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Numerical models of the atmosphere cannot resolve all relevant scales; the effects
of unresolved scales on resolved scales must be represented by a subgrid model
or parametrization. When the unresolved scales are similar in character to the
resolved scales (as in three-dimensional or layerwise two-dimensional turbulence)
the problem is essentially one of large eddy simulation. In this situation, one
approach to subgrid modelling is implicit large eddy simulation (ILES), where the
truncation errors of the numerical model attempt to act as the subgrid model. ILES
has been shown to have some success for three-dimensional turbulence, but the
validity of the approach has not previously been examined for two-dimensional
or layerwise two-dimensional flow, which is the regime relevant to weather and
climate modelling. Two-dimensional turbulence differs qualitatively from three-
dimensional turbulence in several ways, most notably in having upscale energy and
downscale enstrophy transfers. The question is of practical importance since many
atmospheric models in effect use the ILES approach, for example through the use of
a semi-Lagrangian advection scheme. In this paper a number of candidate numerical
schemes are tested to determine whether their truncation errors can approximate
the subgrid terms of the barotropic vorticity equation. Results show that some
schemes can implicitly model the effects of the subgrid term associated with the
stretching and thinning of vorticity filaments to unresolvable scales; the subgrid
term is then diffusive and is associated with the downscale enstrophy transfer.
Conservation of vorticity, by using a flux form scheme rather than advective form
for advection of vorticity, was found to improve performance of a candidate ILES
scheme. Some effects of the subgrid terms could not be captured by any of the
schemes tested, whether using an implicit or a simple explicit subgrid model:
none of the schemes tested is able to capture the upscale transfer of energy from
unresolved to resolved scales. Copyright (¢) 2011 Royal Meteorological Society and
British Crown Copyright, the Met Office
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1. Introduction

Atmospheric flow involves an enormous range of spatial
scales. Numerical models of the atmosphere cannot in
general resolve all relevant scales, so the effects of unresolved
scales on resolved scales must be represented by a subgrid
model or parametrization. When the unresolved processes
are qualitatively different in character from the resolved
processes, for example unresolved convection or gravity
wave drag, then specific, process-based parametrizations
must be used. On the other hand, when the unresolved
scales are essentially similar in character to the resolved
scales, as in three-dimensional or layerwise two-dimensional
turbulence, then the approach oflarge eddy simulation (LES)
may be used. LES is a technique for turbulence modelling
in which the flow fields are formally filtered to separate
them into large-scale and subfilter-scale components. Since
the filter scale is almost always chosen to be similar to
the grid scale, these components are usually referred to
as resolved and subgrid-scale respectively. The governing
equations then comprise terms involving only resolved
scales, which are approximated by a direct discretization, and
terms expressing the effects of subgrid scales on the resolved
scales, which are approximated by a subgrid model (see
section 2). Implicit large eddy simulation (ILES) attempts
to use the truncation error of the discretization to act as
the subgrid model. If it works, ILES provides an elegant and
economical solution to the problem of subgrid modelling,
exploiting properties of the discretization developed for
other reasons, such as upwinding or flux limiting. A benefit
of ILES is that there are no explicit parameters that need
to be tuned to the flow. There have been a number
of studies of the validity of ILES for three-dimensional
turbulence (Sagaut, 2001; Grinstein et al., 2007b), and some
success has been demonstrated. However, little attention
has been paid to the two-dimensional case; in particular,
there has been no detailed examination of whether the
truncation errors of any scheme do indeed match the subgrid
term.

The aim of this paper is to examine the validity of ILES
for two-dimensional flow. Two-dimensional turbulence has
qualitatively different dynamics from three-dimensional
turbulence. It is therefore not clear whether the successes
of ILES for three-dimensional flow will carry over to two-
dimensional flow. For three-dimensional incompressible
turbulence in neutral stratification, energy is an important
conservable quantity; on average, energy cascades downscale
from the large scales to the small scales. In contrast, two-
dimensional incompressible flow has a material invariant,
the (absolute) vorticity, implying an infinite family of
conserved moments of vorticity, including the enstrophy.
In two-dimensional turbulence the energy is transferred
upscale and it is the enstrophy that cascades downscale. The
upscale transfer of energy might make ILES less suitable for
modelling two-dimensional turbulence; ILES tends to be
less accurate for three-dimensional turbulence in situations
with significant upscale energy transfer (backscatter), such
as near walls (Brown et al, 2000). On the other hand,
the energy spectrum is much steeper in two-dimensional
turbulence than in three-dimensional turbulence, suggesting
a stronger slaving of small scales to large, which could make
two-dimensional turbulence more amenable to the ILES
approach.
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The main motivation for this study is to understand,
and if possible justify, the use of ILES-like schemes
in numerical weather and climate models. Due to the
effects of rotation and stratification, large-scale atmospheric
flow can be considered analogous to two-dimensional
flow: potential vorticity is a material invariant (analogous
to the vorticity), potential enstrophy (analogous to the
enstrophy) is one member of an infinite family of conserved
quantities, and energy is transferred upscale while potential
enstrophy cascades downscale. Two-dimensional turbulence
is therefore an appropriate paradigm to consider.

An important element of the dynamical core of a
numerical weather or climate model is the transport
scheme. Different dynamical cores model the subgrid terms
associated with nonlinear advection in different ways. Simple
subgrid models of the form V* are common. So too is the
use of semi-Lagrangian (SL) advection schemes without
explicit subgrid models (Williamson, 2007); the diffusive
nature of the interpolation is used to model the subgrid
terms in much the same way that ILES works. There is
growing interest in the use of finite-volume schemes using
flux limiters or Riemann solvers (e.g. Lin, 2004; Ullrich et
al., 2010), which again are inherently dissipative.

Modified equation analysis can be used to show qualitative
similarities between the truncation errors of some numerical
schemes and the subgrid terms (e.g. Margolin and Rider,
2002, 2007, and references therein). However, both modified
equation analysis and the method used to approximate the
subgrid terms make use of Taylor series approximations. The
convergence rate of Taylor series depends on the smoothness
of the function being approximated. The flows of interest
have rather shallow energy spectra and are not very smooth,
implying that leading-term Taylor series approximations
are not quantitatively accurate. We have confirmed this by
direct calculation of the subgrid terms and their Taylor series
approximations for several model problems. Therefore, in
this paper we take a more direct approach to testing the
validity of ILES (section 3). We develop a framework,
using a coarse-resolution test solution together with a high-
resolution reference solution and a high-resolution solution
constructed to be free of the effects of scales that the coarse
resolution cannot resolve, which allows the direct calculation
of the cumulative effect of both the coarse-grid truncation
error and the subgrid term, allowing the two to be compared.
Similar approaches, though with important differences of
detail, have been used for example by Berloff (2005) and
Hermanson et al. (2009) to estimate the subgrid term in
ocean and atmosphere models.

Previous work (Grinstein and Fureby, 2006) suggests
that nonlinear diffusion, such as that associated with a
flux limiter, is required for three-dimensional ILES. It is
important to determine whether this is also true for two-
dimensional ILES. Therefore in this paper schemes with both
linear and nonlinear diffusion are tested on the barotropic
vorticity equation. It has also been suggested (e.g. Margolin
and Rider, 2002) that for three-dimensional ILES the flux
form (the conservative form) of the numerical scheme is
required to produce satisfactory results. Here numerical
schemes in both flux and advective forms are tested to
determine whether conservation is important for two-
dimensional ILES, and whether conservation of momentum
or vorticity is more important. The governing equations
along with the numerical schemes used in this paper are
discussed in section 2. Section 3 describes the methodology
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used for the numerical testing and calculation of the subgrid
term. Results are found in section 4 and conclusions are
drawn in section 5.

2. Basic equations and numerical schemes

The inviscid barotropic vorticity equation (BVE) in
Cartesian coordinates is

9¢ 9¢ 9¢

= fu— v =0, 1

at o ox Y ay )
in advective form and

0 B B

o¢ ,ouk v 2)

at ox ay

in flux form, where { = dv/dx — du/dy is the vorticity and
u and v are the velocity components in the x and y directions
respectively. The flow is incompressible:

ou
0x

0
o, (3)
dy

and therefore (1) and (2) are equivalent. The velocity can be
calculated from ¢ via the stream function v:

Vi =g, (4)
_
_

v= P (6)

In this paper the domain used is doubly periodic (of
size 1) and all units are dimensionless.

Numerical testing will also take place using the velocity
form of the two-dimensional Euler equations and the two-
dimensional quasi-geostrophic potential vorticity equation.
Although the continuous velocity form of the Euler
equations and the continuous BVE are equivalent, the
filtered forms and discretizations are not. We examine both
the BVE and the Euler equations to determine whether one
or other form is more suitable for the use of ILES. The
velocity form of the Euler equations is

ou Oduu Jdvu  JP
T+ =, 7
ot ox ay  0x
dv  duv  dvv 9P
—t — +— 4+ — =0 (8)
at ox ay ay

where P is pressure divided by density (and density is
constant). A diagnostic equation is solved for P to ensure
incompressibility.

The quasi-geostrophic potential vorticity equation has the
same form as the BVE:

dq = Jduq
at ox

avg

3y 0, )

but the stream function is calculated as
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where g is the potential vorticity and A is the Rossby radius
(see Gill, 1982, for a full derivation). The influence of
a point vortex falls off exponentially beyond the Rossby
radius, so that vortex interactions are weaker than for the
BVE, which corresponds to the case of infinite Rossby
radius. The BVE is used as an idealized problem, whereas
the quasi-geostrophic potential vorticity equation is more
relevant to the application to atmospheric modelling due
to the finite Rossby radius. Because vortex interactions,
and hence energy and (potential) enstrophy transfers, are
sensitive to the Rossby radius, the conclusions concerning
ILES are potentially sensitive to the Rossby radius too.

2.1.  Subgrid analysis

A filter is used to separate the large scales (denoted by an
overbar) and small scales (denoted by a prime). Filtered
equations are usually written by replacing each field in
the original equation with its filtered version, and then
introducing a compensating subgrid term on the right-hand
side. For example, the filtered BVE becomes

d¢ | dmr | v _

SG, (11)
at ox ay
where SG denotes the subgrid term
G = (4 —ul) + ! (v =) (12)
=— (U —u — (V¢ —v¢).
o ¢ —u¢ 3y ¢—ve

(Under suitable approximations, e.g. Reynolds averaging for

which @ = aand ab = 711_),
(13)

but we will not make use of this.) The incompressibility
condition becomes
ou v
—+ — 14
dx  dy (14)

2.2.  Definition of subgrid term

For the methodology described in section 3 it is desirable
to calculate a solution without the effects of the subgrid
term. An obvious attempt would be to solve an equation
analogous to (11) with SG set to zero:

aé-S auSCS
at ox

S-S
L S (15)
dy

The intention here is that ¢ should be a smooth vorticity
field, with #° and v° the corresponding velocities. However,
(15) is simply the original unfiltered BVE (1) with a change
of notation; thus, even if ¢ is initially smooth, the nonlinear
terms will inevitably generate small scales, and the resulting
solution will not remain free of the effects of the subgrid
term.

To use our methodology we require a modified definition
of the subgrid terms:

ac  duc  ove .
— 4+ — 4+ — =S5G7, 16
at + ox + ay (16)
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where

0 /= — 0 (= —
SG* = — (u{ — u;) + — (vg“ — v§> . (17)
ox ay

(Note there is no approximation here, just a redefinition of
the subgrid term. A similar decomposition is discussed by
Leonard, 1975, and Sagaut, 2001). Now a smooth solution
can be defined by solving an equation analogous to (16)
with SG* set to zero:

aé-S 8uS§S aVSé-S B
ot dx dy

0. (18)

Provided ¢° is initially smooth, all terms in (18) are
smooth, so ¢ S evolves without the influence of subgrid
terms, as required.

Although less familiar, the form (16), (17) provides a
cleaner separation of the governing equations into resolved
scale and subgrid scale components than (11), (12) (Sagaut,
2001) and so may be useful in other contexts too. In
particular, both sides of (16) are smooth. The conditions
required for ILES to be successful can be used to relate the
form (16), (17) to Sagaut’s decomposition (Sagaut, 2007) of
numerical model errors into projection errors, discretization
errors, and resolution errors (see Appendix). The two forms
of the subgrid term are related by

se*-E:%(f—E)+;—y(i—E). (19)

For the cell average filter (see section 2.3) that will be used
for the numerical testing, [®) #+ (), so SG* is not simply a
filtered version of SG.

2.3.  Cell average filter

Throughout this paper the cell average filter will be used.
The filter is defined by

(20)

1 1 x+% )’+% o
u(x,y) = Ax Dy ) /y 5 u(x,y) dy dx,
where Ax and Ay are the width of the filter in the x and
y directions respectively and X and y are dummy variables.
(In the numerical tests Ax and Ay are the coarse-resolution
(CR) grid spacings, making the filter scale the same size as
a CR cell, and the integrals are approximated by discrete
sums.) This is a natural filter for finite-volume schemes
because a sample of a filtered field at a point corresponds to
a cell average of the original field; it is commonly used in
LES (Grinstein et al., 2007b).

2.4.  Numerical schemes

A number of numerical schemes will be considered to
determine how well they implicitly capture the subgrid
term of the barotropic vorticity equation through their
truncation error. A ‘Benchmark’ scheme, composed of a
second-order accurate scheme with a simple subgrid model,
will be used to compare the accuracy of implicit subgrid
models with a simple explicit subgrid model. For ILES to
be useful for two-dimensional flow, the candidate ILES
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numerical scheme must be no worse than the Benchmark
scheme, i.e. the implicit subgrid model of the ILES schemes
must be at least as accurate as a simple explicit subgrid
model. The Benchmark scheme will use the energy- and
enstrophy-conserving Arakawa Jacobian (Arakawa, 1966)
with a subgrid model of the form «V*¢. Here « is a
constant that is tuned to ensure that the solution is neither
overdiffused nor noisy at the grid scale; for this paper
k = —0.2A¢, where Ac is the grid spacing of the CR grid,
unless stated otherwise. (The need for such flow-dependent
tuning is a significant and well-known disadvantage of
linear hyperviscosity models—see, for example, Jablonowski
and Williamson, 2011.)

It has been suggested that ILES should be successful
for three-dimensional flow when the truncation error is
diffusive and second order in the grid spacing (Grinstein
etal., 2007a), as the subgrid terms can be shown, using
Taylor series approximation, to be diffusive and second
order. The Lax-Wendroff scheme with the van Leer flux
limiter (van Leer, 1974) is second-order accurate, but when
the flux limiter is zero it has a diffusive truncation error, and
therefore should be a suitable candidate scheme for ILES.
For this reason we include it among the schemes tested.

Although the continuous equations (1) and (2) are
equivalent, discretizations of them are generally not. It
has been suggested that the flux form of the numerical
scheme, guaranteeing conservation of the predicted variable,
is essential to the success of ILES for three-dimensional flow
(Margolin and Rider 2002). To test this idea for two-
dimensional flow the Lax—Wendroff Flux Limiter scheme in
both flux form (i.e. a discretization of (2)) and advective
form (a discretization of (1)) will be used.

It has been suggested (Grinstein and Fureby, 2006) that
some form of nonlinear diffusion is required for ILES to work
accurately for three-dimensional turbulence modelling, and
this can be achieved by using a flux limiter. To test whether
nonlinear diffusion is required for two-dimensional ILES
a scheme that contains linear diffusion will be tested with
and without the addition of a flux limiter. The Utopia
scheme (Leonard et al., 1993) is a third-order scheme, for
linear advection, that has a diffusive truncation error. A
flux limiter can easily be applied (Thuburn, 1996). These
two schemes—Utopia and Utopia with a flux limiter—can
be compared to determine whether there is a significant
improvement in using the flux limiter and therefore whether
a flux limiter, or some sort of nonlinear diffusion, is
beneficial for two-dimensional ILES.

Semi-Lagrangian (SL) schemes (Staniforth and Coté,
1991) are often used in atmospheric models because a larger
time step can be used than with Eulerian methods. Using
bi-cubic Lagrange interpolation, the SL scheme is third-
order accurate for linear advection, similar to the Utopia
scheme; however, the SL scheme that we use does not
conserve the advected quantity. (Note that this is in contrast
to some types of SL schemes which are conservative; see,
for example, Zerroukat et al., 2002, and Lauritzen et al,
2010.) Comparing our SL scheme with the Utopia scheme
will provide another comparison between conservative and
non-conservative schemes that are otherwise similar, as well
as testing the ILES performance of a scheme that is of great
practical relevance in weather and climate modelling.

The Arakawa Jacobian (Arakawa, 1966) will also be tested
without the subgrid model. This scheme is dispersive and has
no theoretical motivation to be successful for ILES. However,
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comparing the Arakawa Jacobian with the ‘suitable’ ILES
schemes will show how much of an improvement (if any)
the ILES schemes can make.

Table 1 summarizes the numerical schemes that will
be tested for the barotropic vorticity equation. The third
column indicates the formal order of accuracy of the
numerical scheme for linear advection, and the fourth
column indicates whether the scheme conserves the advected
quantity.

All of the numerical schemes will be used with a red/black
multigrid elliptic solver (Fulton ef al., 1986) to calculate the
stream function.

The same numerical schemes shown in Table I will be
used for the quasi-geostrophic potential vorticity equation.
The Lax—Wendroff scheme with the van Leer limiter and the
Utopia schemes will be used for the momentum form of the
Euler equations. The red/black multigrid elliptic solver will
be used to calculate the pressure.

3. Methodology

For some chosen initial condition, a high-resolution (HR)
reference solution, denoted by ¢H, is calculated on a grid
with 2048 grid points in each spatial direction; the scheme
used is the energy- and enstrophy-conserving Arakawa
Jacobian with scale selective dissipation of the form xV*
(k = —0.2A%,, where Ay is the grid spacing of the HR
grid). Using an HR grid ensures that the reference solution is
accurate on the scales of interest, at least for some time. (For
example, comparing our HR solution with an even higher-
resolution solution using a 40962 grid gives a normalized I,
vorticity error norm of less than 0.008 at time 14.6 for the
vortex merger test case, described in section 4.1 below.) The
candidate numerical schemes described in section 2.4 are
then used to integrate from the same initial condition on a
number of different coarse-resolution (CR) grids. The HR
solution explicitly resolves the subgrid scales, i.e. those scales
finer than the resolution of the CR grid, whereas the CR grid
solutions must attempt to capture the effects of the subgrid
terms through their implicit or explicit subgrid models.
Comparison of the HR and CR solutions indicates how well
the candidate schemes achieve this. Moreover, comparison
with a third, smooth solution allows the cumulative effects
of the subgrid terms and truncation errors to be explicitly
diagnosed and compared (see section 3.1).

To compare the accuracy of the numerical schemes the

I, vorticity error is calculated as |¢H — ¢¢|,, where ¢©
indicates the solution generated by the candidate numerical
scheme on the CR grid and the overbar represents filtering
to the CR grid using averages over the coarse grid cells. If
the truncation error of the CR numerical scheme is similar
to the subgrid terms, then ¢# ~ ¢© and the L, error is
small. If the truncation error of the CR numerical scheme
is very different from the subgrid terms, then ¢ becomes
very different from ¢ and the I, error becomes large. The
I, vorticity error is calculated at each time step, and the
normalized I, error is used. The normalized I, error for
vorticity plotted against time shows the accuracy of the
numerical scheme as the solution evolves.

The downscale transfer of enstrophy from resolved to
subgrid scales and the upscale transfer of energy from
subgrid to resolved scales are mediated by the subgrid scales.
An important test of an ILES scheme, therefore, is whether
it can capture these transfers. For the continuous equations
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the energy is defined as
1 2, 2
E = > u” +v°dA, (21)

where dA is the element of area and the integral is over
the domain. This can be rewritten in terms of the stream
function and simplified:

E:% / VY - Vi da, (22)

= [vwvn -y )

In a periodic domain [ V - (Vi) dA = 0; therefore
E=— % / YV dA,

—- 3 fwear

The energy contained in the HR reference solution at
scales resolved by the CR grid is diagnosed:

(24)

(25)

1 -
EHz—EszkCHkAxAy, (26)
k

and compared with the energy of the CR solution:

1
EC = —EzwckgckAxAy. (27)
k

Here the sums are over the grid cells (index k) of the CR
grid. Similarly, for enstrophy:

1 I
zH =EZ;H,<;H,< Ax Ay, (28)
k

1
z¢ :EZ&,C;C,( Ax Ay. (29)
k

Time series of these diagnostics show how the energy and
enstrophy on CR scales evolve for the reference and CR
solutions.

3.1.  Numerical subgrid terms
Numerically solving (18) produces a smooth solution ¢°
without the effects of the subgrid term. Computing ¢ on

the HR grid ensures that truncation errors are negligible and
the scales of interest are captured accurately. The difference

Asg = ¢H =07 (30)
therefore quantifies the cumulative effects of the subgrid
term SG*. At the same time, the difference

Ag=1¢¢—-¢° (31)
quantifies the cumulative effects of the truncation error in the
CR solution (more precisely, the effects of the discretization
error and projection error; see the Appendix). Therefore,
comparison of Arg and Agg provides a direct measure of
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Table I. List of schemes tested: the third column indicates the formal order of accuracy of the scheme for linear advection,
and the fourth column shows whether the scheme is in conservative form.

Scheme Leading error/SGM Order Conservative
Arakawa Jacobian Dispersive, linear 2nd Yes
Benchmark V4, linear 2nd Yes
LW van Leer (flux) Diffusive, nonlinear 2nd Yes
LW van Leer (advective) Diffusive, nonlinear 2nd No
Utopia Diffusive, linear 3rd Yes
Utopia 2D Limiter Diffusive, nonlinear 3rd Yes
Semi-Lagrangian Diffusive, linear 3rd No

how well the truncation error of the CR scheme captures the
subgrid term.

(In this paper we concentrate on the cumulative effects of
the subgrid term and truncation errors. It is also possible to
diagnose the instantaneous subgrid term for a given vorticity
field ¢ and the instantaneous truncation error when this
field is filtered to a CR grid and fed into a candidate ILES
scheme. However, we have found that the results are then
much more difficult to interpret. This appears to be because,
when results from one scheme at one resolution are fed
into another scheme at another resolution, there is an initial
adjustment period during which the behaviour near the grid
scale is rather different from the longer-term behaviour.
This initial adjustment is discussed further in section 4.3.)

Conceptually, there are two types of behaviour that are
represented by subgrid terms: Type (i) vorticity features
being stretched and thinned by advection until their scale
collapses below the CR grid scale; and Type (ii) subgrid
features affecting the resolved scale vorticity, for example by
wrapping up, by merging with each other, or by merging with
the resolved scale features. These two types of behaviour can
be seen in Figure 1, which shows the HR reference solution
at time 14.6 for the vortex merger test case (described in
section 4.1 below), and the cumulative effect of the subgrid
terms Agg calculated using the method specified above with
a filter scale corresponding to a CR grid of 128 cells in each
direction. The smaller vortex has been stretched out into a
long vorticity tongue, and parts of it have been stretched
below the CR grid scale. A section through the tongue shows
a positive—negative—positive pattern in Agg, indicating a
diffusive broadening of the vorticity tongue (Type (i)). At
the end of the vorticity tongue (near coordinates (0.3,0.3))
Asc shows a large positive—negative dipole; this is where the
small vortex that has been stretched below the grid scale is
merging with the large vortex (Type (ii)).

Another test case that demonstrates both types of subgrid
behaviour is the vorticity strip test case. Here, a thin strip
of vorticity is placed across the domain following a cosine
pattern (described in section 4.1 below). The vorticity strip
first stretches and then wraps up; the wrapping up creates
larger-scale vorticity features. The HR solution and the
cumulative effect of the subgrid terms (Asg calculated with
a filter scale corresponding to a CR grid of 128 cells in
each direction), both at time 48.8, are shown in Figure 2.
The plot of Agg is zoomed into one of the wrapped-
up vortices. A cross-section of the vorticity strip shows a
positive—negative—positive pattern in Agg where the strip
has been stretched below the CR grid scale (Type (i)). In the
centre of the wrapped-up vortex, Agg shows positive values;
this is where the stretched-out vorticity strip has wrapped
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(ii)).
4. Results

The numerical schemes are tested on a variety of different
test cases. The vortex merger test case (see below) consists of
two vortices such that one vortex is stretched out around the
other, highlighting vorticity being stretched below the grid
scale, before the stretched-out vortex merges with the other.
The vorticity strip test case (see section 4.2) is designed so
that an unstable strip of vorticity will be stretched out before
wrapping itself up. These first two tests are idealized and
show individual vortex interactions; they make up some
of the ‘building blocks’ of turbulence. The freely decaying
turbulence test (see section 4.3) is comprised of a domain
full of already evolving vortices to test the ILES properties
of the schemes in flows of realistic complexity.

As the first two tests are idealized, the vorticity pattern
is predictable for the length of the simulation. For the
freely decaying turbulence test the [, error norms are valid
while the vorticity is predictable until time ~ 35 (this can
be determined using convergence tests of the numerical
schemes up to the HR grid). After this time it is only the
total energy and enstrophy statistics that are measured.

4.1. Vortex merger

The vortex merger test case initializes a large vortex and
a small vortex of the same sign in the domain. The large
vortex (with peak 2 and radius 1/4) is centred at (1/4,1/2)
and the small vortex (with peak 1 and radius 1/8) is centred
at (19/32,1/2). The vortices are generated using cosine
functions; if the distance from any point in the domain to
the centre of the vortex is denoted d, the radius of the vortex
is denoted r, and the peak of the vortex is denoted m, then
the vorticity is initialized as

d<r,

| mx cos(wd/(2r))?
&= { 0 otherwise. (32)

The global mean vorticity is subtracted from ¢ to
ensure that the global mean vorticity is zero for the initial
conditions. The large vortex stretches out the small vortex.
A time step of At = 271% is used to ensure that the Courant
number is less than 1 on the HR grid (and much less than
1 on the CR grids), so that the schemes are stable and the
spatial errors dominate.
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Figure 1. The high-resolution vorticity solution for the vortex merger test case at time 14.6 (a), and the cumulative effect of the subgrid terms, Agg, on

the 1282 grid (b).

0.2

0.4 0.6 0.8 1

X

(b)

0.6

0.55

0.45

0.4

0.15

0.2 0.25

X

0.3 0.35

Figure 2. High-resolution reference solution for the vorticity strip test case at time 48.8 (a) and the cumulative effect of the subgrid terms, Agg, on the

1282 grid (b, zoomed in).

The cumulative truncation errors for the Arakawa
Jacobian and Utopia schemes for the vortex merger test case
at time 14.6 on the 128 grid are shown in Figure 3 (results
at other resolutions are qualitatively similar). These plots
can be compared with the right-hand plot of Figure 1. The
Arakawa Jacobian’s cumulative truncation error does not
match the cumulative subgrid term; there are phase errors
across the domain and the truncation error has a different
sign from the subgrid term along the vorticity tongue
remnant of the small vortex. Clearly the Arakawa Jacobian
does not capture the subgrid term along the vorticity tongue.
The actual subgrid term is diffusive (spreading features that
are stretched below the grid scale) whereas the leading
truncation error of the Arakawa Jacobian is dispersive. The
Utopia scheme’s truncation error is a good match to the
subgrid term along the vorticity tongue, and this is because
the leading order error of Utopia is diffusive. The magnitude
of the Utopia scheme’s truncation error is smaller than the
magnitude of the subgrid terms (for example, the peak value
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is 15% smaller), indicating that the Utopia scheme does not
capture all of the subgrid term. The normalized I, vorticity
error norms for the vortex merger test case at time 14.6
on the 1282 grid are 0.2099 for the Arakawa Jacobian and
0.0976 for the Utopia scheme.

For this test case the truncation errors for the Benchmark,
Lax—Wendroff flux limiter (in both advective and flux
forms), Utopia with the flux limiter and SL schemes are
all very similar to that of the Utopia scheme, although
the features of the truncation error of the Benchmark and
Lax—Wendroff flux limiter schemes are more spread out
than the Utopia scheme, implying excessive diffusion.

None of the schemes tested is able to capture the subgrid
term feature near (0.3,0.3) where the stretched-out small
vortex merges with the large vortex. The results for the vortex
merger test case show that the candidate ILES schemes, and
schemes with simple subgrid models, are able to capture the
diffusive effect of the subgrid term as vorticity features are
stretched beyond the grid scale, but are unable to model
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Figure 3. The cumulative truncation error for the Arakawa Jacobian (a) and the Utopia scheme (b) for the vortex merger test case at time 14.6 and on

the 1282 grid.

the effects of the subgrid term when subgrid-scale vorticity
features are merging. The I, vorticity error norms indicate
that the schemes considered for ILES have a comparable
error norm to the Benchmark scheme, for each CR grid.
These error norms are significantly smaller than the Arakawa
Jacobian’s error norm.

4.2.  Vorticity strip

The numerical schemes are also tested on the vorticity strip
test case. A strip of vorticity (with width 1/32 and magnitude
2) is placed across the domain following a cos(67x) pattern.
The centre of the strip lies along y = 1/2 4 0.025 cos(67x).
The strip is created using cosine functions. For any point in
the domain, (xp, yp),letd = [y, — (1/2 + 0.025 cos(6m x)))|;
then the vorticity is initialized as

otherwise, (33)

2 x cos(mwd/(2r))? d<r,
=15

where r = 1/64. As with the vortex merger test case, the
global mean vorticity is subtracted from ¢ to ensure that the
global mean vorticity is zero. The coefficient for the subgrid
model of the Benchmark scheme is tuned to k = —0.05 A‘é;
using larger values of x results in the Benchmark scheme
being too diffusive.

Figure 4 shows the cumulative truncation errors for
the Benchmark scheme and the Utopia scheme with the
flux limiter for the vorticity strip test case at time 48.8
on the 128% grid, zoomed into a wrapped-up vortex
(again, results at other resolutions are qualitatively similar).
These plots can be compared with the right-hand plot
of Figure 2. The cumulative truncation errors for the
Benchmark scheme and the Utopia flux limiter scheme
both have a positive—negative—positive pattern across the
strip; this is similar to the pattern of the cumulative subgrid
term associated with the stretching of the strip. However,
neither the Benchmark scheme nor the Utopia flux limiter
scheme can properly re-create the positive pattern in the
centre of the wrapped-up vortices. This reflects the fact
that the numerical schemes on the CR grid cannot rebuild
a resolved scale vorticity feature from vorticity features
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that have become subgrid scale (i.e. diffused out, from the
point of view of the CR grid). The cumulative truncation
error of the Benchmark scheme has large positive parts
as the stretched-out vorticity approaches the wrapped-up
vortex. This is due to the scale-selective dissipation being
too diffusive. Note, however, that a smaller coefficient «
results in grid scale noise as the strip is stretched out. The
cumulative truncation error of the Utopia scheme with the
flux limiter has positive parts in the centre of the wrapped-
up vortex, but this does not correspond to the positive parts
in the effects of the subgrid terms; the Utopia scheme with
the flux limiter cannot wrap up the vorticity strip that it
has diffused. The normalized I, vorticity error norms for
the vorticity strip test case at time 48.8 on the 1282 grid are
0.832 for the Benchmark scheme, and 0.652 for the Utopia
scheme with the flux limiter.

The truncation errors of the Lax—Wendroff flux limiter (in
both advective and flux forms), Utopia and the SL schemes
are all very similar to that of the Utopia scheme with the
flux limiter; they capture the subgrid terms as the strip is
stretched below the grid scale, but they cannot capture the
subgrid terms as the strip wraps up. The Arakawa Jacobian
(with no subgrid model) creates grid-scale noise as the strip
is stretched out; this is due to the leading truncation error
of the Arakawa Jacobian being dispersive.

4.3.  Freely decaying turbulence

The first two test cases looked at highly idealized situations,
allowing us to focus on specific features of the flow. In the
third test case, the initial conditions are derived by allowing
a field of vortices to freely evolve, generating a complex,
fully turbulent vorticity field with structures at a range of
scales. This evolved vorticity field is then used as the initial
conditions for the freely decaying turbulence test case. The
vorticity field given by

¢ = sin(8mx) sin(8wy)
+ 0.4 cos(6mx) cos(6my)
+ 0.3 cos(10mx) cos(4my)
+ 0.02sin(2wy) 4+ 0.02 sin(27x),
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Figure 4. The cumulative truncation error for the Benchmark scheme (a) and the Utopia scheme (b) with the flux limiter for the vorticity strip test case

at time 48.8 and on the 1282 grid (zoomed in).

0.2

0.4 0.6 0.8 1

X

Figure 5. The high-resolution vorticity solution for the freely decaying
turbulence test case at time 24.4.

is allowed to evolve for 73.2 time units on the HR grid. This
new vorticity solution is then used as the initial condition
for the freely decaying turbulence test (+ = 0). The initial
condition on the CR grid is obtained by averaging the t = 0
HR grid vorticity over each CR grid cell. A time step of
At =5 x 27! is used to ensure that the Courant number
is less than 1 on the HR grid (and much less than 1 on the
CR grids).

The HR reference solution at time t = 24.4 is shown in
Figure 5. It shows a range of complex behaviour, including
like-signed vortex pairs merging, opposite-signed vortex
pairs propagating under mutual advection, vorticity strips
being torn from large vortices and stretched, and vortex
strips rolling up to form new vortices.

The left-hand panel of Figure 6 shows time series of the
normalized [, vorticity error for five of the seven schemes
listed in Table I with a CR grid resolution of 1282. The
Arakawa Jacobian without a simple subgrid model is unable
to capture the subgrid term; the solution quickly becomes
noisy and its , error is significantly larger than that of any
of the other schemes tested, and so is not shown on the
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plot. Each of the candidate ILES schemes has a smaller
error than the Benchmark scheme: this is because the ILES
schemes are modelling the effects of the subgrid terms better
than the V* subgrid model. The results are similar for CR
grids of resolution 322, 642 and 256°.

Initially, for times ¢ of order 1, there is a steep increase
in the magnitude of the I, errors of all the numerical
schemes. This is due to the schemes rapidly diffusing any
grid-scale features that are present in the initial conditions.
This corresponds to the sharp initial decrease of enstrophy
(see Figure 8).

The right-hand plot of Figure 6 shows the normalized I,
vorticity errors of the Lax—Wendroff flux limiter scheme in
both advective form and flux form, the Utopia scheme and
the SL scheme on the 1282 grid. This provides a comparison
between conservative and non-conservative schemes. The
results show that the conservative schemes outperform
the corresponding non-conservative schemes over long
times. Therefore, conservation of vorticity appears to give a
significant advantage to an ILES scheme for the BVE.

Figure 7 shows the total energy as a time series on the
1282 grid for several schemes. The energy on CR scales of
the HR reference solution is also shown to demonstrate
that the energy on CR scales should increase slightly over
time because of the upscale energy transfer from the subgrid
scales. None of the CR schemes shown-—either schemes
considered for ILES or the Benchmark scheme with a
simple subgrid model-is able to model this upscale energy
transfer. Each of the schemes on the CR grid actually
shows a significant decrease in the total energy: these
schemes are necessarily diffusive to capture the diffusive
effect of the subgrid term, but this diffusion leads to an
unwanted dissipation of energy. Of the schemes shown, the
Lax—Wendroff flux limiter scheme dissipates most energy,
while the Utopia scheme dissipates least.

The total enstrophy for several schemes on the 1282 grid is
plotted as time series in Figure 8. The enstrophy on CR scales
of the HR solution shows a steady decrease with time as its
enstrophy cascades to smaller scales. The schemes shown
are diffusive, either implicitly through their truncation error
or through a simple subgrid model, and this dissipates the
enstrophy. For each of the CR schemes, the enstrophy shows
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Figure 7. The total energy against time for the freely decaying turbulence
test case on the 1282 grid. The scheme abbreviations are the same as those
given in Figure 6.

an initial rapid decrease followed by a longer-term steady
decrease. The long-term rate of enstrophy loss is similar
for the CR solutions and the CR-scale enstrophy of the HR
solution. However, at any given time, the enstrophy of the
CR solutions is significantly smaller than that at CR scales
in the HR solution.

The Arakawa Jacobian conserves both energy and
enstrophy, and is not shown in either Figure 7 or 8. Of all the
schemes tested, the Arakawa Jacobian has the most similar
energy time series to the CR-scale energy of the reference
solution, but it cannot model the downscale enstrophy
transfer; this leads to a build-up of grid scale noise and a
highly inaccurate solution.

The I, error norms show that the Utopia scheme without
a flux limiter is more accurate than the Utopia scheme
with the flux limiter. This suggests that nonlinear diffusion
is not a requirement of a successful ILES scheme for
two-dimensional flow, provided the truncation errors are
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turbulence test case on the 1282 grid: note that the enstrophy for Utopia
and SL is almost identical. The scheme abbreviations are the same as those
given in Figure 6.

dominated by scale-selective dissipation. The Lax-Wendroff
scheme does require the flux limiter to be successful for
ILES; this is because the Lax—Wendroff scheme’s leading
truncation error is dispersive and is unable to capture the
subgrid term. The Lax—Wendroff scheme without a flux
limiter produces worse results than the Arakawa Jacobian
for all test cases (not shown).

4.4.  Euler equations and potential vorticity equation

The numerical tests were repeated using the velocity form of
the Euler equations and the same methodology as used for
the barotropic vorticity equation. The results for all of the
test cases are very similar to those for the barotropic vorticity
equation: the schemes considered for ILES are comparable
in accuracy to the Benchmark scheme; the ILES schemes
all capture the downscale enstrophy transfer, but none of
them is able to model the upscale energy transfer. There is
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one significant difference in the results between the velocity
form and the vorticity form of the equations: the flux form
of the Lax—Wendroff scheme with the van Leer limiter is
not more accurate than the advective form for the velocity
form of the equations. This suggests that the conservation of
momentum is not as important as conservation of vorticity
for implicit large eddy modelling of two-dimensional
flow.

The numerical tests were also repeated for the quasi-
geostrophic potential vorticity equation to investigate the
effect of a finite Rossby radius on the application of ILES
for two-dimensional flow. The freely decaying turbulence
test case was used with (from (10)) A = 0.01, 0.05, 0.1
and 0.25. The schemes considered for ILES were all more
accurate than the Benchmark scheme regardless of the size
of the Rossby radius. The subgrid model of the Benchmark
scheme has to be tuned depending on the Rossby radius: the
coefficient has to be reduced as the Rossby radius decreases.
The ILES schemes, on the other hand, have no tunable
parameters, yet all have a smaller [, vorticity error than
the Benchmark scheme for each Rossby radius. As with the
barotropic vorticity equation, none of the candidate ILES
schemes or the Benchmark scheme could model the upscale
energy transfer from the subgrid to the resolved scales,
regardless of the Rossby radius.

5. Conclusions

The aim of this paper was to examine the validity
of ILES for two-dimensional flow. Candidate numerical
schemes considered for ILES were tested on a variety of
test cases and compared with a Benchmark scheme (a
second-order scheme (Arakawa, 1966) with scale-selective
dissipation) for the BVE. The results showed that the ILES
schemes were more accurate than the Benchmark scheme in
terms of vorticity when comparing with a high-resolution
reference solution. The cumulative effects of the subgrid
term were compared with the cumulative effects of the
truncation errors of the candidate numerical schemes.
The candidate ILES schemes’ truncation errors were a
better match than the Benchmark scheme’s truncation
error when comparing with the subgrid term diagnosed
using a high-resolution reference solution: this demonstrates
that the ILES schemes are implicitly capturing the subgrid
term better than a simple scale-selective dissipation. The
ILES schemes were able to capture the diffusive effect
of the subgrid term as vorticity was stretched below the
grid scale (Type (i) behaviour), but they were unable
to model the subgrid term when unresolved vorticity
features interact with the resolved vorticity (Type (ii)
behaviour). Similar results were found for the quasi-
geostrophic potential vorticity equation for a range of Rossby
radii.

The results from the numerical testing in vorticity form
showed that the conservative flux form of the numerical
schemes was measurably more accurate than the non-
conservative advective form. Consistent with this, the Utopia
scheme (which is in conservative flux form) was more
accurate than the semi-Lagrangian scheme (which is not
conservative). This suggests that the conservation of vorticity
gives a significant advantage to an ILES scheme for the
barotropic vorticity equation. Testing of the velocity form
of the Euler equations showed that the scheme in flux form
had no benefit, in terms of accuracy, compared with the
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scheme in advective form; this suggests that conservation of
momentum is not essential to the success of ILES in two
dimensions.

Another important question that stems from the three-
dimensional ILES literature (see Grinstein and Fureby, 2006)
is whether nonlinear diffusion, generated by, for example, a
flux limiter, is required for ILES to be applied successfully
to two-dimensional flow. To address this question a linear
diffusive scheme (Utopia) was compared with a nonlinear
diffusive scheme (Utopia with a two-dimensional limiter)
for the BVE. The results for I, errors and for enstrophy time
series show that the linearly diffusive scheme is at least as
accurate (in some cases more accurate) as the nonlinearly
diffusive scheme: this suggests that for two-dimensional flow
nonlinear diffusion is not a requirement for an ILES scheme.
(Nevertheless, a flux limiter might be desirable in contexts
where it is essential to eliminate spurious amplification of
extrema.)

Although the candidate ILES schemes and the Benchmark
scheme could model the downscale enstrophy transfer, none
of these schemes could model the upscale energy transfer
from the subgrid to the resolved scales; in fact, the schemes
dissipated energy. This work shows that ILES can be applied
to two-dimensional flow with more accuracy than simple
subgrid models, but that the ILES schemes cannot model
the upscale energy transfer from the subgrid to the resolved
scales.

The results presented here are likely to be applicable
to two-dimensional and layerwise two-dimensional flows
for which the near grid-scale dynamics is dominated by
the nonlinear advection of vorticity or potential vorticity;
this includes atmospheric flows on horizontal length scales
larger than about 100km, and shallow-water models in
the appropriate parameter regime. However, atmospheric
flows on horizontal scales smaller than about 100km
become increasingly dominated by gravity waves; our
results are not intended to address the validity of ILES
in this regime, or on even smaller scales where buoyant
convection or three-dimensional turbulence can begin to
become important.

Appendix
Decomposition of errors

Sagaut (2007) discusses three types of error that arise in the
numerical solution of a nonlinear problem:

e Projection error occurs because a continuous field is
represented by a finite number of degrees of freedom.

e Discretization error occurs because operators such as
derivatives must be approximated, for example by
finite differences.

e Resolution error occurs because the nonlinear terms
in the numerical solution do not see all the scales of
the nonlinear terms in the continuous problem.

Here we give explicit expressions for these three types of
error for a spatial discretization of the barotropic vorticity
equation, and relate these to the subgrid terms that our
methodology diagnoses.

Write ¢ for the numerical solution at some time in
some grid cell. For a finite volume discretization it is natural
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to interpret ¢ " as a grid cell average. We would like to write

3;—(”)
ot

+V.(V(©)E) =6, (34)

where ¢ is the continuous solution for the vorticity, V is the
operator defined by (4)—(6) that obtains the velocity vector
from the vorticity, and overbar is a cell average filter of the
form (20). Since the second term on the left-hand side is the
exact nonlinear term, the right-hand side term e should be
a measure of the error, i.e. the difference between acm /ot
and 0¢ /dt. However, the terms on the left-hand side of (34)
live in different spaces: the first term is discrete whereas
the second is continuous. We must therefore project the
second term onto the discrete space in order to define the
error:

aé-(ﬂ)
at

+P V0] = (35)
In this case a suitable projection operator is to sample the

V.(V(¢)¢) field at the grid cell centres, which is equivalent
to computing grid cell averages of V.(V(¢)¢).
Now the numerical tendency 3¢ /dt is computed as

3;(}1)
Jat

+ Vi V(¢ ™) ™) = o, (36)

where Vj, and V), are discrete approximations to V and V.
Therefore

e =PV} - i ™). (7)
The error can be split into three components:
e=¢e +e,+ey (38)

corresponding to the three error types discussed by Sagaut
(2007)—resolution error:

@ =PIV} -P{V.O@OD}: (9
discretization error:
a=P{v.oOn|-P{v.0u®0}: 4o
and projection error:
e =P {Vi @D} - V™). @

Defining the subgrid terms using (17) and applying the
projection operator shows that
P{SG*} = —e,. (42)

A scheme will be a good ILES scheme provided e & 0, i.e.
provided
en+er ~ —e, = P {SG*}. (43)

That is, the discretization plus projection errors must
match the projection of the subgrid term.
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