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In this paper we investigate an approach that appears to scale to the small size needed for 

femtosatellite (commonly called “ChipSats”) drag make-up and even orbit raising with the 

added benefit of being propellantless.  The approach uses a short, semi-rigid electrodynamic 
tether (EDT) for propulsion, which keeps the overall ChipSat mass low and provides enough 

thrust to overcome drag in LEO.  We report on our trade studies to assess the feasibility of 

using the EDT for ChipSat propulsion.  We have analyzed the EDT anode’s ability to draw 

current from the ionosphere and thereby generate thrust. We then traded this performance 

against the tether mass and material, electron emitter and collector types, and power needed 

to determine the EDT’s capability of overcoming atmospheric drag forces.  The results 

reveal that an insulated tether only a few meters long and tens of microns in diameter could 

provide milligram to 100 gram-level ChipSats with complete drag cancellation and even the 

ability to change orbit.  The EDT system described here might be considered inefficient in 

terms of the power required for thrust.   However, the received solar power is sufficient and 

the EDT is propellantless, so we believe the EDT still provides a viable approach for 
propulsion. We also explore the assumption that the gravity gradient force aligns the tether 

along the local vertical and find that this assumption needs further investigation.  A more 

complete systems design and analysis is continuing.   

Nomenclature 

A = Ram spacecraft cross section area (m2) 

AEDT = Tether cross section area (m2) 

Asun = Area exposed to the sun (m2) 

a = Semi-major axis (m) 
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aaccel = Acceleration (m/s2) 

aFN = Fowler–Nordheim current coefficient (A·V−2) 

B =  Magnetic field (T) 

bFN = Fowler–Nordheim voltage coefficient (V) 

Cd = Drag coefficient, 2.2 

c = Speed of light in a vacuum, 2.99×108 m·s−1 
E = Modulus of elasticity (Pa) 

FT =  Drag force on the satellite (N) 

Fe =  Drag force on the tether (N) 

H = Atmospheric density scale height (m) 

Iinertia = Tether area moment of inertia (m4) 

Ispacecraft = Spacecraft mass moment of inertia (kg·m2) 

Itether = Tether current (A) 

k  Boltzmann constant, 1.38×10−23 J/K 

L = Tether length (m) 

M = Moment (N·m) 

m =  Total mass (kg) 

mEDT  =  Tether mass (kg) 
me = Electron rest mass, 9.1×10−31 kg 

mendbody =  Satellite mass (kg) 

Pdrag = Pressure from atmospheric drag, ½Cdρv
2 (N·m−2) 

q = Elementary charge, 1.6×10−19 C 

R = Electrical resistance (Ω) 

R0 =  Distance from spacecraft center of mass to the Earth’s center (m) 

r = Tether radius (m) 

rd = Distance traveled (m) 

rprobe = Radius of plasma probe (m) 

Scp = Vector distance from center of mass to center of pressure (m) 

Te = Electron temperature (eV) 
tin = Tether insulator thickness (m) 

ue = Unit vector to nadir 

Vgate = Cathode base-gate voltage 

Vemf = Electromotive force (V) 

v = Velocity (m/s) 

W = Work (N·m) 

β  = Ratio of probe radius to attracted particle gyroradius 

Γdiffuse = Diffuse coefficient of reflectivity 

Γspec = Specular coefficient of reflectivity 

ε = Ratio of maximum tether deflection to total tether length 

ηanode-fraction =  Ratio of anode power to available power 

ηconversion =  DC–DC conversion efficiency 
ηSP-efficiency =  Solar panel efficiency 

µ = Standard gravitational parameter of Earth, 3.986×1014 m3·s−2 

ρ = Atmospheric neutral density (kg·m−3) 

ρEDT =  Tether conductor mass density (kg·m−3) 

ρresistivity =  Electrical resistivity (Ω m) 

Φp = Probe potential (V) 

Φdirect = Direct solar radiation flux (W·m−2) 

Φalbedo = Earth albedo of direct solar flux (W·m−2) 

ψ = Ratio of probe potential to plasma potential 

 

I. Introduction 

he growing success of and interest in nanospacecraft (1–10 kg) over the past decade has generated interest in 

exploring the potential for even smaller spacecraft, both as stand-alone satellites or as a distributed swarm.
1–3  T
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Because of advances in integrated circuit and microelectromechanical systems (MEMS) technology, the feasibility 

of miniaturized spacecraft at the levels of fully monolithic semiconductor integrated circuits (10–100 mg) or hybrid 

integrated circuits (10–100 g) is being seriously investigated.4–6  ChipSats belong to the picosatellite (100 g–1 kg) 

and femtosatellite (<100 g) mass categories.  Effectively, this architecture can be thought of as a small “satellite-on-

a-chip” or “ChipSat”. 

 Because of their low masses and small sizes, they are orders of magnitude less costly to manufacture, test, and 
boost into orbit.  Large groups of reconfigurable satellites also present unique mission capabilities, such as 

simultaneous, distributed data collection; ad hoc in-space data relay networking; and enhanced communication via 

configuration as an antenna array. 

 Flat ChipSat wafers, however, have an inherently high 

area-to-mass ratio.  Although this feature can be exploited 

for new behaviors, it can result in an undesirably short 

orbital lifetime in low Earth orbit (LEO) due to atmospheric 

drag, ranging from a few days to a few hours depending on 

altitude and solar conditions.  While a satellite using 

chemical propulsion can overcome the continuous force of 

atmospheric drag, the volume of propellant required will 

increase with the satellite’s intended lifetime.  Thus, the use 
of a traditional thruster with propellant and need for 

directed flow to compensate for drag and possibly for 

maneuverability would increase the size, mass, and 

complexity of ChipSats.  The need for ChipSat 

maneuverability is particularly important considering the 

technology’s capability for swarm missions that might 

require a high degree of orbital maintenance.  The small 

size of the satellites also presents a challenge for energy 

storage, communication, and tracking. 

 In this paper, we investigate an approach that appears to scale to the small size needed and is also propellantless.  

The approach uses a short, semi-rigid electrodynamic tether (EDT) for propulsion, illustrated in Fig. 1, which keeps 
the overall ChipSat mass low and provides enough thrust to overcome drag in LEO.  An EDT exploits the Lorentz 

force to generate thrust for boost, deboost, and inclination change, using current in a conducting tether to produce a 

force in the presence of the Earth’s magnetic field.  The Lorentz force is expressed as8  

 

 ( )∫ ×=
L

dI
0

tetherLorentz BLF  (1) 

and the magnitude of the force is  

 

 LBIF tetherLorentz =  (2) 

 

for a straight, insulated tether 

oriented perpendicular to the 

magnetic field. 

 The tether circuit is closed by 

collecting charge from the 
Earth’s ionosphere at one end 

and emitting charge of the same 

sign or collecting charge of the 

opposite sign at the other end, 

with final closure occurring in 

the surrounding plasma.  This 

process is illustrated in Fig. 1. 

 We report on our trade 

studies to assess the feasibility of 

using the EDT for ChipSat 

propulsion.  We have analyzed 

 
Figure 1. Illustration of electrodynamic tether 

operating, attached to a larger sized spacecraft in 

orbit. 
 

 

 
Figure 2b. Advanced ChipSat EDT 

concept.  Each end-body has a solar 

panel, power supply, and an electron 

emitter and is capable of collecting 

electrons on the surface.
9 

 

 
 

Figure 2a. Early ChipSat 

EDT concept.
7
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the EDT anode’s ability to draw current from the ionosphere and through the tether, thereby generating thrust, and 

have traded this performance against the tether mass and material, tether rigidity, and power needed to determine the 

EDT’s capability of overcoming atmospheric drag forces.  The study led to the development of a system concept and 

mission scenario using the simulation tool TeMPEST to estimate tether voltages and currents based on tether 

configuration and ambient models.  TeMPEST incorporates current geomagnetic field models, ionospheric and 

atmospheric conditions, plasma contactor modeling, and precise orbital calculations.   
 The system concept developed in the previous trade study,7 shown in Fig. 2a, is capable of drag make-up and 

boost.  The ChipSat is also oriented so the maximum cross-sectional area is perpendicular to velocity.  Figure 2b 

shows the more advanced system concept being investigated.9  This system has the capability to boost, deboost, and 

collect solar energy with the upper and lower end-bodies.  The satellite is oriented so the minimum cross-sectional 

area is perpendicular to velocity.  We designed the satellite–tether symmetry to position the center of pressure, the 

center of mass, and the center of gravity roughly at the same location midway along the tether.  This should help 

reduce torque introduced by atmospheric drag. 

 The results from the previous trade study,7 shown in Fig. 3, reveal that an insulated tether only a few meters long 

and tens of microns in diameter can provide milligram- to 100-gram-level ChipSats with complete drag cancellation 

and even the ability to change orbit.  Additional details on the trade study’s assumptions and calculations may be 

found in Ref. 7. 

II. Trade Study 

A. Ionosphere/Atmosphere Environment 
 The conditions of the atmosphere and ionosphere heavily influence EDT performance.  The current in the tether, 
Itether, scales with electron density.  The peak electron density, and thus EDT thrust capability, occurs in the F2 

region of the ionosphere between 300 and 500 km.  We assume a 500-km circular orbit.  We also assume a low 

inclination orbit to ensure that the thrust in Eq. (1) is primarily in-plane for a tether oriented along the local vertical.   

 We conducted the trade study during high solar activity, when the neutral-to-electron-density ratio is an order of 

magnitude higher than at low solar activity.  The force of atmospheric drag counters orbital velocity and reduces the 

altitude of an orbiting body over time.  The expression for atmospheric drag force is given by 

 

 vF ˆ2

2
1

drag AvCdρ−=  (3) 

 

and torque due to drag is given by10 

 
Figure 3. TeMPEST simulation results of ChipSat orbit with and without the 

electrodynamic tether. 
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cpdragdrag SFτ ×= . (4) 

 

The drag force scales with the neutral density and the 

thrust scales with electron density, so the elevated 

neutral-to-electron-density ratio during high solar 

activity actually represents the worst case scenario for 

thrusting at 500 km.   
We determined the electron density by averaging the 

densities calculated at 500 km altitude at the equator 

during the solar high of solar cycle 23 (July 200011) 

using the International Reference Ionosphere-2007 (IRI-

2007) model.  The neutral density was similarly taken 

from the Mass-Spectrometer-Incoherent-Scatter (MSIS-

E-90) model.  Atmosphere and ionosphere assumptions 

are summarized in Table 1. 

B. Orbital Lifetime 
The atmospheric drag force is the dominant non-gravitational force in LEO.  The change in semi-major axis due 

to atmospheric drag is given by10   

 2

revolution 2 a
m

AC
a d ρπ 








=∆ , (5) 

 

which scales with the satellite’s area-to-mass ratio.  The orbital lifetime  

 

 

revolution

Lifetime
a

H

∆
≈  (6) 

 

is roughly proportional to the inverse of this ratio, or the ballistic coefficient.  Figure 4 illustrates that smaller 

femtosatellites have lower ballistic coefficients.  The estimated lifetimes of the satellites in Fig. 2 in LEO range from 

years for the Surrey SpaceChip4 to days for 
the Cornell MCM Sat.5 In order to make 

formation flying more feasible and to extend 

the orbital lifetime of the spacecraft, there is 

a strong benefit for a propulsion system that 

scales to the size of the satellites without 

significantly increasing the satellites’ on-

board mass, power, or complexity.  

C. Trade Study Satellites 
The satellites in the trade study roughly 

span the mass and ballistic coefficient range 

represented by actual pico- and 

femtosatellites, as shown in Fig. 4.  The mass 
and size of the largest satellite in the trade 

study (100 g) was motivated by the 

DARPA/Aerospace Corporation satellites 

PicoSat 1 and 2.  PicoSats 1 and 2 were 

identical 250-g satellites connected by a 30-

meter tether.  They were launched in January 

2000.6  

The mission demonstrated RF-MEMS in space.  Each PicoSat was equipped with a radio and could 

communicate to the other satellite and to the ground.  The Picosats could also be successfully tracked because the 

Table 1. Ionospheric conditions. 

Parameter Value 

Altitude 500 km (circular) 

Spacecraft Velocity (relative to 
co-rotating atmosphere) 

7.5 km·s−1 

F10.7 (solar activity) 169 (Solar High) 

Electron Temperature 0.15 eV 

Magnetic Field 0.3 gauss 

Gyroradius 3 cm 

Neutral Density 1x10−15 g·cm-3 

Electron Density 5×105 electrons·cm−3 

Debye Length 4 mm 

Electron-to-neutral Density 1×1022 electrons·g−1 

 

 
Figure 4. Ballistic coefficient for a range of ultra-small satellites 

assuming the smallest area cross-section.
4,5,6
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tether connecting the PicoSats had a thin gold wire strand that increased the radar cross section of the structure.  The 

ground antenna tracking the satellites was a 150-ft-diameter (45.7-m) parabolic antenna.12 

The smallest satellite considered in the study, the 10-mg satellite, was motivated by the Sprite ChipSat.5  The 

Sprite ChipSat is currently undergoing testing on the Materials International Space Station Pallet on the International 

Space Station.  The 1-g femtosatellite bridges the mass and ballistic coefficient gap between the higher and lower 

mass satellites.  Information on the satellites used in the trade study is provided in Table 2. 

D. Tether Material Composition 
The tether for a miniaturized EDT will have different requirements than tethers used for more massive satellites.  

In an EDT system for larger spacecraft, one satellite, or end-body, deploys a second end-body and the two are 

connected by a tether cable that can range from a few hundred meters to tens of kilometers in length.  We expect a 

tether for femtosatellites to be much shorter.  The end-bodies for traditional EDT systems are also orders of 

magnitude larger and more massive than considered here.  For example, in the Tethered Satellite System (TSS) 

missions, the Space Shuttle, which has a mass of about 100,000 kg, deployed a 521 kg, 1.6-m diameter sphere as the 

second end-body.13 In this case, the gravity-gradient force generated tension along the tether, pulling the long cable 

along the local vertical.  The approximate gravity gradient force is given by10  

 

 
3

0

gradientgravity

3

R

Lm
F

µ
≈−

  (7) 

and the corresponding torque is given by10 

 

 ( )ee
R

uIuτ •×=− spacecraft3

0

gradientgravity

3µ . (8) 

 

The gravity gradient torque can orient long objects along the local vertical and the force given by Eq. (7) can pull 
long, flexible structures roughly straight.  Vertical orientation is important because a tether that is straight and 

aligned along the local vertical in a low inclination orbit in LEO can generate peak in-plane thrust. 

In our design, we assume the end-bodies are identical femto- or picosatellites of equal size and mass since 

current collection and emission must occur at each end of the tether.  The vertical symmetry also helps improve the 

ability to have the center of mass, center of gravity, and the center of pressure located roughly at the midway point 

along the tether.  This should help reduce any torques induced by atmospheric drag, like that given in Eq. (4).  The 

gravity-gradient force given by Eq. (7), which scales with mass and length, will be small for femtosatellites.  As a 

result, a more rigid material is required to ensure that the tether achieves near straight orientation regardless of 

forces along its length or on the end-bodies, e.g., 

drag or solar pressure.  On a long time scale, if the 

tether acts like a rigid beam, the gravity-gradient 
torque in Eq. (8) should align it in the local 

vertical assuming symmetry in the system.  We 

consider this assumption further in section K. 

We have designed the EDT to have a semi-

rigid, conducting metal core and a thin layer of 

insulation.  We chose KaptonTM to be the 

insulation material due to its common use as 

spacecraft insulation and its high breakdown 

potential.  The tether insulation is 2 µm thick.  In 

the case that the anode bias voltage approaches the 

breakdown potential for 2-µm insulation, we instead use 4 µm of Kapton.   

Table 2. Parameters for satellites used in the trade study.  

Satellite concept for 

trade study 
Dimensions Mass 

Cross section 

area 

Drag force, 500-

km altitude 

Orbital lifetime estimate, 

500-km initial altitude 

Large femtosatellite 2 cm×5 cm×5 cm 100 g 10 cm2 60 nN few years 

Medium femtosatellite 1 cm×1 cm×1 cm 1 g 1 cm2 6 nN few months 

Small femtosatellite 1 mm×1 cm×1 cm 10 mg 0.1 cm2 0.6 nN few days 

 

Table 3. Properties of tether materials used for the 

trade study.  

Material Property Value 

Monel K-50014  

      Electrical resistivity (21 °C) 6.15×10−7 Ω·m 

      Mass density 8.47 g·cm−3 

      Elastic Modulus, Tension 179 GPa 

Kapton film15  

      Dielectric Strength  291 V·µm−1 

      Mass density 1.54 g·cm−3 
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We chose Monel-K500 to be the EDT core because of its high Young’s modulus and yield strength.  Although 

MonelTM is not a good conductor, the tether lengths and currents are small enough that the resistance, given by 

 

 







=

A

L
R yresistivitρ , (9) 

 

is not high.  Furthermore, the power dissipated in the tether is not a dominant factor because this loss term scales 

with resistance and the square of current, both of which are small values.  Some properties of Kapton film and 

Monel-K500 are included in Table 3. 

E. Tether Rigidity and Radius 
The force of atmospheric drag can bend or bow a tether because the magnitude of this force can vary between 

the tether and the end-bodies.  Sufficient bowing reduces the vertical length of the tether, which in turn can reduce 
thrust from that in Eq. (2).  To investigate tether bowing due to drag, we use D’Alembert’s principle to transform the 

accelerating body into a static system by adding inertial forces and torques.  This technique allows us to solve for 

EDT deflection as we would solve for deflection along a simply supported beam.16  The details of the derivation 

may be found in Ref. 9.  The variation in drag force along the structure causes a maximum deflection at the center 

calculated by  

 

 




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EDTendbody

EDTendbodyEDT
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mm
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The deflection ymax in Eq. (10) gives the bowing distance, which is the distance the center of the tether moves 

relative to the end-bodies.  The zeros of Eq. (10), or tether radii that cause ymax = 0, cannot be used because the radii 

are either extremely small (sub-micron) or large (millimeter).  Alternatively, we can solve for a radius in Eq. (10) 

that limits tether bowing to a small distance.  We solve Eq. (10) by limiting the maximum deflection to the total 

length multiplied by a small number ε, i.e., ymax = εL.  For example, if ε = 0.01 for a 1-m tether, the tether center 

bends outward 1 cm from both ends.  Equation (10) can be rearranged to give the atmospheric drag pressure  
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We rewrite Eq. (11) as 
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in order to solve for the radius of the tether.  One should note that the radius depends on ambient conditions. 

Figure 5 shows the radii for tether stiffness for a range of tether lengths.  It is important to note that, in the 

remainder of the trade study, we calculate parameters for each satellite such as drag, current, and power using the 

EDT radii in Fig. 5 that make the tether stiff at a given length.  For example, a 10-m-long EDT designed for a 100-g 

satellite (ε = 0.01, r = 106 µm) has a different radius than a 1-m-long EDT designed for the same satellite (ε = 0.01, 

r = 24 µm).  However, both tethers bow outwards a maximum of 1% the total length due to atmospheric drag.  The 
insulator is very thin and flexible relative to the metal core, so we assume that the Monel core provides the rigidity. 

We assume that lateral deflection where ε = 0.01 is sufficient to treat the tether and satellites as a single rigid 

structure.  To illustrate the impact of the relationship between radius and required current, we write Eq. (2) as 
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drag
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The current required for drag make-

up scales with tether length and 

radius.  Stiffer tethers have larger 

radii and, consequently, a higher drag 

force and required current.  Thus, if 

one designs an EDT with a large 
radius to further increase stiffness, 

the system requires more current to 

overcome the elevated drag force.  

 

 

 

 

 

 

 

 

 
 

 

 

 

F. Tether Mass 
 The tether mass can be calculated for a given length by  

 2

EDTEDT rLm πρ=             (14) 

using the tether radii found in Fig. 5 and the material densities found in Table 3.  The mass reported in Fig. 6 shows 

the mass of the tether and the mass of the satellite.  The lower end-body is a femtosatellite, so the total mass of the 
system is the sum of the tether mass and twice the satellite mass. 

 

 

 

 

 
Figure 5. Minimum radius for tether rigidity.  

 

 
Figure 6. Tether and satellite mass. 
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G. Tether Current 
1. Anode current 

 EDT thrust is proportional to current.  

Due to the higher mobility of electrons, more 

electron current may be collected per unit 

area than ion current.  Electrons can be 
collected on the outer surfaces of the 

satellites.  We assume that the femtosatellites 

can be coated with a transparent conductor, 

e.g., indium tin oxide, to facilitate the needed 

low current collection.  For the 1-g and 10-

mg femtosatellite, we can roughly estimate 

the current by approximating the satellite to 

be a sphere with a diameter equal to each 

satellite’s largest dimension or diagonal.  The 

diagonals of the 10-mg and 1-g satellites are 

about 3 Debye lengths  For an anode at a high 

bias with respect to plasma potential (~Φp  > 
100Te or 15 V), we expect the sheath to 

extend outwards several Debye lengths into 

the plasma and shield out the precise probe 

geometry. 

We conservatively estimate current 

collected by the 100-g satellite by assuming all four 2-cm-high edges of the satellite collect current like a single 2-

cm-diameter sphere.  The six faces should collect current like flat plates, but the current collection on these surfaces 

is small.  We also ignore collection along the eight 5-cm satellite edges. It should be noted that this estimate may be 

too conservative and should be analyzed further. 

The Rubinstein–Laframboise (R–L) canonical upper bound current can estimate current collected by a biased 

spherical probe in a weakly magnetized plasma.  The R–L current is given by17 
 

 










++==−

πβπβ

ψ
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22

2

1
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where the thermal current is 

 

 

e

e
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m

kT
qnrI

π
π

2
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thermal probe
= .  (16) 

And the normalized bias is 

 e

p

T

Vplasma−Φ
=ψ .  (17) 

 

Equation (15) is an approximation of the R–L current that assumes Φp  >> Te.  Figure 7 shows the R–L current–

voltage (I–V) curve relative to the orbital motion limited18 (OML) and Parker–Murphy19 (P–M) I–V curves.  The 

Parker–Murphy theory is appropriate when the probe-radius-to-gyroradius ratio, or β, far exceeds the β for small 

satellites in LEO.  Thus, we expect to collect much more current at a given voltage than this theory and less than the 
maximum allowable current estimated by OML theory.  The R–L I–V curve lies between the OML and P–M curves, 

so it is our best estimate.  

 

2. Cathode current 

Field emitter array (FEA) technology can be used to emit electrons at the opposite end of the tether.  The 

Fowler–Nordheim emission law is20  

 

 )exp( gate

2

gatecathode VbVaI FNFN −=  .  (18) 

 

 
Figure 7. Current-voltage characteristic for a 1-cm radius 

sphere (β = 0.32) and a 0.7-cm radius sphere (β = 0.23).  Table 1 

plasma density is used. 
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The Spindt cathode consists of an array of sharp-tipped, sub-µm-radius cones that emit electrons when the nearby 

gate is biased to Vgate.  Carbon nanotube emitter arrays may be a feasible alternative for future femtosatellites.  A 

minimum current is noticeable at specific EDT lengths in Fig. 5: the current minimum is 1 meter for the 10-mg 

satellite, 3 meters for the 1-g satellite, and 10 meters for the 100-g satellite.  We calculate the maximum available 

current, shown in Fig. 8, from available power, which we discuss in Section H. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 8. Required current for rigid tether (ε = 0.01).  
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H. Power  
In order to determine if EDT propulsion is feasible for femtosatellites, the electrical power used by the EDT 

system to overcome the drag force must be less than the generated power.   

 

1. Generated power 

We estimate the amount of electrical power generated by the satellite with the expression  
   

 ( )
albedosundirectsunefficiencySPgenerated

2

1
φφη AAP += −

 .  (19) 

We assume that the femtosat has solar panels on all six sides of the upper and lower end-bodies, three of which are 

exposed to the sun at any given time.  The solar panel has an efficiency ηSP-efficiency, which we assume to be 10% as 

reported in Ref. 21.  Of the total energy collected from direct solar radiation and Earth albedo, we assume that 25% 

is lost in the step-up voltage DC–DC converter and other loads.  We neglect the small energy contribution from 

Earth infrared radiation.  The expression estimating generated power also assumes that the satellite is in the sun 

roughly half of the time, i.e., the ½ coefficient.  The actual amount of time in the sun depends on the orbit and the 

altitude. 

 

2. Dissipated power 
The power required for EDT thrust is 

 

 
cathodeanodetethertotal

PPPP ++= . (20) 

 

The power required to collect electrons is a fraction of the total available power, given by 

 

 
generatedfractionanodeanode PP −= η , (21) 

and it can be calculated by 

 

 
pIP Φ= −LRanode
. (22) 

 

The power required to emit electron current from the cathode is 

 

 
gateanodecathode VIP = . (23) 

 

The power dissipated in the tether, given by 
 

 RIP
2

tethertether = , (24) 

 

is small relative to other losses because the current and resistance are low. 

To solve for maximum available current, we assume that some fraction ηanode-fraction of the overall generated 

power is reserved for current collection.  The maximum current and anode potential can be calculated from Eq. (21) 

and Eq. (15).  We then find the FEA base-gate potential Vgate required to emit the collected current and calculate the 

power needed to operate the cathode. 

The electromotive force is a loss mechanism for boosting in low inclination prograde orbits, but we disregard it 

in Eq. (19) because it is extremely small for the tether lengths considered.  Current and power are directly related, so 

given the shape of the current–tether length curve in Fig. 8, we expect a similar shape for the power–tether length 

curve in Fig. 9.  A short EDT requires a large current to overcome the drag force on the satellite.  The rigidity of a 
beam decreases with length, so a very long EDT must have a large radius to prevent bowing.  As a result, the drag 

due to the tether dominates over the drag due to the satellite, driving up the required current.  The current is 

minimized when these two effects are balanced.  Table 4 summarizes the power calculations. 

Figure 9 shows the available power for thrust and the required thrust power.  The available power is the 

estimated power available for EDT propulsion after DC–DC converter loss and loss to other loads.  The required 

thrust power is the power needed to overcome the atmospheric drag force.  If the required thrust power is higher 

than the available power, the EDT cannot overcome the drag force.  However, if the converse is true and the 

femtosatellite has more power available than is required for thrust, the EDT can boost. 
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Table 4. Power constraints for current collection.  

Parameter 
10-mg 

satellite 

1-g 

satellite 

100-g 

satellite 

Solar radiation flux (W·m−2) 1367 1367 1367 

     Earth albedo (%) 30 30 30 

     Solar panel area exposed to the sun (cm2)   2 6 90 

Total generated power (mW) 17 53 800 

Power available for propulsion after 25% is lost 
to DC–DC conversion and other loads (mW) 

13 40 600 

Anode power (mW) 3.7 21 540 

     Equivalent anode sphere radius (cm) 0.7 0.86 1 

     Anode voltage (V) 17 52 430 

     Anode current (µA) 214 403 1250 

Cathode power (mW) 8.5 16.7 56.6 

     Cathode base-gate voltage (V) 39.6 41.4 45.12 

Power dissipated by tether (mW) 0.01 0.04 0.5 

Total power consumed (mW) 12.2 37.7 596 

 

Figure 9. Electrical power required for drag make-up thrust and 

available electrical power. 
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I. Thrust Power as a Measure of Efficiency 
The instantaneous power expended generating EDT thrust is  

 

 vF •=
Lorentzthrust

P  (25) 

 

or, expanding the expression for the Lorentz force, is 
 

 ( ) vBL •×=
tetherthrust

IP  .  (26) 

 

We can also express the magnitude of the EDT thrust power in terms of the electromotive force as 

 

 
tetheremfthrust IVP =  .  (27) 

 

For an EDT operating in deboost mode in LEO, the electromotive force drives current in the tether, which converts 

orbital energy into electrical energy.  In boost mode, however, the EDT system uses external energy, i.e., the solar 

energy converted to electrical energy and current flow, to increase the orbital energy of the satellite over time.  For 

either deboost or boost mode, the overall EDT power losses include power used to collect and emit current in the 

ionosphere and power dissipated in ohmic loss in the tether.  We can calculate the EDT thrust efficiency by taking 

the ratio of the thrust power and the total dissipated power, given by 

 

 

total

thrustEfficiency
P

P
=  .  (28) 

 

 Figure 10 shows the thrust power efficiency, assuming the EDT system uses the total available power given in 

Table 4 for maximum thrust.  The thrust efficiency increases with the tether length because the electromotive force 

increases with length.  For tether lengths below 100 meters, a majority of the available power is dissipated in 

collecting current from the ionosphere and only a small percentage increases the energy of the orbit over time.  The 

EDT system described here might be considered inefficient.  However, the solar power available easily provides 

what is needed and the EDT is propellantless, so we believe the EDT still provides a potentially viable approach for 

propulsion.   

 The low efficiency reported here is in contrast to larger, more traditional EDT systems, which utilize much 

longer tethers and larger end-bodies.  Larger end-bodies have more current collection area and can also make use of 

hollow cathodes for more efficient current collection, so a smaller fraction of the total power is dissipated to collect 
the required current.  Longer tethers 

generate a higher electromotive force.  By 

utilizing longer tethers and larger end-

bodies, the larger EDT systems are generally 

more efficient. 

We may also need to revise our anode 

collection model.  The collection theory 

does not calculate the exact current collected 

by the anode, so we may need to analyze 

and experimentally verify our assumptions 

to see if the current collection estimates here 
are too conservative.  An anode that requires 

less voltage to collect the same current 

would be more efficient and could 

consequently raise the efficiency of the 

propulsion system. 

 

 

 

 

 

Figure 10. The percentage of available power used for thrust, 

assuming the total power available is used to achieve maximum 

thrust. 
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J. Estimating Forces on the Tether and the Femtosatellite 
The drag force, the solar radiation pressure force, the gravity gradient force, and the Lorentz force are the 

dominant forces acting on the femtosatellites and tether system in LEO.  The drag force is given by Eq. (3), the 

gravity gradient force is given by Eq. (7), and the Lorentz force is given by Eq. (2).  To estimate the solar radiation 

pressure force, we calculate the maximum force on each end-body as22 

 

 ( ) 















Γ+

Γ
+Γ−

Φ
= spec

diffuse
spec

direct
plate

3
21

c

A
F  (28) 

 

and the maximum force on the tether as22 

 

 







 Γ
+

Γ+Φ
=

2

1

3

2 diffusespecdirect
cylinder

π

π

c

rL
F  (29) 

 

and sum the quantities, assuming they simply add.  Equations (28) and (29) are both maximum forces where the 
solar radiation is directly incident on the surface, i.e., there is no tilt angle between the surface normal and the 

incident solar radiation.  The total solar radiation pressure force, shown in Figs. 11–13, is the sum of Eq. (28) and 

Eq. (29).  We do not calculate the torque due to the solar radiation pressure force. 

 

 

 

 

 

 

 

Figures 11–13 show the forces that act on the tether–femtosatellite system.  We expect the atmospheric drag 
force to be dominant for extremely small spacecrafts in LEO.24  EDT thrust exceeds the drag force for a range of 

tether lengths.  To increase the boosting capability, we choose a tether length where there is the greatest difference 

between the drag force and the EDT thrust.  This length also corresponds to the length that minimizes required 

current (Fig. 8) and power (Fig. 9). 

Figures 11–13 also reveal that the margin between EDT thrust and drag is small for each of the satellites.  The 

margin can be widened by increasing the 

EDT current and utilizing a thinner tether.  

A thinner tether would lower the drag 

force at the expense of tether rigidity.  We 

could increase the current by revisiting 

our assumptions and determining if the 

current collection model and available 
power estimate are too conservative. 

It should also be noted that the 

gravity-gradient force is very small 

relative to other forces for the 10-mg 

satellite and the 1-g satellite.  The gravity-

gradient force generates tension along the 

tether and the torque aligns the tether 

along the local vertical.  In this trade 

study, we assumed that the tether is 

aligned along the local vertical.  For low 

inclination orbits, this alignment results in 
a maximum thrust given by Eq. (2).  If we 

cannot assume vertical EDT orientation, 

the thrust should be calculated by Eq. (1).  

If the gravity gradient force is weak 

relative to the drag and solar pressure 

Table 5. Representative solar panel and 

Kapton optical properties. 
Parameter Kapton H Film23  Solar Panel22  

Γspec 0.104 0.042 

Γdiffuse 0.013 0.168 

 

 
Figure 11. Forces on the 10-mg satellite and EDT. 
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forces, we cannot assume any orientation.  The magnitude and direction of the resulting EDT force can vary widely 

so drag make-up is not guaranteed, even with sufficient tether current. 

For the 100-g satellite using a 10-m EDT, the gravity-gradient force is about twice the drag force.  We assume 

that the spacecraft is aligned along the local vertical for the 10-m EDT because the gravity-gradient force is 

dominant.  We need to analyze the spacecraft dynamics in more detail to accurately estimate the orientation. 

The gravity-gradient force is small for the 1-g satellite and negligible for the 10-mg satellite, so we cannot 
assume that the system is aligned along the local vertical.  In order to use EDT propulsion for these satellites, we 

either need to implement an alternative method for ensuring vertical EDT alignment or we can utilize tethers 

oriented along multiple spacecraft axes, as proposed in Ref. 25.  By orienting tethers along different axes, we may 

be able to provide EDT thrust without gravity-gradient stabilization.  With multiple tethers on different axes, the 

satellite can boost regardless of its orientation. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 12. Forces on the 1-g satellite and EDT. 

 
Figure 13. Forces on 100-g satellite and EDT. 
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K. Attitude Stability Concerns and Zeroth Order Estimates 
It is important to investigate the attitude stability of the EDT system because the EDT orientation affects thrust.  

In LEO in low inclination orbits, in-plane thrust requires the tether to be aligned near or along the local vertical.  We 

need to understand if the gravity gradient torque will maintain stable orientation along the local vertical for all three 

femtosatellite and tether systems.   

We first determine if the orientation of the EDT system along the local vertical is stable.  We begin by 
positioning the EDT system according to Fig. 14 and assuming that the x axis is aligned with the velocity vector, the 

y axis is aligned along the orbit normal, and the z axis is aligned with the nadir vector.  In this coordinate system, a 

rotation about the x axis is roll, a rotation about the y axis is pitch, and a rotation 

about the z axis is yaw.  We model the EDT as a long, thin rod oriented along the z 

axis and the end-bodies as relatively smaller cuboids with their largest dimensions 

in the xy plane.  We also know from the trade study that L is much greater than both 

w and h.  Due to the proportions of the EDT system, the mass moment of inertia 

around the z axis, or Iz, is much smaller than the mass moments of inertial around 

the x or y axis, or Ix and Iy.  The current design is also symmetric in the xz and yz 

planes, so Ix = Iy.  

We can estimate attitude stability by comparing the relative sizes of the mass 

moments of inertia.  The necessary and sufficient condition for pitch stability is Ix > 
Iz,

26 so we can expect the EDT system to have stability in rotations around the y 

axis.  However, for roll and yaw stability, Iy > Ix > Iz,
 26 so the EDT system does not 

have roll or yaw stability.  We will need to study the mass moments of inertia and 

the conditions for attitude stability much more rigorously before we can draw more 

meaningful conclusions about the attitude dynamics of the femtosatellite and tether 

system.   

 We will also need to investigate the combined effects of gravity-gradient torque 

and torque due to atmospheric drag.  Aerodynamic torque tends to orient the 

spacecraft so the velocity vector, v, lies along the same line as the vector pointing 

from the center of mass to the center of pressure, Scp.  If the center of mass and 

center of pressure are vertically displaced in a tether system, the aerodynamic drag torque will rotate the tether 
system away from the local vertical until v || Scp, where the drag torque equals zero.  The gravity-gradient torque, 

however, counteracts this rotation and tends to restore the tether to the local vertical.  It is necessary to study the 

relative strength of the drag and gravity gradient torques in order to understand the resulting tether attitude. 

 

 

L. Preliminary experimental considerations 
It is essential to understand the capability of the anode to collect electron current because the current collected by 

the anode is directly proportional to EDT thrust.  There is presently no theory that predicts the exact current 

collection to a biased cuboid in a flowing, weakly magnetized plasma.  It is possible that the current collection 

estimate used in this trade study is too conservative and that we are underestimating EDT efficiency and 

underpredicting thrust capability.  A laboratory experiment would provide a more accurate estimate of current 

collection by the anode and, as a result, would allow us to better estimate EDT performance in LEO. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 14. Femtosatellite 
Illustration with Axes. 
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III. Conclusion 

A short, semi-rigid EDT scales to the small size needed, is propellantless, keeps the overall ChipSat mass low, 

and provides enough thrust to overcome drag in LEO.  For low inclination orbits, the EDT’s ability to provide thrust 

requires the tether to be oriented along or near the local vertical.  The gravity-gradient force is large relative to other 

forces for the 100-g femtosatellite.   However, we are not prepared to assume that the gravity gradient torque will 

align the tether.  Further analysis on attitude stability is continuing.   

The gravity-gradient force for the 10-mg and 1-g satellites is small relative to the drag and solar pressure forces, 

so we cannot conclude that the EDT thrust capability is possible for a single EDT.  An array of short tethers, 

however, oriented along different axes may be a feasible solution to EDT thrust for the small femtosatellites in the 

absence of gravity gradient stability.  We will also continue to investigate anode current collection.  Table 6 
summarizes results from the trade study. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

   Table 6. Summary. 

Parameter 10-mg Satellite 1-g Satellite 100-g Satellite 

Satellite dimensions 1 mm × 1 cm × 1 cm 1 cm × 1 cm × 1 cm 2 cm × 5 cm × 5 cm 

Ram drag cross sectional area 0.1 cm2 1 cm2 10 cm2 

EDT length 1 m 3 m 10 m 

Tether diameter 24 µm 66 µm 212 µm 

Tether mass  3 mg 80 mg 3 g 

Available power (estimated) 13 mW 40 mW 600 mW 

Current 214 µA 403 µA 1250 µA 

Thrust power efficiency  0.4% 0.7% 0.5% 

Is gravity gradient force 
significant? 

no no yes 
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