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I n this paper, we study a single-product periodic-review inventory system that faces random and price-dependent demand.
The firm can purchase the product either from option contracts or from the spot market. Different option contracts are

offered by a set of suppliers with a two-part fee structure: a unit reservation cost and a unit exercising cost. The spot market
price is random and its realization may affect the subsequent option contract prices. The firm decides the reservation quantity
from each supplier and the product selling price at the beginning of each period and the number of options to exercise
(inventory replenishment) at the end of the period to maximize the total expected profit over its planning horizon. We show
that the optimal inventory replenishment policy is order-up-to type with a sequence of decreasing thresholds. We also
investigate the optimal option-reservation policy and the optimal pricing strategy. The optimal reservation quantities and
selling price are shown to be both decreasing in the starting inventory level when demand function is additive. Building upon
the analytical results, we conduct a numerical study to unveil additional managerial insights. Among other things, we
quantify the values of the option contracts and dynamic pricing to the firm and show that they are more significant when the
market demand becomes more volatile.

Key words: dynamic pricing; portfolio procurement; option contracts; optimal policies
History: Submitted: May 2007; Accepted: February 2011 by Panos Kouvelis, after 3 revisions.

1. Introduction
In today’s fast changing and highly competitive mar-
ket environment, product demand has become more
whimsical than ever before, and the supply faces both
volume and price uncertainties, making it a challenge
to match supply with demand. The mismatch can
cause companies to suffer from excess inventory and
lost sales, which in turn threatens companies’ profit-
ability and competitiveness. In this environment, only
those companies that can incorporate ‘‘change’’ into
their business strategy will have the capability to
survive the ruthlessness in this highly competitive
era. To add the ingredient of ‘‘change’’ to the recipe of
successful coordination of supply and demand, com-
panies can, on the one hand, enhance flexibility of
their procurement strategies to manage the supply,
and on the other hand, dynamically adjust prices over
time to manipulate demand.

On the supply side, using a spectrum of supply
alternatives with different flexibility and price com-
binations allows buyers to spread the risk over
suppliers. There are many different contracts pro-
vided in the supply market. For example, under the
wholesale price contract, buyers commit to suppliers
for a fixed quantity by making full payment, before
knowing the demand. Thus, the buyers have no flex-
ibility and bear all the inventory risk, while the
suppliers enjoy the profit margin without exposure to
demand uncertainty. Some risk-sharing contracts have
been proposed in the literature, such as buy-back
contracts, revenue-sharing contracts, and more re-
cently, option contracts. Although different in format,
these contracts shift some risk from buyers to suppli-
ers. For example, option contracts are characterized by
a two-part fee structure, a unit cost to reserve options,
and an additional unit cost to exercise the options.
That is, buyers can reserve the right to buy a certain
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amount of the product in future at the fixed unit ex-
ercising cost by purchasing options now. However,
there is no obligation to exercise the options, and
buyers can simply let some or all the options elapse if
market conditions change later, e.g., demand fails to
materialize or market price goes down. With this type
of contract, buyers can not only protect themselves
against price spikes in future but also enjoy the flex-
ibility of altering the exercising quantity. The supplier,
upon signing the option contract, must ensure avail-
ability of the product and therefore will take over
some inventory risk. Obviously, the sharing of risk
depends on the two-part fee structure of option con-
tracts. Besides the contract market, buyers can also
buy from the open spot market whenever needed
without reservation. However, the spot price is usu-
ally quite volatile, depending on the total market
supply and demand. Thus the spot market provides
buyers with the most flexibility in terms of quantity,
yet buyers face a high price risk. Facing the diversified
supply schemes, buyers can use a portfolio approach
to manage their supply, segmenting demand based on
likelihood and fitting each segment with an appro-
priate supply scheme.

Many industry practices have validated the effective-
ness of the portfolio procurement approach in
mitigating supply risk and increasing flexibility. HP’s
Procurement Risk Management program, initiated in
year 2000, is basically a portfolio sourcing approach and
it has saved the company over US$425 million (Nagali
et al. 2008). Specifically, HP segments demand into three
scenarios: low, medium, and high, based on the risk
associated. For low-risk demand, HP commits to the
supplier for a fixed quantity to bargain for a better price.
For medium-risk demand, option contracts are used to
maintain the flexibility of adjusting quantities. And the
high-risk demand is left to the spot market. This port-
folio approach allows HP to better coordinate supply
with demand and the expense of purchasing options is
far less than the cost of carrying excess inventory and
buying from the spot market with volatile spot price
(Bartholomew 2005). The US Department of Water Re-
sources (DWR) has implemented a fuel procurement
strategy centered around the use of a balanced fuel
portfolio to provide the flexibility to respond to high
demand volatility since the energy crisis in July 2000.
This approach smooths the impact of uncertainty in
demand and supply, and has been proved to be cost
effective.1 There are also many other examples illustrat-
ing the benefits of the portfolio procurement approach.

On the demand side, varying prices over time is
often the most natural way to affect customer de-
mand. The intense competition today has made
product demand much more sensitive to the price
chosen and thus significantly influenced the way that
firms price their products. Traditionally, firms focus

mainly on their inventory management to cope with
demand uncertainty. However, no matter how good
inventory management is in reducing supply chain
costs, a large portion of retailers still lose millions of
dollars annually due to lost sales or excess inventory
(Elmaghraby and Keskinocak 2003). Nowadays, many
companies adopt dynamic pricing to respond to mar-
ket fluctuations and uncertainty in demand, because of
the simple logic: if the price rises, fewer customers are
willing to buy; if the price falls, more customers will be
attracted. Therefore ‘‘price,’’ acting as an operational
tool, can manipulate, boost, or discourage demand in
the short run to better balance inventory with demand.
Firms use various forms of dynamic pricing, such as
markdowns, discounts, and clearance sales. In the last
couple of years, we have witnessed an increased ap-
plication of such dynamic pricing strategies.

Managing supply and demand simultaneously
gives companies a greater degree of freedom to cope
with volatile market conditions. To understand this
strategically, we develop a model to study the strate-
gic decisions of a firm which integrates the portfolio
approach in managing the supply with dynamic pric-
ing in managing the demand. Specifically, we consider
a finite planning horizon, single item, periodic-review
inventory system with price-dependent random de-
mand. The firm uses a portfolio of option contracts2 as
well as the spot market for the supply of the product.
At the beginning of each period, given the initial in-
ventory level, the firm needs to decide the selling
price of the product and reserve options from a set of
suppliers. Then demand and the spot price are real-
ized and at the end of the period, the firm determines
its replenishment quantities, i.e., the quantities of op-
tions to be exercised and the quantity to be purchased
from the spot market. Unmet demand is fully back-
logged. The system incurs inventory holding and
backlogging costs. Our objective in this study is to
investigate the optimal pricing, option-reservation
and exercising strategies to maximize the total profit
over the entire planning horizon.

For this model, we show that the optimal inventory
replenishment follows an order-up-to policy which is
characterized by a sequence of thresholds. That is,
there exists a series of target inventory levels, such
that if the inventory level after demand realization in
a period falls in a specific range then it is optimal to
try to order up to the corresponding threshold level of
that particular range. The option-reservation quantity
is decreasing in both the initial inventory level and the
selling price. We further present the optimality con-
ditions that can be used to compute the optimal
option-reservation policy. An effective heuristic for
near-optimal reservation quantities is also developed.
When demand function is additive, we show that the
optimal selling price is decreasing in the initial
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inventory level, and thus a list price policy is optimal.
Furthermore, we extend the model and results to the
case with multi-period option contracts. Based on the
analytical results, we conduct a numerical study to
reveal additional managerial insights. We quantify
the values of the option contracts procurement and
dynamic pricing to the firm and show they are more
significant when the market demand is more volatile.
And we find that the value of dynamic pricing is not
very sensitive to the demand variability and the price
spread of the reservation prices.

The rest of this paper is organized as follows. In
section 2, we provide a review of the related literature.
Section 3 presents the model and problem formula-
tion. Section 4 derives the optimal replenishment
policy. Section 5 analyzes the optimal option-reserva-
tion strategy and provides optimality conditions.
Section 6 addresses the dynamic pricing policy.
Section 7 extends the model by considering multi-
period option contracts. We conduct numerical stud-
ies in section 8 and conclude the paper in section 9.
Throughout the paper, we use ‘‘increasing’’ and
‘‘decreasing’’ in a weak sense, i.e., they represent
‘‘nondecreasing’’ and ‘‘nonincreasing,’’ respectively.

2. Literature Review
Our work generalizes two streams of research work in
the literature. The first one is on the portfolio ap-
proach to option procurement. In a single-period
setting, Schummer and Vohra (2003) examine the is-
sue of a single buyer who procures options from
multiple suppliers. Under the assumption that the
shortage cost is arbitrarily high, the total quantity of
options procured by the buyer must equal the max-
imum possible value of demand. They formulate the
problem as a network flow problem and propose
a class of incentive-compatible, efficient auction
mechanisms for procuring options. Their analysis
emphasizes the role of the demand distribution. Inte-
grating the contract and spot markets to hedge against
risk has received considerable attention recently. See
Haksoz and Seshadri (2007) for an extensive review.
Here, we review those studies that are closely related
to ours. Wu and Kleindorfer (2005) analyze a model in
which one buyer procures from multiple suppliers
offering option contracts as well as a spot market with
random price. They characterize the structure of the
optimal portfolio of options and spot market transac-
tions for the buyer and the option pricing issue of the
sellers. Fu et al. (2010) consider a single-period port-
folio contract procurement problem when demand
and spot market price are random and correlated.
They analyze the contract selection problem, investi-
gate the effect of correlation and spot market price
volatility, and study the portfolio effect. They also de-

velop a graphical approach to solve the problem and
view the optimal cost function.

In a multi-period setting, Yi and Scheller-Wolf
(2003) study an inventory management problem with
a finite or an infinite planning horizon. In their model,
a buyer who faces random demand has two supply
options, a regular supplier and a spot market with
random price. Assuming zero lead time, backlogging
and a fixed cost of using the spot market, the authors
characterize the optimal ordering policy as (s, S) type.
Yazlali and Erhun (2004) study a periodic-review fi-
nite-horizon dual sourcing problem with two (local
and global) suppliers offering the same product with
complementary services. They show that a two-level
modified base-stock policy is optimal for a wide range
of transfer prices. Our paper is most closely related to
Martı́nez-de-Albéniz and Simchi-Levi (2005) who also
consider a multi-period portfolio procurement model.
The optimal replenishment strategy for a given set of
contracts as well as the structure of the optimal con-
tract portfolio from a pool of suppliers are presented.
In their model both the composition (which supplier
is in) and quantities of the portfolio of contacts are
predetermined at the beginning of the planning ho-
rizon and fixed over the entire horizon. However, our
model allows the firm to dynamically adjust the
option-reservation quantities in each period and
integrates the selling price decision with option-
reservation and exercising decisions.

The second related stream of literature focuses on
the joint pricing and inventory decision, where the
demand is assumed to be price dependent. There has
been a substantial and growing body of literature in
this stream of research, starting with Whitin’s (1955)
seminal paper. In a multi-period environment with
uncertain demand and no setup cost, Zabel (1972)
studies the case in which the demand consists of an
additive random price-dependent part and a deter-
ministic concave demand function. He establishes the
existence and uniqueness of the optimal solution by
restricting the random part to follow a uniform or
exponential distribution. The result is extended by
Thowsen (1975) to incorporate more general random
terms. The conditions under which the single-period
results can be carried over to multiple periods are also
discussed in this paper. Federgruen and Heching
(1999) consider a model in which the firm periodically
reviews inventory and jointly optimizes the price and
inventory. They show that a base-stock list price pol-
icy is optimal for the model. This model is later
extended to include a fixed ordering cost by several
researchers under various settings (e.g., Chen and
Simchi-Levi 2004a, b, Chen et al. 2006, Feng and Chen
2007, Polatoglu and Sahin 2000). The problem is also
studied under a continuous review setting by Feng
and Chen (2003), Chao and Zhou (2006), Chen and
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Simchi-Levi (2006), and Chen et al. (2010). Zhu and
Thonemann (2009) extend the model of Federgruen
and Heching (1999) by considering multiple products.
For a more detailed review, readers may refer to sev-
eral recent survey papers, e.g., Yano and Gilbert
(2005), Elmaghraby and Keskinocak (2003), and Chan
et al. (2004). Our paper differs from the aforemen-
tioned studies in that we consider the portfolio
sourcing with multiple supply sources.

3. The Model
A firm sells a single product that has uncertain and
price-dependent customer demand. For each period t,
let Dt(pt, et) denote the customer demand with pt being
the unit selling price and et a nonnegative random
noise term that is i.i.d. across different periods with
cdf F( � ) and pdf (or probability mass function) f( � ).
We assume the demand has either one of the follow-
ing two functional forms:

additive form : Dtðpt; etÞ ¼ y� bpt þ et;

multiplicative form : Dtðpt; etÞ ¼ ðy� bptÞet;

where y� bpt (y40, b40 are constants) captures the
price-dependency of demand. Both the additive and
multiplicative demand functions are widely adopted
in studying joint pricing and inventory decisions (see
Petruzzi and Dada (1999) for a review of these two
demand models). To ensure nonnegative demand, we
assume p 2 ½p; �p� for some lower and upper limits p
and �p.

The firm adopts a portfolio procurement strategy
consisting of a set of N option contracts at various
levels of flexibility. With an option contract, say from
supplier i, the firm needs to purchase options with an
upfront unit cost Ci

t to reserve a certain number of the
product at the beginning of each period t, and can
exercise the options up to the quantity reserved
with an additional unit exercising cost ei

t at the
end of period t after the realization of demand. The
unit cost Ci

t is random and is announced by supplier
i only at the beginning of period t. We index the
contracts in increasing order of the exercising
costs ei

t, i.e., e1
toe2

t o � � �oeN
t . For convenience, let

�et ¼ ðe1
t ; e

2
t ; . . . ; eN

t Þ. The reservation quantities in each
period can be adjusted (the case that an option-
reservation decision runs for more than one period is
studied in section 7) while the right of exercising the
options is valid only for one period. That is, the
options will expire if they are not exercised in that
period. We assume the realization ci

t of Ci
t is

decreasing in i as otherwise, some contracts will be
dominated by others and can be disregarded in the
period. In addition to the option contracts, the firm
can also make immediate purchase through the spot

market with price Ps
t , which is random and may be

correlated between periods.
There are two common approaches to model the

spot market: one is to assume a closed spot market
where a few dominant players participate, who also
control the contract market (Milner and Kouvelis
2007); the other is to assume an open spot market with
a large group of suppliers, a small subset of which
operates in the contract market (Wu and Kleindorfer
2005). For the former case, correlation between
demand and the spot price cannot be ignored and
the spot market may have only limited supply. But for
the latter, it is reasonable to assume an unlimited
supply of the spot market as well as independence
between the spot price and a single firm’s demand,
because the spot market price is determined by the
total supply and demand of a large number of players
and a single firm’s demand has a negligible impact
on the whole market. Hence, whether correlation
between demand and the spot market price should
be considered is then a matter of whether one is
interested in analyzing a closed or an open market. In
this paper, we consider a large open market.

However, the correlation between option contract
prices and the spot market price may not be neg-
lected, because information conveyed by price signals,
e.g., scarcity or oversupply, can be transmitted across
different markets. The spot market price reflects the
supply and demand equilibrium, and therefore to
some extent, also predicts the option price evolution.
It is likely that the suppliers in the contract market,
when adjusting option prices, will refer to the realized
spot price in the previous periods. Hence, we allow
correlation between the option prices and the spot
price in our model. It is quite natural that, if the spot
market price in the previous period is high, suppliers
would tend to set higher option prices for the current
period. Specifically, we assume that the option-
reservation prices Ci

t; i ¼ 1; . . . ;N; evolve stochasti-
cally with ps

t�1, the realized spot price in the previous
period. We model fPs

t ; 0 � t � Tg as a discrete time
Markov chain (the distribution of Ps

t only depends on
the realization of Ps

t�1) with Ps
0 a degenerate random

variable and independent of the option and exercising
prices set by the suppliers and the purchasing
decisions of the firm. Consequently, the option prices
Ci

t are Markov modulated. We assume the firm has
some knowledge about Ci

t in the form of its
distribution function after observing Ps

t�1 ¼ ps
t�1. As

there are multiple random variables involved in the
firm’s decision, we will denote the mathematical
expectation by EZ when the expectation is taken with
respect to a random variable Z.

At the beginning of each period, the reservation
prices from the suppliers are realized based on the
spot price in the previous period. Then after
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reviewing the inventory status, the firm decides the
selling price and then purchases options from the
suppliers to ensure certain quantities of the product
available for the current period; then demand and the
spot market price are realized; and finally, the
inventory replenishment decision is made at the end
of the period. Any unsatisfied customer demands are
backlogged. We assume that the backlogged custo-
mers will pay the price in the period when the
demand was made. This is a common assumption in
joint inventory and pricing literature, see, e.g.,
Federgruen and Heching (1999), Chen and Simchi-
Levi (2004a, b). In practice, if the price goes down in a
subsequent period, then customers may sometimes
demand a refund for the difference in price, which we
do not consider in this paper.

For i 5 1, . . ., N, let ai
t be the total number of options

purchased from suppliers 1 through i at the beginning
of period t and a0

t ¼ 0. Then ai
t � ai�1

t is the reservation
quantity from supplier i. Let �at ¼ ða0

t ; a
1
t ; a

2
t ; . . . ; aN

t Þ be
the option-reservation vector. Then in period t with
given option prices Ci

t ¼ ci
t, the total option-reserva-

tion cost is

XN

i¼1

ci
tðai

t � ai�1
t Þ:

For each period t, we define

xt ¼ the starting inventory level;

x0t ¼ the inventory level after demand realization

but before replenishment;

yt ¼ the inventory level after replenishment:

Given the inventory level after demand realization x0t
and the target inventory level yt, the firm will exercise
only those options with exercising cost less than the
current (realized) spot price in increasing order of
their indices (recall that the suppliers are indexed in
increasing order of their exercising costs) until they
are depleted. After that, if necessary, the firm will or-
der some from the spot market. It is clear that yt� x0t
represents the total ordering quantity of the firm in
period t. If yt� x0t is less than a1

t , the reserved quantity
from supplier 1, then the total exercising cost is
e1

t ðyt � x0tÞ; if yt� x0t is more than a1
t but less than the

total reserved quantity a2
t from suppliers 1 and 2, then

the exercising cost is

e1
t a1

t þ e2
t ðyt � x0t � a1

t Þ ¼ e1
t ðyt � x0tÞ þ ðe2

t � e1
t Þ

� ðyt � x0t � a1
t Þ;

where the second term on the right-hand side of the
equality can be considered as the additional cost in-
curred by ordering from supplier 2. In general, for a
particular realization of the spot price Ps

t ¼ ps
t , the in-

ventory replenishment cost function with a given

ordering quantity q and reservation quantities �at can
be written as, letting e0

t ¼ 0,

CE
t ðq;�at; p

s
tÞ

¼
e1

t qþ � � � þ ðei
t � ei�1

t Þðq� ai�1
t Þ

þ þ ðps
t � ei

tÞðq� ai
tÞ
þ; if i40;

ps
tq; if i ¼ 0;

(

where i ¼ arg max0�j�Nfej
tops

tg and x1 5 maxfx, 0g.
Note that it is possible that some suppliers may turn
out to set their exercising prices higher than the spot
market price in period t, because when setting the
prices at the beginning of the period, the spot market
price is still uncertain. Therefore the number of
option contracts exercised depends on the realization
of the spot market price. The function CE

t ðq;�at; ps
tÞ is

piecewise linear convex in q.
We denote by Gt(y) the one-period inventory

holding and backlogging costs and assume the
following property.

ASSUMPTION 1. Gt( � ) is a convex function and
limjyj!1 GtðyÞ ¼ 1.

Our objective is to analyze the selling price,
portfolio option-reservation and inventory replenish-
ment decisions in each period so that the total
expected profit of the firm over a finite planning
horizon with length T is maximized.

Let Vtðxt; ps
t�1Þ be the maximum total expected

profit from the beginning of period t until the end of
the planning horizon given that the initial inventory
level is xt and the spot market price is ps

t�1 in period
t� 1. The dynamic program can be formulated as

Vtðxt; p
s
t�1Þ ¼ECt max

pt2½p;�p�

�
ptEet ½Dtðpt; etÞ�

"

þ max
aN

t �����a1
t�0

�
�
XN

i¼1

Ci
tðai

t � ai�1
t Þ

þEet;Ps
t
½Utðxt �Dtðpt; etÞ;�at;P

s
tÞ�
��#

ð1Þ

where the first term within the curly brackets represents
the firm’s one-period expected revenue from selling the
product, the second term (the first term within the pa-
rentheses) is the option-reservation cost in period t, and
the last term, the expected optimal future profit func-
tion, accounts for the inventory replenishment cost, the
one-period inventory holding and backlogging cost,
and the expected future profit. That is,

Utðx0t;�at;P
s
tÞ ¼ max

y�x0t¼xt�Dtðpt;etÞ

n
� CE

t ðy� x0t;�at;P
s
tÞ

� GtðyÞ þ Vtþ1ðy;Ps
tÞ
o
:

ð2Þ

It should be noted that, in Equation (1) and wherever
applicable in the following: ECt ½�� :¼ ECt ½�jPs

t�1 ¼ ps
t�1�
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and EPs
t
½�� :¼ EPs

t
½�jPs

t�1 ¼ ps
t�1�. The terminal condition

is VTþ1ðx; ps
TÞ � 0:

In the subsequent analysis, we use ps
t and ci

t to
represent a particular sample path of Ps

t and Ci
t,

respectively.

4. Inventory Replenishment Policy
In this section, we characterize the structure of the
optimal inventory replenishment policy. Recall that
the firm decides the inventory replenishment by ex-
ercising options or purchasing from the spot market
after demand and the spot market price are realized.

We first prove that Utðx;�a; ps
tÞ and Vtðx; ps

t�1Þ are
concave functions. For notational simplicity, we skip
the subscript t unless confusion may arise.

THEOREM 1. For t 5 1, . . ., T,

(a) Utðx0;�a; ps
tÞ is concave in ðx0;�aÞ and increasing in �a,

(b) Vtðx; ps
t�1Þ is concave in x.

PROOF. We prove the results by induction on t. When
t 5 T, as �CE

Tðy� x0;�a; ps
TÞ is jointly concave in ðx0; y;�aÞ

and �GT(y) is concave in y, from the boundary con-
dition VTþ1ðx; ps

TÞ ¼ 0 and

UTðx0;�a; ps
TÞ ¼ max

y�x0

�
� CE

Tðy� x0;�a; ps
TÞ � GTðyÞ

�
;

UTðx0;�a; ps
TÞ is jointly concave in ðx0;�aÞ following from

Proposition B-4 in Heyman and Sobel (1984). Thus,
with analogous arguments,

max
aN�aN�1�����a1�0

�
XN

i¼1

ci
tðai � ai�1ÞþEPs

T
;eT
½UTðx0;�a;Ps

TÞ�
( )

is concave in x0 and thus jointly concave in (x, p) be-
cause x05 x�DT(p, eT) and DT(p, eT) is linear in p.
Therefore, VTðx; ps

T�1Þ is concave in x by preservation
of concavity after maximization and expectation. Now
suppose Vtðx; ps

t�1Þ is concave in x for some t, 2 �
t � T. Concavity of Ut�1ðx0;�a; ps

t�1Þ and Vt�1ðx; ps
t�2Þ

can also be easily verified because for any realization
ci

t and ps
t�1 every term of either function is concave,

and concavity is preserved after expectation and max-
imization operations. So we complete the proof of
concavity.

Finally, as CE
t ð�;�a; ps

t�1Þ is decreasing in �a, Utðx0;�a; ps
tÞ

is increasing in �a. &

The monotonic property in �a of Utðx0;�a; ps
tÞ is intu-

itive and can be explained as follows. With a higher
given option-reservation level, the potential replen-
ishment cost will be lower due to the lower likelihood
of exercising or purchasing at a higher cost, which in
turn results in higher future profit.

The optimal replenishment policy for each period is
given in the following theorem.

THEOREM 2. For t 5 1, . . ., T, given the inventory level after
demand realization in period t is x0, the options available for

exercising �at ¼ ða0
t ; a

1
t ; a

2
t ; . . . ; aN

t Þ, and the realized spot

market price Ps
t ¼ ps

t , if i ¼ arg max0�j�Nfej
tops

tg40,

then there exist a sequence of thresholds S1
t ðps

tÞ4S2
t ðps

tÞ
4 � � �4Si

tðps
tÞ4~Stðps

tÞ, such that the optimal target in-
ventory level y	t is given by

y	t ¼

x0 if x0 � S1
t ðps

tÞ;
S1

t ðps
tÞ if S1

t ðps
tÞ4x0 � S1

t ðps
tÞ � a1

t ;

x0 þ a1
t if S1

t ðps
tÞ � a1

t4x0 � S2
t ðps

tÞ � a1
t ;

S2
t ðps

tÞ if S2
t ðps

tÞ � a1
t4x0 � S2

t ðps
tÞ � a2

t ;

x0 þ a2
t if S2

t ðps
tÞ � a2

t4x0 � S3
t ðps

tÞ � a2
t ;

..

.

Si
tðps

tÞ if Si
tðps

tÞ � ai�1
t 4x0 � Si

tðps
tÞ � ai

t;

x0 þ ai
t if Si

tðps
tÞ � ai

t4x0 � ~Stðps
tÞ � ai

t;

~Stðps
tÞ if x0o~Stðps

tÞ � ai
t;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

where S
j
tðps

tÞ 2 arg maxyf�e
j
ty� GtðyÞ þ Vtþ1ðy; ps

tÞg for

j 5 1, . . ., i, and ~Stðps
tÞ ¼ arg maxyf�ps

ty� GtðyÞ þ Vtþ1

ðy; ps
tÞg. If i 5 0, it is optimal to order up to ~Stðps

tÞ when

x0o~Stðps
tÞ and order nothing otherwise.

PROOF. The theorem is proved by using the concavity
of �GtðyÞ þ Vtþ1ðy; ps

tÞ and the piecewise linear
convex structure of the exercising cost function
CE

t ðy� x0;�at; ps
tÞ. First note that, because e1

toe2
t o � � �

oei
tops

t , S1
t ðps

tÞ4S2
t ðps

tÞ4 � � �4Si
tðps

tÞ4~Stðps
tÞ from

their definition.
If i40, i.e., there exists at least one option contract

with exercising cost lower than the realized spot price,
the exercising cost function has at least two segments
and we have the following four cases:

1. x0 � S1
t ðps

tÞ.
In this case, for y � x0, the derivative of func-

tion �GtðyÞ þ Vtþ1ðy; ps
tÞ is less than e1

t and is

decreasing in y by definition of S1
t ðps

tÞ and the
concavity of �GtðyÞ þ Vtþ1ðy; ps

tÞ. However, the

unit exercising cost is at least e1
t . This implies that

the cost of exercising one more unit is higher than
the marginal revenue of this unit, so it is optimal
to order nothing and keep inventory at the level
of x0.

2. S
j
tðps

tÞ � a
j
t � x0oS

j
tðps

tÞ � a
j�1
t for j 5 1, . . ., i.

In this case, we have x0 þ a
j�1
t oS

j
tðps

tÞ � x0 þ a
j
t.

For x0oyoS
j
tðps

tÞ, the gain of exercising one unit
is greater than the maximum unit exercising cost

e
j
t, so the objective function is increasing in y. On

the other hand, for y4S
j
tðps

tÞ, the objective value
is decreasing in y, as the marginal increase of
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revenue is less than the unit exercising cost. Thus

y	t ¼ S
j
tðps

tÞ.
3. S

jþ1
t ðps

tÞ � a
j
tð~Stðps

tÞ � ai
t if j ¼ iÞ � x0oS

j
tðps

tÞ � a
j
t

for j 5 1, . . ., i.

Then S
jþ1
t ðps

tÞ � x0 þ a
j
toS

j
tðps

tÞ. Similar to case
(2), we can show that the profit function is in-

creasing on x0oy � x0 þ a
j
t, decreasing on y �

x0 þ a
j
t and reaches maximum when y	t ¼ x0 þ a

j
t.

4. x0o~Stðps
tÞ � ai

t.
Similar to case (2), the profit function is

increasing for x0oyo~Stðps
tÞ and decreasing for

y4~Stðps
tÞ. Hence y	t ¼ ~Stðps

tÞ.

If i 5 0, then the firm will not exercise any options
and will replenish solely from the spot market. The
replenishment cost function becomes linear and there-
fore the policy reduces to a base-stock policy. &

Theorem 2 shows that the optimal inventory re-
plenishment policy is of order-up-to type and is
composed of a sequence of control parameters de-
pending on the realization of the spot market price.
This policy results from the piecewise linear convex
increasing replenishment cost function and the con-
cave profit function. The number of the threshold
values increases with the revealed spot price, since the
realized spot price partitions the reserved options into
two categories. The first category has exercising cost
lower than the spot price, which will be exercised se-
quentially. The remaining options constitute the
second category, which will not be exercised since
their exercising costs are higher than the realized spot
market price. The higher the spot price, the more
types of options in the first category. If the realized
spot price is lower than the smallest unit exercising
cost, then the firm will let all the reserved options
elapse and simply buy from the spot market. In this
case, the optimal replenishment policy is just a base-
stock policy.

REMARK 1. It is noteworthy to point out that when the
option prices do not depend on the realized spot
market price in the previous period and the spot
prices in different periods are independent, then all
the thresholds in the optimal inventory replenishment
policy, except the last one, will become state-indepen-
dent. That is, they will not depend on ps

t and Si
tðps

tÞ can
be simply written as Si

t.

The results in this section set the stage for studying the
optimal option-reservation policy in the next section.

5. Option-Reservation Policy
Reserving options can protect the firm from the risk of
sharp price increase in the spot market, yet over-

reservation might be costly because of the sunk res-
ervation cost. Thus the optimal reservation policy
should balance these risks. As the firm reserves op-
tions after the suppliers set the option contract prices,
to maintain a flexible procurement strategy the buyer
can adjust the option-reservation quantities in each
period in response to the changes of on-hand inven-
tory and the selling price. In this section, we first
present structural results of the optimal option-
reservation policy. Then, based on the optimal replen-
ishment policy characterized in section 4, we derive a
system of optimality equations that determines the
reservation quantity of each contract.

LEMMA 1. If g( � ) is a concave function and b, g nonneg-
ative, then g(bx1gp) is submodular in (x, p).

This lemma follows directly from the definitions of
concavity and submodularity, and it leads to the fol-
lowing important property of the value function (2).

LEMMA 2. For t 5 1, . . ., T, Utðx0;�a; ps
tÞ is a submodular

function for each pair of x0 and ai, for i 5 1, 2, . . ., N.

PROOF. To show this result, it is equivalent to show that
~Utð~x;�a; ps

tÞ � Utð�x0;�a; ps
tÞ is supermodular in each

pair of ~x and ai. To that end, let q ¼ y� x0 ¼ yþ ~x, then

~Utð~x;�a; ps
tÞ ¼max

q�0
f�CE

t ðq;�at; p
s
tÞ � Gtðq� ~xÞ

þ Vtþ1ðq� ~x; ps
tÞg:

Note that, as Vtþ1ð�; ps
tÞ is concave, Vtþ1ðq� ~x; ps

tÞ is
supermodular in q and ~x. Similarly, as Gt( � ) is convex,
it follows from Lemma 1 that �Gtðq� ~xÞ is super-
modular in q and ~x. Finally, from the definition of CE

t ,
it is also supermodular in q and ai. Therefore, as q � 0
is clearly a lattice and supermodularity is preserved
under maximization (Topkis 1998), ~Utð~x;�a; ps

tÞ is su-
permodular in ð~x; aiÞ and Utðx0;�a; ps

tÞ is a submodular
function for each pair of x0 and ai. &

Define

Jtðx; p;�a; ps
t�1Þ ¼ �

XN

i¼1

ci
tðai � ai�1Þ

þ Eet;Ps
t

Utðx�Dtðp; etÞ;�a;Ps
tÞ

� 	
;

and let �atðx; p; ps
t�1Þ 2 arg maxaN�aN�1�����a1�0fJtðx; p;

�a; ps
t�1Þg. Jt depends on ps

t�1 since Eet;Ps
t
½�� conditions

on ps
t�1 as we noted previously.

The structural property of the optimal option-res-
ervation quantity �atðx; p; ps

t�1Þ with given inventory
level x and price p is stated in the following theorem.

THEOREM 3. For t 5 1, . . ., T and i 5 1, 2, . . ., N,

(a) Jtðx; p;�a; ps
t�1Þ is submodular for each pair of (x, ai);
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(b) Jtðx; p;�a; ps
t�1Þ is submodular for each pair of (p, ai);

(c) the optimal reservation quantity ai
tðx; p; ps

t�1Þ is
decreasing in x and p.

PROOF. The first term of Jtðx; p;�a; ps
t�1Þ depends only on �a

and thus is trivially submodular in (x, ai). For the second
term, Utð�; �; ps

tÞ is submodular and concave in its first
two components by Lemma 2. As the expected demand
is linear in p, it is not hard to see that Utðx�Dtðp; etÞ;
�a; ps

tÞ is submodular in (x, ai) and (p, ai) for both additive
and multiplicative demand. Since submodularity is pre-
served under expectation, parts (a) and (b) follow.

Part (c) follows directly from the submodularity of
Jtðx; p;�a; ps

t�1Þ (Topkis 1998). &

The theorem above indicates how the option-reser-
vation quantities change with the starting inventory
level and the selling price in each period. It is intuitive
as more on-hand stock implies that less future capac-
ity will be needed. The option-reservation quantity
also decreases with the selling price, because the de-
mand is decreasing in the selling price p, which in
turn results in smaller option quantity to be reserved.

The next theorem presents the set of optimality
conditions that can be used to solve the optimal �at. Its
proof is given in the Appendix. Let 1(A) 5 1 if A is
true; otherwise 1(A) 5 0.

THEOREM 4. Let Rtðy; ps
tÞ ¼ �GtðyÞ þ Vtþ1ðy; ps

tÞ and let
�Fð�Þ be the complement cumulative distribution function of et.

(a) For the additive demand, let z 5 x� y1bp. Then the
optimal cumulative option-reservation quantities ai

tðx; p;
ps

t�1Þ; i ¼ 1; . . . ;N � 1 are the solutions of the following
optimality conditions,

ci
t � ciþ1

t ¼ li � liþ1 þ EPs
t

"
1ðPs

t � eiþ1
t Þ

�
Z z�Siþ1

t ðP
s
tÞþai

t

z�Si
tðP

s
t Þþai

t

½�ei
tþR0tðz�xþai

t;P
s
tÞ� fðxÞdx

 

þðeiþ1
t � ei

tÞ�Fðz� Siþ1
t ðPs

tÞ þ ai
tÞ
!#

þ EPs
t

"
1ðei

t � Ps
toeiþ1

t Þ

�
Z z�~StðPs

tÞþai
t

z�Si
tðP

s
tÞþai

t

½�ei
t þ R0tðz� xþ ai

t;P
s
tÞ� fðxÞdx

 

þðPs
t � ei

tÞ�Fðz� ~StðPs
tÞ þ ai

tÞ
!#

;

ð3Þ
and for aN

t ðx; p; ps
t�1Þ, it satisfies

cN
t ¼ lN þ EPs

t
1ðeN

t � Ps
tÞ
Z z�~StðPs

t ÞþaN
t

z�SN
t ðP

s
tÞþaN

t

 "

½�eN
t þ R0tðz� xþ aN

t ;P
s
tÞ�fðxÞdx

þðPs
t � eN

t Þ�Fðz� ~StðPs
tÞ þ aN

t Þ
�

;

ð4Þ

where li, i 5 1, . . ., N, satisfies liðai
t � ai�1

t Þ ¼ 0 and
li � 0.

(b) For the multiplicative demand, let z(x) 5

x� (y� bp)x. Then the optimal cumulative option-reser-
vation quantities ai

tðx; p; ps
t�1Þ, i 5 1, . . ., N� 1 are the

solutions of the following optimality conditions,

ci
t � ciþ1

t ¼li � liþ1 þ EPs
t

1ðPs
t � eiþ1

t Þ
Z x�Siþ1

t
ðPs

t
Þþai

t
y�bp

x�Si
t
ðPs

t
Þþai

t
y�bp

0
B@

2
64

�ei
t þ R0tðzðxÞ þ ai

t;P
s
tÞ

� 	
fðxÞdx

þðeiþ1
t � ei

tÞ�F
x� Siþ1

t ðPs
tÞ þ ai

t

y� bp

� �1CA
3
75

þ EPs
t

1ðei
t � Ps

toeiþ1
t Þ

Z x�~StðPs
t
Þþai

t
y�bp

x�Si
t
ðPs

t
Þþai

t
y�bp

0
B@

2
64

½�ei
t þ R0tðzðxÞ þ ai

t;P
s
tÞ�fðxÞdx

þðPs
t � ei

tÞ�F
x� ~StðPs

tÞ þ ai
t

y� bp

 !1CA
3
75;

ð5Þ

and for aN
t ðx; p; ps

t�1Þ, it satisfies

cN
t ¼lN þ EPs

t
1ðeN

t � Ps
tÞ

Z x�~StðPs
t
ÞþaN

t
y�bp

x�SN
t
ðPs

t
ÞþaN

t
y�bp

0
@

2
4

½�eN
t þ R0tðzðxÞ þ aN

t ;P
s
tÞ�fðxÞdx

þðPs
t � eN

t Þ�F
x� ~StðPs

tÞ þ aN
t

y� bp

 !!#
;

ð6Þ

where li, i 5 1, . . ., N, satisfies liðai
t � ai�1

t Þ ¼ 0 and li � 0.

In the theorem above, li represents the Lagrange
multiplier corresponding to constraint ai � ai11. The
theorem provides a recursive numerical method for
computing the optimal reservation quantities. Since
the profit function is concave, we can solve the op-
timal option-reservation quantities using line search
by applying the preceding series of optimality condi-
tions. Because of the computational complexity in
solving these equations, in section 8 we shall develop
a simple heuristic method to compute the near-opti-
mal reservation quantities.

6. Dynamic Pricing Policy
At the beginning of each period, after reviewing the on-
hand inventory level, the firm adjusts the product sell-
ing price to better coordinate supply with demand. In
this section we analyze the optimal pricing decision.

Let Ktðx; p; ps
t�1Þ ¼ pEet ½Dtðp; etÞ�þ Jtðx; p;�atðx; p; ps

t�1Þ;
ps

t�1Þ and p	t ðx; ps
t�1Þ 2 arg maxpfKtðx; p; ps

t�1Þg. Apply-
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ing Lemma 1, we can obtain the behavior of the optimal
selling price p	t ðx; ps

t�1Þ with respect to the starting in-
ventory level when the demand function is additive.

THEOREM 5. For t 5 1, . . ., T, if demand is additive, then

(a) Ktðx; p; ps
t�1Þ is submodular in (x, p);

(b) the optimal selling price p	t ðx; ps
t�1Þ is decreasing

in x;
(c) the optimal reservation quantity ai	

t ðx; ps
t�1Þ ¼ ai

tðx;
p	t ðx; ps

t�1Þ; ps
t�1Þ is decreasing in x.

PROOF. For part (a), as the first term in Ktðx; p; ps
t�1Þ

depends only on p which is trivially submodular, it is
sufficient to show Jtðx; p;�atðx; p; ps

t�1Þ; ps
t�1Þ is submod-

ular. Recall that Jtðx; p;�at; p
s
t�1Þ is jointly concave in

ðx; p;�aÞ, so is Jtðx; p;�atðx; p; ps
t�1Þ; ps

t�1Þ in (x, p). More-
over, note that Jtðx; p;�atðx; p; ps

t�1Þ; ps
t�1Þ depends on x

and p only through z 5 x1bp. Thus, we can define a
function kðxþ bp; ps

t�1Þ ¼ Jtðx; p;�atðx; p; ps
t�1Þ; ps

t�1Þ in
which b40. It then follows by Lemma 1 that the sec-
ond term of Ktðx; p; ps

t�1Þ is submodular in (x, p).
Hence the submodularity of Ktðx; p; ps

t�1Þ follows.
Part (b) follows directly from the submodularity

and concavity of Ktðx; p; ps
t�1Þ.

For part (c), it is sufficient to show that x� yþ
bp	ðxÞ is increasing in x as ai

tðx; p; ps
t�1Þ ¼ ai

tðx� yþ
bp; ps

t�1Þ is decreasing in x and p. To that end,
let z 5 x� y1bp so Jtðx; p;�atðx; p; ps

t�1Þ; ps
t�1Þ can be de-

noted as Jtðz;�atðz; ps
t�1Þ; ps

t�1Þ. Define

~Ktðz; x; ps
t�1Þ ¼ Ktðx; p; ps

t�1Þ ¼
z� xþ y

b
E½x� zþ et�

þ Jtðz;�atðz; ps
t�1Þ; ps

t�1Þ;

which is supermodular in x and z. Therefore, z	ðxÞ ¼
x� yþ bp	ðxÞ is increasing in x. So the desired result
follows. &

Theorem 5 states that, when the demand function is
additive, the optimal price of each period decreases
with the starting inventory level. Moreover, there
exist multiple possible list prices, each of which
corresponds to the selling price when the inventory
is replenished to one of the thresholds. These struc-
tural results for the optimal policy extend those of
Federgruen and Heching (1999) who show that a
base-stock list price policy is optimal in the setting
without using portfolio procurement and linear re-
plenishment cost.

7. Multi-Period Option Contract
In the previous discussion, the firm can adjust its op-
tion-reservation quantities from suppliers in each
period, and therefore can respond to market demand
agilely. However, in some circumstances, suppliers
may not be able to offer such flexibility to their cus-

tomers, because it may be impossible or too costly for
the suppliers to change their supply capacity from
period to period. Suppliers may have to use overtime,
temporary labor, or transfer capacities reserved for
other buyers to cover the fluctuations, which will in-
crease their costs. Hence, the suppliers may prefer
the firm to fix a constant number of options for mul-
tiple periods and even offer the firm a more
competitive price for doing so in order to better
schedule their production as well as labor/machines.
This motivates us to study the case where the suppli-
ers and the firm sign option contracts in which the
reserved options run for a given number of periods,
so that suppliers need not change their capacity for a
particular buyer too frequently.

For tractability, we assume that the number of
periods covered by the option contract from each
supplier is the same and denoted by L, which we also
call reservation cycle. Then at the beginning of periods
1, L11, 2L11,. . ., which we call option-reservation peri-
ods, the firm can decide the option-reservation
quantities �akLþ1 ¼ ða1

kLþ1; . . . ; aN
kLþ1Þ, k 5 0, 1, 2, . . . (for

simplicity, we denote �akLþ1 by �ak). In every period
within a reservation cycle k, the firm has �ak options
available hence it can exercise up to ai

k � ai�1
k options

from supplier i. In other words, the available options in
period t, t 5 kL11, kL12, . . ., (k11)L are all equal to �ak.
In such a setting, the option-reservation prices Ci

t are
defined on the reservation periods, which are nonsta-
tionary over periods and may depend on the realization
of the spot market price in the previous period. Fur-
thermore, as we require that the reservation quantity of
each period be the same in the reservation cycle from
each supplier, the total reservation quantity of the firm
is
PN

i¼1 Lðai
k � ai�1

k Þ ¼ LaN
k with the total reservation

cost
PN

i¼1 Ci
kLðai

k � ai�1
k Þ. It is clear that, when L 5 1, it

reduces to our original model.
Let the total length of the planning horizon be an in-

teger multiple of the reservation cycle L, i.e., T 5 KL with
KAZ1. Define ~Vtðx; ps

t�1Þ as the optimal total profit of the
firm from period t to the end of the planning horizon
under this multi-period option setting. We formulate the
dynamic program as follows. For k 5 0,1, . . ., K� 1,

~VkLþ1ðx; ps
kLÞ ¼

ECk
max

aN
k
�aN�1

k
�����a1

k
�0

"
�
XN

i¼1

Ci
kLðai

k � ai�1
k Þ þWkLþ1ðx;�ak; p

s
kLÞ

( )#
;

where the first term is the reservation cost for the fol-
lowing L periods and

WkLþjðx;�ak; p
s
kLþj�1Þ ¼ max

p2½p;�p�
EekLþj;P

s
kLþj
½pDkLþjðp; ekLþjÞ

n

þUkLþjðx�DkLþjðp; ekLþ1Þ;�ak;P
s
kLþjÞ�

o

Fu, Zhou, Chao, and Lee: Combined Pricing and Portfolio Option Procurement
Production and Operations Management 21(2), pp. 361–377, © 2011 Production and Operations Management Society 369



for j 5 1, 2, . . ., L� 1, is the profit-to-go function, with
UkL1j defined by

UkLþjðx0;�ak; p
s
kLþjÞ ¼max

y�x0
�CE

kLþjðy� x0;�ak;P
s
kLþjÞ

n

�GkLþjðyÞ þ ~WkLþjþ1ðy;�ak; ps
kLþjÞ

�
;

where ~WkLþjþ1ðx;�ak; p
s
kLþjÞ :¼WkLþjþ1ðx;�ak; p

s
kLþjÞ for

j 5 1, . . ., L� 1, and ~WkLþjþ1ðx;�ak; p
s
kLþjÞ :¼ ~Vðkþ1ÞLþ1ðx;

ps
ðkþ1ÞLÞ for j 5 L and k 5 0,1, . . ., K� 1. The terminal con-

dition is ~WKLþ1ðx;�a; ps
KLÞ � 0.

For each period t, if it is a reservation period
(t 5 kL11 for some 0 � k � K� 1), then the firm makes
three decisions: the option-reservation quantities from
the suppliers for the following L periods, the selling
price of the product for the current period, and the
inventory replenishment quantity after demand and the
spot price are realized. If period t is not a reservation
period, only the latter two decisions need to be made
based on the reserved options. Note that, for the ease of
presentation, we swap the sequence of the pricing and
reservation decisions in a reservation period in this
setting compared with the original model.

Most of the results for the single-period option con-
tracts problem, reported in sections 4, 5, and 6, can be
extended to the multi-period option contracts sce-
nario. Because of their similarities, we here only
briefly discuss the results without presenting their
proofs. We can show that ~Vtðx; ps

t�1Þ, Wtðx;�a; ps
t�1Þ,

~Wtðx;�a; ps
t�1Þ, and Utðx0;�a; ps

tÞ are all concave functions.
Furthermore, because in each period after the demand
and the spot market price are realized, the firm still
faces a linear piecewise convex ordering cost, the
structure of the optimal replenishment policy for each
period remains the same as that presented in Theorem
2.3 It can also be shown that the optimal price in each
period is decreasing in the initial inventory level x
when demand function is additive. However, the
computation of the optimal reservation quantities will
become more complicated since one needs to first op-
timize the inventory replenishment and pricing
policies of L periods for any given �a.

8. Numerical Study
In this section, we conduct a numerical study to pro-
vide some important insights. We first present
comparative statics results of system parameters fol-
lowed by a discussion on the benefit of portfolio
procurement and dynamic pricing. After that, we com-
pare the results of the base model vis-à-vis the one
discussed in section 7 with L 5 2. Finally, we develop a
simple heuristic for computing near-optimal reserva-
tion quantities and test its effectiveness numerically.

We study a system with two suppliers N 5 2 together
with a spot market. We assume the cost function for
inventory holding and customer backlog is G(y) 5

hy11sy�, where h is the one-period unit holding cost
and s is the one-period unit shortage cost. To reduce the
dimension of the problem and for computational sim-
plicity, throughout this numerical study except the
second part of section 8.2, we use deterministic but
nonstationary reservation prices and assume that the
spot market price Ps

t is random and uniformly distrib-
uted over [13,23] (so E½Ps

t � ¼ 18). Hence, we can drop the
state ps

t�1 in the value function Vt as the firm no longer
needs to keep track of it. We consider a base example
with parameters s 5 30, h 5 4.4, c1

t ¼ 6, c2
t ¼ 2þ 0:5t,

e1
t ¼ tþ 2, e2

t ¼ 1:5tþ 5:2, and additive demand
D 5 (y� bp)1e, where y5 40, b 5 2, e is uniformly dis-
tributed with support [0, 30]. The planning horizon T 5 3.

8.1. Comparative Statics
We present computational results that illustrate the
sensitivity of the optimal expected profit of the firm
and the corresponding optimal reservation quantities,
base-stock levels, and selling prices on different sys-
tem parameters. We focus on the inventory holding
cost rate h, the option-reservation price c1

t of supplier
1, the exercising price e2

t of supplier 2, and the length
of the planning horizon T. For e2

t , we change the value
z of e2

t � e1
t ¼ 0:5tþ z. Moreover, to see the impact of

demand variance, we keep the expected value of e at
15 while changing the corresponding lower and upper
bounds of its support to generate different levels of
variance. We generate different instances by altering
the focal parameter while fixing other parameters at
those of the base case. The results are tabulated in
Tables 1 and 2. Note that, because the backlog cost is
higher than the spot price and both of them are sta-
tionary, ~Stðps

tÞ ¼ 0 and so we omit it in the tables.
Unless otherwise noted, the optimal reservation quan-
tities ai	

1 , price p	, and profit V1 reported in the tables
are values at x 5 10 as they depend on x.

In Table 1, it is clear that the optimal profit of the
firm, the optimal reservation quantity a1	

1 from sup-
plier 1, and the optimal replenishment thresholds
decrease while the reservation quantity a2	

1 � a1	
1 in-

creases when the holding cost h increases. In addition,
when the unit exercising cost e2

t of supplier 2 in-
creases, the optimal profit of the firm, the threshold
S2

1, and the optimal reservation quantity a2	
1 � a1	

1 from
supplier 2 decrease while the optimal reservation
quantity a1	

1 from supplier 1 increases. Although it is
not shown in the tabulated results due to the limited
space, we observe that the optimal price is nonin-
creasing in h and nondecreasing in e2

t from the
numerical results with different state variable x.

When the unit reservation price c1
t of supplier 1 in-

creases, from Table 2, the optimal profit of the firm
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and the optimal reservation quantity from supplier 1
decrease; the optimal selling price p	1, the optimal res-
ervation quantity from supplier 2, the replenishment
thresholds S1

1 and S2
1 increase. It is always interesting

to see the impact of demand variance. By changing
the lower and upper bounds of the support of e, we
get five different levels of variance while keeping
E½e� ¼ 15. We find that the optimal profit decreases
while the inventory replenishment thresholds and the
total reservation quantity increase as e becomes more
variable. For the reservation quantity from each indi-
vidual supplier, the optimal reservation quantity a1	

1

from supplier 1 decreases with demand variance
while the optimal reservation quantity from supplier
2 increases with demand variance. The selling price is
nondecreasing in the variance of e. The decrease of the
optimal profit is expected as the demand becomes
more variable, which makes it harder to match supply
and demand and thus results in a lower profit. In
addition, a higher reservation quantity can mitigate
the demand variance while a higher price can reduce
the expected demand.

Finally, we run the base example for different
lengths of the planning horizon T for TAf3, 5, 7, 9g
but change the cost parameters to be stationary, i.e.,
c2

t ¼ 2, e1
t ¼ 2, and e2

t ¼ 5:2. We find that the optimal
profit, reservation quantities, and threshold levels are
increasing in T, but these optimal control parameters
converge to certain constants when T is longer than 5.

8.2. Benefit of Portfolio Procurement and Dynamic
Pricing
In this section, we aim to quantify the benefit of two
major features of the model we study. First, how much
the firm can gain by adopting portfolio procurement
with two suppliers vis-à-vis a system with just one

supplier? Second, how much the firm can benefit from
dynamic pricing comparing to static pricing?

We start by examining the first issue. By alternating
the holding cost rate h from 3.2 to 4.8 with step size 0.4
and c1

t from 4 to 8 with step size 1 of the previous base
case, we compare the resulting profits between the
cases where the firm can procure from two suppliers
and where it can only procure from one of the two. Let
Vi

1ðxÞ denote the optimal profit of the firm when
solely ordering from supplier i, i 5 1, 2 throughout the
horizon. We define the benefit of the firm when the
starting inventory level is x, xA[� 9, 40] as

BoðxÞ ¼
V1ðxÞ �maxfV1

1ðxÞ;V2
1ðxÞg

V1ðxÞ
� 100%:

In general, we find that the benefit Bo(x) decreases
with the starting inventory level x, which is intuitive
as more inventory means less need to order and so
less valuable of the flexibility from dual sourcing. The
largest benefit among the instances (among all the
combinations of different system parameters and
different initial state x) we tested is 6.46%.

We plot the average benefit �Bo over inventory level
[� 9, 40], i.e., �Bo ¼

P40
x¼�9 BoðxÞ=50 to show the trend

of the benefit with respect to h and c1
t respectively.

In Figure 1 (a), we can observe that the benefit of
portfolio procurement increases as the holding cost h
increases. This implies that, when the holding cost of
inventory is high, the firm can benefit more by
keeping a larger portfolio (supply base) to have a
higher flexibility. Moreover, with the increase of the
reservation price c1

t of supplier 1, the average benefit
of portfolio procurement �Bo first increases then
decreases. This can be explained as follows. When c1

t

increases but is still of moderate value, if the firm can
only source from one supplier, it will pick supplier 1.

Table 2 Comparative Statics: Reservation Price c1
t of Supplier 1 and Demand Variance Var(e)

c1
t S1

1 S2
1 a1	

1 a2	
1 � a1	

1 p	1 V1 Var (e) S1
1 S2

1 a1	
1 a2	

1 � a1	
1 p	1 V1

4 25 0 17 3 17 515.32 4(12, 18) 24 0 7 4 18 523.46

5 28 0 11 7 18 463.75 10(10,20) 26 0 5 7 18 508.05

6 29 0 0 18 18 426.06 24(7,23) 28 0 4 10 18 484.62

7 30 0 0 18 18 405.02 36.67(5,25) 28 0 2 13 18 468.37

8 30 6 0 18 18 400.51 60.67(2,28) 29 0 0 17 18 443.19

Table 1 Comparative Statics: Holding Cost h and Exercising Price e2
t of Supplier 2

h S1
1 S2

1 a1	
1 a2	

1 � a1	
1 p	1 V1 z S1

1 S2
1 a1	

1 a2	
1 � a1	

1 p	1 V1

3.2 32 20 18 0 18 436.17 2 29 6 0 18 18 449.27

3.6 32 0 13 5 18 430.44 2.5 29 0 0 18 18 437.66

4.0 30 0 2 16 18 427.69 3 29 0 0 18 18 429.06

4.4 29 0 0 18 18 426.06 3.5 29 0 5 12 18 422.47

4.8 26 0 0 18 18 424.76 4 29 0 10 7 18 419.14
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But the firm with two suppliers would reserve from
both suppliers to enjoy the flexibility of supplier 2. So
the firm gains more benefit when c1

t increases. Nev-
ertheless, after c1

t becomes sufficiently large, the firm
with a single supplier will choose supplier 2 while the
firm with two suppliers will reserve most of the
quantity from supplier 2 as well. This leads to a de-
crease in the benefit of portfolio procurement.
Furthermore, we find that the benefit of portfolio pro-
curement increases with demand variance. The
average benefit Bo to the firm when Var(e) changes
from 4 to 60.67 (as those in Table 2) is, respectively,
0.34%, 0.57%, 0.86%, 1.26%, and 2.27%.

We now investigate how much the firm can gain by
adopting dynamic pricing in lieu of static pricing
strategy. Let V

sp
1 ðxÞ be the optimal profit of the firm by

using the optimal static price throughout the horizon
when the starting inventory level is x. Analogously,
we define the benefit of dynamic pricing Bp(x) as

BpðxÞ ¼
V1ðxÞ � V

sp
1 ðxÞ

V1ðxÞ
� 100%:

From the numerical examples tested, we find that
the value of dynamic pricing is usually lower when
the inventory level x is intermediate than when the
inventory level is low or high. This is because the
optimal dynamic pricing strategy tends to keep a sta-
ble price when the inventory level is intermediate. By
also alternating the value of holding cost h or reser-
vation price c1

t as in the previous study, we plot the
average value of dynamic pricing Bp, i.e., Bp ¼

P70
x¼11

BpðxÞ=60 in Figure 1b.
The figure illustrates that the value of dynamic

pricing is increasing in the holding cost h and the
reservation price c1

t of supplier 1. That is, the higher
the inventory holding or reservation costs, the more
valuable it is for the firm to dynamically adjust selling
price to balance supply and demand. To see the
change of Bp when the variance of demand increases,
we further calculate the expected profit of the firm
under optimal static pricing with five different vari-
ances of e. We find that the firm will benefit slightly
more from dynamic pricing when demand is more
variable. Specifically, the average benefit Bp for each
value of Var(e) from 4 to 60.67 is 1.65%, 1.65%, 1.67%,

2.00%

2.50%

3.00%

3.50%
Average Benefit of Portfolio Procurement

h
c_t^1

2.50%

3.00%

3.50%

Average Benefit of Dynamic Pricing

h
c_t^1

0.00%

0.50%

1.00%

1.50%
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2.00%
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cost cost
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Figure 1 Value of (a) Portfolio Procurement and (b) Dynamic Pricing: Deterministic Ct

(a) (b)

Figure 2 Value of (a) Portfolio Procurement and (b) Dynamic Pricing: Random and Spot-Dependent Ct
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1.69%, and 1.78%. The intuition is clear, the more vol-
atile the market environment, the more important it
becomes for the firm to dynamically adjust its selling
price. Moreover, compared with the benefit of portfo-
lio procurement, the value of dynamic pricing is less
sensitive to the demand variability.

So far in the numerical study we have ignored the
dependence between the reservation prices Ct and the
spot price Ps

t . To obtain more insights on the benefits
of dynamic pricing and portfolio procurement, we
design additional numerical examples that take into
account such dependence. Assume the spot price fPs

t ;
1 � t � Tg forms a two-state discrete Markov chain
Ps

t 2 fps1; ps2g with ps1 511 and ps2 5 22. The transition
probabilities are given as p11 5 0.3, p12 5 0.7, p21 5 0.4,
and p22 5 0.6. For example, when the previous
period’s spot price is ps1, the probability that it is still
ps1 in the current period is p11 5 0.3. As a result, the
steady state probabilities are p1 5 4/11 and p2 5 7/11
and the expected spot price E[Pt

s] 5 18. We also
assume two possible reservation prices (c11, c12) 5 (6,
3) and (c21, c22) 5 (4, 2). When Pt� 1

s 5 ps1, with prob-
ability 0.2, Ci

t 5 c1i and with probability 0.8, Ci
t 5 c2i;

when Pt� 1
s 5 ps2, with probability 0.6, Ci

t 5 c1i and with
probability 0.4, Ci

t 5 c2i. This follows from that a
higher (lower) spot price in the previous period is
more likely to lead to a higher (lower) reservation
price in the current period. The other system
parameters are the same as the previous basic setting.

We first examine the benefit of portfolio procure-
ment and dynamic pricing by alternating the holding
cost h and the results are reported in Figure 2. In
each sub-figure, there are two curves, each of which
represents the scenario with a different starting
spot market price in period one. As can be seen from
Figure 2a, the average benefit of portfolio procure-
ment is 1–3% and still increases in the holding cost h.
Figure 2b demonstrates that the benefit of dynamic
pricing also increases with the holding cost but
is rather insensitive to the different starting spot
prices.

We then investigate the impact of the spread of high
and low reservation prices, by increasing c11 from 4 to
8 with step size one. The results are illustrated in
Figure 3. Figure 3a shows that the benefit of portfolio
procurement is quite sensitive to the price spread and
increases from 1.21% to 7.01% when the starting spot
price is 22. However, the dynamic pricing still brings
about 1–2% of the benefit to the firm and the benefit is
not very sensitive to the price spread of the high and
low reservation prices.

8.3. Two-Period Options
The analytical results in section 7 show that the struc-
ture of the optimal policy will not change when
suppliers offer options that are fixed for L41 periods.
We intend to see how the optimal policy parameters
differ from the case L 5 1 and how much it affects the

Table 3 Comparison of Option Contracts: L = 1 vs. L = 2

h a1	
1 a2	

1 � a1	
1 p	1

~V1 V1 Gain% c1
t a1	

1 a2	
1 � a1	

1 p	1
~V1 V1 Gain%

3.2 4 15 18 509.58 531.81 4.36 4 18 3 17 620.98 631.05 1.62

3.6 4 15 18 506.40 521.93 3.07 5 11 10 17 550.86 564.46 2.47

4.0 3 17 18 503.72 515.62 1.77 6 3 17 18 501.33 511.73 2.07

4.4 3 17 18 501.33 511.73 2.07 7 0 20 18 476.01 480.90 1.03

4.8 3 17 18 499.42 508.97 1.91 8 0 20 18 463.56 468,.34 1.03

(a) (b)

Figure 3 Value of (a) Portfolio Procurement and (b) Dynamic Pricing: Random and Spot-Dependent Ct
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firm’s profit when imposing options contracts to cover
more than one period. Clearly, the profit value of the
firm will decrease in L. In the following numerical
study, we consider the case with two suppliers and
the options are fixed for two consecutive periods, i.e.,
L 5 2.

Define the percentage gain of the firm by switching
from L 5 2 to L 5 1 as

ðV1ðxÞ � ~V1ðxÞÞ=V1ðxÞ � 100%;

and recall that V1(x) is the optimal profit over the
planning horizon for L 5 1 while ~V1ðxÞ is the optimal
profit over the planning horizon for L 5 2, both start-
ing from the initial inventory level x. The same set of
parameters as those in the previous section are used
but with T 5 4. We mainly conduct comparisons with
different values of h and c1

t . Note that, to have a fair
comparison, when L 5 1, we set c1

2 ¼ c1
1 and c1

4 ¼ c1
3 for

the system. As T 5 4, the firm with L 5 2 only has two
opportunities to reserve from suppliers. The results
are reported in Table 3.

The tabulated results are for x 5 10. Among all the
instances tested with different combinations of system
parameters and the initial state xA[1, 70], the average
percentage gain of the more flexible option contracts
(L 5 1) over the less flexible ones (L 5 2) is 4.76% with
the largest gain at 10.05%. The dependence of the per-
centage gain on system parameters seems to have
no clear pattern. Furthermore, we observe that the
firm tends to reserve more and set a lower selling
price when L 5 2 than when L 5 1. For example, when
c1

t ¼ 4 and x 5 10, the firm reserves a1	
1 ¼ 18 and a2	

1 ¼
21 (three units from supplier 2) when L 5 2 while
it reserves a1	

1 ¼ 17 and a2	
1 ¼ 20 when L 5 1; the sell-

ing prices p	1 for L 5 2 and L 5 1 are 17 and 18,
respectively.

8.4. Heuristic for Reservation Quantity
Because the computation of the optimal reservation
quantity �atðx; p; ps

t�1Þ is rather complicated, in this sec-
tion, we provide a simple heuristic for computing
near-optimal solutions and test its effectiveness
numerically. For the additive demand, with z 5

x1bp� y, let ~a0
t ðz; ps

t�1Þ ¼ 0 and ~ai
tðzÞ; i ¼ 1; . . . ;N � 1,

be the solution of the following equation.

~ai
tðz; ps

t�1Þ ¼min ai � ~ai�1
t ðzÞ : ci

t � ciþ1
t � EPs

t

(

1ðPs
t � eiþ1

t Þ
Z z�Siþ1

t ðP
s
t Þþai

z�Si
tðP

s
tÞþai

�G0tðz� xþ aiÞfðxÞdx
 "

þðeiþ1
t � ei

tÞ�Fðz� Siþ1
t ðPs

tÞ þ aiÞ
!#

þ EPs
t

1ðei
t � Ps

toeiþ1
t Þ

Z z�~StðPs
tÞþai

z�Si
tðP

s
tÞþai

�G0tðz� xþ aiÞ
 "

fðxÞdxþ ðPs
t � ei

tÞ�Fðz� ~StðPs
tÞ þ aiÞ

!#)

ð7Þ

and for ~aN
t ðz; ps

t�1Þ, it satisfies

~aN
t ðz; ps

t�1Þ ¼min aN � ~aN�1
t ðzÞ :

(
cN

t � EPs
t

1ðeN
t � Ps

tÞ
Z z�~StðPs

tÞþaN

z�SN
t ðP

s
t ÞþaN

�G0tðz� xþ aNÞfðxÞdx
 "

þðPs
t � eN

t Þ�Fðz� ~StðPs
tÞ þ aNÞ

!#)
:

ð8Þ

Note that ~ai
tðz; ps

t�1Þ is easy to solve since each in-
equality only depends on one decision variable and the
right-hand side of the inequality is monotonically de-
creasing in ai. More importantly, the computation does
not depend on the future value function Vtþ1ðx; ps

tÞ. To
obtain these inequalities, we approximate ðVtþ1ðx; ps

tÞÞ
0

in R0tðx; ps
tÞ in Equations (3) and (4) by ei

t and eN
t , re-

spectively. The rationale behind is that, in the integrand
of each integration in Equation (3), Siþ1

t ðps
tÞ � z� xþ

ai � Si
tðps

tÞ or ~Stðps
tÞ � z� xþ ai � Si

tðps
tÞ. If we assume

Si
tðps

tÞ of different periods t are roughly the same, then
for x in the above ranges, it can be shown that ðVtþ1

ðx; ps
tÞÞ
0 � ei

t from the optimal replenishment policy
presented in Theorem 2 and so we simply use ei

t to
approximate this derivative when solving ~ai

tðz; ps
t�1Þ.

We can similarly derive the heuristic reservation quan-
tities when demand is multiplicative. After obtaining
~ai

tðz; ps
t�1Þ, we plug them into the original recursion

Table 4 Performance of the Heuristic

h Eh (%) E m
h (%) c1

t Eh (%) E m
h (%) Var (e) Eh (%) E m

h (%)

3.2 0.68 1.40 4 0.70 1.78 4 0.21 0.67

3.6 0.53 0.98 5 1.53 2.64 10 0.22 0.93

4 0.33 0.66 6 0.25 0.60 24 0.26 1.40

4.4 0.25 0.60 7 0.02 0.03 36.67 0.41 1.85

4.8 0.16 0.50 8 0.26 0.60 60.67 0.55 1.44
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Ktðx; p; ps
t�1Þ and further compute the corresponding

optimal selling price. This procedure leads to a set of
heuristic solutions for all the decisions.

We evaluate the effectiveness of the heuristic over
the instances we tested in section 8.1. We consider the
starting inventory level x ranging from � 9 to 40 and
let the average and maximum relative error, Eh and
Em

h , be defined, respectively, as

Eh ¼
1

50

X40

x¼�9

V1ðxÞ � Vh
1ðxÞ

V1ðxÞ

� 

� 100%;

Em
h ¼ max

x2½�9;40�

V1ðxÞ � Vh
1ðxÞ

V1ðxÞ
� 100%

� �
;

where Vh
1ðxÞ is the resulting profit of the heuristic policy.

Under these measures, among all the instances we
tested, the average relative error is 0.42% while the
largest relative error is 2.64%. We can see that the overall
performance of the heuristic is quite robust to the sys-
tem parameters. When the variance of demand
increases, the relative error of the heuristic becomes
slightly larger. We summarize these numerical results in
Table 4. Note that, compared with the results for the case
in which only the best supplier is used (Figure 1a), the
heuristic policy for the case with two suppliers leads to
higher profit for the firm except when c1

t ¼ 4 and c1
t ¼ 5.

9. Conclusion
This paper studies combined pricing and portfolio
procurement strategies for a multi-period inventory
system. A firm procures a single product from a port-
folio of supply sources, including a set of option
contracts (suppliers) at various levels of flexibility and
costs as well as the spot market with uncertain price.
Customer demand is random and price sensitive. With
the objective of maximizing the total expected profit
over a finite planning horizon, the firm makes three
decisions in each period, namely, product selling price,
option-reservation quantities, and inventory replenish-
ment through exercising the options reserved from the
suppliers and ordering from the spot market if needed.

The optimal inventory replenishment policy is shown
to be an order-up-to type policy specified by a sequence
of thresholds. For the optimal reservation quantities, we
analyze some structural properties and show that the
cumulative reservation quantity is decreasing in both
the starting inventory level and the selling price. A set
of optimality conditions are presented for computing
the option-reservation quantities. We show that the op-
timal price is decreasing in the starting inventory level
when demand is additive. We also extend the model to
the case with multi-period option contracts. Finally, we
conduct an extensive numerical study to reveal addi-
tional insights of our results. Among others, we
quantify the benefit of portfolio procurement and dy-

namic pricing and show that both increase with
demand variance. Moreover, the value of dynamic
pricing is less sensitive to the demand variability. When
the reservation prices depend on the realized spot price
in the previous period, the value of portfolio procure-
ment increases when the price spread between the high
and low reservation prices increases while the value of
dynamic pricing is less sensitive to such price spread.
A simple heuristic is developed to calculate the near-
optimal reservation quantities and a numerical test
shows that the heuristic is effective.
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Appendix. Proofs
PROOF OF THEOREM 4.

For period t, the optimal ai is the solution of the
following optimization problem. Let a0 5 0.

max
�a

Jtðx; p;�a; ps
t�1Þ

s:t: ai � ai�1; 1 � i � N:

As Jtðx; p;�a; ps
t�1Þ is concave and the constraint set is

convex, we can apply the Karush-Kuhn-Tucker (KKT)
condition (Lundberg 1984) to find the optimal solu-
tions. Let �l ¼ ðl1; . . . ; lNÞ and

Lðx; p;�a; �l; ps
t�1Þ ¼Jtðx; p;�a; ps

t�1Þ þ l1a1

þ l2ða2 � a1Þ þ � � � þ lNðaN � aN�1Þ:

Then, by the KKT condition, the optimal ai should
satisfy ðLðx; p;�a; �l; ps

t�1ÞÞ
0
ai ¼ 0, li(a

i� ai� 1) 5 0, and
li � 0 for all i. Let 1(A) 5 1 if A is true; otherwise,
1(A) 5 0. Based on the possible realization of Ps

t , there
are several different cases. We first consider the case
Ps

t ¼ ps
t � eiþ1

t . For notational convenience, we sup-
press the ps

t in Si
tðps

tÞ in the following derivation. Note
that x05 x�Dt(p, et), which is random through et. For
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i 5 1, . . ., N� 1,

ðLðx; p;�a; �l; ps
t�1ÞÞ

0
ai ¼ ciþ1

t � ci
t þ ðEet ½Utðx0;�a; ps

tÞ�Þ
0
ai

¼ ciþ1
t � ci

t þ Eet

�
½ð�ei

tðSi
t � x0Þ

þ
Xi�1

j¼0

ðejþ1
t � e

j
tÞaj � GtðSi

tÞ þ Vtþ1ðSi
t; p

s
tÞÞ

�1ðSi
t � ai�1 � x04Si

t � aiÞ

0

ai

þ �ei
ta

i þ
Xi�1

j¼0

ðejþ1
t � e

j
t

0
@

1
Aaj � Gtðx0 þ aiÞ

2
4

þVtþ1ðx0 þ ai; ps
tÞÞ1 Si

t � ai � x0 � Siþ1
t � ai

� #0
ai

þ �eiþ1
t ðSiþ1

t � x0Þ þ
Xi

j¼0

ðejþ1
t � e

j
tÞaj � GtðSiþ1

t Þ

0
@
2
4

þ Vtþ1ðSiþ1
t ; ps

tÞ
!

1ðSiþ1
t � ai � x0 � Siþ1

t � aiþ1Þ
	0

ai

#

þ 1ðeiþ1
t � ei

tÞPrðx0oSiþ1
t � aiþ1Þ þ li � liþ1

¼ li � liþ1 þ ciþ1
t � ci

t þ ðeiþ1
t � ei

tÞPrðx0oSiþ1
t � aiþ1Þ

þ Eet

h
1ðps

t � eiþ1
t Þð�ei

t � G0tðx0 þ aiÞ

þV0tþ1ðx0 þ ai; ps
tÞÞ1ðSi

t � ai � x0 � Siþ1
t � aiÞ

i
;

where the last equality can be verified by writing the
terms in the form of integration and applying the
Lebniz’s rule of derivative. For ei

t � Ps
t ¼ ps

toeiþ1
t , then

ðLðx; p;�a; �l; ps
t�1ÞÞ

0
ai ¼ ciþ1

t � ci
t þ Eet �ei

tðSi
t � x0Þ þ

Xi�1

j¼0

ðejþ1
t � e

j
tÞaj

2
4
2
4

�GtðSi
tÞ þ Vtþ1ðSi

t; p
s
tÞ
#

1ðSi
t � ai�1 � x04Si

t � aiÞ
#0

þ �ei
ta

i þ
Xi�1

j¼0

ðejþ1
t � e

j
tÞaj � Gtðx0 þ aiÞ

0
@
2
4

þVtþ1ðx0 þ ai; ps
tÞÞ1ðSi

t � ai � x0 � ~Stðps
tÞ � ai

!#0

þ �ps
tð~Stðps

tÞ � x0Þ þ
Xi�1

j¼0

ðejþ1
t � e

j
tÞaj þ ðps

t � ei
tÞai

2
4

�Gtð~Stðps
tÞÞ þ Vtþ1ð~Stðps

tÞ; ps
tÞ�1ð~Stðps

tÞ � ai � x0Þ
i0#
þ li � liþ1

¼ li � liþ1 þ ciþ1
t � ci

t þ Eet

�
ð�ei

t � G0tðx0 þ aiÞ

þV0tþ1ðx0 þ ai; ps
tÞÞ1ðSi

t � ai � x0 � ~Stðps
tÞ � aiÞ



þ ðps

t � ei
tÞPrð~Stðps

tÞ � ai � x0Þ;

where the last equality follows the analogous argu-
ment of the previous case. For other realization of
ps

t , ðLðx; p;�a; ps
t�1ÞÞ

0
ai ¼ ciþ1

t � ci
t þ li � liþ1. Therefore,

combine these cases,

ðLðx; p;�a; �l; ps
t�1ÞÞ

0
ai ¼ li � liþ1 þ ciþ1

t � ci
t þ ðeiþ1

t � ei
tÞEPs

t

� 1ðPs
t � eiþ1

t ÞPrðx0oSiþ1
t � aiþ1Þ

� 	
þ Eet;Ps

t
1ðPs

t � eiþ1
t Þð�ei

t � G0tðx0 þ aiÞ þ V0tþ1ðx0 þ ai;Ps
tÞÞ

�
�1ðSi

t � ai � x�Dtðp; etÞ � Siþ1
t � aiÞ

	
;

þ Eet;Ps
t
ð�ei

t � G0tðx0 þ aiÞ þ V0tþ1ðx0 þ ai;Ps
tÞÞ

��
� 1ðSi

t � ai � x0 � 1~StðPs
tÞ � aiÞþðPs

t � ei
tÞ1ð~StðPs

tÞ

� ai � x0�1ðei
t � Ps

toeiþ1
t Þ�:

Similarly, for i 5 N,

ðLðx; p;�a; �l; ps
t�1ÞÞ

0
aN ¼ �cN

t þ Eet;Ps
t
ð�eN

t � G0tðx0 þ aNÞ
��

þ V0tþ1ðx0 þ aN;Ps
tÞÞ1ðSN

t � aN � x0 � ~StðPs
tÞ � aNÞ

þðPs
t � eN

t Þ1ð~StðPs
tÞ � aN � x0Þ

	
1ðeN

t � Ps
tÞ
	
þ lN:

Therefore, for part (a), if Dt(pt, et) 5 y� bp1et and
z 5 x� y1bp, then the optimal ai

t, ioN satisfies

EPs
t

1ðPs
t � eiþ1

t Þ
Z z�Siþ1

t þai

z�Si
tþai

½�ei
t þ R0tðz� xþ aiÞfðxÞ�dx

 "

þðeiþ1
t � ei

tÞ�Fðz� Siþ1
t þ aiÞ

!#

þ EPs
t

1ðei
t � Ps

toeiþ1
t Þ

Z z�~StðPs
t Þþai

z�Si
tþai

½�ei
tþR0tðz� xþ aiÞfðxÞ�dx

""

þðPs
t � ei

tÞ�Fðz� ~StðPs
tÞ þ aiÞ

##
þ ciþ1

t � ci
t þ li � liþ1 ¼ 0;

for i 5 N, aN
t is the solution of

EPs
t

1ðeN
t � Ps

tÞ
Z z�~StðPs

t ÞþaN

z�SN
t þaN

½�eN
t þ Rt0 ðz� xþ aN;Ps

tÞfðxÞ�dx
""

þðPs
t � eN

t Þ�Fðz� ~StðPs
tÞ þ aNÞ

##
þ lN � cN

t ¼ 0

and liðai � ai�1Þ ¼ 0; li � 0 for all i 5 1, . . ., N. Part (b)
can be shown analogously so we skip the details.

Notes

1(http://www.cers.water.ca.gov/pdf-files/other-contracts/
natural-gas-cntrcts/natural-as-backgrnd.pdf).

2The wholesale price contract can be thought of as a special
case of option contracts, where the premium is the full price
and the exercise price is zero.

3For any given k and period t 5 kL11. . ., (k11)L, except
t 5 (k11)L, the threshold levels for exercising options
will also depend on the initial inventory level x at period kL11.
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