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Summary

Autoinflammatory syndromes are disorders characterized by the hyperacti-
vation of the innate immune system in the absence of microbial infection or
autoantibody production. Some autoinflammatory syndromes are associated
with recurrent episodes of fever and systemic inflammation that are caused by
dysregulated activation of inflammasomes, molecular platforms responsible
for the activation of caspase-1 and the production of interleukin (IL)-1b.
In this review we will discuss the role of IL-1b and the inflammasomes in
host defence and how mutations of two genes, NLRP3 and PYRIN, leads to the
autoinflammatory syndromes, cryopyrin-associated periodic syndromes
(CAPS) and familial Mediterranean fever (FMF). Both CAPS and FMF are
characterized by increased inflammasome activity and overproduction of
IL-1b which is ultimately responsible for disease manifestations. Importantly,
understanding the molecular mechanisms of these syndromes has led to
effective treatment for these rare diseases with biological drugs that target
IL-1b-mediated signalling.
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Introduction

The immune system can be categorized broadly as innate
and adaptive. Disorders of the immune system may be due to
hyperactivation or impaired activation of either the innate or
the adaptive immune systems. In the case of deficient acti-
vation of the immune system the resultant diseases are called
immunodeficiencies, and are characterized phenotypically
by recurrent episodes of infection. An exaggerated activation
of the adaptive immune system results in the generation
of self-reactive lymphocytes and high-titre autoantibodies
that are typical features of autoimmune diseases. In contrast,
disorders of the innate immune system with little or no
involvement of T and B cells are called autoinflammatory
syndromes and are characterized by recurrent episodes of
fever and systemic inflammation in the absence of microbial
infection [1]. For some of these diseases, the gene respon-
sible for the exaggerated activation of the immune system
has been identified, and the list of hereditary autoinflamma-
tory syndromes is constantly growing due to the discovery of
different genetic mutations that underlie these disorders.
Here we will focus on those disorders in which the genetic

mutation responsible for the disease that triggers an exag-
gerated production of interleukin (IL)-1b is due to dysregu-
lation of inflammasomes, and we refer the reader to other
excellent reviews for a more comprehensive classification of
autoinflammatory syndromes [1–4].

IL-1b

IL-1b is a powerful mediator of inflammatory responses [5].
Systemically, IL-1b induces fever and the hepatic acute phase
response that includes C-reactive protein and serum amyloid
A, and acts on the bone marrow to promote neutrophilia. At
a local level, IL-1b induces expression of cell adhesion mol-
ecules such as intercellular adhesion molecule-1 (ICAM-1),
vascular adhesion molecule-1 (VCAM-1), P-selectin and
E-selectin [6,7], which promote neutrophil recruitment to
inflamed tissues [8,9]. In addition, IL-1b acts directly on
neutrophils and other leucocyte populations to regulate their
activation and production of other mediators of inflamma-
tion such as tumour necrosis factor (TNF)-a and IL-6 [8].
These observations suggest that IL-1b has a role in host
defence, and indeed there is compelling evidence that mice
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deficient in IL-1b are more susceptible than wild-type to
infection with bacteria, viruses or fungi [10,11]. Based on the
effect of injection of recombinant IL-1b, the concentration
of IL-1b that promotes host defence in humans has been
estimated to be ~1–10 ng/kg. However, when produced for
an excessive period of time, IL-1b causes tissue damage, bone
resorption, collagen deposition and neovascularization.
Moreover, IL-1b produced in large amounts promotes
harmful systemic responses, including hypotension at con-
centrations higher than 30 ng/kg and haemodynamic shock
at concentrations higher then 300 ng/kg. This evidence sug-
gests that the production of IL-1b must be tightly controlled
to avoid detrimental effects or even death due to haemody-
namic shock [8]. We will discuss first how the production of
IL-1b is normally controlled in healthy individuals and then
discuss the molecular mechanisms that are involved in the
excessive production of IL-1b in selected autoinflammatory
syndromes. It is worth mentioning that the symptoms
common to all autoinflammatory syndromes, such as epi-
sodes of fever, increased concentration of acute phase pro-
teins that can lead to amyloidosis and accumulation of
neutrophils at involved sites, can be caused by IL-1b over-
production, which might explain the efficacy of biologicals
that target IL-1b in the treatment of these disorders.

Regulation of IL-1b production

The production and action of IL-1b is regulated at different
levels: induction of the immature cytokine pro-IL-1b, matu-
ration of pro-IL-1b into the biologically active cytokine
IL-1b, secretion of IL-1b and binding of IL-1b to IL-1R on
target cells. In monocytes, macrophages and dendritic cells
pro-IL-1b is expressed only at very low levels. Several cytok-
ines, including TNF-a, IL-1a and IL-1b, as well as stimula-
tion of phagocytic cells with Toll-like receptor (TLR)-
ligands such as lipopolysaccharide (LPS), that signals
via TLR-4, or NLR [nucleotide oligomerization domain
(NOD)-like receptor]-ligands, such as muramyl dipeptide
(MDP) that signals via NOD2, induce activation of the tran-
scription nuclear factor (NF)-kB and the up-regulation of
pro-IL-1b [12–14]. Therefore, proinflammatory cytokines
and stimulation of the innate immune system are necessary
for the production of pro-IL-1b. However, in the absence of
a ‘secondary stimulus’, the maturation of pro-IL-1b is very
inefficient. The maturation of pro-IL-1b is mediated by
proteolytic processing into 17-kDa mature IL-1b by the
cysteine-protease caspase-1. Caspase-1 itself is present in
the cytosol as an inactive protein, pro-caspase-1 [15,16]. The
activation of caspase-1 is mediated by its autoproteolytic
cleavage. In the last decade, we and others have found that
the ‘secondary stimulus’ that induces the production of
IL-1b promotes the formation of a molecular platform,
generically called inflammasome, which induce the oligo-
merization and activation of procaspase-1, and will be
discussed in more detail later. Once activated, the inflamma-

some induces the activation of caspase-1 that mediates the
maturation of IL-1b [16]. The next step is the secretion of
IL-1b in the extracellular environment. IL-1b lacks the leader
sequence found generally in secreted proteins, and several
non-conventional routes of secretion have been proposed
including exosome shedding [17], shedding of plasma mem-
brane microvesicles [18] and lysosomal secretion [19], which
might be amplified further by membrane permabilization
secondary to necrosis. It is worth mentioning that caspase-1
activation, IL-1b processing and its secretion are highly asso-
ciated processes [20]. Next, the secreted IL-1b binds to its
receptor IL-1R, a process that is inhibited by its natural
antagonist IL-1Ra (IL-1F3), a protein that is also secreted in
response to many proinflammatory stimuli. IL-1Ra binds to
the cell surface IL-1R with higher affinity than IL-1b and
prevents IL-1b from signalling. Mice deficient in IL-1Ra
develop arthritis [21] and arteritis [22], underscoring the
importance of IL-1Ra in regulating the activity of IL-1b.
Strikingly, infants born with non-functional IL-1Ra develop
a lethal inflammatory disorder, characterized by neutrophil-
laden pustular skin eruption, vasculitis and bone abnormali-
ties in the absence of any detectable infection [23,24]. This
autoinflammatory syndrome, called DIRA (deficiency in
IL-1 receptor antagonist) is currently treated efficiently with
a recombinant IL-1Ra, anakinra, that prevents all disease
manifestations [23,24].

Inflammasomes

Inflammasomes are molecular platforms responsible for the
activation of caspase-1, a cysteine protease that mediates
proteolytic processing and activation of the proinflamma-
tory cytokines IL-1b and IL-18 [15,25]. The first evidence for
the existence of the inflammasome was described originally
in cell extracts of human acute monocytic (THP-1) cells
incubated in a buffer containing low levels of K+ [26]. Evi-
dence accumulated in the last 5 years demonstrated that
different physiological stimuli engage different inflamma-
somes to induce the activation of caspase-1, and these plat-
forms have been named the NLRP1-inflammasome, the
NLRP3-inflammasome, the NLRC4-inflammasome and the
absent in melanoma 2 (AIM2) inflammasome [15,25,27].
NLRP1, NLRP3 and NLRC4 belong to the NLR family, a
family of PRRs that sense pathogen-associated molecular
patterns (PAMPs) or endogenous signals of stress in the
cytosol. In agreement with their role in sensing cytosolic
PAMPs, the mouse Nlrp1b inflammasome is activated
anthrax lethal toxin from Bacillus anthracis, whereas the
human NLRP1 is activated by muramyl dipeptide (MDP)
[28]. The NLRC4-inflammasome is activated by cytosolic
flagellin from Salmonella typhimurium [29,30], Pseudomo-
nas aeruginosa [31] and Legionella pneumophila [32,33].
Interestingly, the activation of the NLRC4-inflammasome,
at least in certain experimental settings, is assisted by
neuronal apoptosis inhibitor proteins (NAIPs) [34]. The
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NLRC4-inflammasome is also activated by a flagellin-
independent pathway in macrophages infected with Shigella
flexneri [35], and this pathway may be dependent on MxiI, a
basal body rod component of the T3SS apparatus [36]. The
NLRP3 inflammasome is the most complex and most
studied inflammasome and will be discussed separately and
in more detail later. AIM2 is a member of the HIN200
protein family and is a cytosolic receptor for double-strand
DNA. AIM2 is important for the activation of caspase-1 in
response to vaccinia virus, mouse cytomegalovirus (mCMV)
and the bacterial pathogen Francisella tularensis [37,38]. It
is worth mentioning that bacteria can engage multiple
inflammasomes. For example, there is evidence that Listeria
monocytogenes can activate the NLRC4-inflammasome,
the NLRP3-inflammasome and the AIM2 inflamma-
some [39–44]. There is also evidence that inflammasome-
independent pathways can induce maturation of IL-1b
[45,46].

NLRP3 inflammasome

The NLRP3 inflammasome is the most studied, and most
controversial, inflammasome. The NLRP3 inflammasome is
unique in that it is the only inflammasome described so far
that can be activated by non-microbial stimuli [15,47]. The
NLRP3 inflammasome can also be activated by microbes
[48].

Activation of the NLRP3-inflammasome requires the
combination of two separate signals. ‘Signal 1’ is necessary
to prime macrophages and dendritic cells to a subsequent
‘signal 2’, that can be considered the true activator of the
inflammasome [15,25]. The existence of a ‘signal 1’ was
suggested initially by the observation that adenosine triph-
osphate (ATP), an activator of the NLRP3-inflammasome,
can activate caspase-1 efficiently only in cells pretreated
with LPS [49]. We and others found later that in the
absence of stimulation with PAMPs several activators of the
NLRP3 inflammasome, in addition to ATP, fail to induce
caspase-1 activation [50,51]. It was found that PAMPs
prime macrophages through a transcriptional event
induced by TLR- or NOD-like receptor (NLR)-signalling
pathways and mediated via the transcription factor NF-kB
[50,51]. Thus, in the case of the NLRP3 inflammasome,
NF-kB activation is not only important for the production
of pro-IL-1b, but also for activation of the inflammasome.
Importantly, Hornung and colleagues found that TLR-
signalling induces up-regulation of NLRP3 itself and that
in cells over-expressing NLRP3 priming is not necessary for
the activation of caspase-1 induced by ATP [50]. These data
suggest that one important feature of priming is the
up-regulation of NLRP3 itself. It is worth mentioning that
in human monocytes, stimulation with PAMPs induces the
production of IL-1b in the absence of exogenous stimula-
tion with ATP [52]. Recent studies showed that PAMP
stimulation of freshly isolated monocytes promotes the

release of endogenous ATP that act in a autocrine fashion
on the purinerig receptor P2X7 to promote caspase-1 acti-
vation and IL-1b production [53]. These data indicate that
the activation of the NLRP3 inflammasomes in human
monocytes, mouse macrophages and dendritic cells require
two signals.

If priming is necessary for the activation of the NLRP3
inflammasome how can the NLRP3 inflammasome be acti-
vated in a sterile environment, where PAMPs are not present?
We found that endogenous cytokines, such as TNF-a, IL-1a
and IL-1b, can prime macrophages and dendritic cells effi-
ciently for the activation of the NLRP3-inflammasome
induced by danger signals and particulate matter [51]. Thus,
endogenous cytokines are sufficient to provide ‘signal 1’ for
the activation of the NLRP3-inflammasome. ‘Signal 2’ for
NLRP3 activation can be provided by microbial and non-
microbial stimuli. Examples of signal 2 of microbial origin
include pore-forming toxins [54,55] and microbial RNA
species [56]. Consistently, the NLRP3 inflammasome has
been involved in the activation of caspase-1 induced by bac-
teria [48], viruses [57] and fungi [58]. Examples of NLRP3
activators generated in sterile environments are the danger
signal ATP [59], monosodium crystals [60], calcium pyro-
phosphate dehydrate crystals [60], cholesterol crystals [61]
and oligomers of islet amyloid polypeptide (IAPP) [62].
Interestingly, those activators of the NLRP3-inflammasome
have been involved in the pathogenesis of diseases such as
gout, pseudogout, atherosclerosis and type II diabetes that
are diseases that have a significant inflammatory component.
One important question, and the reason of much contro-
versy, is whether stimuli of such different nature converge
on a common pathway to activate NLRP3. Several theories
have been proposed. The first theory is that NLRP3 senses
the concentration of cytosolic K+. Stimuli such as the danger
signal ATP that engage the purinergic receptor P2X7
and bacterial pore-forming toxins induce K+ efflux, thus
reducing the cytosolic K+ concentration [39,41]. In agree-
ment with the role of K+ in activation of the NLRP3-
inflammasome, extracellular medium rich in K+ that prevent
the decrease of cytosolic K+ concentration block the activa-
tion of the NLRP3-inflammasome. The second mechanism
proposes that particulate matter induces damage of the lyso-
some, which is followed by the release of lysosomal mol-
ecules, such as cathepsin B, which will be responsible for the
activation of NLRP3 [63]. In this respect it is worth men-
tioning that serine-protease inhibitors can efficiently block
the activation of the NLRP3-inflammasome [64]. A third
mechanism proposes that reactive oxygen species (ROS)
generated by the mitochondria activate TXNIP which, in
turn, binds to and activate the NLRP3-inflammasome [65].
It must be noted, however, that the role of TXNIP is contro-
versial in that cells deficient in TXNIP respond normally to
stimuli that activate the NLRP3-inflammasome [62]. More-
over, there is evidence that ROS can inhibit caspase-1 activity
by glutathionylation of the redox-sensitive cysteine residues
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Cys397 and Cys362 [66]. Furthermore, recent evidence indi-
cates that agents commonly used to block ROS generation
actually prevent the up-regulation of NLRP3 [67] and pro-
IL-1b [68], indicating that they act mainly at the level of
signal 1. Consistently, inhibitors of ROS do not block the
activation of caspase-1 in cells that express NLRP3 [67].

Cryopyrin-associated periodic syndromes (CAPS)

Familial cold autoinflammatory syndrome (FCAS), Muckle–
Wells syndrome (MWS) and neonatal onset multi-system
inflammatory disease (NOMID) [also called chronic infan-
tile neurologic cutaneous articular syndrome (CINCA)] are
different manifestations of one disease, in that they are all
caused by autosomal-dominant mutations in NLRP3. There-
fore, FCAS, MWS and NOMID are now collectively called
cryopyrin-associated periodic syndromes (CAPS) [69,70].
FCAS represents the less severe manifestation of CAPS and
is characterized by cold-induced fever and urticaria-like
rashes. MWS is more severe, and patients have also senso-
rineural hearing loss and arthritis. NOMID is the most
severe form of CAPS, and patients have epiphyseal over-
growth of the long bones and chronic aseptic meningitis [2].
Mutations that lead to CAPS are clustered inside or in the
vicinity of the NOD domain (also referred as the NACHT
domain), a module that is thought to be important in pro-
moting the oligomerization of NLR proteins (Fig. 1). Initial
experiments indicated that NLRP3 mutations in CAPS
are gain-of-function mutations, in that over-expression of
disease-associated mutants leads to increased secretion of
IL-1b and macrophages from MWS patients secrete more
IL-1b than healthy individuals [71,72] (Fig. 1). These early
studies uncovered the molecular basis on CAPS and paved
the way to the treatment of CAPS with biologicals that target
IL-1b-induced signalling. However, the mechanism through

which disease-associated mutations led to increased produc-
tion of IL-1b is still poorly understood. One feature of the
NOD domain that is thought to be important to induce the
oligomerization of NLRP3 is its ability to bind to and hydro-
lyze ATP. This activity is required for CAPS-associated muta-
tions to induce IL-1b secretion, suggesting that the gain-of
function mutations in NLRP3 do not affect NLRP3 binding
to ATP [73]. One possibility is that inhibitory signals that
normally act on NLRP3 to repress its function fail to do so if
the NOD domain of NLRP3 is mutated. In agreement with
this possibility, cytosolic K+ that normally prevents activa-
tion of the NLRP3-inflammasome fails to do so if cells
harbour NLRP3-associated mutations [74,75]. One alterna-
tive possibility is that disease-associated NLRP3 mutations
remove an inhibitory loop, making the NLRP3 variant con-
stitutively active. In agreement with this possibility, stimula-
tion with LPS that induces the up-regulation of NLRP3 is
not sufficient to induce the activation of wild-type NLRP3,
but is sufficient to induce caspase-1 activation and IL-1b
production in macrophages harbouring the NLRP3 muta-
tions associated with CAPS [74,75]. Furthermore, produc-
tion of IL-1b in monocytes from CAPS patients stimulated
with PAMPs is maximal in the absence of ATP stimulation
that is required instead to induce maximal production of
IL-1b in monocytes from healthy individuals [53]. Recently,
a mouse model of CAPS has been developed independently
by two groups. Strober et al. generated a knock-in mouse
harbouring the R258W mutation that corresponds to the
R260W substitution found in patients with MWS and FCAS
[75]. Hoffman et al. generated mouse strains carrying muta-
tions (A350V that corresponds to the A352V variant found
in MWS and L351P that corresponds to the L353P variant
found in FCAS patients) downstream of a LoxP-flanked neo-
mycin resistance cassette in a reverse orientation [74]. With
this strategy the expression of the mutated NLRP3 protein is
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conditional to the expression of Cre-recombinase (Cre), and
the authors were able to generate conditional knock-in mice
expressing NLRP3 mutant in selected tissues by crossing the
mice with mice expressing Cre under different promoters.
Although the phenotypes of these mice show different
severities of inflammation, all were characterized by the
infiltration of neutrophils in the inflamed tissues [74,75].
Furthermore, the inflammatory response was due to the
expression of NLRP3 mutants in the myeloid compartment
and overproduction of IL-1b [74,75]. Importantly, Hoffman
et al.’s work showed that disease manifestation is indepen-
dent of the presence of T cells or B cells, thus providing
experimental evidence that autoinflammatory syndromes
are primarily disorders of the innate immune system [74]. It
must be noted, however, that overproduction of IL-1b led to
a T helper type 17 (Th17)-skewed phenotype. Interestingly,
anti-IL-17 antibodies were found to ameliorate skin pathol-
ogy, suggesting that certain disease manifestation may be
exacerbated by Th17 cells [75]. This mouse model can help
to address some unresolved questions. First, as this disease is
not caused by an infection and the cells from these mice do
not secrete IL-1b spontaneously, which are the stimuli that
are triggering the production of IL-1b? Secondly, as IL-1b is
produced by different cells of myeloid origin, such as mac-
rophages, dendritic cells and mast cells, which of these cells
(and in which organ) are responsible for the pathological
production of IL-1b? Thirdly, why are several organs affected
by the disease but others, such as the lung and the intestine,
do not show any abnormality? Fourthly, why does the
overproduction of IL-1b not predispose to autoimmune
responses, when IL-1b is an effective adjuvant?

The important role of IL-1b in CAPS patients is under-
scored by the efficacy of biologicals that target IL-1b in the
treatment of those patients. Recombinant IL-1Ra (anak-
inra), soluble IL-1 receptor (rilonacept) [76] and a human
monoclonal antibody against IL-1b (canakinumab) [77]
promote the rapid resolution of symptoms. Remarkably, bio-
logicals that target IL-1b also proved to be effective in ame-
liorating the neurological symptoms in NOMID patients.

Familial Mediterranean fever (FMF)

FMF is the most prevalent hereditary autoinflammatory
syndrome and is caused by mutations in MEFV (MEditer-
ranean FeVer) which encodes for a 781 amino acid protein
known as pyrin (or marenostrin) [3]. Human pyrin consists
of four domains, an N-terminal pyrin domain (PYD), fol-
lowed by two B-box zinc-finger and coiled-coil domains
and a C-terminal B30·2 domain (also called SPRY). Most of
the mutations responsible for FMF are located in the B30·2
domain. FMF is traditionally considered a recessive disorder
based on the fact that both alleles are mutated in the major-
ity of patients; however, there is evidence that disease can
occur in patients harbouring a single mutated allele and
up to 20% of patients that show clinical features of FMF

(1–3-day-long sporadic attacks of fever and pain, involving
unexplained peritonitis, pleuritis, synovitis, arthritis and
erysipelas-like rashes) have no identifiable pyrin mutations
[2]. FMF is relatively frequent in eastern Mediterranean
populations, and the high rate of carriers harbouring mis-
sense mutations suggests that the variants confer a survival
advantage [3].

Despite the well-established link between pyrin mutations
and FMF, the physiological role of pyrin and how pyrin
mutation promotes disease is still controversial, with oppos-
ing evidence suggesting that pyrin is a positive or negative
regulator of caspase-1 activation. The interpretation that
pyrin is a negative regulator of caspase-1 fits with the fact
that FMF is a recessive disorder. Initial findings based on the
over-expression of pyrin in 293T cells showed that pyrin
binds to ASC [78] and limits the activation of the NLRP3-
inflammasome [79]. Interestingly, data based on over-
expression systems also suggested that the B30·2 domain can
bind directly to and inhibit caspase-1 activation, while FMF-
associated mutations in the B30·2 domain exhibit reduced
binding and inhibition of caspase-1 [79,80]. In agreement
with an anti-inflammatory role of pyrin, the down-
regulation of pyrin by siRNA in human acute monocytic
leukaemia cell line-1 cells resulted in an increased produc-
tion of IL-1b [80]. Furthermore, mice harbouring a trun-
cated form of pyrin showed reduced response to LPS and
were protected from LPS-induced lethality [81]. In contrast,
Alnemri’s group found that the over-expression of pyrin in
293T cells that stably express ASC and caspase-1 promote the
activation of caspase-1 [82]. Moreover, Wewers’ group found
that the down-regulation of pyrin by siRNA in THP-1 cells
or in primary monocytes led to reduced caspase-1 activation
and IL-1b [83]. Furthermore, there is evidence that pyrin
is involved in the activation of caspase-1 induced by LPS
[83], Francisella [84], the retrovirus murine stem cell
virus (MSCV) [82] and acts downstream of phosphatase-
interacting protein 1 (PSTPIP1) [82], a protein that is
mutated in pyogenic arthritis, pyoderma gangrenosum and
acne syndrome (PAPA) syndrome, a related autoinflamma-
tory disease. The two opposing models are depicted in Fig. 2.
One possible explanation of the different results of those
studies is that mouse pyrin differs from that of humans and
lacks the B30·2 domain, making it difficult to study the role
of pyrin in mouse models. Recently, in an attempt to resolve
these controversies, the Kastner group generated a mouse
harbouring a chimeric protein of the mouse pyrin fused to
the human B30·2 domain (pyrin-mB30·2) [85] and pyrin
knock-out mice. Although the expression of the fusion
protein containing wild-type B30·2 domain was lethal,
somewhat limiting the interpretation of the results, the
authors were able to generate mice in which the B30·2
domain harboured the mis-sense mutations found in FMF
and reported that homozygous mice develop a spontaneous
activation of the inflammasome and a systemic inflamma-
tory response [85]. In contrast, pyrin knock-out mice do not
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show any obvert phenotype, indicating that the functional
role of pyrin-mB30·2 and pyrin is different and suggest that
pyrin-mB30·2 is a valuable model of FMF. Consistent with
FMF caused by genetic lesions of the innate immune system,
pyrin is expressed mainly in innate immune cells such as
neutrophils, monocytes and dendritic cells, but not in
lymphocytes. In an elegant set of experiments, the Kastner
group showed that bone-marrow transplantation of donor
pyrin-mB30·2 in wild-type recipients induces the develop-
ment of an inflammatory phenotype that recapitulates the
disease manifestation seen in unmanipulated pyrin-mB30·2
knock-in mice [85]. The authors also performed an
experiment with bone-marrow transplantation of wild-type
haematopoietic cells into recipient pyrin-mB30·2 knock-in
mice. As the knock-in mice develop severe symptoms early in
life, the authors were forced to adopt a suboptimal protocol
of bone-marrow transplantation, but a careful analysis of the
efficiency of chimerism in transplanted mice indicate a
strong correlation between the efficiency of bone-marrow
transplantation and the amelioration of the disease [85].
Furthermore, the authors performed experiments to test the
role of adaptive immunity in FMF. To this end, they gener-
ated pyrin-mB30·2 knock-in mice in a Rag1-deficient back-
ground, which are deficient in T lymphocyte and B
lymphocytes, and showed that these mice develop an auto-
inflammatory syndrome similar to the one in pyrin-mB30·2
knock-in mice. Importantly, by generating pyrin-mB30·2
knock-in mice in a background deficient in inflammasome
components, the authors proved that the disease was depen-
dent on caspase-1, ASC and IL-1 signalling but was indepen-
dent of NLRP3, NLRC4 and AIM2 [85]. As mentioned
previously, the disease developed only in homozygous mice,
which is consistent with a recessive mode of inheritance, and

the authors suggest that pyrin mutations are gain-of-
function mutations with a dosage effect in inducing disease.
A main question that remains to be addressed is whether
pyrin is physiologically an adaptor or forms an inflamma-
some using the B30·2 domain to sense microbes.

FMF is treated routinely with colchicine, a drug that
is known to target microtubules [86]. However, the mecha-
nism of action of colchicine in FMF is not clear, and may
be due to either the inhibition of the inflammasome or
to the inhibition of the migration of inflammatory cells
in inflamed tissues. Nevertheless, some patients are not
sensitive, or intolerant, to colchicine. In those patients bio-
logicals that target IL-1b have been shown to be effective
[87].

Conclusions and future perspectives

Understanding that gain-of-function mutations in NLRP3,
along with the discovery of the role of NLRP3 in activating
caspase-1 and IL-1b production, have led to the use of bio-
logicals that target IL-1b signalling to treat disease. Other
hereditary syndromes [such as FMF, PAPA syndrome and
hyperimmunoglobulinaemia D with periodic fever syn-
drome (HIDS)] may be due to increased activation of
inflammasomes and elevated production of IL-1b. Identifi-
cation of genes involved in other hereditary autoinflamma-
tory syndromes may lead to a better understanding of the
inflammasome and new targets to treat these inflammatory
disorders. One of the challenges for the future will be assess-
ing the role of inflammasomes and IL-1b in other hereditary
syndromes in which the gene responsible for the disease has
not yet been identified, as well as in complex and polygenic
conditions characterized by an exaggerated activation of the

Fig. 2. Two different models have been pro-

posed to explain how mutations in PYRIN lead

to familial Mediterranean fever (FMF). In one

model pyrin is a positive regulator and promote

the activation of caspase-1 in response to

specific stimuli. Dominant gain-of-function

mutations lead to a constitutive active protein,

similarly to what happen for the gain-of-

function mutation in nucleotide-binding

domain and leucine-rich repeat containing

family pyrin domain containing 3 (NLRP3).

Alternatively, pyrin is a negative regulator of

caspase-1. According to this model, recessive

loss-of-function mutations fail to control the

activation of caspase-1 leading to the inflamma-

tory response observed in FMF.
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innate immune system, such as gout, pseudogout and type 2
diabetes mellitus.
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