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Type | diabetic osteoporosis results from impaired osteoblast activity and death. Therefore, anti-resorptive treatments may not
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effectively treat bone loss in this patient population. Intermittent parathyroid hormone (PTH) treatment stimulates bone remodeling and
increases bone density in healthy subjects. However, PTH effects may be limited in patients with diseases that interfere with its signaling.
Here, we examined the ability of 8 and 40 g/kg intermittent PTH to counteract diabetic bone loss. PTH treatment reduced fat pad mass
and blood glucose levels in non-diabetic PTH-treated mice, consistent with PTH-affecting glucose homeostasis. However, PTH treatment
did not significantly affect general body parameters, including the blood glucose levels, of type | diabetic mice. We found that the high dose

of PTH significantly increased tibial trabecular bone density parameters in control and diabetic mice, and the lower dose elevated

trabecular bone parameters in diabetic mice. The increased bone density was due to increased mineral apposition and osteoblast surface,

all of which are defective in type | diabetes. PTH treatment suppressed osteoblast apoptosis in diabetic bone, which could further
contribute to the bone-enhancing effects. In addition, PTH treatment (40 p.g/kg) reversed preexisting bone loss from diabetes. We
conclude that intermittent PTH may increase type | diabetic trabecular bone volume through its anabolic effects on osteoblasts.

J. Cell. Physiol. 227: 1326—1334, 2012. © 201 | Wiley Periodicals, Inc.

Bone is a highly dynamic tissue that is constantly remodeling to
maintain blood calcium homeostasis and to respond to altered
demand for structural support. Osteoblasts (bone forming
cells) and osteoclasts (bone resorbing cells) work
simultaneously to repair microcracks and maintain bone density
and strength. Certain diseases and conditions can alter the
balance of bone formation and resorption and can often lead to
bone loss in men and women, which heightens the risk of
osteoporosis from aging and menopause (McCabe, 2007). One
such disease is type | (T1-) diabetes, in which patients are
hyperglycemic and hypoinsulinemic and display bone loss and
increased fracture risk (Levin et al., 1976; Auwerx et al., 1988;
Kemink et al., 2000; Follak et al., 2004; Gandhi et al., 2005). As
with secondary osteoporosis resulting from any disease,
understanding the mechanism of T|-diabetic bone loss is
necessary for choosing the best therapies. Osteoporosis from
TI-diabetes is marked by decreased bone formation (and
unchanged or decreased bone resorption) in both humans and
animals (Goodman and Hori, 1984; Bouillon et al., 1995, 2005;
Danne et al,, 1997; Holl et al., 1998; McCabe, 2007; Fowlkes
et al., 2008; Motyl et al., 2009). Reduced bone formation
markers in diabetes include reduced serum osteocalcin levels
as well as reduced mRNA levels of osteocalcin, runt-related
transcription factor 2 (runx2), osterix and DIx5 in bone. This
suggests impaired differentiation and maturation of osteoblasts.
It has been suggested that reduced marrow stromal cell
differentiation to the osteoblast lineage could also conribute to
suppressed bone formation and be related to the increased
number of adipocytes in the bone marrow [both osteoblasts
and adipocytes arise from mesenchymal stem cells (MSCs)]
(Botolin et al., 2005; Botolin and McCabe, 2007; Martin and
McCabe, 2007; Fowlkes et al., 2008; Motyl et al., 2009).
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However, recent studies have demonstrated a disconnect
between osteoblast and adipocyte differentiation in T |-
diabetes. For example, we demonstrated that inhibition of
marrow adiposity with leptin or the PPARg inhibitor bisphenol-
A-diglycidyl ether (BADGE) was unable to prevent bone loss
from Tl-diabetes (Botolin and McCabe, 2006b; Motyl and
McCabe, 2009b). In addition to reduced maturation, we found
that osteoblasts undergo apoptosis as early as 2 days after blood
glucose levels become elevated in the streptozotocin mouse
model of T|-diabetes and at comparably early time points in
the spontaneously diabetic mice (Coe et al., 201 I). Thus,
a treatment that could target osteoblasts (by promoting
differentiation and/or preventing apoptosis) may benefit the
bone health of patients with diabetes.

Most treatments for osteoporosis are anti-resorptive,
meaning they work by inhibiting osteoclast activity.
Bisphosphonates (the most widely used antiresorptive therapy)
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have a similar structure to inorganic pyrophosphate and can
stably incorporate into bone (Russell and Rogers, 1999;
Tashjian and Gagel, 2006). When osteoclasts encounter
bisphosphonates embedded in bone, resorption is halted, and
osteoclasts often undergo apoptosis (Russell, 2006). This could
present a problem for fracture repair and everyday remodeling
of microcracks (Goh et al.,, 2007; Kwek et al., 2008; Lenart
et al,, 2008; Neviaser et al., 2008; Abrahamsen et al., 2009). In
T|-diabetes, bone resorption is already suppressed (McCabe,
2007); therefore, further suppression of resorption with
antiresorptive therapies may worsen impaired fracture healing
in these patients. Compared to the total patient population
receiving bisphosphonates for osteoporosis, diabetic patients
were nearly five times more likely to be diagnosed with
osteonecrosis of the jaw (Khamaisi et al., 2007). Other
antiresorptive treatments for osteoporosis exist such as
hormone replacement therapy, selective estrogen receptor
modulators (SERMs), and calcitonin. Because bone loss from
T|-diabetes is predominantly the result of reduced bone
formation, not increased resorption, anabolic therapies that
target bone formation directly may be the most appropriate
treatment for T|-diabetic patients.

Currently, the only anabolic treatment approved for use in
the US is the N-terminus of parathyroid hormone (PTH), also
called teriparatide (Vahle et al., 2002, 2004). The mechanism
of PTH action in bone is complex and dependent on dosing.
Chronic elevation of serum PTH levels causes net bone
resorption and calcium release (Ma etal., 2001; Jilka etal., 2010).
Intermittent (daily subcutaneous injections) PTH treatment, on
the other hand, causes a net increase in bone formation and
reduction of fracture risk in humans and laboratory animals
(Dempster et al., 1993; Burr et al,, 2001; Neer et al., 2001;
Jilka, 2007; Barnes et al., 2008). However, intermittent PTH
treatment at high doses (much greater than the standard human
dose of 20 pg/kg/day), while beneficial for bone density, have
been associated with osteosarcoma in rats (Vahle et al., 2002,
2004).

There are no reports examining the efficacy of PTH
treatment for T |-diabetic bone loss in humans. In laboratory
animals, intermittent PTH treatment has proven to be anabolic
(Dempster et al., 1993), and is effective at increasing bone
formation in models of unloading, ovariectomy, and alcohol
consumption (Liu and Kalu, 1990; Liu et al., 1991; Turner etal.,
1998; Burr etal., 2001; Tanaka et al., 2004; Sibonga et al., 2007).
Additionally, 4-week intermittent PTH treatment of STZ-
diabetic rats improves bone density parameters at 4, 6, and
8 weeks after diabetes induction (Tsuchida et al., 2000).
Similarly, PTH-related protein (PTHrP) treatment of
streptozotocin-diabetic mice also enhances bone formation
markers and bone density (Lozano et al., 2009). The effects of 8
compared to 40 pg/kg intermittent PTH treatment on diabetic
bone loss has yet to be examined with regard to its impact on
bone density loss and recovery and on molecular parameters of
diabetic bone (such as adiposity and lineage markers).

Here, we examined the efficacy of intermittent PTH therapy
on several aspects of bone loss in T-diabetic mice (bone
formation, osteoblast apoptosis, and bone resorption). We
used a lower dose (8 ng/kg body weight) as well as a standard
dose use in the literature (40 pg/kg). Both doses were sufficient
to restore trabecular bone density of T |-diabetic mice back to
untreated control levels. We demonstrated that this effect was
due to increased osteoblast maturity, viability, and
mineralization. We also found that PTH was capable of
restoring diabetic bone density to normal levels even when
initiated after bone loss had already occurred. This is crucial for
PTH to be an effective clinical treatment of osteoporosis in
already diagnosed type | diabetic patients. Taken together, our
clinically relevant findings warrant further exploration of the
use of PTH in treating bone loss human diabetic subjects.

JOURNAL OF CELLULAR PHYSIOLOGY

Materials and Methods
Diabetes induction

Male adult BALB/c mice were obtained from Harlan Sprague
Dawley (Indianapolis, IN). All mice were maintained on a |2-h light,
12-h dark cycle at 23°C, were given standard laboratory chow, and
had food and water ad libitum. At |4 weeks of age, when mice were
in the plateau phase of growth, mice were given intraperitoneal
injections of streptozotocin (50 mg/kg; to induce diabetes) or 0.1 M
citrate buffer pH 4.5 vehicle (control) for five consecutive days.
Diabetes was confirmed |2 days after the first injection with an
AccuChek compact glucometer (Roche, Nutley, NJ) and a drop of
blood collected from the saphenous vein. Blood glucose over
300 mg/dl was considered diabetic.

PTH treatment

PTH (Bachem, Torrance, CA) was stored in glass vials topped with
argon gas at —80°C asa 10~ * M stock in 4 mM HCl supplemented
with 0.1% bovine serum albumin. PTH did not go through more
than one freeze/thaw cycle. Immediately before injection, stock
PTH was diluted in ice cold 0.9% saline. Control and diabetic mice
were subjected to daily subcutaneous injections of each PTH
dosing regimen: (1) daily vehicle treatment from day 0 until harvest
(day 40), (2) daily 8 pg/kg PTH from days 0 to 40, (3) daily 40 pg/kg
PTH from day 0 to 40, or (4) daily vehicle treatment from days 0 to
19 followed by daily 40 pg/kg PTH from days 20 to 40. At the
indicated time points, mice were harvested and serum was
collected, tissues were weighed, and tissues and bones were either
fixed in formalin or frozen in liquid nitrogen and stored at —80°C.
All animal procedures were performed in accordance with
Michigan State University Institutional Animal Care and Use
Committee.

Micro-computed tomography (nCT) analyses

Fixed bones were scanned in a medium of 70% ethanol usin% aGE
Explore Locus wCT system at a voxel resolution of 20 um
obtained from 720 views. Beam angle of increment was 0.5 and
beam strength was set at 80 kVp and 450 mA. Each run included
bones from each treatment group and a calibration phantom to
standardize grayscale values and maintain consistency. Based on
autothreshold and segmentation analyses of multiple bone samples,
a fixed threshold (800) was used to separate bone from bone
marrow. Accuracy was verified by comparison of the original and
segmented image slices. Cortical bone analyses were made in a
defined 2 mm? cube in the mid-diaphysis immediately proximal to
the distal tibial-fibular junction, with the exception of cortical bone
mineral density (BMD), which were made in a 0.1 mm® cube.
Trabecular bone analyses were performed in a manually defined
region of trabecular bone beginning at 0.17 mm (1% of the total
length) distal to the growth plate of the proximal tibia and
extending 2 mm toward the diaphysis, and excluding the outer
cortical shell. Trabecular bone mineral content (BMC), BMD, bone
volume fraction (BV/TV), thickness (Tb.Th), separation (Tb.Sp),
and number (Tb.N), and cortical BMD, moment of inertia (MOI),
thickness, inner and outer perimeter, and marrow, cortical and
total area values were computed by a GE Healthcare MicroView
software application for visualization and analysis of volumetric
image data. Trabecular isosurface images were taken from a
cylindrical region in the tibia immediately distal to the proximal
growth plate measuring 0.8 mm in length and diameter.

Bone histology and histomorphometry

Fixed femur samples were dehydrated and infiltrated using a
routine overnight processing schedule. Samples were then
embedded in paraffin and 5 mm sections obtained. Slides were
stained for tartrate-resistant acid phosphatase (TRAP) activity
according to manufacturer protocol (387A-1KT; Sigma, St. Louis,
MO). The identity of the sections was not revealed until all

1327



1328

MOTYLET AL.

measures were obtained. Measurements were obtained from two
separate people and averaged. Osteoclast surface area was
measured and expressed as a percentage of total bone surface in
the femur trabecular region ranging from the distal growth plate to
2 mm proximal. Osteoblasts were counted and expressed relative
to total trabecular bone surface. Adipocytes, >30 wm in diameter,
were counted in the same area. )

To detect cell death in vivo, the TACSeXL"™ Basic In Situ
Apoptosis Detection Kit was used according to manufacturer
protocol (Trevigen Inc., Gaithersburg, MD). Positive controls
included slides incubated with nuclease. Five trabecular regions
were examined for each section. Total osteoblast number counted
ranged between 45 and 150 per mouse. Three people carried out
the analyses and obtained similar results.

For mineral apposition rate (MAR), mice were injected
intraperitoneally with 200 ml of 10 mg/ml calcein (Sigma, St. Louis,
MO) at 9 and 2 days before harvest. Sections were photographed
under fluorescent light and the distance between lines of calcein
was measured. All photomicrograph measurements were
performed with Image Pro Plus software (Media Cybernetics, Inc.,
Bethesda, MD).

RNA analyses

Tibias were cleaned of muscle and connective tissue, snap frozen in
liquid nitrogen and stored at —80°C. Frozen tibias were crushed
under liquid nitrogen conditions with a Bessman Tissue Pulverizer
(Spectrum Laboratories, Inc., Rancho Dominguez, CA). RNA was
isolated with Tri Reagent (Molecular Research Center, Inc.,
Cincinnati, OH) and integrity was assessed by formaldehyde-
agarose gel electrophoresis. cDNA was synthesized by reverse
transcription with Superscript || Reverse Transcriptase Kit and
oligo dT ;.18 primers (Invitrogen, Carlsbad, CA) and amplified by
real-time PCR with iQ SYBR Green Supermix (BioRad, Hercules,
CA) and gene-specific primers synthesized by Integrated DNA
Technologies (Coralville, IA). Hypoxanthine guanine
phosphoribosyl transferase (HPRT) mRNA levels do not fluctuate
in diabetes or with PTH treatment and were used as an internal
control. HPRT was amplified using 5'-AAG CCT AAG ATG AGC
GCA AG-3' and 5-TTA CTA GGC AGA TGG CCA CA-3
(Vengellur and LaPres, 2004). Osteocalcin was amplified using 5'-
ACG GTATCACTATTTAGGACCTGT G-3'and 5¥-ACTTTA
TTT TGG AGC TGC TGT GAC-3' (Ontiveros and McCabe,
2003). TRAPS was amplified using 5'-AAT GCC TCG ACC TGG
GA-3'and 5-CGT AGT CCT CCT TGG CTG CT-3' (Wirenetal.,
2004). Receptor activator of nuclear factor kappa-B ligand
(RANKL) was amplified using 5'-TTT GCA GGA CTC GAC TCT
GGA G-3' and 5-TCC CTC CTT TCA TCA GGT TAT GAG-3’
(Zhao et al., 2002). OPG was amplified using 5-GAA GAA GAT
CAT CCAAGACATTGAC-3'and 5-TCCATAAACTGA GTA
GCT TCA GGA G-3' (Motyl and McCabe, 2009a). Real-time PCR
was carried out for 40 cycles using the iCycler (Bio-Rad) and data
were evaluated using the iCycler software. Each cycle consisted of

TABLE I. Blood glucose, muscle and fat composition of control and diabetic,

95°C for 15 sec, 60°C for 30 sec (except for osteocalcin which
had an annealing temperature of 65°C), and 72°C for 30 sec.
cDNA-free samples, a negative control, did not produce amplicons.
Melting curve and gel analyses (sizing, isolation, and sequencing)
were used to verify single products of the appropriate base pair
size.

Statistical analyses

All measurements are presented as mean =+ SE. Statistically
significant (o = 0.05) main effects (of PTH dose or diabetes) as well
as PTH x diabetes interaction (which would indicate diabetes
altering PTH effects or visa versa) were determined using factorial
analysis of variance (ANOVA) and one-way ANOVA with Tukey
HSD post hoc test (where necessary) with SPSS statistical software
(Chicago, IL). Student’s t-test was also used to determine
significance where necessary.

Results
Diabetes induction and body composition

Diabetes was induced in 14-week-old adult male mice, at the
plateau phase of their growth. At the same time, mice began a
PTH treatment regimen. Control and diabetic mice were
injected daily with either vehicle, low dose (8 pg/kg) PTH, or
high dose (40 pg/kg) PTH. Mice were harvested 40 days after
the first injection. Statistical analysis with ANOVA indicated a
significant (P < 0.05) effect from diabetes on blood glucose, as
expected. ANOVA did not detect a significant interaction
between PTH treatment and diabetes or PTH treatment and
blood glucose levels, indicating that PTH treatment did not
interfere with diabetes induction (Table 1). Similar to previous
findings, diabetic mice weighed 9% less than controls at the end
of the study (Motyl and McCabe, 2009b). Weight loss was due in
part to muscle and fat loss: diabetic mice had 16% lower tibialis
anterior mass, 41% lower femoral fat pad mass, and 57% lower
perirenal fat pad mass (Table |). When analyzed by factorial
ANOVA, neither 8 nor 40 pg/kg PTH treatment regimens
altered the diabetes-induced loss of total body, fat, or muscle
mass (Table I).

In light of recent findings suggesting a role for uncarboxylated
osteocalcin (released during resorption) in regulating glucose
homeostasis (Ferron et al., 2010), we performed post hoc
analysis of non-diabetic blood glucose and body composition
of vehicle- and PTH-treated mice. Blood glucose was slightly
lower (P=0.08) in 8 ug/kg PTH-treated mice, but not different
with 40 pg/kg treatment (Table I). Interestingly, 8 pg/kg
PTH treatment alone significantly reduced femoral fat pad
mass and tended to reduce (P =0.07) perirenal fat pad mass in
non-diabetic mice. The effect from higher dose PTH was not as
strong: 40 p.g/kg PTH tended to reduce femoral fat pad mass but
did not significantly alter perirenal fat.

vehicle-, and PTH-treated mice at 40 days

Vehicle 8 pglkg PTH 40 pg/kg PTH

C(=19) D(=17) C(h=13) D (=12 C (=14 D (h=15)
Non-fasting glucose (mg/dl) 173+8 491 £27° 151 £9° 531+ 147 164+ 13 534+ 19"
Body mass (g) 27.9+£04 25.5+0.5" 28.6 0.4 25.6 +£0.6" 29.0£05 263 +0.5"
Tibialis anterior (mg) 50+ 1 42+3" 52+1 431" 52+ 1 431"
Femoral fat pad (mg) 133+5 78+7" 112£8" 76 £ 6" 114+£9 75+6"
Perirenal fat pad (mg) 37+3 16 +£2" 31 £37 16 +£2" 32+4 14+2"
Marrow adipocyte #/mm? 7£1 20+3" 12+£2™ 23+7" 9+3 17 £3"

C, control; D, diabetic; PTH, parathyroid hormone, no, number.
Significance:

P < 0.05 compared treatment-matched control.

"*P < 0.05 compared to vehicle-treated control.

"*P < 0.1 compared to vehicle-treated control, by t-test.
n=4-12 per group.
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As we and others have previously demonstrated, loss of
peripheral and visceral fat depots in diabetes was accompanied
by increased bone marrow adiposity (Table I). Diabetes
induced a 2.8-fold increase in marrow adipocyte number in
vehicle-treated mice. At the 8 or 40 pg/kg PTH treatment
doses, marrow adiposity also increased by nearly twofold. The
level of marrow adiposity did not significantly differ between
diabetic mice of each group.

PTH counteracted diabetic bone loss

When analyzed by ANOVA, diabetes significantly (P < 0.05)
impacted trabecular bone parameters (Fig. |, Table 2). As we
have demonstrated in the past, diabetes reduced tibia
trabecular BMC, BMD, BV/TYV, trabecular thickness, and
trabecular number (Fig. |1, Table 2) (Botolin et al., 2005).

A PTH

Control

Diabetic

VFITV (%)

C D

C D C D
8 ng’kg 40 ug/kg

PTH == Vehicle

Fig. I. PTH treatment counteracted trabecular bone loss from
Tl-diabetes. Diabetes was induced with STZ at 14 weeks of age. At
the same time, control (citrate buffer only) and diabetic mice were
started on a daily regimen of subcutaneous injections of PTH (8 or
40 pg/kg) or saline vehicle. PTH treatment was continued for the
remainder of the study. Mice were harvested at 40 days after the
first streptozotocin injection and tibias were analyzed by pCT.

A: Representative three-dimensional isosurface images of the
trabecular bone of the proximal tibia of control and diabetic, vehicle
and PTH treated mice. B: BV/TV of control (white bars) and diabetic
(gray bars), vehicle and PTH treated mouse tibias. Bars represent
mean = SE. n> 12 per group. Significance between groups was
determined with a post hoc test (only after factorial ANOVA
determined significance). *P<0.05 compared to treatment (vehicle,
8 or 40 pg/kg PTH) matched control. AP <0.05 compared to vehicle-
treated control. *P<0.05 compared to vehicle-treated diabetic.
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Significant PTH effects were also found with all of the above
parameters in both euglycemic and diabetic mice. Specifically,
the high dose PTH (40 pg/kg), but not the low dose (8 pg/kg),
treatment significantly increased trabecular parameters in
euglycemic mice (Fig. |, Table 2). Although PTH-treated
diabetic mice had a reduction in trabecular parameters
compared to PTH-treated euglycemic mice, bone density

did not decline to the level of vehicle-treated diabetics.
Furthermore, the bone parameters of the high dose (40 p.g/kg)
PTH-treated diabetic group were more closely aligned with
those of healthy untreated controls and were significantly
elevated (with the exception of trabecular spacing, which was
significantly decreased) compared to the vehicle-treated
diabetic mice. The increase in bone density in diabetic PTH-
treated mice (compare to vehicle-treated diabetics) was higher
with the 40 pg/kg dose of PTH than with the 8 jug/kg dose, but
8 g/kg PTH still produced a significant increase in BV/TV and
trabecular number. For example, trabecular number increased
25%in 8 ng/kg PTH-treated diabetics and 39% in 40 p.g/kg PTH-
treated diabetics. Thus, the PTH treatment was successful in
raising “basal” bone parameters such that a diabetes induced
decrease in bone density was still within the healthy control
mouse range.

Cortical bone thickness was also affected by diabetes and
PTH treatment, according to ANOVA, but there was no
significant interaction between diabetes and PTH. Thickness
was increased in 40 pg/kg PTH-treated euglycemic controls
(compared to vehicle-treated controls), but not in 8 pg/kg
treated controls (Table 2). The former can be attributed to an
increase outer perimeter in the 40 pg/kg group, which
consequently increased both cortical and total area. In contrast
to our previous studies (Motyl and McCabe, 2009b), diabetes
did not induce any significant changes in cortical bone
parameters in vehicle-treated mice. However, diabetes did
reduce cortical thickness and cortical area in 40 pg/kg PTH-
treated mice compared to 40 pg/kg PTH-treated controls, but
these parameters were not significantly different from healthy
untreated controls. No significant changes were found in
cortical BMD, MO, inner perimeter, or marrow area.

PTH increased osteoblast parameters

To examine the influence of PTH on osteoblast activity we
measured osteocalcin gene expression in tibia, osteoblast
number/bone surface, and MAR. PTH treatment of euglycemic
control mice significantly (by factorial ANOVA) affected
osteocalcin, such that there was a stepwise increase in mRNA
levels that reached statistical significance in the 40 wg/kg PTH-
treated group (Fig. 2A). Diabetes also significantly reduced
bone OC mRNA levels in untreated mice, consistent with
previous findings; this reduction remained evidentin both PTH-
treated diabetic groups compared to PTH-treated controls.
However, as with the controls, PTH treatment increased
osteocalcin in the diabetic mice compared to untreated
diabetics, and this was significant with the 40 pg/kg dose.
Furthermore, OC mRNA levels were not different in the
diabetic 40 pg/kg mice compared to untreated controls,
consistent with bone density being similar between these two
groups. Examination of osteoblast number (per mm tibia
trabecular bone surface) indicated a decrease in untreated
diabetic compared to control mice, consistent with previous
reports (Botolin et al., 2005). However, no differences were
seen between 8 and 40 pg/kg PTH-treated control groups
compared to untreated controls (Fig. 2B); this may be a result of
less sensitivity in the 2D-histomorphometry compared to
whole bone imaging and RNA analyses or may result from time-
dependent responses. Despite this, it was still possible to detect
that PTH treatment prevented the reduction in osteoblast
number in diabetics compared to control mice and significantly
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TABLE 2. uCT analysis of control (C) and diabetic (D), vehicle-, and PTH-treated mice at 40 dpi

Vehicle 8 pg/kg PTH 40 pg/kg PTH
C (n=15) D (n=17) C(n=13) D (n=12) C(n=13) D (n=15)
Trabecular
BMC (mg) 0.78 +£0.03 0.62 +0.02" 0.84 +0.07 0.70 +0.04" 0.92 +£0.06™ 0.79 £0.05""**
BMD (mg/cm’®) 262+9 208 + 6” 283+ 12 237 £+ 137 307 £ 17 262+ 1477
BVITV (%) 228+ 1.7 13.0+0.9" 279+ 1.4 19.3+1.27 320421 22.9 42,07
Tb.Th (um) 48 +2 36+ 17 54+2 42+2" 61 +4" 44 £ 27
Tb.Sp (m) 260+ 19 277+ 13 221 +23 247t 16 216+ 18 227 +20"
Tb.N (mm ') 48+0.3 3.6+02" 54+02 45+0.2"" 5.6 +0.1"™ 50+£0.3"""
Cortical
Ct.Th (um) 328+6 319+7 344+ 4 330+7 360+ 6™ 329 +4°
MOI (mm*) 0.091 +0.004 0.090 4 0.004 0.087 4 0.004 0.080 £ 0.005 0.102 +0.005 0.090 £ 0.006
Ec.Pm (mm) 1.52+0.03 1.55+0.04 1.53+0.04 1.48 +0.04 1.56 +0.04 1.61 +0.05
Ps.Pm (mm) 3.72+0.07 3.66 +0.05 3.82+0.07 3.67 £0.07 3.9540.06"" 3.86 +£0.08
Ma.Ar(mmz_l) 0.15+0.01 0.16 £0.01 0.16 £0.01 0.15+0.01 0.16 £0.01 0.174+0.01
Ct. Ar (mm°) 0.80 +0.02 0.77 £0.02 0.86 £0.02 0.79+£0.3 0.92 +£0.02" 0.83 +£0.03"
TtAr (mmz) 0.95+0.03 0.93 £0.02 1.024+0.03 0.93 £0.04 1.08 +0.03"* 1.00 £+ 0.04
BMD (mg/cm3) 1071 +£24 1042+ 16 1086 + 16 1071+ 18 1065 +25 1060+ 13

A, area; BMC, bone mineral content; BMD, bone mineral density, BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; Tb.N, trabecular number; Ct.Th,
cortical thickness; MOI, moment of inertia; Ec.Pm, endocortical perimeter; Ps.Pm periosteal perimeter; Ma.Ar, marrow area; Ct.Ar, cortical bone area; Tt.Ar total cross sectional area.

P < 0.05 compared to treatment-matched control.
"*P < 0.05 compared to vehicle-treated control.
P < 0.05 compared to vehicle-treated diabetic.

increased osteoblast numbers in treated compared to
untreated diabetic mice (Fig. 2B). Similarly, MAR was
significantly decreased in untreated diabetic compared to
control mice. In contrast, MAR was increased in the 40 pg/kg
PTH control group compared to untreated and 8 pg/kg
PTH-treated controls (Fig. 2C). Even though the MAR was
significantly reduced in diabetic 40 jg/kg PTH-treated mice
compared to treatment-matched controls, the value of MAR in
40 pg/kg PTH-treated mice was not different from untreated
control mice and was significantly higher than untreated
diabetic mice. Taken together, high dose PTH appears capable
of promoting bone anabolic processes in diabetic mice by
preventing diabetes-induced reduction of osteoblasts and by
increasing MAR. Low dose PTH treatment affected some
parameters albeit at a less robust level.

Effect of PTH on bone resorption

Levels of TRAP5 mRNA, a marker of active osteoclasts, were
significantly elevated in the non-diabetic 40 jug/kg PTH-treated
group, but not in the 8 ug/kg group, compared to untreated
controls (Fig. 3A). This finding, in combination with increased
bone formation, is indicative of increased remodeling overall in
the 40 pg/kg group. As we demonstrated previously, diabetes
did not alter TRAP5 expression in untreated mice, and this
effect was consistent in the PTH-treated groups. In agreement
with overall increases in remodeling, the 40 pg/kg PTH-treated
diabetic mice had elevated TRAP5 expression compared to
vehicle-treated diabetic mice. We also examined osteoclast
surface and did not find any significant diabetes or PTH effects,
despite the increase in TRAP5 expression with the 40 pg/kg
dose (Fig. 3B). It is possible that there is more total resorption
in these mice (since they have more bone surface), but when
expressed as a function of total surface, it is unchanged. The fact
that there is no change in osteoclast surface in diabetic vehicle-
treated mice compared to controls is consistent with our
previous findings (Botolin et al., 2005).

Diabetic bone loss can be reversed by PTH

Although PTH treatment was able to counteract bone loss
when initiated simultaneously with diabetes induction (Fig. |
and Table 2), we recognize that diagnosis of type | diabetes
does not occur until after hyperglycemia is evident, and based
on our findings, after early bone changes are initiated (Coe et al.,
2011; Motyl et al., 2009). Therefore, we wanted to address
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whether PTH could improve bone density even after bone loss
had already occurred. Diabetes was induced with
streptozotocin as noted before. At 20 days after the start of the
experiment, we harvested half of the control and diabetic mice
to assess their bone parameters (and confirm bone loss) and
began treatment of the other half with vehicle or PTH (40 g/
kg). As expected, diabetic mice at 20 days post-induction had
significantly lower BMD and trended (P =0.07) to have lower
BV/TV (Fig. 5A,B). Similarly, untreated diabetic mice at 40 days
after the start of the experiment had lower BMD and BV/TV
compared to untreated controls. Treating non-diabetic mice
with 40 pg/kg PTH from days 20 to 40 was not enough to induce
a significant increase in BMD or BV/TV compared to untreated
controls. Conversely, treating the diabetic mice with PTH from
days 20 to 40 increased BMD and BV/TV to levels not different
from PTH-treated euglycemic controls, indicating short-term
PTH imparts a stronger affect in diabetic mice than in controls.

To address osteoblast/osteoclast status in these mice we
measured representative osteoblast and osteoclast markers,
osteocalcin and TRAP5 mRNA levels (Fig. 4C). Osteocalcin
levels at 20 and 40 days were significantly decreased in
untreated diabetic compared to control mouse bones. PTH
treatment from days 20 to 40 promoted osteocalcin expression
in both control and diabetic mice, although the increase was not
significant. However, osteocalcin levels in PTH-treated diabetic
mice were not different from untreated controls. Similar to our
previous findings, the resorption marker TRAP5 was
unchanged or tended to decrease in diabetic mice at days 20 and
40, respectively. PTH treatment for the last 20 days of the
experiment was not enough to significantly increase TRAP5
levels in euglycemic or diabetic mice (although it trended to
increase).

Osteoblast viability is improved by PTH treatment

We previously demonstrated an increase in osteoblast death in
diabetic mice (Coe et al., 201 1) can contribute to the reduced
osteoblast surface and MAR. Therefore, we examined the
impact of PTH treatment on diabetes-induced osteoblast death.
Diabetes was induced as before, control and diabetic mice
were treated with daily injections of 40 p.g/kg PTH, and mice
harvested at 5 days after the first injections, a time point where
osteoblast death has previously been identified (Coe et al.,
2011). Blood glucose levels were significantly elevated at

this early time point (even though mice are not technically



PTH BENEFITS TI-DIABETIC BONE HEALTH

A &
2 9 AT 1
*
E 1.5 1 * S
[« rm
T
8 0.5 1
D ¥ ¥
C D C D C D
PTH== Vehicle 8ug/kg 40 ug/kg
B 2
. 20 "
£ 151
£
S 1“ -
++
g
0 T .
C D C D C D
PTH==% Vehicle 8ug/kg 40 ugkg
Cc *
e AA
E 3 |—*|
E 0.8 1
= 06 -
X 04 -
<
s 0.2 1
0 T T
C D C D C D
PTH== Vehicle 8ug/kg 40 ugkg

Fig. 2. PTH promotes bone formation in diabetes. A: mRNA from
whole frozen tibiae was converted to cDNA and amplified with
primers specific for osteocalcin (OC) and the housekeeping gene
HPRT. B: Osteoblasts lining the surface of trabeculi in the distal femur
were identified in hematoxylin stained slides based on morphology,
counted, and expressed per mm bone surface. C: The distance
between calcein double labels was measured in undecalcified,
unstained L5 vertebrae sections and expressed per day. Bars
represent mean * SE of control (C, white bars) and diabetic (D, gray
bars), vehicle, 8 and 40 ng/kg PTH treated mice at 40 days after the
firstinjection. PTH treatment was daily from 0 to 40 days. N = 4-8 per
group. Significance between groups was determined with a post hoc
test (only after factorial ANOVA determined significance). “P <0.05
compared to treatment (vehicle, 8 or 40 pg/kg PTH) matched
control. AP <0.05 compared to vehicle treated control. AP <0.05
compared to vehicle treated control and 8 pg/kg PTH-treated
control. P <0.05 compared to vehicle-treated diabetic.

considered diabetic, defined as >300 mg/dl, at this time). PTH
did not alter the blood glucose levels (Fig. 5A). To address
osteoblast status, we measured tibia mRNA levels of
osteocalcin (Fig. 5B). As we demonstrated in the past,
osteocalcin mRNA levels were reduced nearly fivefold in
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Fig. 3. High dose PTH promotes bone resorption in diabetic mice.
A: mRNA from frozen tibiae was converted to cDNA and amplified
with primers specific for tartrate resistant acid phosphatase (TRAP5)
and the housekeeping gene HPRT. B: Osteoclasts were identified
with TRAPS staining in the distal femur. Length of trabecular bone
surface covered by osteoclasts was measured and expressed as a
percent of the total bone surface. Bars represent mean *+ SE of
control (C, white bars) and diabetic (D, gray bars), vehicle, 8 and
40 pg/kg PTH-treated mice at 40 days. PTH treatment was daily from
0 to 40 days. N = 4-8 per group. Significance between groups was
determined with a post hoc test (only after factorial ANOVA
determined significance). *P <0.05 compared to treatment (vehicle,
8 or 40 pg/kg PTH) matched control. AP <0.05 compared to vehicle-
treated control. #P<0.05 compared to vehicle-treated diabetic.

untreated diabetic mice compared to untreated controls
(Motyl et al., 2009). PTH treatment tended to increase
osteocalcin expression in non-diabetic mice (P=0.1) and
significantly increased osteocalcin expression in treated
compared to untreated diabetic mice, similar to what we
observed at 40 days (Fig. 2). In contrast to osteocalcin
expression, TUNEL positive osteoblasts increased in diabetic
compared to control mice (Fig. 5C). PTH-treatment was able to
significantly lower baseline TUNEL staining. Although diabetes
still induced osteoblast death in PTH-treated mice, the level of
TUNEL staining was not different from untreated controls and
trended to be lower than that in untreated diabetics (Fig. 5C).
These results suggest that the PTH reduction in basal osteoblast
apoptosis could contribute to its bone health benefits in type |
diabetic mice.

Discussion

Osteoporosis is a severe complication of T-diabetes that
results from reduced bone formation, and unchanged or
reduced resorption. Therefore, we determined whether
anabolic PTH therapy was capable of enhancing and reversing
T|-diabetic bone pathology. PTH counteracted trabecular
bone changes when diabetic mice were treated daily for 40 days.
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Fig. 4. PTH promotes bone formation in diabetic mice when
initiated after diabetic bone loss is detectable. Mice were treated with
streptozotocin to induce diabetes or citrate buffer (control). At

20 days, mice were either harvested, or treated with vehicle or

40 pg/kg PTH daily until harvest at 40 days. A: Representative pCT
isosurface images of trabecular bone immediately distal to the
proximal growth plate. B: Tibia bone mineral density (BMD) and bone
volume fraction (BV/TV) from control (C, white bars) and diabetic
(D, dark gray bars) untreated and PTH-treated mice. C: mRNA from
frozen tibiae was converted to cDNA and amplified with primers
specific for the bone formation marker osteocalcin (OC) or
resorption marker TRAP5 and expressed relative to the
housekeeping gene, HPRT. Bars represent mean = SE. N> 6 per
group. Significance determined with Student’s t-test. *P<0.05
between bracketed bars.

PTH at a 40 ng/kg dose promoted overall bone remodeling by
increasing osteocalcin expression, MAR, osteoblast number,
and TRAPS5 expression in diabetic mice. In addition, PTH
treatment lowered basal osteoblast apoptosis, such that
diabetes-induced osteoblast apoptosis levels were not different
from apoptosis levels in control, untreated mice. Finally, we also
determined that PTH treatment was capable of reversing
diabetic bone loss after significant trabecular bone changes had
already occurred.

Although diabetes significantly reduced osteoblast
parameters, PTH treatment (40 pg/kg) increased baseline
levels of bone anabolic markers such that the values in diabetic
PTH-treated mice did not differ from those of untreated
controls. This is consistent with PTH regulating osteoblast
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Fig. 5. PTH ameliorates diabetes-induced osteoblast death. Mice

were injected with either citrate buffer (control) or STZ to induce
hyperglycemia. At the same time, control and diabetic mice were
started on a daily regimen of subcutaneous injections of PTH

(40 pg/kg) or saline vehicle. PTH treatment was continued until
harvest at 5 days. A: Blood glucose was measured at the time of
harvest and was not significantly altered by PTH-treatment. mRNA
from frozen tibiae was converted to cDNA and amplified with
primers specific for OC and the housekeeping gene HPRT (B).
TUNEL positive osteoblasts were counted in trabecular bone in the
distal femur and expressed relative to total osteoblasts (C).

D: Representative TUNEL stained femur sections. Dark brown
staining is positive for DNA fragmentation. Bars represent mean + SE
of control (C, white bars) and diabetic (D, gray bars), vehicle and
40 pg/kg PTH-treated mice at 5 days. PTH treatment was daily from
0 to 5 days. N =5-6 per group. Significance determined with
Student’s t-test. “P<0.05 between bracketed bars.

proliferation and differentiation (Krishnan et al., 2003; Pettway
et al., 2008). Similarly, tail-suspended mice treated with PTH
(40 png/kg, 5 days/week) had increased bone formation rates,
albeit to a lesser extent than control mice (Tanaka et al., 2004).
Our finding that bone parameters do not differ between
diabetic PTH-treated and untreated controls suggests that PTH
may promote bone formation and overall remodeling in T1-
diabetes. However, it should be noted that a recent study
examining bone healing found that PTH treatment enhanced
healingin control but not T | -diabetic rats (Kuchler etal., 201 I).
This study suggests that metabolic control may be necessary to
obtain PTH anabolic benefits in T |-diabetes conditions.
Differences between our study and this study are likely due to
species differences, dosing (60 wg/kg compared to 8 or 40 jg/kg
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in our study) and the area of focus: bone remodeling compared
to bone healing, the latter process requires vascular
responsiveness and cartilage formation. Both areas need to be
investigated further in clinical studies.

Interestingly, while we did not observe marked histological
changes or bone density changes in control mice treated with
low dose PTH (8 ng/kg), this dose successfully increased BV/
TV, trabecular number, and osteoblast number in diabetic
compared to untreated diabetic mice. Consistent with an
anabolic effect with low dose treatment, young C57BL/6 mice
treated with 10 pg/kg PTH display an increase in trabecular
bone density parameters (Niziolek et al., 2009). It should be
noted that these doses, when compared to the human dose of
20 pg/kg, are still somewhat higher (fivefold) when taking into
account equivalent surface area. Even lower doses, | pg/kg
PTH, are still capable of increasing bone density in hind-limb
unloaded rats (Turner et al., 2007), although it is unclear if they
would have had an effect in healthy, load-bearing rats in this
study. Similarly, rats had increased BMC, BMD, and fracture
healing when treated with 5-30 pg/kg PTH for more than
4 weeks (Nakajima et al., 2002; Alkhiary et al., 2005). Thus, it is
possible that if our experiment had extended longer, we would
have seen asignificant effect with the 8 pg/kg dose in the control
mice, and a stronger effect in the diabetic mice. Pettway et al.
(2008) demonstrated that the greatest increases in osteoblast
proliferation occur after the first week of treatment. This idea,
in combination with the fact that lower dose (8 pg/kg) PTH is
capable of improving bone density, suggests that an ideal
treatment regimen might consist of an initial time period of high
dose PTH to stimulate bone formation, followed by lower dose
PTH to maintain bone density at a healthy level.

We further determined that PTH could restore bone density
to normal levels even after bone loss had already occurred,
consistent with other bone loss conditions, but has not been
demonstrated with diabetes. Sibonga et al. (2007)
demonstrated that 80 pg/kg PTH could restore preexisting
bone density in rats fed alcohol, which, like diabetes reduces
bone formation. Additionally, the same dose of PTH reverses
bone loss from ovariectomy in rats (Liu et al., 1991). Lozano
et al. demonstrated increased bone formation in diabetic mice
treated with PTHrP, which signals through the shared PTH/
PTHrP receptor, 2 weeks after diabetes was confirmed, a time
point when bone loss should have been detectable (Botolin and
McCabe, 2006b; Lozano etal., 2009; Motyl and McCabe, 2009a).
It was important to address this issue because pathways
responsible for bone loss from T|-diabetes (which are not
completely understood) could overlap with the pathways for
PTH induced bone formation, and if this were the case, then
PTH might not have been an effective therapeutic.

Additionally, we determined that PTH-treatment of diabetic
mice during the 20-day period had a greater effect than PTH-
treatment of control mice for 20 days. It is possible that the
diabetes-induced suppression of resorption actually helped
bone density increase faster in the diabetic group, although we
did not detect a significant suppression of TRAP5 expression
from diabetes (P =0.2) in this case. Along the same lines, PTH
did notincrease osteoblast number per bone surface (Fig. 2B) in
control mice, but it did prevent a decrease after diabetes
induction, suggesting a stronger response of osteoblasts to PTH
in a diabetic environment.

In addition to PTH-induced osteoblast activity, there is ever-
increasing evidence that PTH prevents osteoblast apoptosis.
Bellido et al. (2003) demonstrated a significant reduction of
osteoblast apoptosis with 10-300 pg/kg PTH treatment for
28 days in female Swiss-Webster mice. Here, we demonstrated
that 40 pg/kg PTH-reduced basal osteoblast apoptosis and
reduced diabetes induced increases in osteoblast apoptosis to a
level comparable to that of untreated control mice (Fig. 4).
Recent evidence indicates that PTH promotes repair of
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DNA damage by increasing PCNA and Foxo3a (Schnoke et al.,
2009).

Although it appeared that trabecular effects of PTH were
stronger in diabetes, we have some evidence that cortical
effects of PTH were weakened by diabetes. We found that
40 pg/kg PTH treatment increased cortical bone thickness and
outer perimeter in euglycemic mice. This is consistent with
other studies in ovariectomized mice and rats (Fox et al., 2006;
Pierroz et al., 2006), however, in our case, PTH could not
increase cortical thickness in diabetic mice compared to
diabetic controls (Table 2). This suggests the possibility that
cortical bone accrual in PTH-treated mice is affected by
diabetes, whereas the mechanism of trabecular bone accrual is
not. Calvi et al. demonstrated a similar phenomenon: when the
PTH receptor was constitutively active, trabecular bone density
increased while periosteal MAR and cortical thickness
decreased (Calvi etal., 2001), suggesting the mechanism of PTH
action is location-dependent. Recently, Jilka et al. found that
although PTH has a profound anti-apoptotic effect in trabecular
bone, cortical bone accrual from PTH is more likely due to pro-
differentiation effects on preosteoblasts because of the
comparatively low levels of osteoblast apoptosis in the
periosteum, coupled with fast (2 days) increases in periosteal
osteoblast number after PTH treatment (Ogita et al., 2008; Jilka
et al.,, 2009). Levels of hyperglycemia equivalent to those in
diabetes are known to have anti-differentiation as well as pro-
apoptotic effects on osteoblasts (Botolin and McCabe, 20063;
Coe et al,, 201 1) and it is likely that both differentiation and
apoptosis play a role in the diabetic osteoblast phenotype.

In summary, our data indicate that PTH reduces T | -diabetic
bone loss in mice by promoting remodeling and reducing
diabetes-induced osteoblast apoptosis. Because of its ability to
restore bone density to normal levels, even after bone loss has
already occurred, intermittent PTH therapy might be an option
to promote bone formation and resorption, which are both
depressed in diabetic patients. The long-term safety and
mechanisms of PTH action on diseased bone and its repair is a
future question that needs to be addressed in clinical studies.
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