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Hypersonic vehicle design and simulation require models that are of low order. Modeling
of hypersonic vehicles is complicated due to complex interactions between aerodynamic
heating, heat transfer, structural dynamics, and aerodynamics in the hypersonic regime.
This work focuses on the development of e�cient modal solutions for structural dynamics of
hypersonic vehicle structures under transient thermal loads. The problem is outlined and
aerothermoelastic coupling mechanisms are described. A previously developed reduced-
order, time-domain aerothermoelastic simulation framework is used as the starting point for
this study. This paper focuses on three main modeling areas: 1) The e�ect of aerodynamic
heating on the evolution of free vibration modes shapes and frequencies is examined, 2)
A surrogate modeling technique is employed for directly updating the generalized sti�ness
matrix and thermal loads based on the transient temperature distribution and 3) Basis
augmentation techniques are employed in order to obtain more accurate solutions for the
structural dynamic response. The techniques to be studied are described and applied to a
representative hypersonic vehicle elevator structure.

Nomenclature

A = snapshot matrix
a(j) = j-th POD snapshot
b = vector of inputs to function
C(b;X) = kriging correlation matrix
C = correlation matrix
c = vector of POD modal coordinates
~c = vector of POD modal coordinates for transformed system
cp = speci�c heat at constant pressure
d = structural modal coordinates, kriging sample point
E = modulus of elasticity
FT = thermal load vector of full system in physical space
FS = structural load vector of full system in physical space
Full = solution vector of full-order model
fT = generalized thermal load vector of reduced system in modal space
fS = generalized structural load vector of reduced system in modal space
G(X(i); X(j)) = Gaussian correlation function for kriging model
Hi = coe�cient matrices in numerical integration for structural response
h = altitude
hi = thickness of i-th layer of thermal protection system
KT = thermal conductivity matrix of full system in physical space
KG = geometric sti�ness matrix
KS = structural sti�ness matrix
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K�S = modi�ed structural sti�ness matrix
k�S = generalized sti�ness matrix of reduced system in modal space
kT = generalized thermal conductivity matrix of reduced system in modal space
L = lower triangular factor in decomposition of K�S
L1 = L1 error
l = number of augmented mode shapes
lbi = lower bound for i-th POD modal coordinate
M = Mach number
MT = thermal capacitance matrix of full system in physical space
MS = structural mass matrix of full system in physical space
mT = generalized thermal capacitance matrix of reduced system in modal space
mS = generalized mass matrix of reduced system in modal space
MACi;j = modal assurance criterion value corresponding to modes i and j
maxi = maximum value of i-th POD modal coordinate
mini = minimum value of i-th POD modal coordinate
MS = margin of safety with respect to POD bounds
NRMSE = normalized root mean squared error
n = number of aerothermoelastic simulations used to generate bounds
nb = number of basis terms used in kriging regression model
ndv = number of design variables in kriging model
ne = number of kriging evaluation cases
nF = number of speci�ed load vectors in load-dependent Ritz vector algorithm
nk = number of kriging sample points
nPOD = number of POD snapshots
np = number of output parameters in kriging snapshot
nR = number of load-dependent Ritz vectors per speci�ed load vector
nV = number of free vibration modes used in structural basis
O = order of kriging regression model
pk = kriging �tting parameter in correlation function
q = number of kriging output quantities
R = kriging regression function
Rx = matrix of kriging basis functions evaluated at each snapshot
ROM = solution vector of reduced-order model
r = number of DOFs of reduced system
rx = vector of kriging regression functions
s = number of DOFs of full-order system
T = vector of discrete nodal temperatures
~T = excess of temperature over initial conditions
T0 = scalar value of uniform initial temperature distribution
t = time
tE = time to evaluate kriging model
tK = time to generate kriging model
tT = time to generate kriging training data
U = upper triangular matrix, transformation between xRu and xr
ubi = upper bound for i-th POD modal coordinate
wa = prescribed z-direction displacements at attachment point
X = matrix of kriging sample points for training data
x = structural degrees of freedom in physical space
Y (x) = snapshot matrix of training data for kriging model
y

(j)
i = i-th entry of response vector for j-th kriging snapshot
ŷ(b) = kriging approximation to function at point b
Z(b;X) = realization of stochastic process with zero mean and variance �2

z(X) = stochastic process vector evaluated at each kriging snapshots

� = angle of attack
�T = coe�cient of thermal expansion
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� = coe�cients of basis functions in kriging regression model
�t = time step size
�i = percentage error at degree of freedom i
� = coe�cient in time-dependence of attachment point motion
�k = kriging �tting parameters in correlation function
� = thermal conductivity of material
� = Poisson’s ratio
� = density of material
� = variance
�S = modal matrix of structural reference modes
�T = modal matrix of full set of thermal POD basis vectors
��T = modal matrix of truncated set of POD basis vectors
�(j) = j-th free vibration mode
’(j) = j-th thermal basis vector
 (i) = i-th load-dependent Ritz vector
� (i) = i-th load-dependent Ritz vector before normalization
! = circular frequency in time-dependence of attachment point motion

Subscripts
0 = initial
AE = aeroelastic
AT = aerothermal
HT = heat transfer
I = user-determined input
h = heated
L = lower bound
max = maximum application temperature
r = restrained
U = upper bound
u = unheated, unrestrained

Superscripts
�1 = matrix inverse
A = component of structural load vector due to aerodynamic pressure
a = approximate
BC = reaction force exerted by body on control surface
E = elastic
H = component of structural load vector due to heating
(n) = time level
R = rigid
T = matrix transpose

I. Introduction

Design and simulation of hypersonic vehicles (HSVs) require consideration of a variety of disciplines due
to the highly coupled nature of their 
ight regime.1 In order to capture all of the potential e�ects

on vehicle dynamics, one must consider the aerodynamics, aerodynamic heating, heat transfer, and elastic
airframe as well as the interactions between these disciplines. The problem is further complicated by the
large computational expense involved in capturing all of these e�ects and their interactions in a full-order
sense. While high-�delity modeling techniques exist for each of these disciplines, the use of such techniques
is computationally infeasible in a vehicle design and simulation setting for such a highly coupled problem.
Early in the design stage, many iterations of analyses may need to be carried out as the vehicle design
matures, thus requiring quick analysis turn-around time. Additionally, the number of states and number of
degrees of freedom used in the analyses must be small enough to allow for e�cient control simulation and
design. As a result, alternative approaches must be considered for vehicle simulations.

There are two methodologies that can be utilized in the generation of low-order models. The �rst
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approach is to apply simplifying assumptions that enable the use of �rst-principles models. These models
are characterized by their low-order form and they can often be solved analytically, thus preventing the
need to time-march the solution. While these models are useful in generating a low order representation of
the physics, the simplifying assumptions made to employ these models often preclude the ability to model
detailed geometries or complex physics. This work therefores make use of an alternative approach which
involves the use of reduced-order models (ROMs) that are derived from high-�delity analysis tools. Use
of high-�delity tools alone is infeasible due to their high order and long run time. Thus, this study seeks
to go beyond simply coupling existing high-�delity codes and routines, and instead proposes to use the
output of these tools along with model reduction techniques to generate computationally tractable systems
of governing equations. The objective of the current work is to make aerthermoelastic simulation of complex
geometries feasible without the need for a priori assumptions regarding the physics of the problem. As
opposed to a �rst-principles modeling approach, by �rst modeling as much of the physics as possible and
then systematically reducing the order of the system, we can control and quantify the error incurred through
model reduction. This also allows for tailoring of the number of states and degrees of freedom as di�erent
levels of �delity may be required as the vehicle con�guration matures.

I.A. Previous Work on Aerothermoelastic Modeling

A variety of studies on hypersonic aerothermoelasticity have focused on the aerothermoelastic response
and stability of panels with various degrees of aerothermoelastic coupling. A review paper summarized
various analytical methods for nonlinear panel 
utter at supersonic and hypersonic speeds.2 The methods
are grouped into two main areas: 1) classical methods including Galerkin in conjunction with numerical
integration, harmonic balance, and perturbation methods, and 2) �nite element methods in the frequency or
time domain. Two speci�c studies3,4 considered nonlinear panel 
utter for high-Mach-number 
ows under
aerothermoelastic e�ects. These studies both made use of von K�arm�an plate theory for large displacements
and both include geometric nonlinearity due to compressive load. The panel temperature was taken to be
equal to the instantaneous 
ow temperature and was assumed to be uniform to allow for a lumped-capacity
approach to the solution of the heat transfer equations. Two related works used an explicit Taylor-Galerkin
algorithm to solve the coupled 
uid-thermal-structural equations to assess the impact of aerothermoelastic
e�ects on leading edges5 and panels.6 These works employed an integrated �nite-element approach which
solved the Navier-Stokes equations, energy equation, and quasi-static structural equations of motion in an
integrated framework. Results from both works showed that structural deformation has a strong e�ect on

ow properties and that severe aerodynamic heating can lead to large stresses due to steep temperature
gradients. Another work7 focused on the thermal analysis of thermal protection panels in hypersonic 
ow
under an imposed de
ection. The framework consisted of a �nite volume Navier-Stokes CFD code coupled
with a boundary element formulation of the transient heat transfer process. The ability of the framework
to handle de
ection was assessed by imposing a deformed structural con�guration, calculating the thermal
boundary conditions over the deformed panel, and solving for the transient temperature distribution.

Recent research on aerothermoelastic stability of a hypersonic vehicle control surface used computational

uid dynamics (CFD) to compute the aerodynamic heating along with �nite element thermal and structural
models to assess its behavior in hypersonic 
ow.8 In these studies the aerodynamic heat 
ux was found
by using rigid-body CFD solutions to compute the adiabatic wall temperature and heat transfer coe�cient
at the surface of the structure. The resulting thermal boundary conditions were applied to a transient
thermal �nite element analysis and the resulting temperatures were applied to the structural dynamic �nite
element model. Free vibration frequencies and mode shapes of the heated structure were calculated under
both material property degradation with temperature and thermal stresses at each desired point in time.
The mode shapes were used in a modal representation of the equations of motion to obtain the aeroelastic
response. Third-order piston theory and Euler aerodynamics were used to obtain the generalized loads. The
use of CFD for solution of the aeroheating problem provides capability for capturing complex e�ects such
as shock/boundary layer interaction and 3-D 
ow e�ects. However, the computational cost associated with
CFD is prohibitive in the control design and simulation setting, and the use of an aerothermal ROM is
warranted. While Ref. 8 reduced the order of the equations of motion by applying a truncated set of free
vibration mode shapes, an eigenvalue solution was still computed at each desired point in time to update the
mode shapes. The current work extends that methodology by using a �xed basis throughout the simulation
to avoid the need to solve an eigenvalue problem during the course of the simulation while still reducing the
order of the equations of motion.
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In two recent studies,9,10 the 
ow-thermal-structural coupling of two and three dimensional skin panels
in hypersonic 
ow was performed. In Ref. 9, two dimensional panel 
utter analysis of a simply supported
HSV skin panel was performed using von K�arm�an plate theory for the structural dynamic response, piston
theory for the unsteady aerodynamics, and Eckert’s reference enthalpy method for the aerodynamic heating.
Speci�c attention was given to the e�ects of using 1-way versus 2-way aerothermal-aeroelastic coupling.
The most important coupling mechanism on the 
utter boundary was found to be the e�ect of material
property degradation due to elevated temperature. In Ref. 10, a similar study was carried out to assess the
e�ect of aerothermoelasticity on a 3-D HSV skin panel. A 3-D �nite element model was used to obtain the
structural dynamic response as opposed to von K�arm�an plate theory. Loads on the structure consisted of
aerodynamic pressure loads, 
uctuating pressure loads due to sound pressure level in the turbulent boundary
layer, and thermal loads due to temperature gradients. Results demonstrated that the sign�cance of 
uid-
thermal-structural coupling for quasi-static response prediction is a strong function of in-plane boundary
conditions.

The thermoelastic portion of the current work is a continuation of previous studies on reduced-order
modeling of the heat transfer and structural dynamics problems.11{14 The earliest of these11 introduced the
reduced-order thermoelastic modeling framework which utilized Proper Orthogonal Decomposition (POD)
for reduction of the thermal problem and a modi�ed modal method for reduction of the structural dynamics
problem. A subsequent work12 employed a quasi-steady aerothermoelastic time-marching procedure to assess
the e�ect of thermal loads on the aerodynamic forces over a control surface. A more recent work13 described
an extension of the previous works to unsteady form and speci�cally addressed the use of POD with time-
dependent boundary conditions.

The thermoelastic ROM framework of Ref. 15 was combined with an aerothermal ROM framework
into a uni�ed unsteady aerothermoelastic routine in a more recent work.14 That paper utilized reduced-
order structural dynamic, heat transfer, and aerodynamic heating models in a time-marching simulation
framework. The structural and thermal modes were used to parameterize the structural dynamic response
and wall temperature to allow for discretization of the parameter space and enable creation of the aerothermal
kriging surrogate. The error of each ROM was characterized by comparing against the corresponding full-
order models. The average normalized root mean squared errors (NRMSE) of thermal ROM were found
to be 2.19% and 4.52% for two particular cases. The average L1 errors of the thermal ROM were found
to be 16.4% and 28.8% for the same two cases. For the structural ROM, the average NRMSE and L1
errors were 8.52% and 28.7%, respectively, for one set of 
ight conditions. The average CPU time for one
iteration of the structural dynamic response was found to be 6.23 s for the full-order model and 4.41 s for
the ROM. The structural ROM required the most computational time of the various components of the
solution. One objective of the current study is to improve the accuracy of the structural ROMs using various
techniques. Additionally, signi�cant computational savings can be obtained by improving the computation
time associated with the structural ROM. Therefore, in addition to improving the accuracy of the structural
ROMs, the current work will also improve the computational e�ciency of the framework by implementing
the ability to directly update the generalized sti�ness and thermal loads as a function of temperature.

I.B. Aerothermoelastic Simulation Framework

The progress described above has led to further investigation into the aerothermoelastic coupling exhibited
in hypersonic 
ight. A 
owchart of overall framework applied in this work is shown in Fig. 1. The process
begins with the calculation of the heat 
ux on the outer surface of the structure at the initial time using
the Eckert reference temperature method.16 With the boundary conditions and initial conditions of the
thermal problem known, the transient temperature distribution is marched forward in time. Solution of the
heat transfer problem is carried out in modal space using modes from POD to avoid the computational cost
of running full-order �nite element analysis. Bypassing of the full-order thermal solution via the reduced-
order solution is indicated by the gray blocks. This work considers two coupling mechanisms between the
thermal solution and structural sti�ness. The �rst involves geometric sti�ening due to thermal stresses that
occur in the structure due to di�erential thermal expansion resulting from the spatially varying temperature
distribution. The second is due to the temperature-dependence of the Young’s modulus resulting from the
high temperatures experienced in hypersonic 
ight. In addition to the thermal e�ects on the sti�ness, the
change in temperature also results in thermal loads being applied to the structure. With the sti�ness and
structural loads known, the structural dynamics system of equations in physical space is transformed to a
suitable reduced modal basis to be described in a subsequent section. The reduced modal system is then
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solved for the modal coordinates to obtain the structural response. The structural deformations couple with
the aerothermal problem due to the e�ect on aerodynamic 
ow properties, which change the heat 
ux. The
deformations also result in a change in aerodynamic pressures which modify the structural loads. With
the deformed con�guration known at the current time step, the unsteady aerodynamic 
ow properties are
updated using third-order piston theory and the process is repeated at the next time step. Note that the
details of the piston theory implementation are given in a previous work.17 After a pre-determined number
of aeroelastic iterations have been carried out, the heat 
ux boundary conditions are recalculated and the
thermal solution is updated.
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Figure 1. Reduced-order aerothermoelastic modeling framework.
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Figure 2. Overview of aerothermoelastic time-stepping schedule.

A time-marching procedure with updates to the thermal and structural boundary conditions at speci�ed
intervals is proposed for solution of the coupled aerothermoelastic problem. An outline of the time-stepping
schedule is given in Fig. 2. The size of the aeroelastic time step, �tAE , is smaller than the size of the
aerothermal time step, �tAT , due to the fact that the aeroelastic time scale is faster than the thermal time
scale. The procedure begins by calculating the aerodynamic 
ow properties over the undeformed structure at
initial time, t0. Using the 
ow properties, the heat 
ux at the outer surface is found along with the local skin
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friction coe�cients using the Eckert reference temperature method. The aerodynamic pressures and viscous
drag components are then integrated to determine the aerodynamic forces and moments at initial time. With
the thermal boundary conditions known, a pre-determined number of thermal time steps are taken, each of
size �tHT , until the time t0 +�tAT is reached. The thermal loads based on the temperature change between
t0 and t0 + �tAE are then applied to the structural con�guration at t0. Additionally, the aerodynamic
loads based on the already calculated 
ow properties are applied to the structure. The structural dynamic
response solution is then marched forward one time step of size �tAE . The displacements are fed back into
the aerodynamic solver and the 
ow properties are calculated at time t0 + �tAE over the updated deformed
con�guration. Each time the 
ow properties are re-calculated, the aerodynamic pressures are also integrated
to allow for characterization of the transient aerodynamic forces and moments on the vehicle. The aeroelastic
iterations continue to be carried for a pre-determined number of time steps. Once the time instant t0 +�tAT
has been reached, the instantaneous 
ow properties and wall temperatures are used to update the heat 
ux
boundary conditions to the thermal problem. With the updated thermal boundary conditions known, the
transient thermal solution is marched forward from the time instant t0 +�tAT to the time instant t0 +2�tAT
and the process is repeated.

II. Proper Orthogonal Decomposition for Reduced-Order Thermal Solution

This work makes use of POD for reduced-order solution of the transient thermal problem. POD, also
known as the Karhunen-Lo�eve decomposition, principal components analysis, singular systems analysis, and
singular value decomposition, is a modal technique in which empirical data is processed using statistical
methods to obtain models which capture the dominant physics of a system using a �nite number of modes.18

The fundamental basis for use of POD as a reduced-order modeling method is its ability to represent high-
dimensional systems in a low-dimensional, approximate manner while still maintaining a high degree of
accuracy. The choice of the POD basis as opposed to any other basis such as an eigenvector basis is due
to its optimality condition of providing the most e�cient way of capturing the dominant components of a
system with a �nite number of modes.19

The method of snapshots20 is used for determination of the POD basis vectors. In this case, the snapshots
are de�ned as vectors of nodal temperatures at various time instants and are computed from high-�delity
�nite element analysis. The goal of the POD formulation is to express the vector of nodal temperatures, T ,
at any time instant as a linear combination of the basis, ’(x; y; z), with coe�cients c(t), i.e.,

8
>><
>>:

T1(t)
...

Ts(t)

9
>>=
>>;

= c1(t)

8
>><
>>:

’
(1)
1
...

’
(1)
s

9
>>=
>>;

+ c2(t)

8
>><
>>:

’
(2)
1
...

’
(2)
s

9
>>=
>>;

+ � � �+ cr(t)

8
>><
>>:

’
(r)
1
...

’
(r)
s

9
>>=
>>;
; (1)

where s is the total number of degrees of freedom in the �nite element model and r is the total number of
POD basis vectors retained after truncation. The basis is computed by �rst generating the snapshot matrix,
A, given by,

A =

2
66664

T
(1)
1 T

(2)
1 : : : T

(nP OD)
1

T
(1)
2 T

(2)
2 : : : T

(nP OD)
2

...
...

. . .
...

T
(1)
s T

(2)
s : : : T

(nP OD)
s

3
77775

=
h
a(1); a(2); : : : ; a(nP OD)

i
; (2)

where T (j)
i indicates the i-th entry of the j-th snapshot, nPOD is the number of snapshots taken, and a(j)

refers to the column vector corresponding to the j-th snapshot. An eigendecomposition or singular value
decomposition is used to obtain the POD modal matrix, �T . Based on the eigenvalues corresponding to
each of the POD modes, the dominant POD modes are identi�ed and the truncated POD modal matrix,
��T , is formed. Detailed explanation of POD basis creation is given in a previous work by the authors,13 and
is thus omitted here for brevity.

The advantage to using POD is that the computationally-intensive process of generating the basis is
carried out a priori, and the basis is not updated throughout the simulation. Once the basis has been
created, it is applied to the full-order system of heat transfer equations in order to reduce its size. Consider
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the full-order system of �rst order coupled ordinary di�erential equations governing transient heat transfer,

MT
_T (t) +KTT (t) = FT (t); (3)

where MT is the thermal capacitance matrix, KT is the thermal conductivity matrix, and FT is the thermal
load vector. The �rst step of the reduction process is to project the full-order system onto the truncated
POD basis and transform from physical space to modal space using

��TTMT
��T _c(t) + ��TTKT

��T c(t) = ��TTFT (t): (4)

The generalized thermal capacitance matrix, mT , generalized thermal conductivity matrix, kT , and gener-
alized load vector, fT , are then identi�ed such that

mT = ��TTMT
��T (5a)

kT = ��TTKT
��T (5b)

fT (t) = ��TTFT (t): (5c)

Note that because the POD basis vectors are not eigenvectors of the generalized eigenvalue problem, mT and
kT are not diagonal at this stage. As the time-dependence of the thermal load vector is not known ahead
of time, there is little advantage to diagonalizing the system and solving each equation analytically. Thus,
the coupled system is integrated numerically in modal space using a second-order Crank-Nicolson scheme as
described in a previous work by the authors.13

III. Reduced-Order Modal Basis Solution for Structural Dynamic Response

While the full-order system of structural dynamic equations of motion is used for comparison purposes,
its solution within the aerothermoelastic framework presented here is not suitable for vehicle design and
control analysis purposes. The problem of solving for the structural dynamic response of hypersonic vehicle
structures within a design and simulation framework is complicated by various factors. Due to the large
number of degrees of freedom involved in a traditional �nite element solution, steps must be taken to
reduce the order of the structural dynamics system of equations. A common approach is to employ a modal
transformation in which the structural displacements are expressed as a linear combination of a small number
of basis vectors which are the free vibration mode shapes of the structure. However, this approach cannot be
applied directly for hypersonic vehicle applications as the mode shapes change over time due to modi�cation
of the sti�ness from geometric sti�ness and material degradation e�ects. The approach taken in this work is
to �rst perform an o�-line calculation and select a reduced number of Ritz modes based on the free vibration
modes of the structure at a reference temperature distribution. These Ritz modes are then used as the
modal basis for solution of the structural response throughout the simulation. This procedure is applicable
as the Ritz modes need only to satisfy the geometric boundary conditions,21 which will always be the case
regardless of the sti�ness distribution. The modal matrix containing the structural reference modes, �S , is
not updated throughout the simulation, thus preventing the need to solve an eigenvalue problem of the full
system during the course of the simulation. Though the reference modes are not updated throughout the
simulation, the sti�ness matrix is updated each time the structural dynamic response is calculated to account
for its dependence on temperature. Updating of the conventional sti�ness matrix is performed using the
temperature-dependence of the material properties of the various materials. The geometric sti�ness matrix
is updated by solving a static �nite element problem based on the thermal loads from temperatures at the
current time step and the material coe�cients of thermal expansion to calculate the internal loads.

The full-order system of structural dynamic equations of motion in physical space is given by

MS �x(t) +K�S(T )x(t) = FHS (t) + FAS (t); (6)

where MS is the mass matrix, FHS is the load vector due to heating, FAS is the load vector due to aerodynamic
pressure, and x are the physical degrees of freedom. Note that FAS contains a normal pressure component
calculated using the third-order piston formulation as well as a wall shear stress component calculated using
the local element skin friction coe�cients obtained from the Eckert reference temperature computation. A
description of the formulation used to compute the local skin friction coe�cients is given in a previous work
by the authors.15 The modi�ed sti�ness matrix, K�S , is given by

K�S(T ) � KS(T ) +KG(T ); (7)
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where KS(T ) is the conventional sti�ness matrix that varies due to the temperature-dependence of the
material properties and KG(T ) is the geometric sti�ness matrix resulting from thermal stresses. The reduced-
order system is obtained by �rst expressing an approximation to the physical degrees of freedom, xa(t), as
a linear combination of the structural basis vectors such that

xa(t) = �Sd(t); (8)

where d represents the modal coordinates of the reference modes which are stored as columns of the modal
matrix, �S . Note that since the number of reference modes used in the modal expansion is much less than
the number of physical degrees of freedom in the model, the computational cost of the numerical solution of
the system is relatively inexpensive. Once the modi�ed sti�ness matrix is known at the current time instant,
the system is reduced by substituting Eq. (8) into Eq. (6) and pre-multiplying the system by �TS , i.e.

�TSMS�S �d(t) + �TSK
�
S(T )�Sd(t) = �TS

�
FHS (t) + FAS (t)

�
: (9)

The generalized mass matrix, mS , generalized sti�ness matrix, k�S , generalized load vector due to heating,
fHS , and generalized load vector due to aerodynamic pressure, fAS , are then given by

mS = �TSMS�S (10a)

k�S(T ) = �TSK
�
S(T )�S (10b)

fHS (t) = �TSF
H
S (t) (10c)

fAS (t) = �TSF
A
S (t): (10d)

As the mass of the structure is taken to be constant in this work, the reference modes are orthogonal with
respect to the mass matrix and the generalized mass matrix, mS , reduces to the identity matrix.

Since the modi�ed sti�ness matrix is continuously changing, we have no guarantee of orthogonality of the
reference modes with respect to sti�ness, and the equations are coupled. As such, the reduced-order system
of equations in modal space is integrated numerically to calculate the vector of modal coordinates at each
time instant. As the high-�delity structural dynamic response solution is treated as the truth model, the
numerical integration scheme used for the high-�delity model (based on Nastran Sol 109) is implemented for
solution of the reduced-order system for the modal coordinates, d(t), to eliminate any discrepancies in the
response due to di�erences in numerical integration schemes. The numerical integration method is similar
to the Newmark-� method except that the load vector is averaged over three time instants and the sti�ness
matrix is modi�ed such that the dynamic equation of motion reduces to a static solution if no inertial
e�ects or damping exists.22 The scheme uses a central �nite di�erence representation for the velocity and
acceleration at discrete times, given by22

_d(n) =
1

2�tAE

�
d(n+1) � d(n�1)

�
(11a)

�d(n) =
1

�t2AE

�
d(n+1) � 2d(n) + d(n�1)

�
; (11b)

where the superscript (n) refers to the time level. The initial conditions, d(0) and _d(0), are used to generate
the vectors d(n�1), f (n�1)

S , and f
(n)
S for the initial time step, n = 0, using

_d(�1) = d(0) � _d(0)�tAE (12a)

f
(�1)
S = k�Sd

(�1) (12b)

f
(0)
S = k�Sd

(0): (12c)

Note that this formulation assumes that the inital acceleration for all points is zero (initial velocity is
constant). Substituting the �nite di�erence approximations of the velocity and accelerations, Eqs. (11), into
the equations of motion, Eq. (6), and averaging the applied loads over three adjacent time instants, the
equations of motion are re-written as

H1d
(n+1) = H2 +H3d

(n) +H4d
(n�1); (13)
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where,

H1 =
1

�t2AE
mS +

1
3
k�S (14a)

H2 =
1
3

�
f

(n+1)
S + f

(n)
S + f

(n�1)
S

�
(14b)

H3 =
2

�t2AE
mS �

1
3
k�S (14c)

H4 =
�1

�t2AE
mS �

1
3
k�S : (14d)

The solution vector at the next time step, d(n+1), is obtained by decomposing H1 and applying it to the
right-hand side of Eq. (13).

IV. Overview of ROM Generation Process

As some of the ROMs used in the aerothermoelastic simulation process are dependent on components
of other ROMs, these models must be generated in a speci�c order. An overview of the process is given
in Fig. 3. The green blocks in the �gure describe the process for generating a kriging-based aerothermal
ROM developed by Crowell et al.23 and incorporated into the ROM framework in a recent work.14 Because
the current work is focused on structural dynamic and thermal ROM components, the Eckert reference
temperature method is utilized in place of the aerothermal ROM here. However, the aerothermal ROM
component is included in Fig. 3 to illustrate the complete ROM generation process. The �rst ROM to be
created is the POD model for the transient thermal component of the solution. To begin, the range of
vehicle 
ight parameters is de�ned. Based on these parameters, represenative simulations are de�ned for use
in extracting the POD snapshots. Because the aerothermal ROM is dependent on the thermal ROM, the
Eckert reference temperature method is used to calculate the heat 
ux in these simulations. Additionally,
the structural dynamic ROM is dependent on the thermal ROM, and thus the high-�delity structural model
is used in these simulations. The accuracy of the thermal ROM is evaluated by running representative
aerothermoelastic simulations using both the thermal ROM and full-order model and comparing their output.
If greater accuracy is desired, more snapshots are taken and the thermal ROM is updated.

Once an accurate thermal ROM has been created, the next step is to identify the reference thermal
state at which to evaluate the structural reference modes. The philosophy used in this work is to take
the reference thermal state to be the average nodal temperatures over the thermal snapshots. Based on
the frequency range of interest, a set of free vibration modes are evaluated at the reference thermal state
including both material property degradation with temperature and geometric sti�ening due to thermal
stresses. Additionally, static modes are extracted based on representative loading conditions. In order to
evaluate the accuracy associated with the modal basis, kriging ROMs of the sti�ness matrix and thermal
load vector (described in section VII) are needed. To generate these ROMs, bounds on the POD modal
coordinates are established and kriging training cases are run. At this point, the accuracy of the structural
ROM is assessed by again running representative aerothermoelastic simulations and comparing the output of
the structural ROM with that of the full-order structural model. If greater accuracy is desired, the structural
modal basis is updated and the process is repeated.

The thermal and structural ROMs are then used in the aerothermal ROM generation process developed
by Crowell et al.23 An added bene�t to expressing the temperature distribution and deformation as a linear
combination of modes is that it allows for parameterization of each in terms of a small number of design
variables for the purpose of creating the aerothermal ROM. Bounds on the aerothermal ROM parameters
are �rst established. Parameters for the aerothermal ROM consist of the structural and thermal modal
coordinates as well as 
ight parameters such as angle of attack, Mach number, and altitude. Because the
feasible number of parameters in the aerothermal ROM is limited, a subset of thermal and structural modes
are used in its creation. Training cases are set up within the parameter space using Latin Hypercube
Sampling (LHS). For each training case, CFD analysis is used to generate training data of the aerodynamic
heating. Using this training data, a kriging ROM representing the aerodynamic heat 
ux at the outer
surface is generated. The accuracy is then evaluated using a separate set of evaluation cases. If greater
accuracy is desired, more kriging sample points are added and the process is repeated. Once a satisfactory
aerothermal ROM has been obtained, the ROM generation process is complete and the thermal, structural,
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and aerothermal ROMs can then be used for e�cient aerothermoelastic simulation.
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Figure 3. Flowchart of aerothermoelastic ROM generation process.

V. Control Surface Model

The hypersonic vehicle con�guration considered in this study, as developed in a previous work,24 is shown
in Fig. 4. A �nite element model of a representative hypersonic vehicle elevator has been created for use in
this study. The thickness from the top skin layer to the bottom skin layer is 4% chord length.25 The top and
bottom skin layers are each equipped with two 3.8 mm thick thermal protection system layers, and thus the
thickness of the outer mold line is 4% chord length plus the 15.2 mm of thermal protection system material.
The chord length at the root is 5.2 m. (17 ft.)24 and the leading edge makes an angle of 34� with the y
axis while the trailing edge makes an angle of 18� with the y axis.26 Planform and cross-sectional views of
the airfoil are given in Fig. 5 and Fig. 6, respectively. A survey of the literature revealed a wide range

τ2

τ1,�

Shear LayerBow Shock

xB
zB

θs
αM∞

τ1,u

Lf Ln La

δcs

hi

Elevator

Reflected Shock

Figure 2. Hypersonic Air-breathing Vehicle Geometry

providing a number of examples of the application of piston theory to specific problems. More recently,
Tarpley11 discussed the computation of stability derivatives for a caret-wing waverider using Piston Theory,
which requires the analysis of unsteady flow over the vehicle.? Piston theory allows the inclusion of unsteady
aerodynamic effects in the model and a closed form solution can be found for these unsteady effects.

Linear Piston Theory states that the pressure acting on the face of a piston moving in a perfect gas when
the Mach number is greater than unity is:10

P

Pi
=

(
1 +

1
5

Vn,i

ai

)7

(13)

where P is the pressure on the piston face, Pi is the local static pressure (i.e., behind the shock in the case
of supersonic flow),ai is the local speed of sound, and Vn,i is the velocity of the surface normal to the steady
flow. Taking the binomial expansion of Equation 13 to first order gives

P

Pi
= 1 +

7
5

Vn,i

ai
(14)

Multiplying through by Pi, using the perfect gas law, and the definition for speed of sound gives the basic
result from first-order linear piston theory:

P = Pi + ρiaiVn,i (15)

where ρi is the local density of the fluid. The normal velocity, Vn,i arises due to either the flexing of the
aircraft, the aircraft’s rotational motion, or changes in angle-of-attack.

The infinitesimal force acting on the face of the piston is

dF i = −(P dA)ni (16)

In Equation 16, n is the outward pointing normal unit vector to the surface, dA is the infinitesimal surface
area, and dF i is the incremental force. Substituting Equation 15 into Equation 16 gives

dF i = [−(Pi + ρiaiVn,i) dA]ni (17)

However, since Vn,i is by definition the velocity normal to the surface, we can write Vn,i = V · ni where V
is the velocity vector of the vehicle. Thus, the infinitesimal force becomes

dF = −{[Pi + ρiai(V · ni)] dA]}ni (18)

Equation 18 is then integrated over each surface that defines the vehicle outer mold line to give the total force
acting on the vehicle. From Equation 18 it should be noted that when

∫
Pi dA ni is evaluated over the vehicle,
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Figure 4. Overall HSV geometry illustrating position of control surface.

of design strategies for mitigating the high temperatures experienced in hypersonic 
ight.27{30 This study
considers a thermal protection system consisting of an outer heat shield and middle insulation layer on top
of the skin as shown in Fig. 7. The material for the heat shield is chosen to be Ren�e 41 as it was found
to be e�cient in terms of mechanical properties at elevated temperatures. For the insulation layer, three
di�erent materials were considered in the preliminary materials evaluation: Internal Multiscreen Insulation
(IMI), High Temperature Flexible Min-K, and Q-Fiber Felt. Of these, the Min-K insulation, which is a
proprietary silica based material faced with Astroquartz cloth,31 is selected due to its relatively low thermal
di�usivity. For the structure (both skin and sti�eners), the Titanium alloy TIMETAL 834 (formerly known
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Figure 7. Schematic of material stacking scheme at outer mold line of structure.
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as IMI 834) is chosen. The advantage of using this alloy is that its maximum application temperature is
600�C compared with that of Ti-6242S (520�C), Ti-6242 (450�C), Ti-811 (400�C), and Ti-6-4 (300�C).32

The thermal and mechanical properties of the three materials employed in the model are shown in Table 1,
where \T-dep." indicates that the property is temperature-dependent.26,31,33,34 Note that the temperature-
dependent material properties for Ren�e 41 are extrapolated beyond the available data and the maximum
application temperature, Tmax, is set to 1500 K. The emissivity of the heat shield is taken to be 0.85.26

The thermal strain is calculated based on the temperature change with respect to a reference stress-free
temperature. The reference temperature used for calculation of thermal strain is taken to be 293 K for all
materials.

Table 1. Structural and thermal material properties used in the study.

� E � �T � cp Tmax h

[kg=m3] [Pa] [�m=m=K] [W=m=K] [J=kg=K] K [mm]
Heat Shield 8240 T-dep. 0.31 T-dep. 18 541 1500 3.8
Insulation 256 Neglect Neglect Neglect 0.052 858 1250 3.8
Skina 4550 T-dep. 0.31 11 7 525 873 6.35

a The properties �, �, and cp for TIMETAL 834 were obtained from http://www.matweb.com/search/DataSheet.

aspx?MatGUID=a74096c99aa6486382a9c9e1be0883c4.

The �nite element model used for the thermal and structural modeling aspects of the study is shown in
Fig. 8 with the top surface removed for visualization purposes. The model consists of the thermal protection
layers system described above along with chordwise and spanwise sti�eners. The material used for the
sti�eners is TIMETAL 834 and the thickness of all sti�eners is 25.4 mm (1 in). The model contains 2,812
thermal degrees of freedom and 8,074 structural degrees of freedom. The heat shield and insulation layer
are each modeled using 6-node solid wedge elements while the top and bottom skins and sti�eners are
modeled using 3-node, 2-dimensional triangular elements. Of the 6,886 elements in the model, 3,456 are
solid elements and 3,430 are triangular elements. The control surface is taken to be all-moveable about a
hinge line located at the mid-chord24 and will thus be connected to the vehicle main body through a torque
tube. This attachment is modeled by constraining the region indicated by the gray circle in Fig. 8 in all
degrees of freedom. In addition, the nodes at the root are constrained against translation in the y direction.
Because the sti�ness of the insulation layer is neglected, rigid (RBE2) elements are used between each skin
node and the corresponding node at the outer surface of the insulation layer to prevent singularities in the
solution.

VI. E�ect of Transient Heating on Free Vibration Mode Shapes

As described in section III, the structural reference modes are not updated during the course of the
aerothermoelastic simulation and it is thus important to characterize the e�ect of transient heating on the
free vibration mode shapes of the structure. To assess this e�ect, the structural mode shapes under transient
heating are computed as a function of time for representative 
ight conditions. Solution of the free vibration
problem includes both material degradation and geometric sti�ening e�ects. The 
ight conditions for this
simulation are taken to be Mach 8 at an altitude of 26 km with an angle of attack of 3� and a uniform
initial temperature distribution of 293 K. The heat transfer time step, �tHT , is taken to be 1 s and the
aerothermal time step, �tAT , is taken to be 5 s. The structure is taken to be rigid for the purposes of
unsteady aerodynamics and thus the initial 
ow properties calculated over the undeformed con�guration are
held constant for the duration of the simulation. A time history of 2 hours (7,200 s) is obtained from the
simulation. Note that the full-order thermal model is used for this simulation to eliminate any errors due
to model reduction. Plots of the maximum and minimum nodal temperatures are given in Figs. 9(a) and
9(b), respectively. The maximum temperature approaches an equilibrium value within the duration of the
simulation while the minimum temperature is still increasing.

In order to quantitatively assess the evolution in mode shapes due to heating, the modal assurance
criterion35 (MAC) is employed. The MAC is a relation used to estimate the degree of correlation between
two mode shape vectors. In this work, the MAC is used to quantify the correlation between the i-th heated
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Figure 8. Finite element model of control surface used in study.
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(a) Maximum nodal temperatures.
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(b) Minimum nodal temperatures.

Figure 9. Maximum and minimum nodal temperatures vs. time for M = 8, � = 3�, h = 26 km, T0 = 293 K uniform.
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mode, �(i)
h , and the j-th unheated mode, �(j)

u at each aeroelastic time step. The unheated modes are taken
to be those at the initial uniform temperature distribution of 293 K. The MAC value, MACi;j , corresponding
to the correlation between �

(i)
h and �

(j)
u is given by

MACi;j =

����
�
�

(i)
h

�T �
�

(j)
u

�����
2

��
�

(i)
h

�T �
�

(i)
h

�� ��
�

(j)
u

�T �
�

(j)
u

�� : (15)

The MAC takes on values between zero and one, where a value of one indicates exact correspondence between
modes. A matrix can be assembled by calculating the MAC value relating each heated mode to each unheated
mode. The MAC analysis described here considers the �rst six modes of the structure, and thus the MAC
matrix is a 6� 6 matrix. The �rst six unheated mode shapes and frequencies are given in Fig. 10. The �rst
step is to compute the diagonal values of the MAC matrix as a function of time to assess the correspondence
between each heated mode and the corresponding unheated mode. This calculation is performed at each
heat transfer time step of the simulation. Note that the heated modes are always sorted in order of increasing
natural frequency. Plots of the diagonal values of the MAC matrix are given in Fig. 11. As evidenced by the
�gures, heated modes one, two, �ve, and six do not deviate signi�cantly from the corresponding unheated
modes and the diagonal values of the MAC corresponding to these modes remain close to one. However, for
modes three and four there exists a decrease in the MAC value over time, indicating a loss of correspondence
with the corresponding unheated modes.

To further explore the evolution of modes three and four over time, o�-diagonal terms of the MAC
matrix are examined. Speci�cally, Fig. 12(a) shows MAC3;3 and MAC3;4 over time in order to compare
the correspondence between heated mode three and unheated mode three against heated mode three and
unheated mode four. Similarly, Fig. 12(b) shows MAC4;4 and MAC4;3 over time. The �gures illustrate
the fact that heated mode three begins to resemble unheated mode four over time, and heated mode four
begins to resemble unheated mode three over time. To visualize how the third heated mode evolves over
time, it is plotted at 290 s (the approximate crossover time in Fig. 12(a)) and at 7,200 s (the end of the
transient) as shown in Fig. 13. Similarly, the fourth mode is plotted at 440 s (the approximate crossover
time in Fig. 12(b)) and at 7,200 s as shown in Fig. 14. Comparing Fig. 13(b) to Fig. 10(d), it is observed
that heated mode three is qualitatively similar to unheated mode four at the end of the transient. Similarly,
comparing Fig. 14(b) to Fig. 10(c), heated mode four appears qualitatively similar to unheated mode three
at the end of the transient.

Plots of the percentage change in the natural frequency of each heated mode with respect to the unheated
frequencies are given in Fig. 15. Note that the heated frequencies are sorted in order of increasing increasing
magnitude at each time step. For modes 1 { 3, the greatest deviation from the unheated frequency is found
to be a 7% decrease, while that for modes 4 { 6 is found to be a 12% decrease. Thus, in situations where the
natural frequency has a signi�cant impact on the system, such as in HSV control system design, the e�ect
of aeroheating on the natural frequencies is important to consider.

These results provide support for the use a �xed basis in the structural dynamic ROM over the duration
of the aerothermoelastic simulation. For modes one, two, �ve, and six, we observe that the corresponding
diagonal MAC value remains close to one, and thus there is not a signi�cant loss in accuracy by not updating
the basis as the structure is heated. Though mode switching occurs between heated modes three and four,
at any time during the evolution of the mode shapes each contain contributions primarily from unheated
modes three and four. Thus, either of these heated modes can also be well represented at any instant in
time using the unheated modes, and no update of the modes is necessary as the structure is heated.

VII. E�cient Updating of Sti�ness and Thermal Loads

VII.A. Overview of Kriging Theory

As the temperature distribution of the structure is continuously changing in time, the sti�ness matrix
and thermal load vector must be updated at every iteration of the structural dynamic response solution.
Calculation of the generalized sti�ness involves generating the physical sti�ness matrix and pre- and post-
multiplying by the modal matrix. Updating the physical sti�ness matrix requires assembling KS(T ) based on
the temperature-dependence of material properties as well as solving a linear static �nite element problem to
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(a) Mode 1: 25.5 Hz. (b) Mode 2: 37.2 Hz.

(c) Mode 3: 54.5 Hz. (d) Mode 4: 56.6 Hz.

(e) Mode 5: 92.2 Hz. (f) Mode 6: 104.4 Hz.

Figure 10. First six unheated mode shapes and frequencies.
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Figure 11. Diagonal entries of MAC matrix for �rst six modes vs. time.
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(a) MAC3;3 vs. MAC3;4.
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Figure 12. Comparison of diagonal and o�-diagonal entries of MAC matrix for third and fourth modes vs. time.

(a) Mode 3 at 290 s: 53.7 Hz. (b) Mode 3 at 7,200 s: 53.1 Hz.

Figure 13. Mode 3 at two di�erent time instants showing evolution of mode shape with heating.

(a) Mode 4 at 440 s: 54.2 Hz. (b) Mode 4 at 7,200 s: 54.1 Hz.

Figure 14. Mode 4 at two di�erent time instants showing evolution of mode shape with heating.
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Figure 15. Percentage change in natural frequencies of �rst six heated modes vs. time.

generate KG(T ). Computation of the generalized thermal load vector requires updating the physical thermal
load vector and pre-multiplying by the modal matrix. Creation of the physical thermal load vector requires
updating each element load vector based on the temperature change and assembling the global load vector.
Because the number of physical degrees of freedom in the structural model is large, reassembling the physical
sti�ness matrix and thermal load vector at every aeroelastic time step within an aerothermoelastic simulation
framework is undesirable. One goal of this paper is to examine techniques for reducing the computational
cost of the structural ROM by avoiding the need to reassemble the physical sti�ness matrix and thermal
load vector at every time step. A method for directly updating the sti�ness matrix and thermal loads based
on a given temperature distribution is therefore under investigation to reduce the computational cost of the
structural ROM. This can be seen as replacing the orange blocks in Fig. 1 with a reduced-order representation
linking the transient thermal solution to the structural dynamic equations of motion. The generalized load
vector due to aerodynamic loads, FAS , is still assembled in the usual manner as it only contains contributions
to the loads at the outer surface of the structure and the associated computational cost is relatively low.

The methodology employed in this work is based on the kriging technique36 which provides a global
approximation to a function based on sampled training data. Kriging provides an approximation, ŷ(b), to a
function based on local deviations, Z(b;X), from a global approximation, R(b;X), of the form37

ŷ(b) = R(b;X) + Z(b;X); (16)

where b is a vector of inputs corresponding to the untried location in the parameter space and X is a collection
of the sample points used for the training data. The training response at the sample points is stored in the
response matrix, Y (X), such that

Y (X) =

2
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; (17)

where y(j)
i indicates the i-th entry of the response vector for the j-th kriging snapshot, X(j), nk is the number

of kriging snapshots, and np is the number of output parameters in a snapshot. The regression model R(b;X)
is an assumed function (usually of polynomial form), while Z(b;X) is a realization of a stochastic process
with zero mean, variance of �2, and non-zero covariance, and ensures that the kriging model interpolates
the sampled data points exactly. Alternatively, Z(b;X) represents uncertainty in the mean of y(b) and the
covariance matrix of Z(b;X) for two points in the parameter space, b(i) and b(j), is given by

Cov
h
Z(b(i)); Z(b(j))

i
= �2C[G(X(i); X(j))]; (18)

where C is the correlation matrix that is assembled based on the chosen correlation function, G(X(i); X(j)),
and X(i) and X(j) are the i-th and j-th sample points, respectively. In Eq. (18), the process variance, �2,
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functions as a scale factor that can be tuned to the training data. The role of the correlation function is
to account for the e�ect of each interpolation point on every other interpolation point and quanti�es how
quickly and smoothly the function moves from point X(i) to point X(j). In this work, a Gaussian correlation
function is used, and is given by37

G(X(i); X(j)) = exp

"
�
ndvX

k=1

�k

���X(i)
k �X

(j)
k

���
pk

#
; (19)

where ndv is the number of design variables or parameters, �k and pk are the unknown �tting parameters,
and X

(i)
k denotes the k-th component of the i-th sample point. The bounds on the �tting parameters are:

�k > 0 and 0 < pk � 2. As the point X(i) approaches X(j), Eq. (19) approaches its maximum value of
one, leading to the property that the kriging surface passes through the sampled data points. Therefore,
the Gaussian correlation function is intuitive in that the closer two points become in the parameter space,
the greater the correlation between the two points becomes. The parameters �k in Eq. (19) serve to provide
a measure of activity in the variable Xk. Large values of � indicate that there is strong correlation only
for sample points that are close together. Small values of � indicate that sample points points spaced
further apart still have a strong in
uence on each other because they are well correlated. An alternative
interpretation of the �k parameters is associated with dependence of the function on the k-th design variable.
If the k-th design variable is active, there exist large di�erences in the function values at X(i)

k and X
(j)
k .

Thus, the corresponding �k parameter will be large such that even though the absolute di�erence between
X

(i)
k and X

(j)
k is small, the correlation between the function values at the i-th and j-th snapshot is low due

to the fact that it changes rapidly with changes in the k-th design variable. The exponents pk are related
to the smoothness of the function of interest in the direction of the k-th design variable, with increasing pk
corresponding to increasing smoothness. In order to determine the �tting parameters, the form of R(b; x)
must �rst be chosen.

To derive the prediction equations, a vector containing the regression functions, denoted by rx, is assem-
bled such that

R(b;X) = rTx �; (20)

where rTx is a 1 � nb row vector of basis functions with nb being the number of basis functions associated
with the regression polynomial, and � is an nb � 1 column vector of coe�cients of each of the polynomial
terms. The expanded design matrix, Rx, is of the form38

Rx(X) =

2
66664

rTx (X(1))
rTx (X(2))

...
rTx (X(nk))

3
77775
; (21)

such that i-th row of Rx corresponds to the evaluation of the nb basis functions at the i-th kriging snapshot.
If the stochastic process evaluated at the kriging snapshot points is denoted as

z(X) =
h
Z(X(1)); Z(X(2)); : : : ; Z(X(nk))

iT
(22)

then the training data can be represented as

Y (X) = Rx� + z: (23)

The goal of the kriging methodology is to obtain the best linear unbiased predictor, where unbiasedness
refers to the fact that the expected value of the predictor must be equal to the expected value of Eq. (23).
This is accomplished by solving an optimization problem to minimize the error of the predictor subjected to
constraints that ensure unbiasedness. This procedure results in the kriging predictor being given by

ŷ(b) = rTx �̂ + gT (b;X)G�1
�
y �Rx�̂

�
; (24)

where y is a column vector of length nk containing the values of the function outputs at the sample points
and gT (b;X) is a correlation vector between the untried point, b, and the sample data points, X, such that

g(b;X) =
h
G(b;X(1)); G(b;X(2)); : : : ; G(b;X(nk))

iT
: (25)
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In Eq. (24), �̂ is the generalized least squares estimator of � and is given by

�̂ =
�
RTxC

�1Rx
��1

RTxC
�1y: (26)

At this point, it remains to determine the �tting parameters �k and pk in Eq. (19). As the stochastic
process associated with the error of the kriging regressors is assumed to be Gaussian, the optimal values of
�k and pk are those that maximize the likelihood that the interpolation points have been drawn from such
a process. Alternatively stated, we seek to choose �k and pk leading to a kriging function such that the
consistency between the actual model and the kriging predictions of the model is maximized. The problem
of obtaining the maximum likelihood estimates of �k and pk is posed as

min
�k>0; 0<pk�2

� nk ln
�
�̂2
�

+ lnjCj
2

; (27)

where jCj is the determinant of C and �̂ is the generalized least squares estimate of � given by

�̂2 =

�
y �Rx�̂

�T
C�1

�
y �Rx�̂

�

nk
: (28)

The maximum likelihood estimate given in Eq. (27) is a function of the �k and pk parameters only, and one
can thus utilize nonlinear optimization techniques to obtain these parameters. While any values of �k and
pk would result in a kriging model that interpolates the sample points exactly, the \best" kriging model is
that which utilizes those values of �k and pk which minimize the function given in Eq. (27).

VII.B. Use of Kriging for E�cient Update of Sti�ness and Thermal Loads

In this application the quantities to be approximated using kriging, ŷ, are the entries of the sti�ness matrix
and the thermal load vector, and the inputs to function, b, are spatially varying temperature distributions.
Because the current full-order thermal model contains 2,812 degrees of freedom, it is impractical to treat
each thermal degree of freedom as a variable in the parameter space. This is due to the fact that the
resulting parameter space would be too large to realistically sample when generating the kriging training
data. However, as POD is already being used for the thermal ROM, it provides a convenient and optimal
means for parameterizing the transient temperature distribution in terms of a small number of variables.
By using the truncated set of thermal POD modal coordinates as the parameters to represent the complete
temperature distribution, the number of parameters to be sampled is greatly reduced. The large-scale
reduction in the number of design variables needed to represent the physical temperature distribution is due
to the optimality of the POD basis. Recall that the POD basis is optimal in the sense that it captures the
solution more accurately in a �nite number of modes than any other basis representation using the same
number of modes, provided that the POD snapshots adequately capture the dynamics of the system. This
optimality is critical as the computational e�ort required to construct a kriging model is a strong function
of the number of design variables involved.

Because of the large number of structural degrees of freedom, the computational cost and memory asso-
ciated with updating the physical sti�ness matrix, K�S(T ), and pre- and post-multiplying by the structural
reference modes at every aeroelastic time step is undesirable. As such, kriging is used to directly create
the generalized sti�ness matrix, k�S(T ), which is of reduced size and does not possess the computational
issues associated with the physical sti�ness matrix. As the number of entries in the physical thermal load
vector, FHS , is reasonable, error analysis is conducted on kriging models for both the physical and generalized
thermal load vectors to assess which one can be more accurately represented.

The �rst step in the process is to generate the thermal POD vectors to be used in parameterizing the
transient temperature distribution. To accomplish this, an aerothermoelastic simulation is run for a time-
history of one hour at M = 8, h = 26 km, � = 3�, and a uniform initial temperature distribution, T0, of
293 K. In a previous work by the authors14 it was found that there is a steep initial temperature gradient
as the structure begins heating up, and the maximum temperature increases until approximately 150 s into
the transient, at which point it begins to reach a steady state. As such, two di�erent sets of time steps are
used to adequately capture the dynamics of the thermal system. For the period from 0 { 150 s, the time
steps are chosen as follows: �tHT = �tAE = 0:1 s, and �tAT = 1 s. For the period from 150 s { 3,600 s,
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the time steps are chosen as follows: �tHT = �tAE = 1 s, and �tAT = 5 s. The goal of using smaller time
steps initially is to provide more resolution for the period in which the dynamics of the thermal system are
changing on a faster time scale. One thermal snapshot is taken at each heat transfer time step regardless of
the size of the time step, resulting in a total of 4,951 snapshots.

After the snapshot matrix is assembled, its singular value decomposition is taken in order to generate
the POD basis vectors. The eigenvalues of the correlation matrix are computed based on the singular
values and are used to assess the relative contribution of each POD mode. The �rst 24 eigenvalues of the
correlation matrix are shown in Fig. 16. The retained POD modes are chosen by selecting those modes whose
corresponding eigenvalue is greater than one. Based on this criteria, the �rst 15 POD modes are retained.
The fact that the POD modal truncation results in a set of 15 modes being retained is advantageous in that
the number of design variables involved in the kriging training procedure has now been reduced to a feasible
level.
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Figure 16. Semi-log plot of �rst 24 eigenvalues of correlation matrix.

With the design variables chosen, the next step of the process is to generate the kriging sample points
to be used in construction of the ROM. This is accomplished using the LHS methodology. In this case,
each kriging sample point consists of a set of 15 POD modal coordinates. Before the sample points can be
generated, upper and lower bounds must be established for each design variable. This is accomplished by
�rst calculating the vector of POD modal coordinates for each thermal snapshot based on the chosen POD
basis by solving for c in the equation

��T c = T; (29)

where ��T is the matrix containing the truncated set of POD modes, c is the vector of modal coordinates
to be found, and T is a vector of temperatures corresponding to a given snapshot. Because there are more
equations than unknowns in Eq. (29), c is computed in the least squares sense. Once c is known for each
thermal snapshot, an interval is found for each modal coordinate by subtracting the minimum value of
each modal coordinate from the corresponding maximum value. Because these intervals corresponds to the
speci�c 
ight conditions at which the thermal POD snapshots were taken, they may not encompass the full
range that the POD modal coordinates can assume across the full spectrum of 
ight conditions. In order
to account for variability in the POD modal coordinates with 
ight conditions and boundary conditions,
the interval size for each POD modal coordinate is multipled by a factor of three by increasing each upper
bound and decreasing each lower bound by equal amounts.

With the upper and lower bounds for each modal coordinate established, the LHS methodology is used
to generate the kriging sample points. Because the sampling is performed on the POD modal coordinates
and not on the nodal temperatures themselves, the resulting temperature vector may be out of the expected
range for the structure for certain combinations of POD modal coordinates. To account for this, bounds are
also established on minimum and maximum allowable values of the resulting nodal temperatures. After the
sample points are generated, the temperature vector corresponding to each sample point is found using the
chosen POD basis. A �ltering process is then employed that eliminates sample points whose corresponding
minimum and maximum nodal temperature values lie outside the range of 293 K { 1,500 K. It is therefore
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necessary to generate more sample points than desired as not all sample points will be accepted.
Once the inputs for each training run are generated, high-�delity analysis is conducted to generate the

training data for each sample point. This step consists of generating the temperature distribution corre-
sponding to the selected POD modal coordinates and computing the resulting sti�ness matrix and thermal
load vector at that temperature distribution. The generalized sti�ness matrix calculation is performed by
assembling the physical sti�ness matrix and pre- and post-multiplying by the chosen structural reference
modes. The physical sti�ness matrix is computed using Eq. (7) and contains contributions from both the
conventional sti�ness matrix with temperature-dependent material properties, KS(T ), and the geometric
sti�ness resulting from thermal stresses, KG(T ). The assembling of the matrices and vectors required for
the kriging training process is accomplished via the use of Nastran DMAP. For this case, the structural
reference modes are chosen to be the �rst ten free vibration modes at the reference thermal state. The
reference thermal state is obtained by averaging the 4,951 thermal snapshots used in generating the POD
basis. Because the kriging ROM is necessary to evaluate the accuracy of the structural basis, the validity
of this structural basis is not studied in the current section. It is used simply as a placeholder at this stage
for the purpose of evaluating the accuracy of the kriging ROM with a �xed structural basis. Subsequent
sections will provide detailed examination of selection of a robust structural basis.

Using the set of sample points along with the output data, kriging surrogates are created for the sti�ness
matrix and thermal loads using a second order polynomial regression model. Once the kriging models are
generated, the errors associated with each are quanti�ed. If the accuracy of the models is acceptable, they
can then be used within the aerothermoelastic simulation framework. If greater accuracy is desired, more
sample points are added and the kriging models are updated. The procedure for error quanti�cation is based
on that utilized by Crowell et al.23 The process involves �rst generating an independent set of evaluation
points using LHS. Again, these evaluation points are subjected to the criteria that they must generate nodal
temperatures that lie within the range 293 K { 1,500 K. The number of kriging evaluation points, ne, is
chosen to be 500 in this work. For each evaluation point, the sti�ness matrix and thermal load vector are
calculated using both the full-order model and the kriging ROM. To quantify the error between the full-order
and kriging solutions, two di�erent error metrics are utilized. The �rst error metric is the normalized root
mean squared error (NRMSE). Expressed as a percentage, the NRMSE is given by

NRMSE =

q
1
q

Pq
i=1 (ROMi � Fulli)

2

Max(Full)�Min(Full)
� 100%; (30)

where i is the i-th output quantity, \ROM" represents a solution vector of the reduced-order model, \Full"
represents a solution vector of the full-order model, and q is the total number of output quantities. Also,
note that \Max" and \Min" correspond to the maximum and minimum entries, respectively, of the vector
of interest. The output quantities are the entries of the generalized sti�ness matrix and the physical or
generalized thermal load vector, and thus i is summed over all of the entries of the vector of interest in the
numerator of Eq. (30). Note that the generalized sti�ness matrix is reshaped into a column vector for the
purpose of error analysis. The second error metric utilized is the L1 error. Expressed as a percentage, the
L1 error is given by

L1 =
Max (jROM� Fullj)

Max(Full)�Min(Full)
� 100%: (31)

Note that the error metrics are calculated for each evaluation case. To determine a scalar measure of error
for the ROMs, both the average and maximum values of the NRMSE and L1 error over all evaluation cases
are examined.

To examine the error of the kriging ROMs as a function of number of sample points, kriging models
for both the generalized sti�ness matrix and generalized thermal load vector are generated using varying
numbers of sample points. Two di�erent criteria are utilized in generating the set of Latin Hypercube sample
points. The �rst, denoted \maximin", aims to maximize the minimum distance between sample points over a
speci�ed number of iterations. The second, denoted \correlation", aims to minimize the correlation between
sample points over a speci�ed number of iterations. In both cases, the maximum allowable number of
iterations is set to 500. The error metrics are computed for each kriging ROM over 500 evaluation snapshots
which are always generated using the \maximin" criterion over 500 iterations. Plots of the average NRMSE
and L1 error for the generalized sti�ness ROM as a function of number of sample points are given in
Fig. 17(a) and Fig. 17(b), respectively, using both the \maximin" and \correlation" criteria. Similarly, plots
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of the average error for the generalized thermal load vector ROM are given in Fig. 18(a) and Fig. 18(b),
respectively, using both the \maximin" and \correlation" criteria. Due to memory requirements associated
with the \maximin" criterion, the maximum number of sample points used with this criterion is 3,000,
while up to 6,000 are taken for the \correlation" cases. As seen in the �gures, there is not a signi�cant
di�erence between the results obtained using the \maximin" criterion and the \correlation" criterion. Due
to the higher computational cost and memory requirements associated with the \maximin" criterion, the
\correlation" criterion with a maximum of 500 iterations is used from this point forward. Comparing Fig. 17
with Fig. 18, it is evident that generalized sti�ness matrix ROM is signi�cantly more accurate than the
generalized thermal load vector ROM for the same number of snapshots.
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Figure 17. Average errors for generalized sti�ness matrix ROM over 500 evaluation cases.
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Figure 18. Average errors for generalized thermal load vector ROM over 500 evaluation cases.

To understand why the error of the generalized sti�ness ROM is signi�cantly lower than that of the
generalized thermal load vector ROM, the functional dependence of the generalized sti�ness matrix on the
POD modal coordinates is examined. Recall that the physical sti�ness matrix is the sum of the conventional
sti�ness matrix and geometric sti�ness matrix, i.e.

K�S(T ) � KS(T ) +KG(T ): (32)

The entries of the generalized sti�ness matrix are simply linear combinations of the entries of the physical
sti�ness matrix and do not a�ect the order of its dependence on temperature. The dependence of KS(T )
and KG(T ) on the POD modal coordinates is through the variation of material properties with temperature.
The entries of the conventional sti�ness matrix, KS(T ), are only dependent on the Young’s modulus of the
corresponding material, i.e.

KS;i / E(Ti); (33)
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where i denotes a particular degree of freedom. The entries of the geometric sti�ness matrix, KG(T ) are
dependent on the Young’s modulus, coe�cient of thermal expansion, and temperature change, i.e.

KG;i / E(Ti); �T (Ti);�Ti; (34)

where the temperature is always expressed as a linear combination of the POD basis vectors such that

Ti =
rX

j=1

cj’
(j)
i ; (35)

where r is again the number of degrees of freedom in the reduced-order thermal model. In order to understand
the order of the functional dependence the entries of KS(T ) and KG(T ) on the POD modal coordinates, cj ,
it is �rst necessary to know the order of the functional dependence of E and �T on temperature for each
material in the model. This information is given in Table 2 for each of the three materials used in the model,
where each entry in the table gives the order of the polynomial representing the temperature-dependence of
the material preoperty. Recall that the sti�ness and thermal expansion of the insulation layer are neglected
in the structural model.

Table 2. Orders of dependence of E and �T on temperature.

E(T ) �T (T )
Heat Shield (Ren�e 41) Quadratic Cubic
Insulation (Min-K) N/A N/A
Skin/Sti�eners (TIMETAL834) Linear Constant

Based on the information given in Table 2, the entries of KS(T ) can depend on at most the second
power of cj , and the entries of KG(T ) can depend on at most the sixth power of cj . Because the regression
model used for the kriging function is quadratic, one would expect the generalized sti�ness matrix to be
well approximated by the kriging model if the generalized sti�ness was at most a quadratic function of
the POD modal coordinates. Thus, one potential reason that the kriging representation of the generalized
sti�ness matrix is of such high accuracy is that KS(T ) is dominant over KG(T ), and that K�S(T ) is essentially
quadratic in T with small perturbations due to geometric sti�ening. To examine this hypothesis, the relative
magnitudes of KS(T ) and KG(T ) are assessed as a function of temperature. The temperature is varied by
holding all modal coordinates constant except for the �rst, and increasing c1 linearly. For each increment of
c1, the Frobenius norms of both KS(T ) and KG(T ) are computed in order quantify the relative magnitude
of each. Plots of the Frobenius norms of KS(T ) and KG(T ) as a function of c1 are given in Fig. 19(a) and
Fig. 19(b), respectively. Comparing the two plots, KS(T ) is approximately three orders of magnitude larger
than KG(T ) based on the chosen norm. This indicates that the generalized sti�ness matrix is essentially
quadratic in the POD modal coordinates with small perturbations due to geometric sti�ening. Because the
regression model used for the kriging ROM of the generalized sti�ness matrix is also quadratic, the errors
associated with the generalized sti�ness matrix ROM are low.

Though the average NRMSE of the generalized thermal load vector remains below 10% as shown in
Fig. 18(a), higher accuracy for the thermal loads is still desired. One potential means for improving the
representation of the thermal loads is to perform the kriging interpolation on the physical thermal load
vector, FHS , as opposed to the generalized thermal load vector, fHS . Because the number of entries in the
physical thermal load vector is at a feasible level (8,074), memory and computational cost issues will not
come into play as they would in the case of the physical sti�ness matrix. To investigate the ability of kriging
to capture the entries of the physical thermal load vector, the same error analysis as used for the generalized
thermal load vector is repeated on the physical one. The \correlation" criterion with a maximum of 500
iterations is again used to generate the sample points for the training data. Plots of the average NRMSE
and L1 error over the evaluation cases are given in Fig. 20(a) and Fig. 20(b), respectively.

Comparing Fig. 20 to Fig. 18, it is observed that greater accuracy can be obtained by performing the
kriging interpolation on the physical thermal load vector instead of the generalized thermal load vector.
To understand why this is the case, �rst consider the dependence of the entries of the physical load vector
on temperature. The physical thermal load vector is proportional to the Young’s Modulus, coe�cient of
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Figure 19. Frobenius norms of the conventional and geometric sti�ness matrices as a function of the �rst POD modal
coordinate.
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Figure 20. Average errors for physical thermal load vector ROM over 500 evaluation cases.
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thermal expansion, and change in temperature, i.e.

FHS;i / E(Ti); �T (Ti);�Ti; where Ti =
rX

j=1

cj’
(j)
i : (36)

Based on the information presented in Table 2, this means that the physical thermal load vector depends on
the second power of c for skin and sti�ener elements and the sixth power of c for heat shield elements. In
order to compute the generalized thermal load vector, inner products between the structural modes and the
physical thermal load vector are required. The i-th entry of the generalized thermal load vector is given by

fHS;i =
sX

l=1

�
(i)
l FHS;l; (37)

where �(i)
l denotes the l-th entry of the i-th structural reference mode and s is the total number of degrees of

freedom in the structural model (8,074 in this case). Whereas as the physical thermal load vector depends
on the second power of c for skin and sti�ener elements and the sixth power of c for heat shield elements, the
generalized thermal load vector depends on the sixth power of c for all elements because it is summed over all
entries of FHS . Therefore, the generalized thermal load vector is a more complex function of the POD modal
coordinates than the physical one. The only caveat associated with using kriging to generate the physical
load vector is that the physical thermal load vector must be pre-multiplied by the structural reference modes
each time it is updated in order to transform to modal space. However, the computation time involved in
transforming the loads from physical space to modal space is expected to be minimal. Thus, the physical
thermal load vector and not the generalized thermal load vector will be approximated with kriging in this
work.

Though the accuracy of the generalized sti�ness matrix and physical thermal load vector ROMs appear
su�cient based on the NRMSE and L1 plots given in Fig. 17 and Fig. 20, recall that these results are
obtained by averaging the error metrics over 500 evaluation cases. As one of the objectives of this study is to
bound the error of the kriging ROMs, it is necessary to investigate the worst-case error over the parameter
space. As such, the maximum L1 error over the 500 evaluation cases is plotted for both the generalized
sti�ness matrix ROM and the physical thermal load vector ROM as a function of number of sample points.
This metric gives the worst-case error over all degrees of freedom over all evaluation cases. Results are given
in Fig. 21(a) and Fig. 21(b). Comparing the two �gures, the worst-case error of the physical thermal load
vector ROM is several orders of magnitude higher than that of the generalized sti�ness matrix ROM. As it
is desirable to reduce the worst-case error of the physical thermal load vector ROM, further investigation
into the source of the higher errors is warranted. To give an indication of the spatial variation of the error,
a new error metric, denoted by �, is introduced. This error metric corresponds to the percentage error for
each degree of freedom and given by

�i =
jROMi � Fullij

Fulli
� 100%; (38)

where i denotes the i-th degree of freedom. In order to determine the sources of error for the physical
thermal load vector ROM, it is necessary to determine which degrees of freedom generally show the largest
discrepancy between thermal loads calculated by the full-order model and those predicted by the kriging
model. To accomplish this, the degree of freedom number at which the maximum value of � occurs for
the physical thermal load vector ROM is recorded for each evaluation case. The number of times that the
maximum percentage error occurs at each degree of freedom is then summed and plotted as a function of
degree of freedom in Fig. 22 for the physical thermal load vector ROM generated using 3,000 sample points.
Note that the skin and sti�ener elements correspond to degrees of freedom 1{2752, and the heat shield
elements correspond to degrees of freedom 2753{8,074. Examining Fig. 22, in can be observed that the
maximum percentage error generally occurs at those degrees of freedom corresponding to the heat shield.
This is expected as the thermal loads for the heat shield are a higher order function of temperature than the
thermal loads for the skin and sti�eners.

Due to the higher order dependence of the heat shield thermal loads on temperature, it is expected that
the use of a higher order regression model will improve the accuracy of the representation of the thermal
loads. To examine this hypothesis, a third-order regression model was implemented for comparison against
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(a) Generalized sti�ness matrix ROM.
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(b) Physical thermal load vector ROM.

Figure 21. Maximum L1 errors over 500 evaluation cases for kriging ROMs of k�S(T ) and FH
S (T ) using 2nd order

regression model.
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Figure 22. Number of occurrences of maximum percentage error at each degree of freedom for physical thermal load
vector ROM generated using 3,000 sample points.
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the results obtained using the second-order regression model. The maximum L1 error of the physical
thermal load vector ROM over 500 evaluation cases is plotted as a function of number of sample points for
both the second-order and third-order regression models as shown in Fig. 23. The �gure shows signi�cant
improvement in capturing the thermal loads by moving from a second-order regression function to a third-
order regression function. It is observed that for the third-order regression function, all data points remain
at or below 5% maximum L1 error over the evaluation cases.

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

5

10

15

20

25

30

35

40

Number of Sample Points

L ∞
 E

rr
or

 [%
]

 

 

2nd Order Regression
3rd Order Regression

Figure 23. Maximum L1 error over 500 evaluation cases for kriging ROMs of FH
S (T ) using both 2nd and 3rd order

regression models.

Note that the minimum number of sample points used in Fig. 23 is 1,000. This is due to the fact that
there is a minimum bound on the number of sample points used to create the kriging ROM based on the
number of basis functions, nb, required by the regression model. In order to ensure that the problem is
not under-constrained, the number of sample points used in creating the kriging ROM, must be equal to or
greater than the number of basis functions in the regression model, i.e. nk � nb. Therefore, the order of
the regression model must not be chosen to be arbitrarily high as there is a trade-o� between the order of
regression and the minimum number of required sample points. The number of basis terms, and thus the
minimum number of required sample points, is given by

nb =

OY

i=1

(ndv + i)

O!
; (39)

where O is the order of the regression model. For the current case in which 15 design variables are considered,
nb is 120 for a second-order regression model, 816 for a third-order regression model, and 3,876 for a fourth-
order regression model. Thus, care must be taken when selecting the order of regression and number of
design variables to consider as there exists an important trade-o� between the accuracy of the kriging ROM,
the computational expense required to create the kriging ROM, and the number of design variables included.

VII.B.1. Methodology for Bounding POD Modal Coordinates

For the kriging results presented thus far, the bounds on the POD modal coordinates were established based
on the maximum and minimum values of each for a single full-order aerothermoelastic simulation under one
speci�c set of 
ight conditions. If the POD modal coordinates remain within these bounds throughout the
simulations in which the kriging ROMs are used, the discussion of kriging error presented above is valid.
However, there is no guarantee of accuracy if the POD modal coordinates go outside of the bounds which
were used in generating the training data. As such, a robust and e�cient method for bounding the POD
modal coordinates is developed. An overview of the proposed methodology is given in Fig. 24.

The process begins by identifying the range of 
ight conditions for which the kriging ROMs are to be valid
for. The 
ight conditions of interest are the Mach number, angle of attack, and altitude. Using the bounds
on the 
ight conditions, the LHS procedure is used to generate n 
ight condition sets. One of the sample
points must correspond to the highest dynamic pressure case (maximum Mach number, maximum angle of
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Figure 24. Proposed methodology for generating thermal snapshots and bounding POD modal coordinates.

attack, and minimum altitude), and another sample point must correspond to the lowest dynamic pressure
case (minimum Mach number, minimum angle of attack, and maximum altitude). For each set of 
ight
conditions, a full-order aerothermoelastic simulation is carried out and thermal snapshots are taken. Note
that these simulations are performed in parallel such that the time to generate all of the thermal snapshots
is the computation time for a single full-order simulation. Once the thermal snapshots are obtained from
all of the full-order aerothermoelastic simulations, they are combined into a single snapshot matrix and
the POD basis is generated. The POD basis is then used along with the snapshots to calculate what the
time-history of the POD modal coordinates would have been had the thermal ROM been used for each set
of 
ight conditions. For each case, the maximum and minimum values of each POD modal coordinate are
identi�ed, and this information is used to create a kriging surface that gives the bounds on each of the POD
modal coordinates as a function of the Mach number, angle of attack, and altitude. This kriging surface is
then used as a surrogate model for the purpose of �nding the maximum possible upper bound and minimum
possible lower bound for each POD modal coordinate at any location within the parameter space of the

ight conditions. Once the POD bounds are established, they are used in the generation of sample points
for the kriging ROMs of the sti�ness matrix and thermal load vector. This framework serves two important
purposes. In addition to providing robust bounds on the POD modal coordinates, the framework also leads
to the generation of a rich set of thermal snapshots, leading to an accurate thermal POD model.

One challenge involved in bounding the POD modal coordinates is associated with their initial conditions.
If the relations given in Eq. (4) are solved directly for the POD modal coordinates, it is likely that the bounds
will be exceeded for simulations whose initial conditions vary from those at which the bounds were generated.
It is therefore desirable to generate bounds that are independent of the initial conditions by transforming
Eq. (3) such that the initial conditions are made to be uniform and homogeneous. This is accomplished by
de�ning a new variable, ~T , which represents the excess of temperature over the initial condition, i.e.,

~T (t) = T (t)� T0; (40)

where T0 is the vector of initial temperatures. Applying this transformation to Eq. 3, the system becomes

M _~T (t) +K ~T (t) = GT (t); (41)

where GT (t) = F (t)�KT0. As before, the system is transformed to modal space using

��TTMT
��T _~c(t) + ��TTKT

��T ~c(t) = ��TTGT (t); (42)
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where ~c denotes the fact that the system has been transformed to impose homogeneous initial conditions.
Once the system is solved for ~c(t), the physical temperatures are obtained by multiplying the POD basis
with the POD modal coordinates and adding the initial conditions back on, i.e.

T (t) = ��~c(t) + T0: (43)

In addition to making the bounds independent of the initial conditions, this transformation provides another
bene�t in terms of improving the accuracy of the thermal ROM. If the initial conditions were not made to
be homogeneous, the initial value of each POD modal coordinate would be found by projecting T0 in the
direction of the corresponding POD basis vector, i.e.,

ci(0) =
D
’(i); T0

E
; (44)

where h�i denotes an inner product. Because the POD basis does not form a complete space for the physical
temperatures, the initial temperature distribution cannot be represented exactly in this formulation. How-
ever, by transforming the equations to enforce homogeneous initial conditions, ~c(0) is forced to become a
vector of zeros and T (t) can be represented exactly after the vector of initial conditions is added back to the
solution. For the current framework in which Eq. (42) is integrated numerically and the solution at each
time step depends on that at the previous time step, the ability to represent the initial conditions exactly is
important.

In order to account for the transformation of Eq. (40) in the kriging representation of the sti�ness matrix
and thermal loads, additional design variables corresponding to T0 must be included in the kriging functions.
This is necessary because the design variables passed to the kriging functions must be capable of reproducing
the physical temperature distribution including the e�ect of the initial condition. In this work the initial
temperature distribution is assumed to always be uniform such that the physical temperature distribution
can be expressed as

T (t) =

"
rX

i=1

ci(t)’(i)

#
+ T0f1g; (45)

where T0 is the scalar value of the uniform initial temperature and f1g is a vector of ones of length s. Thus
the design variables for the kriging ROMS are the POD modal coordinates, ci, and the scalar value of the
initial temperature, T0. Because the initial condition is taken to be uniform here, only one additional design
variable is required to represent the initial condition. Arbitrary spatial variation of the initial conditions can
be permitted by replacing T0f1g in the right-hand side of Eq. (45) with a linear combination of multiple basis
vectors. Note that this would require a larger number of design variables to represent the initial conditions.

The framework of Fig. 24 is implemented for the ranges in 
ight conditions shown in Table 3. Ten sets
of 
ight conditions are identi�ed using LHS. As before, two di�erent sets of time step sizes are used in the
aerothermoelastic simulations. For the period 0 { 150 s, the time step sizes are: �tHT = �tAE = 0.1 s, and
�tAT = 1 s. For the period from 150 s { 3,600 s, the time step sizes are: �tHT = �tAE = 1 s, and �tAT =
5 s. One thermal snapshot is taken at each heat transfer time step. This results in total of 4,951 snapshots
for each of the ten full-order aerothermoelastic simulations, and thus a total of 49,510 snapshots are used in
the generation of the POD basis.

Table 3. Bounds on 
ight conditions for kriging ROM generation.

5.0 �M1 � 8.0
0.0� � � � 4.0�

25.0 km � h � 45.0 km
293 K � T0 � 1500 K

Using the 49,510 snapshots obtained from the ten full-order aerothermoelastic simulations, the POD basis
is generated. The eigenvalues associated with the �rst 50 POD modes are given in Fig. 25. The criterion
used in the basis truncation process is to retain all POD vectors whose corresponding eigenvalue is greater
than or equal to one. Thus, 32 POD vectors are retained after basis truncation in this case. Though the
thermal ROM is not the focus of this paper, its accuracy is assessed for one set of 
ight conditions. The 
ight
conditions used for verifying the accuracy of the POD basis are as follows: M1 = 6:5, � = 2�, and h = 35
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km. The time steps for this case are: �tAE = �tHT = 0.1 s, and �tAT = 1 s. The NRMSE and L1 error
of the thermal ROM are calculated with respect to the full-order thermal model at each heat transfer time
step using Eqs. (30) and (31). In the case of the thermal ROM, the vectors \Full" and \ROM" correspond
to the temperatures vectors from the full-order and reduced-order thermal models at a given time step. To
eliminate any additional errors, the full-order structural model is used for both cases. Time-histories of the
NRMSE and L1 error for a simulation time of 1,200 s are given in Fig. 26(a) and Fig. 26(b), respectively.
Examining these �gures, the thermal ROM shows good agreement with the full-order thermal model.
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Figure 25. Eigenvalues associated with �rst 50 thermal POD modes based on 49,510 thermal snapshots.
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Figure 26. NRMSE and L1 error of thermal POD ROM at M1 = 6:5, � = 2�, and h = 35 km.

The next step is to obtain the upper and lower bounds for each of the 32 POD modal coordinates using the
procedure described above. The maximization/minimization procedures are performed using the function
fmincon available within Matlab R
. Note that the minimization/maximization steps are repeated at di�erent
starting locations within the parameter space in order to avoid the potential for obtaining local extrema.
Plots of the upper and lower bounds of each of the 32 POD modal coordinates are given in Fig. 27(a) and
Fig. 27(b), respectively.

In order to verify that the bounds identi�ed in Fig. 27 are indeed the maximum upper bounds and
minimum lower bounds over the range of 
ight conditions given in Table 3, an additional set of ten aerother-
moelastic simulations is run. The Mach number, angle of attack, and altitude for these simulations are
selected by using the LHS methodology along with the criterion to maximize the minimum Euclidean dis-
tance between the 
ight conditions of the ten new simulations and the ten simulations that were used in
establishing the bounds originally. The additional ten simulations make use of the thermal ROM that consists
of the 32 retained POD modes, however, the full-order structural model is used to calculate the structural
dynamic response. The time step sizes for the additional simulations are the same as those that were used
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Figure 27. Upper and lower bounds of POD modal coordinates for 32 retained POD basis vectors.

in the original ten aerothermoelastic simulations. At each heat transfer time step, the vector of POD modal
coordinates is stored. The maximum and minimum value of each POD modal coordinate over all time steps
over all of the ten simulations is then found. The bounds identi�ed using the procedure shown in Fig. 24
are compared with the minimum/maximum values identi�ed via the ten additional aerothermoelastic sim-
ulations by computing margins of safety. The margin of safety for the upper bounds, MSU , and margin of
safety for the lower bounds, MSL, are found using

MSU;i =
ubi �maxi
jmaxij

� 100% (46a)

MSL;i = � lbi �mini
jminij

� 100%; (46b)

where ubi and lbi are the upper and lower bounds for the i-th POD modal coordinate, and maxi and
mini are the maximum and minimum values of the i-th modal coordinate identi�ed from the ten additional
aerothermoelastic simulations. In order for the upper and lower bounds to encompass the ranges of the POD
modal coordinates experienced in the simulations, all elements of both MSU and MSL must be greater than
or equal to zero. Plots of MSU and MSL are given in Fig. 28(a) and Fig. 28(b), respectively. In both �gures,
all values of MS are greater than or equal zero, and thus the bounds are valid. Note that the data point
corresponding to mode 1 in Fig. 28(b) is not shown because both min1 and lb1 are zero.
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Figure 28. Margins of safety on upper and lower bounds based on ten additional aerothermoelastic simulations.

Due to the prohibitive computational expense, it is not feasible to use all 32 POD modal coordinates
as design variables in the kriging representations of the sti�ness matrix and thermal load vector. While all
32 POD modes will be used in the solution of the reduced thermal system, only a subset of the resulting
POD modal coordinates will be passed to the kriging functions at each aeroelastic time step. Though some
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accuracy will be lost in representing the physical temperatures using less than 32 POD modes, the penalty is
not expected to be signi�cant due to the fact that the POD modes are sorted in order of decreasing energy
and the modes that are excluded from the kriging models are chosen to be the lowest energy modes.

The number of number of design variables, number of sample points, and order of regression must be
selected for both the kriging model of the thermal loads and the kriging model of the generalized sti�ness.
In selecting these parameters, consideration must be given to a variety of factors. The number of sample
points used to generate the kriging ROMs must be su�cient to provide enough training information to
achieve the desired level of accuracy. Additionally, if too few design variables are used, the temperature
distribution passed to the kriging model may not be representative of the actual temperature distribution.
Finally, the computation time required to generate the kriging ROMs must be balanced against the desired
accuracy, number of sample points, and number of design variables required to obtain this accuracy for a given
regression model. Because the computation time increases quickly with number of sample points, number of
design variables, and order of regression, the trade-o� between desired accuracy and computation time must
be taken into account. Though the kriging models are generated a priori and o�-line, the computation time
required to generate them must still be on a reasonable order.

A summary of the parameters selected for the two kriging models as well as the errors over 500 evaluation
cases are given in Table 4. The last three columns in the table give the CPU times required to generate the
kriging training data, tT , create the kriging ROMs, tK , and evaluate the kriging ROMs, tE . Though the
two ROMs use a di�erent number of sample points to generate the models, both use 500 evaluation points
for determining the accuracy of the ROMs. Note that tE is greating for the kriging model of k�S(T ) than for
that of FHS (T ) due to the longer computation required to compute k�S(T ) at each evaluation point. For the
kriging model of the generalized sti�ness, 20 design variables, 500 sample points and a 2nd order regression
model are used. For the resulting kriging model based on the ten free vibration modes employed above,
the average NRMSE and maximum L1 error over 500 evaluation points are found to be 0.05% and 1.3%,
respectively. Because the generalized sti�ness matrix is dependent on the structural basis, this kriging ROM
must be updated each time the basis is changed. However, because less sample points and a lower order
regression model are required, the computational cost of generating the kriging ROM of the generalized
sti�ness matrix is less than that required to generate the kriging ROM of the thermal load vector. For the
kriging model of the thermal loads, 20 design variables, 5,000 sample points and a 3rd order regression model
are used. For the resulting kriging model, the average NRMSE and maximum L1 error over 500 evaluation
points are found to be 0.1% and 4.7%, respectively. Because kriging is used to represent the physical thermal
load vector as opposed to the generalized one, this model is independent of the structural basis and does
not need to be updated if the structural basis changes. Therefore, this kriging model of the thermal loads
is used for the remainder of this paper. As both kriging models use 20 design variables, the �rst 19 design
variables are the POD modal coordinates of the corresponding POD modes, and the 20th design variable
represents the uniform initial condition as described previously.

Table 4. Parameters for kriging ROMs of k�S(T ) and FH
S (T ).

Model ndv nk O Avg NRMSE [%] Max L1 [%] tT [hrs]a tK [hrs]a tE [hrs]a

k�S(T ) 20 500 2nd Order 0.051 1.33 0.81 0.051 0.78
FHS (T ) 20 5,000 3rd Order 0.12 4.68 5.61 71 0.55

a 1 2.53-GHz Intel Xeon E5540 processor, 3.0 GB RAM.

As the motivation for the use of the kriging ROMs is to improve the computational cost of the structural
dynamic solution, the computational savings achieved via the use of these ROMs must be quanti�ed. To
do so, the full-order and reduced-order structural solutions are each run for 10 time steps. The full-order
solution consists of calling Nastran to generate the equations of motion in physical space and marching the
solution forward one time step. The reduced-order solution consists of using the kriging ROMs to generate
the equations of motion in modal space and marching the solution forward one time step. For both the
full-order and reduced-order solutions, the computation time is recorded for each of the ten time steps.
The maximum and minimum computation times are removed for each case, and the the remaining eight
values are averaged to determine the average computation time for the reduced-order and full-order models.
The average computation time for the full-order structural model was found to be 7.22 s while that for the
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reduced-order structural model was found to be 1.42 s, resulting in an improvement in computational cost
by a factor of 5. Note that in both the full-order and reduced-order cases, the simulations were performed
using one 2.53-GHz Intel Xeon E5540 processor with 3.0 GB RAM.

VIII. Techniques for Enhanced Modal Solutions

Recall that the generalized quantities in section VII.B were calculated based on the �rst ten structural
free vibration modes. Because the focus of that section was on the accuracy of the kriging ROMs, the ability
of the chosen structural modes to represent the structural dynamic response within an aerothermoelastic
environment was not examined. Previous work14 has shown that the use of free vibration modes alone within
a mode-displacement approach may not always be su�cient to capture the structural dynamic response under
the aerodynamic and thermal loads experienced in hypersonic 
ight. Thus, the goal of the current section is
to examine techniques for improving the modal representation of the structural dynamic response while still
maintaining the low-order nature of the solution. Because both the thermal and structural ROMs consist
of modal solutions, the techniques discussed are applicable to both. However, in this paper the techniques
are applied only to the structural dynamic model. The following sections discuss a technique for obtaining
robust and accurate modal solutions for the structural dynamic response of hypersonic vehicle structures.

VIII.A. Load-Dependent Ritz Vector Formulation

The technique used in this study to improve the accuracy of the structural ROM involves augmentation of
the original basis with additional Ritz vectors. The methodology is intentionally general so that it can be
applied to both the structural dynamic and thermal response problems, but it is employed speci�cally for the
structural dynamic response problem in this paper. In this approach, the original structural basis containing
the reference free vibration modes is augmented by inserting additional columns into the modal matrix, i.e.,

�S =

2
66664

�
(1)
1 �

(2)
1 � � � �
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1  
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1 � � �  
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3
77775
; (47)

where  (i) represents the i-th augmented mode shape and l is the number of augmented modes. The speci�c
technique used in this work to obtain the augmented mode shapes is the method of load-dependent Ritz
vectors.39 This approach is advantageous in that it allows for the ability to capture quasi-static response due
to slowly changing loads. Additionally, it provides the capability for capturing structural response that might
otherwise not be contained within a particular eigenvector subspace. This is because even if the frequency of
a particular eigenmode is contained in the frequency of the loading, if the spatial distribution of the loading
is orthogonal to that of the eigenvector, that speci�c eigenvector will not contribute to the solution. Thus,
load-dependent Ritz vectors provide a means for incorporating the spatial distribution of the loads into the
modal representation of the structural dynamics. Load-dependent Ritz vectors can be used to augment the
original basis, whether it is obtained from an eigenvalue solution in the case of the structural ROM, or from
POD in the case of the thermal ROM.

A summary of the algorithm for computing load-dependent Ritz vectors is given in Table 5. The procedure
begins by selecting a set of free vibration modes, �. In this application the number of free vibration modes,
r, is determined based on a cut-o� frequency beyond which the corresponding mode shapes are not expected
to contribute to the solution. The physical mass matrix, MS , and modi�ed sti�ness matrix at a reference
thermal state, K�S , are then obtained from the �nite element model and K�S is decomposed into its LU
factorization for e�cient inversion. The �rst load-dependent Ritz vector, � (1), is computed in step 4 by
solving the static problem given by

K�S
� (1) = F IS ; (48)

where F IS is a user-determined input. The quality of the load-dependent Ritz vectors is dependent on the
degree to which F IS represents the loading that the structure will experience in the actual simulation. In
order to make � (1) orthogonal to the previously determined free vibration modes with respect to MS , the
modi�ed Gram-Schmidt algorithm is invoked in step 5 which repeatedly removes from � (1) its projection
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onto the previous modes according to

� (1) = � (1) � �(j)�(j)TMS
� (1); j = 1; : : : ; r: (49)

In Eq. (49), each time � (1) is updated it overwrites the previous version, thus reducing storage requirements.
Note that the modi�ed Gram-Schmidt algorithm is used in order to avoid the well-known numerical instabil-
ities associated with the classical Gram-Schmidt algorithm. The orthogonalized solution vector � (1) is then
normalized with respect to the mass matrix to obtain  (1) using

 (1) =
� (1)

� � (1)TMS
� (1)
�1=2 : (50)

The static solution used to obtain  (1) neglected the inertial forces which are given by MS
� (1). Assuming

harmonic motion in free vibration, the neglected inertial forces are of the form !2MS 
(1), where ! represents

a typical frequency of the load. The vector of neglected inertial loads is then applied as a load vector in
the generation of � (2) at step 8. Again, a static solution is used to obtain � (2), and  (2) is obtaining by
orthogonalizing in mass against all other modes and normalizing with respect to the mass matrix. Steps 8 { 11
are repeated until the desired number of load-dependent Ritz vectors are obtained. The procedure depicted
in Table 5 shows the steps taken when a single load vector, F IS , is speci�ed. The algorithm can be generalized
for the case in which multiple di�erent load vectors are speci�ed. In this case, steps 4 { 11 are repeated for
each F IS and each time a new load-dependent Ritz vector, � , is calculated, it is orthogonalized against all
previous vectors with respect to MS , and normalized with respect to MS . This study will investigate the
e�ect of number of speci�ed load vectors, nF , and number of load-dependent Ritz vectors per speci�ed load
vector, nR, on solution accuracy. Note that nR corresponds to the number of iterations performed in steps
7 { 11.

Table 5. Algorithm for generation of load-dependent Ritz vectors.39

1. Select r free vibration modes, �
2. Obtain MS and K�S
3. K�S = LU Decompose K�S for e�cient inversion
4. K�S

� (1) = F IS Specify F IS and solve for � (1)

5. for j = 1; : : : ; r Orthogonalize � (1) against free vibration modes w.r.t. MS

� (1) = � (1) � �(j)�(j)TMs
� (1) Modi�ed Gram-Schmidt algorithm

end
6.  (1) =

� (1)

( � (1)TMS
� (1))1=2 Normalize � (1) w.r.t. MS

7. for i = 2; : : : ; l Loop to generate subsequent vectors
8. K�S

� (i) = MS 
(i�1) Solve for � (i) based on neglected inertia

9. for j = 1; : : : ; r Orthogonalize � (i) against free vibration modes w.r.t. MS

� (i) = � (i) � �(j)�(j)TMs
� (i) Modi�ed Gram-Schmidt algorithm

end
10. for j = 1; : : : ; i� 1 Orthogonalize � (i) against Ritz modes w.r.t. MS

� (i) = � (i) �  (j) (j)TMs
� (i) Modi�ed Gram-Schmidt algorithm

end
11.  (i) =

� (i)

( � (i)TMS
� (i))1=2 Normalize � (i) w.r.t. MS

12. end Assemble modal matrix, �S

The main challenge associated with this approach is determining the representative load vectors, F IS , to
use in step 4 of Table 5. As the quality of the basis is dependent on the choice of F IS , it is important to
choose these vectors so that they most closely represent the spatial distribution of loads that the structure will
experience during 
ight. In order to identify the dominant spatial components of the loads, a POD analysis
is applied to the structural load vector, FS , based on snapshots of FS from high-�delity aerothermoelastic
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simulations. As discussed in section II, the POD is optimal in the sense that it arranges the modes such that
the �rst mode contains the largest amount of energy, the second mode contains the second largest amount of
energy, and so on. As a result of this optimality property of the proper orthogonal modes, POD can be used
to identify the most dominant spatial components of the structural loads for use in the load-dependent Ritz
vector procedure. The algorithm shown in Table 5 will be repeated for a speci�ed number of representative
load vectors resulting in a set of load-dependent Ritz vectors to be appended to the set of free vibration
modes.

As in the case of the POD procedure for the thermal ROM, snapshots of the structural load vector, FS ,
must be collected to derive the corresponding POD basis vectors. These snapshots of the structural load
include contributions due to both thermal loads and aerodynamic loads, i.e.,

FS(t) = FHS (t) + FAS (t) (51)

The snapshots are taken by running an aerothermoelastic simulation for a period of 3,000 s. This simulation
uses the thermal ROM with the 32 previously identi�ed thermal POD modes. For the structural dynamic
solution, the full-order model is used. The 
ight conditions for this simulation are: M1 = 6:5, � =
2�, h = 35 km, corresponding to the mid-points of the ranges given in Table 3. The initial temperature
distribution is taken to be uniform 293 K. The time steps for the various solution components are as follows:
�tAE = �tHT = 0.1 s, �tAT = 1 s. The structural load vector is stored at the end of each aerothermal
time step resulting in a total of 3,000 snapshots. Once the snapshots are obtained, the snapshot matrix is
assembled by storing each snapshot as a column in the snapshot matrix. The POD basis is then calculated
by taking the singular value decomposition of the snapshot matrix. The eigenvalues corresponding to the
�rst 50 POD modes are given Fig. 29. In the next section, the e�ect of number of POD modes of FS and
number of load-dependent Ritz vectors per POD mode on solution accuracy are examined.
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Figure 29. Eigenvalues associated with �rst 50 POD modes of FS based on 3,000 snapshots.

VIII.B. Load-Dependent Ritz Vector Results: Case 1

To exercise the load-dependent Ritz vector formulation described above, aerothermoelastic simulations of the
control surface model are carried out using both the full-order and reduced-order structural dynamic models.
The full-order model is treated as the truth model and its solution is obtained by solving the equations of
motion in physical space given by Eq. (6). For the full-order model, the equations of motion are generated
directly using Nastran. Recall that the full-order and reduced-order models are both solved using the same
Newmark-� integration scheme described in section III to eliminate discrepancies due to di�erent numerical
integration methods. The reduced-order model consists of the solving the modal equations of motion given
in Eq. (9) where the structural modal matrix, �S , can contain both reference free vibration modes and load-
dependent Ritz vectors obtained using the formulation outlined in the previous section. The reduced-order
model can update the equations of motion at each aeroelastic time step by calling Nastran directly or by
using the kriging ROMs of the generalized sti�ness matrix and physical thermal load vector obtained using
the parameters ndv, nk, and O in Table 4. Both the full-order model and reduced-order model make use of

36 of 44

American Institute of Aeronautics and Astronautics



the thermal ROM with the 32-mode basis obtained in section VII.B.1. For the structural ROM, the basis
consists of a pre-determined set of free vibration modes appended with a set of load-dependent Ritz vectors.
For all studies in the current section, the number of free vibration modes, nV , is taken to be six and the
mode shapes are chosen to be the �rst six of the ten reference modes employed in section VII.B based on a
cut-o� frequency of 100 Hz. This six-mode subset has a maximum frequency of 94.9 Hz. The goal of this
section is to assess the e�ect of number of speci�ed load vectors, nF , and number of load-dependent Ritz
vectors per speci�ed load vector, nR, on the accuracy of the reduced-order structural dynamic model. Note
that the total number of structural basis vectors is equal to nV + (nF )(nR).

To quantify the error between the full-order and reduced-order structural dynamic models, the NRMSE
and L1 error metrics, given in Eqs. (30) and (31), are employed. In this case, the quantities \Full" and
\ROM" are taken to be vectors of z-direction displacements for nodes at the OML from the full-order and
reduced-order models, respectively. The parameters for the aerothermoelastic simulations used in this part
of the study are given in Table 6. The total simulation time for this case is chosen to be 600 s.

Table 6. Parameters used for load-dependent Ritz vector case 1.

Case M1 � h [km] �tAE [s] �tHT [s] �tAT [s] T0 [K]
1 8 4� 35 0.1 0.1 1 293

Before assessing the e�ect of load-dependent Ritz vectors, the impact of using kriging ROMs to generate
k�S(T ) and FHS (T ) on the accuracy of the solution must �rst be addressed. Doing so provides insight into how
much of the solution error can be attributed to error associated with the kriging ROMs as opposed to error
associated with the reduced structural basis. To accomplish this, aerothermoelastic simulations are carried
out for the 
ight conditions of case 1 for three di�erent subcases that are summarized in Table 7. For the
subcase 1a, the full-order structural model is used in the simulation and the results are treated as the truth
model. Subcase 1b consists of using the structural ROM with the only the six free vibration modes, (i.e.,
nV = 6 nF = 0, nR = 0), and using Nastran to compute k�S(T ) and FHS (T ) at each aeroelastic time step.
Subcase 1c consists of using the structural ROM again with the six free vibration modes, but employing
the kriging ROMs to compute k�S(T ) and FHS (T ). It is expected that the 6-mode basis will not adequately
capture the structural response represented by the full-order model. However, the goal of subcases 1a - 1c is
not to assess the error associated with the reduced structural basis, but rather to evaluate the error incurred
by employing the kriging models to approximate k�S(T ) and FHS (T ).

Table 7. Parameters for aerothermoelastic subcases used to assess error incurred due to kriging ROMs of k�S(T ) and

FH
S (T ).

Subcase Structural Model nV nF nR Method for Computing k�S(T ), FHS (T )
1a Full-order N/A N/A N/A N/A
1b ROM 6 0 0 Nastran
1c ROM 6 0 0 Kriging ROMs

To assess the response levels, the z-direction displacements of node 247 (located at the mid-chord of the
tip on the bottom surface) are plotted for each of the three subcases given in Table 7. Results are given in
Fig. 30. To quantify the error incurred due solely to the kriging ROMs of k�S(T ) and FHS (T ), the NRMSE
and L1 error metrics are computed for subcase 1c with respect to subcase 1b. Plots of the NRMSE and
L1 over time are given in Fig. 31(a) and Fig. 31(b), respectively. The error metrics show an initial high
error which is due to the fact that the simulation begins with the structure in the undeformed con�guration.
Therefore, the structural displacements are small in the initial part of the transient, which results in a small
denominator in Eqs. (30) and (31), and therefore a large value of error early in the transient. However, within
10 seconds into the transient, the NRMSE and L1 error decrease to below 10% and 20%, respectively, and
remain below these values for the remainder of the simulation.

With the error due to the kriging ROMs of k�S(T ) and FHS (T ) quanti�ed, the next step is to assess the
e�ect of inclusion of load-dependent Ritz vectors on the accuracy of the structural ROM. For all cases from
this point forward, the kriging ROMs of k�S(T ) and FHS (T ) are used within the structural ROM. The goal
of this aspect of the study is to assess the solution accuracy as a function of nF and nR. A summary of the
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Figure 30. Node 247 z displacements for subcases 1a, 1b, and 1c.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Time [s]

N
R

M
S

E
 [%

]

(a) NRMSE.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

Time [s]

L ∞
 E

rr
or

 [%
]

(b) L1 error.

Figure 31. Error of subcase 1c with respect to subcase 1b illustrating error incurred due kriging ROMs of k�S(T ) and

FH
S (T ).

38 of 44

American Institute of Aeronautics and Astronautics



subcases used to perform this assessment is given in Table 8. Note that the errors for these subcases are
computed with respect to subcase 1a in Table 7 and therefore they include both error due to the kriging
ROMs as well as error due to structural basis truncation.

Table 8. Parameters for aerothermoelastic subcases used to assess e�ect of load-dependent Ritz vectors on structural
ROM.

Subcase Structural Model nV nF nR Method for Computing k�S(T ), FHS (T )
1c ROM 6 0 0 Kriging ROMs
1d ROM 6 1 1 Kriging ROMs
1e ROM 6 10 1 Kriging ROMs
1f ROM 6 1 10 Kriging ROMs

Plots of the NRMSE and L1 errors of subcases 1c - 1f with respect to subcase 1a are given in Fig. 32(a)
and Fig. 32(b), respectively. Examining these �gures, it is observed that the inclusion of load-dependent Ritz
vectors in addition to the six free vibration modes results in a noticeable improvement in the structural ROM.
It should be noted that there is inherent error in the structural ROM due to the use of the kriging ROMs to
approximate k�S(T ) and FHS (T ), and thus the overall error of the structural ROM cannot be reduced to zero.
Comparing Fig. 32 to Fig. 31, it can be observed that the error due to basis truncation has been reduced
and the errors shown in Fig. 32 approach or surpass those shown in Fig. 31, especially for subcases 1e and
1f. Comparing subcase 1d to subcases 1e and 1f, it is observed that the inclusion of only one load-dependent
Ritz vector in the basis does not provide the level of accuracy obtained by including multiple load-dependent
Ritz vectors. The greatest di�erence in L1 error beyond 10 s between subcases 1e and 1f occurs at 78.1 s
with the L1 error of subcase 1e being 11.2% lower than that of subcase 1f. This is not surprising as the
structural response is dominated by the slowly changing thermal loads for this case, and therefore inertial
e�ects are not signi�cant. The maximum improvement in L1 error of subcase 1e with respect to subcase
1c beyond 10 s is 45% and occurs at 590.1 s. Subcase 1e gives an average improvement in L1 error of 38%
over subcase 1c, demonstrating the advantage of using load-dependent Ritz vectors.
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Figure 32. Total error of structural ROMs (subcases 1c - 1f) with respect to full-order structural model (subcase 1a)
using di�erent structural bases.

VIII.C. Load-Dependent Ritz Vector Results: Case 2

Because the above case displays a low level of unsteadiness in the structural dynamic response, load-
dependent Ritz vectors corresponding to static solutions were found to provide a signi�cant bene�t in
improving the accuracy of the structural ROM. However, consideration of inertial e�ects when computing
the basis may be necessary for cases which exhibit a higher level of unsteadiness in the structural dynamic
response. The extent to which load-dependent Ritz vectors impact the structural dynamic solution is now
examined for such a case. To excite higher levels of unsteadiness in the structure, time-dependent motion is
prescribed at the attachment point as opposed to imposing �xed boundary conditions. The goal of applying
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this excitation is to mimic the motion at the fuselage-control surface interface that would occur in a full
vehicle con�guration as a result of vehicle rigid body motion and fuselage structural dynamic response.

For a structure with prescribed accelerations and displacements at degrees-of-freedom (DOFs) r, the
equations of motion can be partitioned as

"
Mrr Mru

Mur Muu

#(
�xr
�xu

)
+

"
K�rr K�ru
K�ur K�uu

#(
xr

xu

)
=

(
FHr + FAr + FBCr

FHu + FAu

)
; (52)

where the subscript r corresponds to the restrained DOFs (those with prescribed accelerations and displace-
ments), the subscript u corresponds to the unrestrained DOFs (those without prescribed accelerations and
displacements), and FBCr represents the reaction force exerted by the fuselage (body) on the control surface
required to obtain this motion. Note that the subscript S is removed from the matrix and vector quantities in
this section and all equations are assumed to be associated with the structural dynamics system as opposed
to the thermal system. In this formulation, the equations of motion for the unrestrained DOFs are cast in
terms of the elastic displacements relative to the rigid body motion caused by the enforced displacements at
the restrained DOFs. The �rst step is to calculate the rigid body displacements due to enforced motion at
the unrestrained DOFs, denoted by xRu . This quantity is obtained by neglecting inertial loads and external
loads in the second row of Eq. (52) and solving for xu, i.e.

xRu = �(K�uu)�1K�urxr: (53)

Note that a transformation, U , can be de�ned in Eq. (53) between xRu and xr such that

xRu = Uxr , where U = �(K�uu)�1K�ur: (54)

If the number of DOFs with prescribed motion were exactly equal to the minimum number of DOFs required
to constrain rigid body motion, the columns of U would represent rigid body modes. Because in this case
the number of DOFs with prescribed motion is greater than that required to constrain rigid body motion,
the columns of U represent constraint modes.

The next step is to derive the equations governing the elastic deformation of the unrestrained DOFs, xEu ,
relative to the rigid body displacement. Expanding Eq. (52), one obtains

Mrr�xr +Mru�xu +K�rrxr +K�ruxu = FHr + FAr + FBCr (55a)

Mur�xr +Muu�xu +K�urxr +K�uuxu = FHu + FAu : (55b)

Recall that the total motion of the unrestrained DOFs is the sum of the rigid body motion plus the elastic
motion, i.e.,

xu = xRu + xEu : (56)

Substituting Eq. (56) into Eq. (55b), one obtains

Mur�xr +Muu

�
�xRu + �xEu

�
+K�urxr +K�uu

�
xRu + xEu

�
= FHu + FAu ; (57)

and using Eq. (53) in Eq. (57), the system becomes

Mur�xr +Muu

�
�(K�uu)�1K�ur�xr + �xEu

�
+K�urxr +K�uu

�
�(K�uu)�1K�urxr + xEu

�
= FHu + FAu : (58)

Bringing all terms associated with the restrained DOFs to the right-hand side of Eq. (58), the equation
becomes

Muu�xEu +K�uux
E
u = �Mur�xr +Muu(K�uu)�1K�ur�xr �K�urxr +K�uu(K�uu)�1K�urxr + FHu + FAu ; (59)

and simplifying the right-hand side of Eq. (59) results in

Muu�xEu +K�uux
E
u =

�
Muu(K�uu)�1K�ur �Mur

�
�xr + FHu + FAu : (60)

The relation given by Eq. (60) is the system to be solved for the relative elastic motion of the unrestrained
DOFs, xEu . Because the system has been cast in terms of the elastic displacements relative to the rigid body
motion, the modal matrix does not need to be modi�ed to include rigid body modes or constraint modes.
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Note that the solution to Eq. (60) requires only the accelerations of the restrained DOFs, �xr, and not the
displacements. However, the displacements of the restrained DOFs are required in order to compute the
rigid body motion using Eq. (53). As before, the reduced-order system is obtained by �rst representing the
elastic motion, xEu (t), as a linear combination of the reference free vibration modes such that

xEu (t) = �Sd(t); (61)

where d represents the modal coordinates of the reference modes which are stored as columns of the modal
matrix, �S . Again, the system is reduced by substituting Eq. (61) into Eq. (60) and pre-multiplying the
system by �TS to project the system onto the basis, i.e.

�TSMuu�S �d(t) + �TSK
�
uu(T )�Sd(t) = �TSFu(t); (62)

where the net force, Fu, is given by

Fu =
�
Muu(K�uu)�1K�ur �Mur

�
�xr(t) + FHu (t) + FAu (t): (63)

The temperature-dependent generalized sti�ness matrix, given by �TSK
�
uu(T )�s in Eq. (62), is updated at

every time step using the previously described kriging model. However, the sti�ness matrix partitions K�uu
and K�ur in Eq. (63) are evaluated at the reference thermal state and held constant throughout the simulation
due to the computational cost associated with updating these matrices.

The motion of the attachment point is modeled using the relation

wa(t) = � sin(!t); (64)

where wa refers to the displacement of the z-direction degrees of freedom at the attachment point, � is
a real scaling coe�cient, and ! is a frequency that corresponds to a fuselage natural frequency. For this
case, � is taken to be 0.06 and ! is chosen to be 43.3 rad/s (6.9 Hz) which is the natural frequency of the
fuselage second bending mode based on the vehicle structural parameters given in a recent work.40 The

ight conditions and time step sizes used for this case are given in Table 9. The aeroelastic time step size is
determined based on the desire to resolve the highest frequency free vibration mode with a minimum of 10
temporal sampling points within one cycle. Of the six free vibration modes at the reference thermal state,
the highest frequency is 94.9 Hz, and thus �tAE is chosen to be 0.001 s to account for the fact that the
actual frequency may be slightly higher at lower temperatures. The initial temperature condition, denoted
\400 s cruise" in the table, is obtained by marching the aerothermal solution forward in time for 400 s. The
temperature distribution obtained at the end of this period is stored and used as the initial temperature
distribution for the full aerothermoelastic simulation. This approach for obtaining the initial temperatures
is used so that the structure will begin from a thermally deformed state and the structural dynamic response
will include both the e�ect of slowly changing thermal loads as well as that of the base excitation. For this
case, the thermal loads are held constant and the aerodynamic pressure loads are set to zero.

Table 9. Parameters for load-dependent Ritz vector case 2.

Case M1 � h [km] �tAE [s] T0 [K]
2 6.5 2� 35 0.001 400 s cruise

To assess the ROM accuracy, the z-direction displacements are obtained from the full-order model as well
as the ROM using di�erent basis sets. The three subcases which are simulated are given in Table 10. Results
are plotted for the mid-chord, mid-span location on the bottom surface (node 238) and the mid-chord, tip
location on the bottom surface (node 247) in Fig. 33(a) and Fig. 33(b), respectively. Examining the �gures, it
is observed that the ROM displays some di�culty in capturing the response at the tip. Furthermore, there is
not a signi�cant improvement in ROM accuracy by including load-dependent Ritz vectors for this particular
case. In addition to the results shown, alternative basis sets were tried which contained load-dependent Ritz
vectors based on the base excitation loads, but a signi�cant improvement in the ROM was still not observed.
Therefore, further investigation into improving the ROM error under base excitation is warranted. However,
such studies are reserved for future work.
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Table 10. Parameters for aerothermoelastic simulations used to assess ROM accuracy under base excitation.

Subcase Structural Model nV nF nR Method for Computing k�S(T ), FHS (T )
2a Full-order N/A N/A N/A N/A
2b ROM 6 0 0 Kriging ROMs
2c ROM 6 1 10 Kriging ROMs
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(a) Node 238 displacements (mid-chord, mid-span location on
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Figure 33. Comparison of z displacements at two locations under base excitation for full-order and ROM simulations.

IX. Concluding Remarks

A comprehensive study of structural dynamic response simulation within an aerothermoelastic analysis
framework has been conducted with the goals of improving the computational e�ciency and accuracy of
the structural dynamic ROM. The study addressed three main modeling areas associated with structural
dynamic reduced-order modeling in an aerothermoelastic framework:

� The e�ect of the transient temperature distribution due to aeroheating on the free vibration mode
shapes and frequencies was examined

� A surrogate modeling technique was implemented to allow for direct updates to the temperature-
dependent generalized sti�ness matrix and thermal loads

� Load-dependent Ritz vectors were used to improve the accuracy of the structural dynamic ROM

In the �rst part of the study, the modal assurance criterion (MAC) was used to quantify the degree to which
the natural mode shapes and frequencies of a representative hypersonic vehicle control surface change as a
result of aerodynamic heating along a trajectory. This is motivated by the fact that the structural dynamic
ROM uses a �xed set of basis vectors throughout the simulation, and the underlying assumption is therefore
that the free vibration modes do not change signi�cantly as a result of aeroheating. For the six modes tracked
in this study, the MAC values of the �rst, second, �fth and sixth modes were found to remain close to one,
indicating little change in those modes over time. However, a mode-switching phenomenon was found to
occur between the third and the fourth modes. Though the third and fourth modes do evolve signi�cantly
over time, the overall modal content of modes three and four at room temperature is approximately the same
as that at elevated temperature. Investigation into the evolution of natural frequencies over time shows a
maximum departure from the room temperature natural frequency of 12% which occurs for mode 6. In cases
where natural frequency has a signi�cant impact on the overall system, the e�ect of aeroheating on natural
frequencies must be considered.

The second part of this study focused on the development of a kriging-based method for directly up-
dating the generalized sti�ness matrix and thermal loads based on a given temperature distribution. The
temperature distribution was parameterized in terms of the thermal POD modal coordinates as this allowed
for a small number of design variables to be used to represent the high-dimensional temperature vector. A
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methodology was described for bounding the POD modal coordinates based on a set of parallel aerother-
moelastic simulations. A series of studies was used to guide the selection of various parameters involved in
the generation of the kriging ROMs. The resulting ROMs of the generalized sti�ness matrix and physical
thermal load vector were found to have maximum L1 errors of 1% and 5%, respectively, over 500 evaluation
points, indicating good agreement with the full-order model. Comparison of computation times showed that
the structural ROM with the kriging models improved the computational cost of the structural dynamic
response solution by a factor of �ve with respect to the full-order model.

To improve the accuracy of the structural ROM, basis augmentation using load-dependent Ritz vectors
was examined. Load-dependent Ritz vectors are advantageous in that they allow for incorporation of the
expected spatial dependence of the structural loads into the modal matrix. In order to determine the
representative load vectors to be used in generating the load-dependent Ritz vectors, proper orthogonal
decomposition was employed based on snapshots of the structural load vector from representative simulations.
Application of the methodology for a hypersonic cruise trajectory demonstrated an average improvement in
L1 error of 38% for one case compared with a case using only free vibration modes. In order to evaluate the
performance of the methodology for cases with a larger degree of unsteadiness in the structural response,
base motion was imposed at the control surface attachment point. Plots of the z displacements at two
locations for one particular case illustrated that the ROM has di�culty capturing the response at the tip.
Additionally, there was not a signi�cant improvement in the ROM accuracy by including load-dependent
Ritz vectors in this case. Future work will therefore focus on methods for improving the ROM error under
base excitation loads.
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