
Dynamic Response of Highly Flexible Flying Wings

Weihua Su∗ and Carlos E. S. Cesnik†

University of Michigan, Ann Arbor, Michigan 48109-2140

DOI: 10.2514/1.J050496

This paper presents a method to model and analyze the coupled nonlinear flight dynamics and aeroelasticity of

highly flexible flyingwings. A low-order nonlinear strain-based finite element framework is used, which is capable of

capturing the fundamental impact of geometrically nonlinear effects in a computationally effective formulation

target for preliminary vehicle design and control evaluation. A simple model to capture the change in the wing

torsional stiffness due to skin wrinkling arising from large bending curvatures is proposed. Finite-state unsteady

subsonic aerodynamics with simplified stall models are incorporated to complete the aeroelastic representation of

flyingwings. In studying theflyingwingdynamic response, a spatially and temporally distributed discrete gustmodel

is introduced. With the proposed formulations, numerical studies are conducted based on a representative highly

flexible flying wing subjected to finite disturbances.

Nomenclature

Ac = gust amplitude at center of region, m=s
AE, AN = spatial distribution functions of gust amplitude in

east and north directions, respectively
a0 = local aerodynamic frame, with a0y axis aligned

with zero lift line of airfoil
a1 = local aerodynamic frame, with a1y axis aligned

with airfoil motion velocity
B = body reference frame
BF, BM = influence matrices for the distributed forces and

moments
b = positions and orientations of the B frame, as time

integral of �
bc = semichord of airfoil, m
CFF, CFB,
CBF, CBB

= components of the generalized damping matrix

CGB = rotation matrix from B frame to G frame
clmax

= maximum lift coefficient when stall angle is
reached

cl� = lift curve slope
cl�, cm� = lift and moment slopes due to flap deflection
cm0, cd0 = moment and drag coefficients for zero angle of

attack
cm0stall = moment coefficient when stall angle is reached
d = distance of midchord in front of beam reference

axis, m
F1, F2, F3 = influence matrices in inflow equations with

independent variables
Fdist, Fpt = distributed and point forces
G = global (inertial) reference frame
g = gravity acceleration column vector, m=s2

Hhb = matrix consisting of influence from the Jacobian
Jhb and body angular velocities !B

h = absolute positions and rotations of beam nodes
J = Jacobian matrix

KFF = components of the generalized stiffness matrix
lac, mac, dac = aerodynamic loads on an airfoil about its

aerodynamic center
M, C, K = discrete mass, damping, and stiffness matrices

of whole system
MFF,MFB,
MBF,MBB

= components of generalized mass matrix

Mdist,Mpt = distributed and point moments
N = influence matrix for gravity force
nE, nN = tuning parameters that determine spatial

distribution of gust amplitude
PB = inertia position of B frame, resolved in G frame
pB, �B = position and orientation of B frame, as time

integral of vB and !B, respectively
pw = position of w frame with respect to B frame
q = independent variables of equations of motion
RB, RF = rigid-body and flexible components of

generalized load vector
r, � = polar coordinates that determine location of a

point within the gust region
r0 = radius of gust region, m
s = beam curvilinear coordinate, m
t = time, s
tg = gust duration, s
tsw = time when threshold bending curvature is

reached, s
vB, !B = linear and angular velocities of B frame, resolved

in B frame itself
Wext,W int = external and internal virtual work, respectively
w = local beam reference frame defined at each node

along beam reference line
xsw = system variables at time when threshold bending

curvature is reached
_y, _z = airfoil translational velocity components resolved

in a0 frame, m=s
_� = airfoil angular velocity about a0x axis, rad=s
�stall = stall angle, deg
� = body velocities, with translational and angular

components, resolved in B frame
� = trailing-edge flap deflection, rad
" = total elastic strain vector of aircraft
"e = element elastic strain vector
"sw = strain vector when flat bending curvature reaches

threshold value
"0 = initial (prescribed) elastic strain vector
� = quaternions defining orientation of B frame
� = rotations of beam nodes, rad
� = inflow states, m=s
�0 = inflow velocities, m=s
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� = air density, kg=m3

����� = coefficient matrix of quaternion equations, a
function of body angular velocities

Subscripts

B = reference to B frame
BB, BF = components of a matrix with respect to body/

flexible differential equations of motion
F = reference to flexible degrees of freedom
FB, FF = components of a matrix with respect to flexible/

body differential equations of motion
hb = h vector with respect to motion of B frame
h" = h vector with respect to strain "
pb = nodal position with respect to motion of B frame
p" = nodal position with respect to strain "
�b = nodal rotation with respect to motion of B frame
�" = nodal rotation with respect to strain "

I. Introduction

H IGHLY flexible flying wings have been considered an
important concept for high-altitude long-endurance (HALE)

unmanned aerial vehicles (UAVs). In 1994, NASA initiated the
Environmental Research Aircraft and Sensor Technology program,
aimed at developing UAVs capable of long-duration and very high-
altitude flights for atmospheric research. Under this program, an
evolutionary series of unmanned aircraft: Pathfinder, Pathfinder Plus,
Centurion, and Helios Prototype, were developed by AeroViron-
ment, Inc. These HALE vehicles feature light wings with high aspect
ratios, as illustrated in Fig. 1. The long and slender wings, by their
inherent nature, can maximize the lift-to-drag ratio. On the other
hand, these wings may undergo large deformations during normal
operating loads, exhibiting geometrically nonlinear behavior.
Because of this inherently high flexibility, traditional linear theories
do not provide accurate estimations on HALE aircraft aeroelastic
characteristics. Patil et al. [1,2] studied the aeroelasticity and flight
dynamics of a HALE aircraft. The results indicated that the aero-
elastic behavior and flight dynamic characteristic of the aircraft can
be significantly changed due to the large deflection of the flexible
wings. This leads to the conclusion that the coupled effects between
the large deflection due to the vehicle flexibility and the flight
dynamics, as well as other aeroelastic effects (e.g., gust response and
flutter instability) must be properly accounted for in a nonlinear
aeroelastic framework. Under certain operating conditions when the
aircraft’s deformed shape is significantly different from its un-
deformed one, the aeroelastic analysis must be based on the actual
trimmed conditions.

Recently, there has been increasing interest in the analysis of the
dynamic response of highly flexible flyingwing vehicles. The trigger
was the loss of the Helios Prototype (HP03) [3], which indicated that
these long, slender flying wing vehicles can be very sensitive to
disturbance. The number one recommendation from the NASA
investigation panel was [3] “(to) develop more advanced, multi-
disciplinary (structures, aeroelastic, aerodynamics, atmospheric,
materials, propulsion, controls, etc.) ‘time-domain’ analysismethods
appropriate to highly flexible, ‘morphing’ vehicles.”

Patil and Hodges [4] have studied the flight dynamics of a flying
wing vehicle that resembles the Helios Prototype. Because of the
high flexibility of the configuration, the vehicle undergoes large
deformation at its trimmed condition when fully loaded. According
to their study, the flight dynamic characteristics of the deformed
vehicle under heavy payload conditions present an unstable phugoid
mode. The classical short-period mode does not exist. In that work,
the nonlinear time-marching simulation was performed with no stall
effects and no simulation other than the response to the aileron
perturbation was presented.

Gust responses of highly flexible flying wings have become a
focus of research. Gusts are random in nature. They can affect
different aspects of the aircraft’s operation, such as its dynamic load,
flight stability and safety, and control [5]. In a high-fidelity analysis, a
randomgust is represented by a continuousmodel.However, discrete
gust models are also used due to their simplicity (also mandated by
Federal Aviation Regulations). Patil and Taylor [6] performed
frequency-domain analysis of linear gust responses of a highly
flexibleflyingwing,where the spanwise nonuniformgust excitations
of the highly flexible vehicle led to larger deformations than the
uniform one. That work was extended to the time domain in [7],
where a gust input time series was first created based on the assumed
gust power spectral density. The response stochastic parameters were
calculated from the response time series. This method could be
applied in the time domain for analysis of nonlinear gust responses.

Another important characteristic of the long and slender wings
relates to their natural frequencies. These wings tend to have very
low-frequency elastic modes that may interact with the rigid-body
motion of the aircraft, which makes it necessary to analyze the
nonlinear aeroelasticity of the whole vehicle within a coupled
formulation. Love et al. [8] studied the body-freedom flutter of a
high-aspect-ratio flying wing model. Their results indicated that the
body-freedom flutter was critical for lower altitude portions of the
flight envelope and that active flutter suppression should be
considered. Raghavan and Patil [9] conducted coupled aeroelastic
and flight dynamic studies of a highly flexible flying wing. They
identified that the largewing deformation under operating conditions
might change the flight dynamic behavior. Shearer and Cesnik [10]
demonstrated that vehicle trajectories calculated from nonlinear
rigid-body and linearized solutions might significantly differ from
the ones based on fully nonlinear solutions for highly flexible
aircraft. Therefore, fully nonlinear simulations may be necessary to
properly predict the vehicle trajectories.

While few efforts can be found in the literature that attempt to
address the response of a highly flexible flying wing considering
different nonlinear effects, its dynamic response is still an open
problem. As already established, highly flexible flying wings will
present large (nonlinear) deformations under the operating loads,
which comewith a large local angle of attack and dihedral angle. This
large dihedral angle may cause vehicle instability under disturbances
or gust loads. One particular aspect that can potentially bring some
interesting nonlinear effects is associated with the wrinkling of the
wing skin. To achieve very light constructions, the typical wing
structure of such vehicles is composed of a main (circular) spar with
ribs attached to it along specific span stations. A very light and thin
film is used to close the airfoil and provide the desired airfoil shape.
The resulting structure can be represented by a closed cell beam
section. Significant torsional stiffness comes from the presence of the
skin. However, during large bending deformations, the skin may
unstretch and wrinkle. The local torsional stiffness will drop as a
result of the skin wrinkling. Once the bending curvature is reduced,
the skin stretches again and the original configuration may be

Fig. 1 Helios Prototype as a sample of highly flexible flyingwing (photo

courtesy of NASA Dryden Flight Research Center).
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recovered. This additional nonlinear effect can alter the vehicle
aeroelastic response during flight. A bilinear stiffness model may be
used to capture such effects. Dynamic aeroelastic response of multi-
segmented hinged wings was originally studied theoretically and
experimentally byRadcliffe andCesnik [11]. Themultihingedwings
present a nonlinear (bilinear) stiffness. In their study, a method of
modeling the aeroelastic characteristics of multihinged wings was
proposed and could be adapted for the very flexible wing problem
discussed here. The Hénon method [12] was used to switch between
bilinear states of the wing in bending.

This paper presents the formulation and modeling of the coupled
nonlinear flight dynamics and aeroelasticity of highly flexible flying
wings. It extends theUniversity ofMichigan’s Nonlinear Aeroelastic
Simulation Toolbox (UM/NAST) [10,13,14] with a spatially and
temporally distributed gust model and a local bilinear torsional
stiffness representation of the skin wrinkling due to wing bending
deformations. The formulation is then applied to a Helios-like
vehicle [4], and different aeroelastic responses are studied.

II. Theoretical Formulation

Because of the interaction betweenflight dynamics and aeroelastic
response, the formulation includes six rigid-body and multiple
flexible degrees of freedom. The structural members are allowed
fully coupled three-dimensional bending, twisting, and extensional
deformations. Control surfaces are included for maneuver studies. A
finite-state unsteady aerodynamicmodel is integrated into the system
equations. An overview of the formulation implemented in UM/
NAST is described next. Particular emphasis is given to the twomain
additions to the simulation framework that are explored in this paper:
1) spatially and temporally distributed discrete gust model, and
2) bilinear torsional stiffness model.

A. Fundamental Description

As shown in Fig. 2, a global (inertial) frameG is defined, which is
fixed on the ground. A body frame B is built in the global frame to

describe the vehicle position and orientation, with Bx pointing to the
right wing,By pointing forward, andBz being the cross product ofBx
andBy. The position and orientation b and the time derivatives _b and
�b of the B frame can be defined as

b�
�
pB
�B

�
; _b� ��

�
_pB
_�B

�
�
�
vB
!B

�

�b� _��
�

�pB
��B

�
�
�

_vB
_!B

� (1)

where pB and �B are body position and orientation, both resolved in
the body frameB. Note that the origin of the body frame is arbitrary in
the vehicle, and it does not have to be the location of the vehicle’s
center of gravity.

As described in Fig. 3, a local beam frame w is built within the
body frame, which is used to define the position and orientation of
each node along the beam reference line. Vectorswx,wy, andwz are
bases of the beam frame, for which the directions are pointing along
the beam reference axis, toward the leading edge, and normal to the
beam surface, respectively, resolved in the body frame.

To model the elastic deformation of slender beams, a nonlinear
beam element was developed in [13,15]. Each of the elements has
three nodes and four local strain degrees of freedom, denoted as

"Te � f "Tx ; 	Tx ; 	Ty ; 	Tz g (2)

where "x is the extensional strain, 	x is the twist of the beam reference
line, and 	y and 	z are the bending about local wy and wz axes,
respectively. The total strain vector of the complete aircraft is
obtained by stacking the element strain vectors:

"T � f "Te1; "Te2; "Te3; � � � g (3)

With the rigid-body and elastic degrees of freedom defined, the
complete independent set of variables of the strain-based formulation
is

q�
�
"
b

�
�
(
"
pB
�B

)
; _q�

�
_"
�

�
�
(

_"
vB
!B

)

�q�
�

�"
_�

�
�
(

�"
_vB
_!B

) (4)

The position and orientation of each node along the beam are
defined by a vector consisting of 12 components, denoted as

h�s�T � f �pB � pw�s��T; wx�s�T; wy�s�T; wz�s�T g (5)

where pw is the position of the w frame resolved in the body frame.
The derivatives and variations of the dependent variable h are related
with those of the independent ones as

�h� Jh"�"� Jhb�b; _h� Jh" _"� Jhb _b� Jh" _"� Jhb�

dh� Jh"d"� Jhbdb; �h� Jh" �"� _Jh" _"� Jhb _�� _Jhb�
(6)

where

Jh" �
@h

@"
; Jhb �

@h

@b
(7)

are transformation Jacobians obtained from kinematics. The other
necessary Jacobian matrices, including Jp", J�", Jpb, and J�b, which
relate the nodal positions and rotations to the independent variables,
can be derived from Jh" and Jhb [10,13,14].

B. Elastic Equations of Motion

The elastic equations of motion are derived by following the
principle of virtual work. The virtual work of an elastic wing consists
of the contributions of inertia forces, internal strains and strain rates,

Fig. 2 Global and body reference frames.

Fig. 3 Flexible lifting-surface frames and body reference frame.
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and external loads. The contribution of each virtual work is derived
separately and then summed at the end to represent the total virtual
work of the complete vehicle. This paper gives a brief overview of it,
and the detailed derivation process can be found in [16]. The virtual
work due to internal and external loads is given as

�W int �	�hTM �h 	 �hTMHhb� 	 �hTM _Jhb� 	 �"TC _"

	 �"TK�" 	 "0�
�Wext �	�hTNg� �pTwBFFdist � ��TBMMdist � �pTwFpt

� ��TMpt (8)

The dependent variables (h, pw, and �) can be replaced by the
independent variable by applying the Jacobians [see Eq. (6)] and
their subsets. Therefore, the total virtual work on a beam can be
written as

�W � �Wint � �Wext

�	f �"T �bT g
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Following the same process described in [16], the elastic system
equations of motion are eventually derived as

MFF MFB

MBF MBB

" #�
�"

_�

�
�

CFF CFB

CBF CBB

" #�
_"

�

�
�

KFF 0

0 0

" #�
"

b

�

�
�
RF

RB

�
(10)

where the generalized inertia, damping, and stiffness matrices are

MFF�"� � JTh"MJh"; MFB�"� � JTh"MJhb;
MBF�"� � JThbMJh"; MBB�"� � JThbMJhb;

CFF�"; _"; �� � C� JTh"M _Jh";

CFB�"; _"; �� � JTh"MHhb � 2JTh"M _Jhb;

CBF�"; _"; �� � JThbM _Jh";

CBB�"; _"; �� � JThbMHhb � 2JThbM _Jhb; KFF � K

(11)

and the generalized force vector is�
RF

RB

�
�
�
KFF"

0

0

�
	

JTh"

JThb
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Ng�

JTp"

JTpb
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JT�"
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" #
Mpt (12)

whereN,BF, andBM are the influence matrices for the gravity force,
distributed forces, and distributed moments, respectively, which
come from the numerical integration. The generalized force vector

involves the effects from initial strains "0, gravity fields g, distributed
forces Fdist, distributed moments Mdist, point forces Fpt, and point
momentsMpt. The aerodynamic forces and moments are considered
as distributed loads.

C. Unsteady Aerodynamics

The distributed loads, Fdist andMdist in Eq. (12), are divided into
aerodynamic loads and user-supplied loads. The unsteady aero-
dynamic loads used in the current study are based on the two-
dimensional (2-D) finite-state inflow theory, provided in [17]. The
theory calculates aerodynamic loads on a thin airfoil section
undergoing large motions in an incompressible inviscid subsonic
flow. Based on known aerodynamic coefficients, the lift, moment,
and drag of a thin 2-D airfoil section about its aerodynamic center are
given by

lac � 
�b2c�	 �z� _y _�	d ��� � cl��bc _y2
�
	 _z

_y
�
�
1

2
bc 	 d

�
_�

_y

	 �0
_y

�
� �bc _y2cl��

mac � 
�b3c
�
1

2
�z 	 _y _�	

�
1

8
bc 	

1

2
d

�
��

�
� 2�b2c _y

2�cm0 � cm���

dac �	�bc _y2cd0 (13)

where � is the trailing-edge flap deflection angle, bc is the semichord,
d is the distance of the midchord in front of the reference axis, cl� is
the lift curve slope, cl� and cm� are the lift and moment slopes due to
flap deflection, respectively, and cd0 and cm0 are the drag andmoment
coefficients for zero angle of attack, respectively. The quantity	 _z= _y
is the angle of attack that consists of the contribution from both the
pitching angle and the unsteady plunging motion of the airfoil. The
different velocity components are shown in Fig. 4. The inflow
parameter �0 counts for induced flow due to free vorticity, which is
the summation of the inflow states �, as described in [17] and given
by

_�� F1 �q� F2 _q� F3�� F1

�
�"
_�

�
� F2

�
_"
�

�
� F3� (14)

Note that the finite-span corrections are also included in the force
distribution and may come from a CFD solution of the problem or
experimental data if available. The aerodynamic loads about the
aerodynamic center will be transferred to the wing elastic axis and
rotated into the body frame for the solution of equations of motion.

D. Simplified Stall Models

There are two stall models considered in the current study. For stall
model 1, the lift coefficient cl is kept constant and equal to clmax

once
the angle of attack goes beyond the stall angle, and the moment
coefficient cm0 remains the same as before stall. Stall model 2 is
similar to stall model 1, with the only difference that, now, the
moment coefficient is dropped to another constant value of cm0stall , as
illustrated in Figs. 5 and 6.
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Fig. 4 Airfoil coordinate system and velocity components.
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E. Discrete Gust Model

In general, gust disturbance is stochastic. In the current work, the
gust model is simplified as an elliptical region with only vertical
disturbance. However, this gust model is both space and time
dependent. The gust region is located on the flight path of the vehicle.
At each time, the amplitude of gust speed reaches the maximum at
the center and reduces to zero at the boundary. Figure 7 shows the
amplitude distribution of the gust model. For the particular example
used in the current study, the gust region is defined as a circular one.
The amplitude distributions along the north and east directions may
be different. At each location within the gust region, the amplitudes
follow the same temporal variation. The basic equations governing
the gust model are

A�r;�;t��1

2
Ac

�
1	 cos

�
2


t

tg

�� �������������������������������������������������
�AE cos��2��AN sin��2

p
(15)
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��
;

AN�r� � sin

�



2

�
1 	

�
r

r0

�
nN
��
; 0< r 
 r0

(16)

where footnotes E and N stand for east and north directions,
respectively. Ac is the gust amplitude at the center of region, r0 is the
outer radius of the gust region, r is the distance from one point within
the gust region to the gust center,� is the orientation angle of the point
with respect to the east direction, and nE and nN are parameters used
for adjusting the gust spatial distribution along the east and north
directions, respectively. By choosing different nE and nN , the spatial
variation of gust amplitudes in the east and north directions will be
different. It also satisfies the requirement that the amplitude at the
gust center is the maximum and decreased down to zero at the
boundary. The spatial distribution is then combined with the one-
minus-cosine time distribution, leading to the gustmodel represented
by Eq. (15). Finally, tg is the gust duration. Figure 8 shows the one-
minus-cosine time variation of the amplitude at the gust center.
Different temporal variations can be applied for numerical studies.

F. Coupled Nonlinear Aeroelastic and Flight Dynamic System

Equations of Motion

The coupled nonlinear aeroelastic and flight dynamic system
equations of motion are obtained by augmenting the equations of
rigid-body motion and elastic deformations with the inflow
equations, which can be represented as
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�
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�

�
�F3�

(17)

where � are the quaternions describing the orientation of the body
frame B, PB is the inertial position of the B frame, and CGB is the
rotation matrix from the body frame to the global frame G [10].

G. Modeling of Skin Wrinkling

As discussed, for a typical highly flexible flying wing con-
struction, significant torsional stiffness comes from the presence of
the stretched thin skin. During large bending deformations, the skin
maywrinkle. The unstretched skin causes the local torsional stiffness

c
l

α

α
stall

c
m0

α

α
stall

c
l_max

a) Lift coefficient b) Moment coefficient
Fig. 5 Variation of lift and moment coefficients for stall model 1.
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Fig. 6 Variation of lift and moment coefficients for stall model 2.

Fig. 7 Example of gust spatial distribution for nE � 1, nN � 2, and

Ac � 10 m=s.
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to drop.When the bending deformation is reduced and thewing skin
is stretched again, the torsional stiffness is recovered. This effect is
represented with a bilinear response, as shown in Fig. 9. To model it,
a switch is set up such that, once the bending curvature increases to a
predefined threshold value, the torsional stiffness is reduced.
However, this reduction is not permanent. When the bending
curvature falls back to being smaller than that threshold, the original
torsional stiffness is recovered.

Themost important issue for themodeling of this bilinear stiffness
is to search for the time when the state (bending curvature) reaches
the critical value (threshold value), which is denoted in Fig. 10 as tsw.
Hénon [12] proposed a method to determine the exact time when the
threshold is reached and the corresponding value of all states at that
point. It has been used in previous work [11] successfully. However,
its implementation within the current work was shown to be difficult.
Although the threshold strain could be determined accurately,
threshold strain rates had unreasonable estimates.

An alternate approach adopted for the current study is based on
linear interpolation. Suppose the threshold happens between ti	1 and
ti. The switching time can be estimated by using the following
equations:

tsw �
"sw 	 "i	1

0:5� _"i	1 � _"i�
(18)

xsw � xi	1 �
tsw 	 ti	1
ti 	 ti	1

�xi 	 xi	1� (19)

Equation (18) can give good approximation as long as the time step
for integration is small enough. In practice, tsw can be approximated
by looking for the time point when the strain falls into a band of
tolerance �". However, this approach gives no information on the
accuracy of the approximated xsw, since the states obtained at tsw are
all based on the linear interpolation. To solve this problem, instead of
using Eq. (19) directly, one step of time integration from ti	1 to tsw
can be performed to obtain the real states at tsw and to ensure the
approximation falls into an acceptable tolerance band.

III. Numerical Studies

To study the nonlinear characteristics of flying wings, a baseline
flying wing aircraft is introduced. It is based directly on the vehicle
definition presented in [4]. The vehicle performs level flight at sea
level with a speed of 12:2 m=s. It is trimmed for equilibrium in
horizontal flight at the given flight condition with different payloads.
First, the model used here is compared with the one presented in [4].
Then, gust response, with and without stall effects, and skin
wrinkling are studied for this vehicle concept.

A. Geometry

Figure 11 shows the geometry of the flying wing vehicle. It has a
span of 72.8 m and a constant chord length of 2.44 m. The outboard
one-third of the wing semispan has a dihedral angle of 10 deg. Wing

cross-sectional properties can be found in Table 1. As indicated in
Fig. 11, there are five propulsive units and three pods, which are
located at the middle span and at two-thirds of the semispan at each
side, respectively. The side pods have a mass of 22.70 kg each, and
the center one has a mass of 27.23 kg. The payload is applied on the
center pod, ranging from 0 (light) to 227 kg (heavy).

B. Trim Results

With the flight speed of 12:2 m=s at sea level, the flying wing
vehicle is trimmed for equivalent lift and weight, equivalent thrust
and drag, and zero pitchingmoment about the center of gravity of the
aircraft. Flaplike control surfaces along the trailing edge and the
engine thrusts are used as trim inputs. The payload is varied so that
the vehicle mass is varied from light to heavy, as defined previously.
The trim results are shown in Fig. 12 and Table 2, and the
deformations at trim conditions of light and heavy configurations are
graphically represented in Figs. 13 and 14, respectively. The results
indicate that the static characteristics of the flying wing model used
here are very similar to the ones in [4]. Note that, to achieve such
correlation, the model in UM/NAST does not include either induced
drag or drag associated with the deformation of the control surfaces.
Therefore, the trim thrust does not vary with payload, as indicated in
Table 2.

C. Stability Analysis of the Flying Wing Vehicle

To assess the flight stability of the flying wing vehicle with
different payloads, a linearization of the aeroelastic equations of
motion is performed at each trimmed condition, where the flight
speed is 12:2 m=s at sea level. The nonlinear matrices in Eq. (17) are
expanded with respect to the independent variables about each
nonlinear equilibrium state. The resulting terms with the same

Fig. 10 Switching of system properties during time integration.

24.38 m

12.19 m
12.19 m 1.83 m

2.44 m

10o

Fig. 11 Geometry of the flying wing model (after [4]).

Table 1 Vehicle cross-sectional properties (after [4])

Parameter Value

Elastic (reference) axis 25% chord
Center of gravity 25% chord

Stiffness properties

Torsional rigidity 1:65 � 105 N �m2

Flatwise bending rigidity 1:03 � 106 N �m2

Chordwise bending rigidity 1:24 � 107 N �m2

Inertia properties

Mass per unit length 8:93 kg=m
Mass moment of inertia (torsional) 4:15 kg �m
Mass moment of inertia (flatwise Bend) 0:69 kg �m
Mass moment of inertia (chordwise Bend) 3:46 kg �m

Aerodynamic coefficients for wings (about 25% chord)

cl� 2

cl� 1
cd0 0.01
cm0 0.025
cm� 	0:25

Aerodynamic coefficients for pods (about 25% chord)

cl� 5
cd0 0.02
cm0 0
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variables are grouped together, leading to the linearized system of
equations. Details about the linearization process can be found in
[16]. Table 3 summarizes the results for the two extreme loading
conditions: light and heavy, including the results given in [4].
Significant differences are present for both phugoid and short-period
modes. The latter is never oscillatory in the present model. Figure 15
shows the phugoid mode of the vehicle from light to heavy
configuration, with the comparison between the flexible vehicle and
the onewith only rigid-body degrees of freedom.With the increase of
payload, the frequency of the phugoid mode grows, while the
damping decreases. At 152 kg payload, the root locus of the flexible
vehicle crosses the imaginary axis, which indicates the phugoid
mode loses its stability. Qualitatively, the result is the same as
reported in [4]. The quantitative differences are attributed mainly to
differences in the aerodynamic damping and inertia between the two
models, since the steady aerodynamic loads are virtually the same
between [4] and the present work.

Still following correlations with results presented in [4], a
nonlinear time simulation on the vehicle response is performed. The
heavy flying wing configuration is initially at the trimmed condition.
Perturbation is introduced by a commanded flap angle change:
between 1 and 2 s, the flap angle is linearly ramped up to 5 deg, and it
is linearly ramped back to its trimmed angle between 2 and 3 s.

As introduced, there are two stall models considered in the study.
For both the stall models, the stall angle is 14 deg and the constant lift
coefficient clmax

is 1.54 when the stall angle is reached. In stall
model 2, the moment coefficient is dropped from 0.025 to 	0:02
once the angle of attack goes beyond the stall angle.

0 20 40 60 80 100 120 140 160 180 200 220 240
0
1
2
3
4
5

B
od

y 
an

gl
e,

 d
eg

Ref. [4]
Current

0 20 40 60 80 100 120 140 160 180 200 220 240
0
2
4
6
8

10

F
la

p 
de

f.,
 d

eg

0 20 40 60 80 100 120 140 160 180 200 220 240
0

10
20
30
40
50

M
ot

or
 th

ru
st

, N

Payload mass, kg
Fig. 12 Trim results for the flying wing vehicle.

Table 2 Trim results for light and heavy configurations

Body angle, deg Flap angle, deg Thrust per motor, N

Light 3.1 5.7 37
Heavy 4.9 0.3 37

Fig. 13 Trimmed lightmodelwith respect to undeformed shape: nearly
identical; U � 12:2 m=s at sea level.

Fig. 14 Trimmed heavy model with respect to undeformed shape;

U � 12:2 m=s at sea level.
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Fig. 15 Root locus for phugoidmode of the flyingwing; payload from 0
(square) to 227 kg (triangle) (left: flexible vehicle, right: rigid vehicle).

Table 3 Phugoid and short-period modes for light and heavy configurations

Flexible Rigid

Mode Phugoid Short period Phugoid Short period

Light [4] 	0:108� 0:142i 	2:74� 1:76i 	0:106� 0:146i 	2:82� 1:82i
Light (current) 	0:0771� 0:0858i 	11:7=	 8:28 	0:0758� 0:0853i 	11:7= 	 8:54
Heavy [4] �0:147� 0:586i —— 	0:0613� 0:535i 	3:05� 1:63i
Heavy (current) �0:107� 0:498i 	7:53=	 0:91 	0:0525� 0:551i 	9:31= 	 6:13
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Figures 16–20 show the flying wing response for the first 80 s.
Figures 16 and 17 show the variation of airspeed and altitude of the
vehicle, including the two stallmodels, no stall effects, and the results
presented in [4] for similar perturbation. As already discussed, the
model used in [4] and the one in the present study feature different
damping (and frequency to a lesser extent). In addition, [4] did not
consider any stall effects. From those two figures, the exchange
between kinetic energy and potential energy of the vehicle is seen

through the out-of-phase variation between air speed and altitude.
The unstable phugoid mode makes the oscillations grow with time
for the heavy vehicle configuration.

As shown in Fig. 18, the midspan location (root) angle of attack
reaches the stall angle within a few cycles. From Fig. 18, one may
also see the difference of the angle of attack, with and without stall
effects. While this shows stall at the midspan section of the flying
wing happening at around 60 s, the wing tip starts experiencing stall
about 0.5 s earlier. Among the things that can be observed from this
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Fig. 16 Stall effects on the airspeed of flight with initial flap angle

perturbation.
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Fig. 17 Stall effects on the altitude of flight with initial flap angle
perturbation.
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Fig. 18 Stall effects on the angle of attack of flight with initial flap angle

perturbation.
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series of results is that, at certain points, a higher angle of attack is
obtained with stall effects on than with stall effects off. This is due to
the difference between aerodynamic loads before and after the onset
of stall. Once the stall angle is approached, the fixed level of
aerodynamic lift load results in insufficient force to balance the
vehicle weight, in contrast to a continuous linear increase of lift with
static angle of attack when stall is off. Therefore, the altitude of the
vehicle reduces with increased vertical velocity (Fig. 20), leading to

instantaneous higher angles of attack. However, the lift reduces the
descent rate, and the angle of attack falls back to be smaller than the
stall angle. This cycle repeats, and an oscillation in body vertical
velocity can be observed. For the simulation with stall model 2, the
sudden reduction in aerodynamic moment when the stall angle is
reached accentuates this behavior. The corresponding change in
body velocities is larger than the one with stall model 1. Since the
actual stall characteristics of an airfoil will depend on the specific
vehicle application (not defined in this work) and, qualitatively, the
two stall models studied here give similar results, only stall model 2
will be applied in the results to follow.

D. Gust Response

As already discussed, the flying wing vehicle studied here in its
heavy configuration shows a very large deformation under level
flight. This large deformation may lead to flight dynamic instability
and may compromise the vehicle’s structural integrity under gust
excitations.

To better understand the vehicle response under gust conditions,
the discrete gust model described previously is used. The maximum
gust amplitude at the center of the gust region Ac is 10 m=s. The
spatial distribution within the gust region is given by Eqs. (15) and
(16) with the following parameters: r0 � 40 m, nN � 2, and nE � 1.
The gust duration tg can be 2, 4, or 8 s. Figure 21 shows the initial
vehicle position (t� 0 s) with respect to the gust profile and its
intended flight path, if in calm air. Note that the nominal flight speed
is 12:2 m=s at sea level, and the right wing of the vehicle begins to
touch the gust region after 0.1 s.

With stall model 2 applied, the aerodynamic lift force stops
increasing with the angle of attack when the stall angle is reached,
and the constant component of the aerodynamic pitch moment is
reversed, making the airfoil pitch down. Figures 22–24 show the
body positions of the vehicle with gust perturbations for the three
different gust durations. The first observation from these plots is that
the vehicle flies away from the gust center after it penetrates the gust
region (up to 3.5 s). The gust may increase the airfoil plunging
motion velocity [in Eq. (13)], which results in increased local lift
forces. Since the gust distribution on thevehicle is not symmetric, roll
and yawmoments about the vehicle’s center of gravity are generated,
which leads to roll and yaw motions. For the initial stages when the
vehicle penetrates the gust region (before 2.0 s), the lateral deviation
is not increasedwith the increase of the gust duration (Fig. 22b). This
is because the longer gust duration introduces a smaller loading
gradient on the wing, leading to smaller trajectory deviations at the
beginning. However, the longer exposurewill supply more energy to
the motion, and the deviation from the intended trajectory (within
calm air) will surpass the ones from shorter gust durations. The flight
path, however, may change its direction due to different gust
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Fig. 22 Effects of gust duration on B frame lateral position.
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durations, as one can observe from Fig. 22. For the cases with 4 and
8 s gusts, the flight path heads back to the gust side after 6 to 7 s, while
the 2 s gust case demonstrates unchanged deviation direction. This is
due to the oscillation of the wings after the gust perturbation ceases.
For the 4 and 8 s cases, the right wings bend down when the gust
effects disappear, which leads to a downward local plunging motion
velocity [in Eq. (13)]. Therefore, the local lift forces andmoments on
the right wing become lower than the left one, resulting in a positive

yawmoment about the vehicle’s center of gravity. On the other hand,
the 2 s gust applies relatively little energy to the wings, such that the
downward motion of the right wing does not generate enough yaw
moment to overcome the ongoing vehicle motion. Moreover, the
vehicle motion of the 8 s case is more complicated, since the
oscillation of the right wing may lead to another change of the yaw
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direction after 15 s. After all, it is also noticeable that the amplitude of
the plunging motion is increased with time, as shown in Fig. 24. This
is the result of the vehicle’s phugoid mode being unstable.

Figures 25–27 describe the changes in the Euler angles of the body
frame as the vehicle goes through the gust perturbation. The variation
of the yaw angle has a similar tendency to the body positions. If one
looks at the details of the yawangle at early stages offlight (Fig. 25b),
it is evident that, initially, the vehicle yaws away from the gust center
but, subsequently, it yaws back into the gust. This is believed to be
associated with adverse yaw due to decrease in lift on the right wing.
It can also be seen from Fig. 26 that the pitch angle oscillates with
increased amplitude, which indicates again a longitudinal unstable
configuration. As for the roll angle, the 2 s gust duration is short
enough that it tends to recover to its undisturbed valuewithin the time

window shown in Fig. 27. This is expected for a damped roll
oscillation, since the lift distribution on the vehicle should return to
its original one after the gust effects disappear. However, this
symmetry of lift distribution cannot be seen for the 8 s gust. The local
angles of attack at the two tips are still different, and the amplitude of
the motion seems to still be growing. Longer simulation times would
be required for the long-duration gust cases.

One more observation that can be made is on the wing defor-
mation. Figure 28 compares the midspan bending curvature for the
three cases. As seen, the vehicle experiences large bending defor-
mation after 25 s, especially for the 8 s gust case. Figure 29
exemplifies the significant change in vehicle shape at the end of 30 s,
under the 8 s gust disturbance. Significant difference can be observed
between the deformations at 30 s and the trimmed steady state.
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Fig. 30 Flight path of the flying wing with different gust durations.

Fig. 31 Instantaneous positions and orientations of the flying wing with different gust durations.

Fig. 32 Lift distribution on the wings from 25 to 35 s.
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Figure 30 shows the flight path for the three different gust
durations from a top view. For all cases, the initial position of the
vehicle is represented at the bottom center position (t� 0 s). Since
the gust cases have different durations, their ending point is also
indicated in the figures by an appropriate label (“gust effects
disappear”). After gust effects disappear, the trajectory of the vehicle
is shown with a dashed line. The upper line normal to the trajectory
indicates the vehicle position at 20 s. From here, one can see the

different positions and orientations of the vehicle when it flies in the
calm air after gust effects disappear. Figure 31 illustrates the
instantaneous vehicle positions and orientations of the flying wing at
the times of 0, 5, 12, 18, 24, and 30 s. The unstable phugoid motion
can be clearly observed.

Another interesting observation can bemadewhen the results after
25 s are examined. The response does not follow the same tendency
as that before then. This is because, at approximately 25 s, the
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Fig. 33 Stall effects on midspan bending curvature (gust center

amplitude: 10 m=s; duration: 4 s).
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Fig. 34 Stall effects onB frame lateral position (gust center amplitude:

10 m=s; duration: 4 s).
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Fig. 35 Stall effects on B frame longitudinal position (gust center

amplitude: 10 m=s; duration: 4 s).
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Fig. 36 Stall effects on B frame altitude (gust center amplitude:

10 m=s; duration: 4 s).
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Fig. 37 Stall effects on B frame yaw angle (gust center amplitude:

10 m=s; duration: 4 s).
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Fig. 38 Stall effects on B frame pitch angle (gust center amplitude:

10 m=s; duration: 4 s).
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different wing stations exceed the stall angle of attack, changing the
vehicle response. The effects of stall on thevehicle can be assessed by
turning off the stall effects and comparing the results with and
without stall effects. Only the 10 m=s center amplitude and 4 s
duration gust case are analyzed. Results are presented for vehicle
responses considering stall on and stall off. With stall effects turned
on, the aerodynamic loads on the airfoil are not continuous before
and after the moment of stall (Fig. 32). The discontinuity results in
reductions in loads and the corresponding midspan bending
curvature, as shown in Fig. 33. Although there is a sudden drop in lift

at around 28 s, the transient loads excite the vehicle to large
deformations and, eventually, large root strains. The configuration
has an unstable phugoidmode that exacerbates the transient response
and reaches higher bending curvatures levels. The impact of stall on
vehicle response is illustrated in Figs. 34–39. The difference after
28 s can be clearly seen from those plots, where stall leads to an
increase in plunging motion (Fig. 36) and pitch angle (Fig. 38).
Therefore, stall effects can have a significant impact on the trajectory
and attitude predictions.
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Fig. 39 Stall effects on B frame roll angle (gust center amplitude:

10 m=s; duration: 4 s).
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Fig. 40 Effects of gust amplitude on midspan bending curvature.
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Fig. 41 Effects of gust amplitude on B frame lateral position.
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Fig. 42 Effects of gust amplitude on B frame longitudinal position.
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Fig. 43 Effects of gust amplitude on B frame altitude.
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It is expected that different gust amplitudes will have different
effects on the vehicle response. In the present study, a similar gust
perturbation with maximum center amplitude of 5 m=s is applied,
and the results are compared with the 10 m=s gust, as used
previously. Note that both of the gust disturbances have the same
duration of 4 s. Figure 40 presents the comparison of bending
curvature at the vehicle midspan station. It shows that the two cases
have similar responses before 25 s, with values directly proportional

to the gust magnitude. However, the bending curvature of the 5 m=s
gust response shows a more regular pattern up to 35 s, while the
10 m=s gust response shows an increase in bending curvature after
an initial sudden reduction right after 25 s. This variation is related
with stall effects, as discussed previously. However, the absence of
the sudden reduction in the 5 m=s gust case does not mean there will
not be any stall happening. Figures 41–46 compare the body position
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Fig. 45 Effects of gust amplitude on B frame pitch angle.
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Fig. 46 Effects of gust amplitude on B frame roll angle.
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Fig. 47 Effects of skin wrinkling on midspan bending curvature (gust

center amplitude: 5 m=s; duration 4 s).
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and orientation of the vehicle under gust perturbations with different
amplitudes. Since the phugoid mode of the vehicle is unstable,
reinforced by the responses shown in Figs. 43 and 45, the angle of
attackwill eventually grow to reach stall, and a similar outcome to the
10 m=s gust response is anticipated.

E. Effects of Skin Wrinkling on Gust Response

In this section, the effects of skin wrinkling on the gust response
are investigated. From preliminary simulations, the region most
likely to reach higher curvature is located at the midspan (wing root).
Postwrinkling torsional stiffness reductions are selected as 20%
(denoted as TSR 1) and 40% (denoted as TSR 2) of the original one
for this study (see Figs. 47 and 48).As discussed before, the threshold
point between the two torsional stiffness states is determined by the
corresponding flat bending curvature. The critical flat bending
curvature is postulated to be 0:02955 m	1 (denoted as CFBC 1),
which is 10% higher than the bending curvature of the fully loaded
vehicle at level flight in calm air. Gust disturbance with 5 m=s center
amplitude and 4 s duration is used. Theflight speed is 12:2 m=s at sea
level.

The bending and twist curvatures at the wing root are compared in
Figs. 47 and 48, respectively. As one can see from the plots, the
torsional stiffness changes accordingly when the threshold point of
the bending curvature is reached, which results in the jump (up and
down) of the twist curvature.

Figures 49–51 show some of the vehicle responses subject towing
skin wrinkling, with stall model 2 applied in the analysis. Skin
wrinkling mainly affects the lateral motion and the yaw angle of the
body. If the torsional stiffness reduces to 60% of nominal valuewhen
skin wrinkles, the difference of lateral displacement at the end of 35 s
is about 2.38 m, which is about 9.71% of the lateral displacement
when skinwrinkling is not considered. The corresponding difference
in yaw angle is about 0.33 deg, which is approximately 7.71% of the
yaw angle when skin wrinkling is not considered. For the other
responses, the effects of skin wrinkling are very small.

IV. Conclusions

Dynamic response of highly flexible flying wings is inherently a
nonlinear problem, which involves geometric and aerodynamic
nonlinearities common in the aeroelastic analysis of highly flexible
vehicles. Through a representative example case of this aircraft
class, numerical studies were conducted to study the effects of
flexibility, loading distribution, and gust disturbances. The study
showed that finite gust disturbance could bring the flying wing to
strong unstable divergence response. The role of aerodynamics,
elastic/rigid motions, and their interactions under a variety of gust
disturbances were detailed in the paper.

The nonlinear effects were addressed in this paper through a
methodology that integrates all the necessary disciplines, including
nonlinear strain-based beam model, unsteady aerodynamics with
simplified stall models, and the six-degree-of-freedom flight
dynamic formulation. Thesewere implemented in the computer code
UM/NAST. With it, fully nonlinear time-marching analyses were
performed. The nonlinear equations were also linearized about given
nonlinear equilibrium states, such that flight dynamic stability of the
vehicle could be assessed. A spatially and temporally distributed
discrete gust model was seamlessly integrated into the time-domain
simulation to study the gust response of the Helios-like flying wings.
The implementation is general to enable the formulation to
accommodate other gust models in time-domain analysis. Finally,
the skin wrinkling effects were modeled through a bilinear torsional
stiffness representation.

A detailed study was conducted of the dynamic response of a
representative highly flexible flying wing previously presented in the
literature. Flight dynamic stability was analyzed at the trimmed
conditions with different payloads. With an increase in payload at its
center pod, the vehicle moved from a span-loaded to a center-loaded
configuration. The trimmed shape was significantly different from
the reference one, which in turn caused changes in the flight dynamic
modes. The phugoid mode eventually became unstable with the
increased payload and wing deformation. The short-period mode
was not oscillatory for the range of payloads considered. Fully
nonlinear time-domain simulation was performed with an initial flap
perturbation from the trimmed condition. The unstable phugoid
modewas clearly excited, which compromised the performance and,
eventually, the integrity of the vehicle. In addition, the representative
flying wing’s response was analyzed for different gust amplitudes
and durations. As expected, flight path, vehicle attitude, and
structural motion were impacted by the presence of gust. The
disturbed flight path may deviate from the gust center. However, the
after-gust responses may develop differently with different initial
gust durations, especially the flight path and the yaw angle.
Furthermore, with the phugoid mode being unstable, a finite gust
perturbation could result in uncontrollable diverging vehicle
motions. The large plunging and pitchingmotions of the vehiclewith
corresponding large elastic deformations also resulted in high
instantaneous angles of attack on some stations along the wing,
which resulted in local stall. Physical discussions of the interaction
among rigid- and flexible-body motions and stall effects were
presented. The effects of stall had a significant impact on transient
responses of the wing and could alter the vehicle flight behavior.
Finally, the skin wrinkling associated with the wing torsional
stiffness was shown to mainly affect the motions of the vehicle in the
lateral direction. For the other responses, the effects of skinwrinkling
were small based on the parameters chosen for the numerical study.
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