlinearity arises when higher powers of explana-
tory variables (e.g., a squared term) are included in a nonlinear model.
A squared term is an interaction between a continuous variable and itself,
which is why this is of interest in this paper. In a logit or probit model, without
other interaction terms or higher powers of the explanatory variables, the
marginal effect of a variable x on the conditional probability that y = 1 has
the same sign (though varying in magnitude) over the entire range of x, as
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Figure 5: Predicted Probabilities with Squared Covariate
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shown as the slope of the dashed line in Figure 5 where the slope is always
positive.

However, the inclusion of higher‐order terms can produce relationships
between x and y that require careful consideration. Consider the following
model:

P ðy ¼ 1jxÞ ¼ F ðb1x þ b2x
2Þ

If the values of x are positive and the coefficients are positive, then the
model including x2 retains the relationship shown by the dotted line. How-
ever, if x extends into the negative range, the relationship between x and the
conditional probability that y equals 1 is quite different from the usual S‐
shaped curve. Some examples of negative‐valued covariates include de‐
meaned data (often age and age squared) to make the constant term more
meaningful (Norton 1995; Norton et al. 2002), first‐difference data indicating
changes over time (French et al. 2010), two‐stage residual inclusion (Terza,
Basu, and Rathouz 2008; Van Houtven and Norton 2008), and standardized
z‐scores (Duflo 2000; Balsa et al. unpublished data). The addition of a
squared term, shown by the solid line in Figure 5, causes P (y = 1|x) to
become U‐shaped (or possibly inverse U‐shaped). As a result, there always
will be some values of x (possibly out of sample) for which the full marginal
effect is positive and some values for which it is negative.

Odds Ratios and Interactions

Some researchers prefer to explain results from logit models using the odds
ratio interpretation instead of marginal effects, despite the well‐documented
confusion between risk ratios and odds ratios and the lack of policy meaning
in an odds ratio (Lee 1994; Kleinman and Norton 2009). However, interac-
tion terms make the odds ratio interpretation evenmore challenging (Norton,
Wang, and Ai 2004). In a logit model without any interactions, the interpreta-
tion of a coefficient is the natural logarithm of the odds ratio. When an inter-
action term is included, the interpretation of its coefficient b12 is more
complicated. To see this, recall that in a simple logit model with an interaction
termwhere x denotes the vector of covariates, the log odds are as follows:

lnðoddsjxÞ ¼ ln
P ðy ¼ 1jxÞ
P ðy ¼ 0jxÞ

� �
¼ b1x1 þ b2x2 þ b12ðx1 � x2Þ ð10Þ

Solving equation (10) for b12 shows that it equals a complicated expres-
sion which is essentially the natural logarithm of the ratio of two odds ratios
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obtained by holding x2 at 0 or 1 and incrementing x1 by one unit (as shown in
Appendix S1). This should further discourage the odds ratio interpretation.

Other Nonlinear Models

All of the results discussed so far are applicable to more complex nonlinear
models, including ordered logit and probit models, multinomial logit and
probit models, tobit models, count data models, and survival models, includ-
ing event history and duration models. In each case, however, it is necessary
to determine which of the three questions (additional explained variance,
change in marginal effects, or change in cross‐partial derivatives) one is inter-
ested in answering. Many computer programs will compute some form of
marginal effects if requested, but the proper mathematical expressions for the
cross‐partial derivatives may have to be derived by the analyst using the for-
mulas presented earlier in the paper as a guide.

Models for Panel Data

The interaction effect cannot be computed for a panel data logit model with
fixed effects without further assumptions. Fixed effects logit models (also
known as Chamberlain conditional logit models) are conditional on the sum
of the dependent variable within each group. This sweeps out the group con-
stant term (fixed effect). Without these group fixed effects (or additional
assumptions), it is impossible to compute marginal effects of a single variable
let alone a double (e.g., cross‐partial) derivative or difference. For any model,
it is impossible to predict the conditional expected value of the dependent
variable without the constant term. The only direct interpretation of the coef-
ficients in a fixed effects logit model is that of an odds ratio. Stata's margins

command will make predictions after a fixed effects logit, but only by assum-
ing that all the fixed effects are zero. In other words, after carefully modeling
unobserved heterogeneity, the default is to make predictions assuming homo-
geneity. The same problem holds for random effects logit and random effects
probit models.

ESTIMATION

We next turn to the practical issue of how to answer the questions posed at the
beginning of the paper when analyzing data. For this example, we use Stata's
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margex data set, which is fictitious data with a dichotomous outcome vari-
able and various demographics. The margex data set has 3,000 observations.
About 17 percent of observations have the outcome equal to one. Age ranges
from 20 to 60, with a mean of 40. Half of the people in the sample are women
(female = 1). The interaction between age and female (=age 9 female and
denoted agefem) has a mean of 21.8 and ranges from zero to 60. We control
only for age and female to keep the example simple.

Does the Interaction Term Improve the Goodness of Fit of the Model?

The question “Does the interaction term agefem improve the goodness of fit of
the model” can be answered simply with a z‐test on the coefficient of the inter-
action term in a logit model. The Stata 11 syntax uses c. to indicate a continu-
ous variable, i. to indicate a dummy variable, and ## to include both main
effects and all interactions. This syntax is necessary later for the margins

command to understand the relationship between variables.
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The results show that the coefficients on age and female are positive
and statistically significant, while the interaction coefficient is negative but
not statistically significant. The z‐statistic on the interaction term is �0.80,
indicating that this variable does not explain much variation in the dependent
variable.

Marginal Effects in Models with Interaction Terms

The question “What is the marginal effect of x1 on the conditional expected
value of y, when an interaction term is added to the model?” concerns mar-
ginal effects in models with interaction terms. The correct marginal effect of
age and the incremental effect of gender can be found easily in Stata 11 with
margins, as long as the logit command is run with the new syntax that high-
lights the relationship between the variables.

Using this syntax, Stata computes the correct marginal and incremen-
tal effects, taking into account the interaction term. The program computes
the marginal effect for age using equation (A3a) in Appendix S1—the
expression for the marginal effect of a continuous explanatory variable—
with age and female set equal to their actual values for each observation.
Then, the program computes the incremental effect for female using equa-
tion (A3b) in Appendix S1—the expression for the incremental effect of a
discrete explanatory variable—with age set equal to its actual value for each
observation and female alternating between 0 and 1. The results from equa-
tion (A3b) are averaged across all observations to obtain the average mar-
ginal effect of female. The standard error of the marginal effects is calculated
at the means of the explanatory variables using the delta method (Greene
2008, pp. 68–70).1
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Cross‐Partial Derivatives in Models with Interaction Terms

How does the marginal effect of age change when female change from 0 to 1?
There are three basic ways to compute cross‐partial derivatives in Stata:
inteff, margins, and predictnl. First, we show the answer using
inteff, a user‐written command that works for logit and probit when there
are exactly two variables interacted (Norton, Wang, and Ai 2004). The
numeric calculations we present below can be enhanced by examining the
interaction effects of two variables graphically. Greene (2010), for example,
plotted how the partial effect of one variable (i.e., age) changes with that vari-
able for different values of the second variable (i.e., female or male).

For the numeric calculation, we re‐run the logit model using the ori-
ginal Stata syntax. The mean cross‐partial derivative effect (labeled “ie”)
is the average of the cross‐partial derivative over all observations in the
data set. For each observation, ie is the change in the conditional probability
that outcome = 1 for a change in age as gender changes from zero to one. It is
the difference in the marginal effect of age on the conditional probability
that outcome = 1 between men and women. The mean interaction effect is
positive—opposite in sign from the coefficient on the interaction term for
most observations—and generally statistically significant. The average
change in the predicted conditional probability that outcome = 1 for a 1‐year
increase in age differs between men and women by .41 percentage points,
with women having higher marginal effects of age on average.

Although Stata's margins command can compute the derivative of
only a single variable, we can manipulate the results to get the interaction
effect by computing the derivative with respect to one variable at different
values of the other variable. Again, if the interaction effect is the difference in
the marginal effect of age on outcome between men and women, then one
could compute the marginal effect of age for these two groups using the
margins command and take the difference.
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The difference between .0137921 and .0097216 is exactly what we found
before, namely .00407045. By symmetry, the same result could be approxi-
mated by computing the incremental effect of gender at different ages, and
taking the difference. For example, one could do this for five pairs of ages (30
and 31, etc.). While none of the differences in the pairs is exactly .00407045, a
weighted average would be close.

.margins,dydx (female)at(age = (20 21 30 31 40 41 50 51 60
61)) post
(outputomitted)

Finally, the general Stata command predictnl can be used for any
nonlinear combination of the model's coefficients. Advantages include flexi-
bility in use with any model or specification, and that it automatically com-
putes the standard error. The difficulty in using this command is that it
requires writing out the formula, and there is greater chance for a typo than
either of the other methods. The formula in the predictnl command again
corresponds to the idea of computing the marginal effect of age (derivative)
for men and women, and then taking the difference. The formula is the differ-
ence in two derivatives, evaluated for men and for women. Again, we see that
this method yields the same result that the full interaction effect in this simple
model is about .0040705.
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While the margins command is quite flexible, it cannot be used for
every nonlinear model. For example, margins does not work for the log
transformation (boxcox command).

Code for LIMDEP

Having downloaded the margex data set and converted it to a LIMDEP sys-
tems file (using, e.g., StatTransfer), we can produce somewhat similar output
with the following commands. (We are grateful to William Greene of New
York University for providing the LIMDEP code.) The Wald command pro-
duces standard errors of the marginal effects taken at the means of the explan-
atory variables using the delta method.

DISCUSSION

In this paper, we discussed reasons for including interaction terms in non-
linear models, as well as the proper interpretation of those terms. As Greene
(2010) noted, the most important question to ask about models with interac-
tion terms is “What meaning can be attached to the results?” This paper has
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dealt with both conceptual and computational aspects of interaction terms in
nonlinear models, but that work needs to be preceded by development of a
rigorous theoretical model to ensure correspondence between the empirical
analysis and the hypotheses the analyst is trying to test.
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NOTE

1. This is not a method we recommend due to the problem of the subject who is 30
percent female, noted earlier. However, this approach is in wide use. The delta
method can be used to compute the standard error of a nonlinear function only at a
specific set of values of the function's variables, for example, a “point” prediction
from a nonlinear model. In this example, the delta method could be used to com-
pute the difference in P(y = 1|x) for female = 1 versus female = 0 with the values of
all the other explanatory variables held constant either at a specific subject's values
or the average values for the sample. The standard error of the average marginal
effect of female across all subjects in the sample is not equal to the standard error of
the marginal effect of female evaluated at the means of the explanatory variables
although the results may be numerically close.
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Appendix S1: Technical Appendix.
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