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Processing in Older Versus Younger Adults: An
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Abstract: Our sense of body position and movement independent of vision (i.e., proprioception) relies
on muscle spindle feedback and is vital for performing motor acts. In this study, we first sought to eluci-
date age-related differences in the central processing of proprioceptive information by stimulating foot
muscle spindles and by measuring neural activation with functional magnetic resonance imaging. We
found that healthy older adults activated a similar, distributed network of primary somatosensory and
secondary-associative cortical brain regions as young individuals during the vibration-induced muscle
spindle stimulation. A significant decrease in neural activity was also found in a cluster of right putamen
voxels for the older age group when compared with the younger age group. Given these differences, we
performed two additional analyses within each group that quantified the degree to which age-depend-
ent activity was related to (1) brain structure and (2) a behavioral measure of proprioceptive ability.
Using diffusion tensor imaging, older (but not younger) adults with higher mean fractional anisotropy
were found to have increased right putamen neural activity. Age-dependent right putamen activity seen
during tendon vibration was also correlated with a behavioral test of proprioceptive ability measuring
ankle joint position sense in both young and old age groups. Partial correlation tests determined that the
relationship between elderly joint position sense and neural activity in right putamen was mediated by
brain structure, but not vice versa. These results suggest that structural differences within the right puta-
men are related to reduced activation in the elderly and potentially serve as biomarker of proprioceptive
sensibility in older adults. Hum Brain Mapp 33:895–908, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Proprioception can be defined as our bodily sense of
position and movement in the absence of vision. The impor-
tance of proprioception for motor control is now unques-
tioned in light of several studies involving the motor
abilities of individuals lacking proprioceptive sense due to
large fiber neuropathy. When vision is unavailable, these
individuals exhibit profound deficits in the monitoring of
limb position, force control, and the production of coordi-
nated movement sequences such as walking [Lajoie et al.,
1996; Rothwell et al., 1982; Sainburg et al., 1995]. Although
proprioceptive signals are thought to originate from multi-
ple mechanoreceptor types within the body periphery, there
is a general agreement that muscle spindle receptors pro-
vide the primary source of information for our propriocep-
tive sense. The strongest evidence supporting this notion
comes from experiments involving the stimulation of mus-
cle spindle afferents using tendon vibration. This manipula-
tion induces perceptual illusions of joint position and
motion consistent with lengthening of the vibrated muscle
[Cordo et al., 1995; Goodwin et al., 1972; Roll et al., 1989].

Proprioceptive ability is influenced by age [Goble et al.,
2009a] and has been linked to performance declines on
activities of daily living [Hurley et al., 1998; McChesney
and Woollacott, 2000]. Explorations of age-related proprio-
ceptive deficits have been limited to the behavioral domain,
and thus, the neural mechanisms underlying poor proprio-
ceptive ability in old age remain largely unknown. Post-
mortem human and animal studies have suggested that
proprioceptive deficits partly originate within the body pe-
riphery, as there are reductions in muscle spindle number
and responsivity to stretch with increasing age [Liu et al.,
2005; Miwa et al., 1995; Swash and Fox, 1972]. Despite this,
significant central changes in brain function and structure
are a common consequence of old age [Seidler et al., 2010],
and therefore, it is possible that proprioceptive declines in
older adults also reflect changes to central structures media-
ting proprioceptive information processing. However, to
date, this hypothesis has not yet been tested.

In young adults, experiments over the past half decade
have made significant progress in determining the neural
basis of central proprioceptive feedback processing. Using
functional magnetic resonance imaging (fMRI) and tendon
vibration to stimulate muscle spindle afferents, researchers
have identified several regions of neural activity related to
proprioceptive processing [e.g., Kavounoudias et al., 2008;
Naito et al., 2005, 2007; Romaiguere et al., 2003]. Areas of
activation included both primary somatosensory and (pre)-
motor cortices [i.e., Brodmann area (BA) 2,3,4,6], as well as
secondary associative regions such as the parietal opercula
and inferior frontal gyri. At higher (3 vs. 1.5 T) magnetic
field strengths, evidence of subcortical activation within
the basal ganglia has also been provided, including, nota-
bly, the putamen [Naito et al., 2007].

The main aim of this study was to elucidate, for the first
time, the differences in proprioception-related neural proc-

essing that exist between healthy young and older adults.
This was accomplished using foot tendon vibration and
fMRI, as has been used previously with younger individu-
als [e.g., Kavounoudias et al., 2008; Naito et al., 2005, 2007;
Romaiguere et al., 2003]. Recent studies of sensorimotor
coordination from our laboratory have shown greater corti-
cal activation in older adults [Goble et al., 2010; Heuninckx
et al., 2005, 2008; Van Impe et al., 2009] with reduced levels
of activity in subcortical regions such as the basal ganglia
[Coxon et al., 2010; Van Impe et al., 2009]. As these tasks
rely to some extent on proprioceptive feedback to monitor
performance, we hypothesized that elderly individuals in
this study would show similar patterns of overactivation/
underactivation during foot tendon vibration. In addition to
our primary aim, secondary analyses were performed prob-
ing fMRI data for its relationship with brain structure (as
measured by the diffusion properties of water molecules)
and overt proprioceptive behavior (i.e., an ankle joint posi-
tion sense test). Here, we hypothesized that the age-
dependent neural activity might be differentially related to
alterations in brain structure in young and older adults and
that there would be a relationship between age-dependent
neural activation and a behavioral measure of joint position
sense. Ultimately, it was hoped that such correlations
between brain activity and structure with proprioceptive
ability would provide insight into potential biomarkers of
elderly proprioceptive sensibility.

MATERIALS AND METHODS

Participants

A sample of 20 young (mean age ¼ 26.1 years; range ¼
19.9–32.4 years) and 20 older (mean age ¼ 68.9 years;
range ¼ 62.3–81.3 years) adults was recruited from the
local community. The young and older groups were
matched for gender (12 females and 8 males) and were
right handed and right footed as determined by the Edin-
burgh Handedness Inventory of Oldfield [1971]. Partici-
pants exhibited no evidence of neuromuscular impairment
at the time of testing and were not using psychoactive or
vasoactive medications. Participants were generally physi-
cally active and scored high (i.e., 27þ) on the Mini-Mental
State Examination [Folstein et al., 1975]. Prior to testing,
written informed consent was obtained. All procedures
were carried out according to the established guidelines of
the Ethics Committee of Biomedical Research at the Katho-
lieke Universiteit Leuven, and the procedures were
aligned with the Code of Ethics laid down by the World
Medical Association (Declaration of Helsinki).

Mapping of Brain Regions Showing Neural

Activity During Proprioceptive (Muscle Spindle)

Stimulation: Foot Tendon Vibration During fMRI

The primary aim of this study was to quantify age-related
brain activity during stimulation of key proprioceptors (i.e.,
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the muscle spindles). To accomplish this, a muscle tendon
vibration paradigm within an fMRI environment was used,
similar to the paradigm used previously for young adults
[e.g., Kavounoudias et al., 2008; Naito et al., 2005, 2007;
Romaiguere et al., 2003]. Participants were placed head first
and supine into the fMRI scanner with arms resting com-
fortably at the sides of their body. The lower limbs were
supported in a slightly flexed position at the hip and knee,
with the feet elevated and hanging freely at �10 cm above
the scanner bed. Subjects removed their socks and rolled
their pant legs to above the knees.

Custom-made pneumatic vibration devices (Mag Design
and Engineering, Sunnyvale, CA) were placed across the
long tendons of the lesser toes (TENDON) and the crest of
the lower portion of the tibia (BONE). During TENDON
vibration, it was assumed that both muscle spindle and
vibrotactile cutaneous receptors were stimulated. For
BONE vibration, it was assumed that only vibrotactile
receptors were stimulated. In this way, TENDON > BONE
fMRI contrasts (described later) were assumed to reveal
neural activations related specifically to muscle spindle
stimulation. Vibration devices were held flat to the skin
surface (contact area ¼ �8 cm2) via elastic straps to pre-
vent transmission of vibration to adjacent structures [Mon-
tant et al., 2009]. Vibration frequency was �80 Hz, with
0.2–0.5 mm amplitude. These stimulation parameters have
been shown to provide optimal stimulation of muscle
spindle receptors, as evidenced by both microneurographic
measures and the experience of proprioceptive illusions
consistent with lengthening of the vibrated muscle [Good-
win et al., 1972; Roll and Vedel, 1982; Roll et al., 1989]. In
this study, most (35 of 40; 17 older and 18 young adults)
participants experienced proprioceptive illusions of toe
flexion and/or ankle plantar flexion when TENDON, but
not BONE, was vibrated. The duration of illusions was
quantified in the scanner by having subjects use a modi-
fied computer mouse. Subjects held down the left button
with their right index finger when they felt an illusion,
and the right button with their right middle finger when
no illusion was present. This monitoring system helped to
assure that subjects remained alert throughout the testing
session. Information regarding illusion duration was also
used in the modeling of fMRI data to account for group
and individual differences related to the experience of pro-
prioceptive illusions.

While undergoing fMRI, participants experienced alter-
nating 21s blocks of three vibration conditions: (1) TEN-
DON, (2) BONE, and (3) REST (i.e., no vibration). Subjects
kept their eyes closed throughout the testing. The vibra-
tion devices were triggered via custom software developed
within the LabVIEW environment (National Instruments,
Austin, TX). Image acquisition was performed on a 3-Tesla
Magnetom Trio MRI scanner (Siemens, Erlangen, Ger-
many) with a standard head coil. Scanning sessions
included a high-resolution T1-weighted image (MPRAGE;
TR ¼ 2,300 ms; echo time ¼ 2.98 ms; 1 mm � 1 mm� 1.1 mm
voxels, field of view 240 � 256; 160 sagittal slices) for

anatomical detail. fMRI data were acquired over four
time series (i.e., runs) with an interleaved echo planar
imaging pulse sequence for T2*-weighted images (repeti-
tion time ¼ 3,000 ms; echo time ¼ 30 ms; flip angle ¼
90�; 50 oblique slices ¼ 2 mm thick; interslice gap ¼
0.028 mm; in-plane resolution ¼ 2.5 mm � 2.5 mm; 80
� 80 matrix). Two runs were performed on the left side
of the body and two runs on the right, with presenta-
tion of body side randomly and evenly distributed
across subjects and groups. Three dummy scans at the
beginning of each run were discarded from analysis to
allow for scanner equilibration. Each run consisted of
147 scans, with seven blocks of the three task conditions
whereby each condition lasted seven whole brain images
(i.e., 21 s). The order of conditions was randomized
across time series, and rest periods were inserted
between all runs (�3 min). Within the week prior to
testing, subjects were given 20 min of practice in a
‘‘dummy scanner’’ to ensure familiarity with the tasks
and scan environment.

Analyses of fMRI data were performed using SPM 5
(Wellcome Department of Imaging Neuroscience, London,
UK) implemented with Matlab 7.4 (Mathworks, Natick,
MA). To preprocess the data prior to running statistics, T2*-
weighted images were realigned to the first image of the
time series, and a mean image was created from the real-
igned volumes. From the realigned data, it was verified that
no subject had head movement larger than 2 mm in any
direction during any of the functional runs. In addition, the
realigned images underwent an ‘‘unwarp’’ procedure to
remove a portion of unwanted movement-related variance
independent of variance related to the task conditions
[Andersson et al., 2001]. The resulting images from these
analyses were then normalized to a standard template
based on the Montreal Neurological Institute (MNI) refer-
ence brain in Talairach space [Talairach and Tournaux,
1998] and subsampled at 2 mm � 2 mm � 2 mm. Lastly, an
isotropic 3D Gaussian smoothing kernel (10 mm full width
at half maximum) was applied to the normalized data.

Age-Dependent Activation Relationship to Brain

Structure: Fractional Anisotropy Calculated

From DTI

As a corollary to the fMRI protocol described above,
DTI (single shot spin echo; slice thickness ¼ 2.9 mm; repe-
tition time ¼ 7,200; echo time ¼ 81; number of diffusion
directions ¼ 64; diffusion sensitivity ¼ 1,000; number of
sagittal slices ¼ 56; in-plane resolution ¼ 2.2 mm � 2.2
mm) was performed on each participant in the same mag-
netic resonance scanner. Processing of DTI data included
corrections for subject motion and eddy current-induced
geometrical distortions [Leemans and Jones, 2009; Van
Hecke et al., 2007]. Fractional anisotropy (FA) maps were
determined from the DTI data using the Explore DTI tool-
box [Leemans et al., 2009] with a nonlinear regression
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procedure [Jones and Basser, 2004]. For a direct compari-
son of FA and fMRI data in common space, diffusion
images were warped into a subpopulation atlas space
[Van Hecke et al., 2008]. The atlas image was subsequently
normalized to the DTI-81 FA template image (International
Consortium for Brain Mapping), and the warping parame-
ters generated from this step were then applied to each
individual’s FA image to register them in MNI space.

The FA images had values ranging from 0 to 1, such that
values closer to 1 represented greater anisotropic diffusion
of water molecules. While it should be noted that the inter-
pretation of FA is not always straightforward [Beaulieu,
2002; Le Bihan, 2003], it is generally believed that increased
anisotropy represents increased integrity of brain tissue
(i.e., greater cell density, more coherent organization, and/
or increased degree of myelination). Traditionally, FA has
been used to assess white matter in human brain. However,
there is now a growing contingent of work demonstrating
the usefulness of this measure in brain regions consisting
primarily of gray matter such as the basal ganglia [Bhagat
and Beaulieu, 2004; Boska et al., 2007; Chan et al., 2007;
LeBel et al., 2008; Snook et al., 2005; Vaillancourt et al.,
2009; Yoshikawa et al., 2004]. In this study, group-level DTI
analyses were driven by age-related differences in neural
activity (i.e., based on fMRI analyses). As such, FA values
presented here are presumed to reflect, primarily, altera-
tions in gray matter structure.

Behavioral Assessment of Proprioceptive Acuity:

Test of Ankle Joint Position Sense

On a separate day, the same subjects who participated
in the neuroimaging aspect of this study also performed a
behavioral test aimed at quantifying ankle joint proprio-
ceptive acuity to serve as a corollary to the main fMRI
experiment. For this assessment, subjects were blindfolded
and seated with either the left or right lower limb secured
to a custom-made manipulandum device. This device
allowed for ankle rotation in the sagittal plane through ei-
ther passive displacement by the experimenter or active
movement of the subject. The device was counter
weighted to reduce the amount of muscle force required
to produce ankle rotation. A potentiometer, accurate to
less than 0.1�, recorded ankle joint position in real time to
a desktop computer.

Joint position sense testing consisted of 10 right ankle
and 10 left ankle matching trials with the order of presen-
tation randomized and balanced across individuals and
age groups. Each trial was composed of a two-phase (ref-
erence and matching) procedure. In the reference phase,
the experimenter passively rotated the ankle from its rest-
ing position to a position that was between 25 and 75% of
the subject’s active range of dorsiflexion or plantarflexion.
This joint angle was maintained for 5 s and then returned
to the resting position. Following a short delay (�1 to 2 s),
the matching phase of the task was initiated. In this phase,

subjects were given a verbal cue (i.e., ‘‘Match’’), which
prompted them to return the ankle to the previously expe-
rienced ankle position. This position was held for several
seconds before the subject was prompted to ‘‘relax’’ and
return to the resting position.

For each trial, a measure of total error (TE) was calcu-
lated according to the method of Henry [1974]. This mea-
sure is an idealized combination of matching bias
(i.e., constant error) and matching variability (i.e., variable
error) and is well suited to tests of joint position sense
[e.g., Goble et al., 2009c]. Reference and matching joint
angles were quantified offline from the recorded potenti-
ometer data using a threshold algorithm that determined
the last point in time when joint velocity was within two
standard deviations of the baseline (premovement) value.
To account for the effects of target amplitude [Goble and
Brown, 2008b; Goble et al., 2006], TE was normalized to
the reference ankle position. Consequently, this variable is
expressed as a percentage of the reference angle.

Statistical Analyses

Statistical analyses for fMRI data were performed with
SPM 5 in accordance with the general linear model [Fris-
ton et al., 1995]. For each subject, a first-level model was
specified with boxcar regressors for the TENDON and
BONE conditions, while rest was implicitly modeled.
Regressors were subsequently convolved with the canoni-
cal hemodynamic response function provided in SPM.
Data were high-pass filtered (1/128 Hz) to remove low-
frequency drifts of the scanner signal. To account for tem-
poral autocorrelations, an autoregressive, AR(1), model
was fit to the residuals of the fMRI time series.

Areas of neural activation during stimulation

of muscle spindles

First-level (i.e., individual subject) contrast images for
TENDON > BONE were initially calculated to reveal neural
activations related to muscle spindle stimulation in the ab-
sence of a cutaneous, vibrotactile response. These images
were then entered into a second-level ANOVA with the fac-
tors ‘‘group’’ (YOUNG, OLD) and ‘‘side’’ (LEFT, RIGHT). In
this ANOVA, cluster-wise significance was determined at
the level of P < 0.05 corrected for family-wise error (FWE),
following voxel-level thresholding at P < 0.001 (uncor-
rected). In addition, a constrained search [Friston et al.,
2006] was performed to help restrict analyses to voxels with
significant activation (rather than deactivation). Specifically,
a binary mask image was created from the union (i.e.,
global conjunction) of voxels demonstrating significant acti-
vation (P < 0.001 uncorrected) for any group or body side
condition in an independent, second-level ANOVA, testing
TENDON > REST first-level contrast images, with a correc-
tion for differences in illusion duration (i.e., this variable
was added as a covariate of no interest). It is worth noting
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that even when explored at relatively low threshold (i.e., P
< 0.01 uncorrected), the illusion regressor did not explain
significant variance, that is, activation was similar regard-
less of whether subjects did or did not experience proprio-
ceptive illusions.

Relationship between neural activation,

brain structure, and proprioceptive acuity

In clusters showing significant age-related differences in
neural activation, we calculated the mean percent signal
change (PSC) of the fMRI bold oxygen level-dependent sig-
nal and the mean FA value for each individual. PSC was
quantified according to the methods proposed by Brett
et al. [2002] using the Marsbar toolbox. Mean FA values
were determined as the average FA across all voxels falling
within a mask of the cluster of interest. Where appropriate,
group comparisons of these variables were made using
two-sample t-test procedures. Additionally, the relationship
between PSC, FA, and TE was explored using Pearson cor-
relation tests and/or partial correlation methods where
appropriate. These statistical tests were carried out using
SPSS (SPSS Inc., Chicago, IL) with an a ¼ 0.05.

RESULTS

All participants tested were successful in completing the
entire experimental procedure. Below, we first describe
age-independent and age-dependent areas of neural activ-
ity resulting from our primary analysis of muscle spindle
stimulation during fMRI. We then explore the relationship
between age-dependent neural activation, brain structure
(i.e., FA), and proprioceptive acuity (i.e., TE from the test
of joint position sense).

Common Brain Activity for Young and Older

Adults During Muscle Spindle Stimulation

Neural activation revealed by fMRI during muscle spin-
dle stimulation (i.e., TENDON > BONE contrast) was
present in an expanded network of brain areas for both
young and older individuals (Fig. 1 and Table I). With
respect to body side, only the primary sensorimotor corti-
ces (peak activation in BA 4 and extending into BA 3a:
foot regions) showed limb-specific activity with contralat-
eral (i.e., hemisphere opposite to the stimulated body side)
activation noted for the right (ANOVA model: RIGHT >
LEFT; P < 0.05 FWE) and left (ANOVA model: LEFT >
RIGHT; P < 0.05 FWE) foot stimulation conditions. In con-
trast, all other active regions for the TENDON > BONE
contrasts were non-limb specific. A conjunction analysis
was, therefore, conducted testing for significant clusters of
activation in OLD and YOUNG groups for the average
effect of left and right stimulation (ANOVA model: OLD
LEFT and OLD RIGHT conjoined with YOUNG LEFT and
YOUNG RIGHT; P < 0.05 FWE). This analysis revealed

activity in the bilateral inferior parietal cortex (BA 40) and
in the bordering primary somatosensory area (BA 2).
Regions of activation were also seen in bilateral inferior
frontal gyri (pars opercularis: BA 44; pars triangularis: BA
45), bilateral anterior insular cortex, supplementary motor
area (SMA: BA 6), preSMA (BA 6), bilateral basal ganglia
(putamen/palladium), and thalamus. Lastly, a number of
regions showed activation in only the right hemisphere
including ventral premotor cortex (BA 6), orbitofrontal cor-
tex (BA 47), dorsolateral prefrontal cortex (BA 46) and the
dorsal anterior cingulate cortex (BA 32). Although a direct
assessment of laterality was beyond the scope of this
experiment, it is worth noting that these results align well
with Naito et al. [2005, 2007], who found right-hemisphere
dominance in similar regions when assessing muscle spin-
dle feedback processing in young adults.

Differences in Neural Activity Between Young

and Older Adults During Muscle Spindle

Stimulation

Muscle spindle-related neural activity was largely over-
lapping for young and older adults. However, a significant
age-related difference was seen for a cluster of voxels
within the right putamen (Fig. 2; ANOVA model: YOUNG
LEFT and YOUNG RIGHT > OLD LEFT and OLD RIGHT;
P < 0.05 FWE). The activated cluster had an extent of 371
voxels and two significant activation peaks (x ¼ 24; y ¼
14; z ¼ �4; x ¼ 32; y ¼ 4; z ¼ 10). Using PSC as a measure
of the fMRI signal response to muscle spindle stimulation
(Fig. 2A), the group difference in right putamen was found to
be one of greater activation for younger versus older adults
(two-sample t-test: OLD versus YOUNG PSC; P ¼ 0.0009).

Relationship Between Age-Dependent Neural

Activation, Brain Structure, and Joint

Position Sense

Within the cluster of right putamen voxels showing
greater neural activation for young versus older individu-
als, there was no age-related difference in brain structure as
measured by mean FA (Fig. 2B; two-sample t-test: OLD ver-
sus YOUNG; P > 0.05). Despite this, the PSC of neural ac-
tivity within this cluster was significantly correlated with
mean FA for older adults (Pearson correlation: OLD PSC
with mean FA; r ¼ 0.51; P ¼ 0.02), but not for young adults
(Pearson correlation: YOUNG PSC with mean FA; r ¼ 0.06;
P > 0.05). As demonstrated in Figure 2C, older adults who
had higher mean FA values showed increased activation of
the right putamen during muscle spindle stimulation.

Our behavioral measure of proprioceptive acuity (i.e.,
test of ankle joint position sense) did not differ between
the left (mean � SE TE ¼ 18.4% � 1.7%) and right (mean
� SE TE ¼ 17.2% � 1.5%) lower limbs (two-sample t-test:
LEFT versus RIGHT TE; P > 0.05). In addition, there was
no difference in matching accuracy across feet between the
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young (mean � SE ¼ 17.8% � 1.8%) and older (mean �
SE ¼ 17.7% � 1.1%) age groups. Despite this, there was a
significant relationship between joint position matching TE
averaged across lower limbs and the amount of right puta-
men neural activity induced by stimulation of the muscle
spindles (Pearson correlation: YOUNG and OLD PSC with
TE; r ¼ �0.39; P ¼ 0.04). As shown in Figure 3A, this rela-
tionship was such that increased neural activity was associ-
ated with smaller TE (indicating better proprioceptive acuity).

Mean FA of the right putamen cluster showing age-de-
pendent activation was also associated with joint position
sense averaged across the two limbs (Fig. 3B). However,
this was only the case for older individuals, where higher
mean FA values were strongly correlated (Pearson correla-
tion: OLD mean FA with TE; r ¼ �0.77; P ¼ 0.00007) with
lower TE. A partial correlation analysis was conducted to
determine the relationship between PSC and elderly joint

position sense (i.e., TE) when corrected for brain structure
(i.e., FA) is accounted for and vice versa. This analysis
demonstrated that the correlation between PSC and TE
was mediated by structural factors (i.e., the correlation
was not significant when mean FA was accounted for; par-
tial correlation: OLD PSC and TE corrected for mean FA; r
¼ 0.01, P > 0.05), whereas mean FA remained significantly
correlated with TE (partial correlation: OLD mean FA and
TE corrected for PSC; r ¼ �0.72, P ¼ 0.0005), even when
variance accounted for by PSC was removed.

DISCUSSION

This study provided novel results regarding the age-
related central processing of proprioceptive information
and its relationship with measures of brain structure and

Figure 1.

Common areas of neural activity seen in younger and older

adults during muscle spindle (i.e., TENDON > BONE) stimula-

tion. Results displayed on a template brain image in neurologic

orientation. Blue ¼ right foot only; magenta ¼ left foot only;

green ¼ both right and left feet. SMA, supplementary motor

area; SM1, primary sensorimotor cortex; pSMA, presupplemen-

tary motor area; PMv, ventral premotor cortex; IPC, inferior pa-

rietal cortex; DLPFC, dorsolateral prefrontal cortex; IFG,

inferior frontal gyrus (pars opercularis and pars triangularis); BG,

basal ganglia (putamen and pallidum); OFC, orbitofrontal cortex.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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TABLE I. Neural activation during muscle spindle stimulation (i.e., TENDON > BONE contrast) common

to both YOUNG and OLD

Activation peak location Side X Y Z t-value

CLUSTER#1: 4205 voxels
Inferior frontal gyrus (p tri, BA 45) R 54 16 �2 5.78
Inferior frontal gyrus (p oper, BA 44) R 52 16 16 4.97
Anterior insular lobe (BA 48) R 28 20 �8 5.63
Precentral gyrus (PMv, BA 6) R 50 10 38 5.44

R 48 4 46 4.73
R 50 6 48 4.73

Orbitofrontal cortex (BA 47) R 44 22 �14 5.07
R 48 42 �4 4.15

Basal ganglia (pallidum) R 18 0 0 4.8
R 22 0 2 4.75

Basal ganglia (putamen) R 34 10 �4 4.74
Thalamus R 14 �8 0 4.49

CLUSTER#2: 2142 voxels
Supramarginal gyrus (BA 40) R 60 �42 42 6.10
Supramarginal gyrus (BA 40/2) R 64 �38 40 6.08

R 64 �34 30 5.57
Inferior parietal cortex (BA 40) R 60 �44 48 5.88

CLUSTER#3: 2123 voxels
Inferior frontal gyrus (p oper, BA 44) L �50 10 12 5.31

L �50 12 4 4.96
Anterior insular lobe L �30 20 4 5.2

L �32 20 �6 4.94
L �34 18 �8 4.94

Inferior frontal gyrus (p tri, BA 45) L �48 16 �2 5.2
Basal ganglia (putamen) L �24 0 8 4.38

L �26 2 6 4.35
Basal ganglia (pallidum) L �16 2 2 3.79
Thalamus L �20 �6 8 4.14

CLUSTER#4: 1809 voxels
Pre SMA (BA 6) R 8 14 58 5.49

R 8 10 60 5.44
L �10 2 70 4.18
L �4 10 58 3.97

SMA (BA 6) R 10 �4 70 4.71
R 2 �20 72 4.22
L �10 �4 78 4.33
L �14 �6 70 4.18
L �10 �12 74 4.09
L �6 �6 64 3.85

Dorsal anterior cingulate (BA 32) R 6 22 48 5.27
R 8 26 34 4.61

CLUSTER#5: 938 voxels
Inferior parietal cortex (BA 40) L �62 �48 40 5.31

L �60 �48 44 4.95
L �58 �44 50 4.81
L �56 �46 52 4.4
L �60 �58 34 3.65

Supramarginal gyrus (BA 40/2) L �64 �44 36 4.81
L �66 �36 32 4.04
L �60 �30 46 3.93

Supramarginal gyrus (BA 2) L �56 �24 30 4.37
L �56 �28 30 4.36

CLUSTER#6: 422 voxels
Middle frontal gyrus (DLPFC, BA 46) R 28 50 20 4.49

R 38 40 34 4.23
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joint position sense. Our primary aim was to map regions
of the aging brain that were active during stimulation of
key proprioceptors (i.e., the muscle spindles) by using the
combination of tendon vibration and fMRI. We found a
significant reduction in neural activity in the right puta-
men of older adults when compared with younger adults.
In addition, secondary correlational analyses revealed links
between age-dependent right putamen neural activation,
brain structure (measured as mean FA), and performance
on a proprioceptive joint position sense test. Correlations
differed for the two age groups with both young and older
individuals showing significant associations between
increased neural activity and greater proprioceptive acuity,
while only the older group had a significant correlation

between higher mean FA and increased neural activity.
Based on partial correlation analysis, it was revealed that
the relationship between neural activity and propriocep-
tive ability in the elderly was largely mediated by brain
structure (i.e., mean FA). This finding provides some
insight that for older adults, the structure of right putamen
may serve as a biomarker of proprioceptive sensibility.

Central Components of the Aged Proprioceptive

Processing Network

Elderly (and young) individuals demonstrated a broad
array of neural activations in response to the stimulation
of muscle spindles. The base network of proprioception-

Figure 2.

Older and younger adult mean � SE PSC (A), mean � SE FA (B), and the correlation between

PSC and mean FA (C) in a cluster right putamen voxels demonstrating age-dependent neural

activity. Cluster rendered on a standard template brain in neurologic orientation (bottom left).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Goble et al. r

r 902 r



related activity is in good agreement with previous imag-
ing studies involving young subjects where either tendon
vibration [Kavounoudias et al., 2008; Naito et al., 2005,
2007; Romaiguere et al., 2003] or passive limb displace-
ment [Mima et al., 1999; Weiller et al., 1996] were used to
stimulate proprioceptors. Not surprisingly, activations
were found in primary sensorimotor cortices contralateral
to the side of stimulation. The peak of this activity was in
primary motor cortex (BA 4 – foot area) and it spread to
adjacent BA 3a. The role of the motor cortex in kinesthetic
processing has been well established [see for review,

Naito, 2004] and partly relates to the perception of limb
movement during proprioceptive illusions [Romaiguere
et al., 2003]. Activity in this region cannot be explained by
the low levels of muscle activity associated with the tonic
vibration reflex [Naito et al., 2007]. Rather, it is likely that
this activation is the result of afferent input from the dor-
solateral medial-lemniscal proprioceptive pathway to BA 4,
via the thalamus [Lemon and van der Burg, 1979; Wong
et al., 1978]. With respect to the activation of BA 3a, it is
worth noting that this primary somatosensory region is most
responsive to muscle spindle stimulation, whereas BA 3b is

Figure 3.

Correlations between PSC (A) and mean FA (B), with the ankle joint position sense of younger

and older adults in the age-dependent cluster of right putamen voxels rendered in Figure 2.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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more representative of cutaneous stimulation [Phillips et al.,
1971; Tanji and Wise, 1981]. In this case, our activity in BA 3a,
but not BA 3b, suggests that the effects of vibrotactile/cutane-
ous stimulation were well controlled by contrasting the TEN-
DON and BONE conditions.

The remaining areas of neural activation during muscle
spindle stimulation were body side independent. We
found bilateral activity in midline brain structures (i.e.,
SMA and preSMA), which have been previously shown to
respond to both passive joint movement and vibration-
induced stimulation of the muscle spindles [e.g., Naito
et al., 2005, 2007; Weiller et al., 1996]. Bilateral activity in
inferior parietal cortex (BA 40) and bordering primary
somatosensory cortex (BA 2) was also evident and is in
line with converging evidence, suggesting that these inter-
connected regions use proprioceptive information to form
a coherent body representation [Daprati et al., 2010]. Mus-
cle spindle stimulation additionally activated bilateral an-
terior insular cortex and regions of the lateral (pre)frontal
cortex. These activations are almost certainly involved in
higher order perceptuo-proprioceptive processes such as
corporeal awareness and attention. For example, it has
been proposed by Corbetta and Shulman [2002] that sa-
lient, stimulus-driven shifts of attention (such as those
likely induced by illusory tendon vibration) are accom-
plished by activations in the right temporoparietal junc-
tion, inferior frontal gyrus (BA 44, BA 45), dorsolateral
prefrontal cortex (BA 46), anterior insula, and the cingu-
late/preSMA. All these areas were active in this study.

In addition, we found right-sided activation in ventral
premotor cortex, an area that has been recently shown to
modulate the primary somatosensory cortex [Christensen
et al., 2007], and activation of right orbitofrontal cortex
(BA 47), which might represent anticipatory activity
related to the expected sensory consequences of tendon
vibration [Schoenbaum et al., 2009]. Overall, greater
involvement of right hemisphere regions for the process-
ing of proprioception-related information has been previ-
ously described in detail [Naito et al., 2005, 2007] and has
been hypothesized to underlie contralateral left arm accu-
racy advantages on tests of upper limb joint position sense
[Goble et al., 2005, 2006, 2009b; Goble and Brown, 2007,
2008a,b, 2009, 2010; Goble, 2010].

A relatively novel finding compared with previous pro-
prioceptive mapping studies was that bilateral regions of
the basal ganglia (putamen/pallidum) were active during
tendon vibration. This finding may reflect our use of a
more sensitive, 3-Tesla scanner [Naito et al., 2007].
Although the basal ganglia have been traditionally
ascribed with a series of ‘‘motor’’ functions, prior work on
human and animals has brought to light a role for the ba-
sal ganglia as a ‘‘sensory analyzer,’’ particularly for pro-
prioceptive feedback processing [Lidsky et al., 1985]. For
example, single-cell recording studies involving monkeys
have shown that neurons in putamen [Crutcher and
DeLong, 1984] and, to a lesser extent, globus pallidus
[DeLong et al., 1985] code for passive joint displacement.

Such responses likely originate from muscle spindle input
signals directed to the putamen through densely con-
nected portions of the primary somatosensory and motor
cortices [Kunzle, 1975, 1977]. These results suggest that the
processing role served by the basal ganglia falls somewhere
on the continuum between lower level primary somatosen-
sory and higher order secondary-associative cortical regions.

Differences in Neural Activation Between Young

and Old Adults and Their Unique Relation to

Brain Structure and Proprioceptive Ability

Within Age Groups

We found reduced activation in a cluster of right puta-
men voxels for older adults during muscle spindle stimu-
lation conditions, and the activity in this cluster was
correlated with brain structure (i.e., PSC increased with
increased mean FA). The putamen (along with the sub-
stantia nigra and caudate) is an integral part of the nigro-
striatal system and is highly reliant on dopaminergic
neurotransmission. Studies of the aging brain have shown
that dopamine regulation is significantly reduced in old
age via structural degradation including neuronal loss,
fewer neuroreceptor sites, and a lack of transporter mole-
cules [Kaasinen and Rinne, 2002]. These declines have led
some to suggest that the aging brain lies somewhere on a
preclinical continuum of Parkinson’s disease. Here, it is
noteworthy that a substantial body of literature exists that
demonstrates proprioceptive deficits in individuals with
Parkinson’s disease [Konczak et al., 2009]. Indeed, such
studies have commonly found deficits in both joint posi-
tion sense [Maschke et al., 2003; Zia et al., 2000, 2002]
and/or targeted reaching in the absence of vision [Adamo-
vich et al., 2001; Swinnen et al., 2000].

Right putamen activity was also significantly correlated
with increased performance on a test of ankle position
sense, and this effect was seen regardless of age. This find-
ing provides the best evidence to date supporting a link
between a measure of neural activation and overt perform-
ance on a test of proprioceptive sensibility. The right-sided
nature of the cluster may reflect both right hemisphere
dominance for proprioceptive processing [Naito et al.,
2005, 2007] and or right lateralized higher order percep-
tuo-proprioceptive functions such as attention to, and/or
the awareness of, relevant proprioceptive stimuli [Corbetta
and Shulman, 2002]. With respect to this latter hypothesis,
it is interesting to note that the age-dependent activation
difference was relatively located in the anterior putamen,
which has been shown to have stronger connections with
preSMA versus SMA, premotor or primary sensorimotor
cortices [Lehericy et al., 2004]. Additionally, in a case
report, Halligan et al. [1993] described an individual with
right basal ganglia damage due to stroke who showed dis-
turbances in the normal experience of body schema
including supranumerary phantom limb. There were no
age-related differences within primary sensorimotor

r Goble et al. r

r 904 r



regions. We believe that this null finding may be due to
the relative sparing of primary sensorimotor cortex with
age when compared with the known vulnerability of struc-
tures like the putamen and ventrolateral prefrontal cortex
[Fjell et al., 2009].

Neural activation in response to stimulation of muscle
spindles within the age-dependent right putamen cluster
was also greater for older adults who had higher mean FA
values. Higher FA was further associated with joint posi-
tion sense in the elderly, and partial correlation analyses
showed that brain structure (i.e., mean FA) was an impor-
tant mediating factor in the correlation between elderly
neural activity and joint position sense (TE). Although the
meaning of FA in regions of the brain primarily subserved
by gray matter is not entirely clear [Beaulieu, 2002], the
relationship between this measure, neural activation and
behavior, in this study suggests that FA may be a useful
biomarker of structural integrity for key proprioceptive
structures such as the putamen in the elderly. Similar sug-
gestions have been made with respect to other basal gan-
glia structures (e.g., substantia nigra) in the diagnosis of
individuals with Parkinson’s disease [Vaillancourt et al.,
2009; Yoshikawa et al., 2004]. For example, Vaillancourt
et al. [2009] were recently able to predict with 100% sensi-
tivity and specificity the existence of early stage Parkin-
son’s disease on the basis of reduced FA within the caudal
portion of the substantia nigra. In this case, reductions in
FA were assumed to reflect, primarily, neuronal loss and
an increase in extracellular fluid.

Our findings of lower FA correlating with less activation
and poorer proprioceptive performance in older adults,
although in agreement with studies of individuals with ba-
sal ganglia dysfunction, are less in line with several stud-
ies in the aging domain that have noted an increase in
putamen FA with age [Abe et al., 2008; Bhagat and Beau-
lieu, 2004; Pfefferbaum et al., 2010; Wang et al., 2010;
Zhang et al., 2010]. To this point, it is important to note
that these previous studies have largely used a linear
regression approach assessing FA across the lifespan (from
20 years to old age), which has been the subject of some
criticism [Hasan, 2010]. Indeed, increases in FA with age
are at least partly due to maturation of the putamen which
occurs until approximately 25 years [LeBel et al., 2008],
rather than any increased FA in old age. It is, therefore,
important to note that in this study, the majority of young
subjects tested (16/20) were at least 25 years of age.

An alternative explanation for the rise in mean putamen
FA with age was recently brought forth by Pfefferbaum
et al. [2010]. These researchers demonstrated using field-
dependent relaxation rate increase indices that a rise in FA
could be the result of accumulating iron deposits within
the aging putamen. Based on this finding, it is tempting to
speculate that the lack of mean group FA differences in
this study might reflect the good general health of the el-
derly group tested and/or a lack of age-related differences
in iron accumulation. Additionally, we assessed FA in
voxels within the putamen that were known to be active

at the group level during the fMRI experiment. This may
have increased the likelihood that primarily gray matter
was assessed.

As a group, our elderly subjects did not differ from
young individuals on our test of proprioceptive sensibility
(i.e., joint position sense). Although at first this result may
appear somewhat surprising, we believe that this may
simply reflect the high-functioning nature of the elderly
individuals in this study. Indeed, many of our subjects
engaged in sport or competitive fitness programs three or
more times per week. Despite this, the lack of overall age
differences in this study and the intuitive nature the el-
derly results regarding a correlation between position
sense and brain structure/function remain intriguing.
Indeed, it is expected that further probing of this effect
with a group of even older and, perhaps, frail older adults
would only provide more substantive evidence of a rela-
tionship between position sense, right putamen activation,
and right putamen mean FA.

CONCLUSIONS

This study uncovered regions of the elderly brain
involved in central processing of proprioceptive feedback.
In contrast to recent studies involving the neural correlates
of motor tasks [Goble et al., 2010; Heuninckx et al., 2005,
2008; Van Impe et al., 2009; Ward and Frackowiak, 2003;
Ward et al., 2008; Wu and Hallett, 2005], which typically
have shown cortical overactivation, we found only a local-
ized underactivation of the right putamen [Coxon et al.,
2010; Van Impe et al., 2009]. Our results, therefore, indicate
that proprioceptive processing in the elderly is influenced
by structural differences that limit activation within sub-
cortical regions (i.e., putamen). These differences, in turn,
can be related to overt proprioceptive function as assessed
by tests of joint position sense.
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