
Reduced Order Modeling for Nonlinear Vibration

Analysis of Mistuned Multi-Stage Bladed Disks with a

Cracked Blade

Kiran D’Souza, Akira Saito, and Bogdan I. Epureanu∗

Department of Mechanical Engineering

University of Michigan, Ann Arbor, MI 48109-2125

In this paper, a novel modeling methodology for the nonlinear vibration analysis of
multi-stage bladed disk systems with small blade-to-blade mistuning and a cracked blade
is proposed. The modeling strategy is based on an e�cient stage-wise reduced order mod-
eling method based on cyclic-symmetry analysis and component mode synthesis. Reduced
order models are constructed for individual stages and assembled by projecting the motion
of the interface of the neighboring stages onto a set of harmonic shape functions. The
analysis procedure allows the stages to have di�erent numbers of blades and mismatched
computational grids on the interfaces of the neighboring stages. Furthermore, the model-
ing framework is independent of the modeling method for each stage, which enables the
use of various existing modeling methods of single stages. Moreover, nonlinearity can also
be included in the multi-stage computations, as long as the nonlinearity can be modeled
for a single stage. To demonstrate the capability of the modeling procedure, the nonlinear
e�ect of crack opening and closing is considered, in conjunction with the e�ects of small
mistuning. The accuracy and e�ciency of the proposed methods are discussed.

Nomenclature

b DOFs along the inter-stage boundary of a sector of stage 1
Fn×m Fourier matrix of size n ×m
f nonlinear forces due to intermittent contact at the crack surfaces
In identity matrix of size n × n
i set of internal (not along the inter-stage boundary) DOFs
K sti�ness matrix of a single sector of a stage
M mass matrix of a single sector of a stage
Mr number of DOFs in each radial line segment for stage 2
N number of sectors in stage 1
Nb number of DOFs along the inter-stage boundary for a sector in stage 1
N~b number of DOFs along the inter-stage boundary for stage 2
Nr number of DOFs in each radial line segment for stage 1
Ns number of DOFs in a sector of stage 1
ph set of modal coordinates associated with the �xed-interface normal modes of stage 1
q(t) set of modal coordinates associated with the free-interface normal modes of stage 2
Rh
b forces applied at the inter-stage boundary DOFs that cause a unit displacement at each

DOF while keeping the rest of the DOFs along the boundary �xed
uhc;s vector of Fourier coe�cients, superscript h denotes the harmonic number, and subscript c

or s denote cosine or sine component
uhb vector of Fourier coe�cients corresponding to the inter-stage boundary, superscript h

denotes the harmonic number
uhi vector of Fourier coe�cients corresponding to the internal DOFs, superscript h denotes
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the harmonic number
W number of radial line segments per sector for stage 2
x(t) nodal displacement of all nodes on all sectors of stage 1
xb(t) nodal displacement along the inter-stage boundary of stage 1
y(t) nodal displacement of all nodes of stage 2
yb(t) nodal displacement along the inter-stage boundary of stage 2
yi(t) nodal displacement of all internal DOFs of stage 2
Z number of radial line segments per sector for stage 1
� boundary of a sector considered to be moving independently
� boundary of a sector considered to be dependent on the movement of the independent

boundary due to the constraints
� DOFs in the blade portion of a sector
� DOFs in the disk portion of a sector
�j collection of sti�ness matrices of disconnected sectors
�j collection of mass matrices of disconnected sectors
�h inter-blade phase angle
�h
i �xed-interface normal modes for harmonic number h

~�i modi�ed free-interface normal modes
’h �xed inter-face normal mode
	h
i constraint modes for harmonic number h

!k natural frequency corresponding to the kth free-interface normal mode
L Lagrangian of a stage
T kinetic energy of a stage
U potential energy of a stage

I. Introduction

With the concurrent advancement of computer hardware and software with sophisticated physical and
mathematical methodologies represented by �nite element method, model-based vibration analysis has been
extensively applied to the dynamic analysis of turbomachinery rotors. Most turbine engine rotors consist of
multiple stages of bladed disks. Vibration modeling of rotors is a classic problem, yet it has been an active
research area for structural dynamicists both in industry and academia. In this paper, a novel reduced order
modeling method is proposed for the vibration problems of multi-stage bladed disk assemblies, which possess
a cracked blade on one of the stages, and is subject to blade-to-blade small mistuning. The methodology
allows the use of an e�cient cyclic-symmetry based reduced order modeling method for mistuned but non-
cracked stages. The modeling framework is developed by generalizing the modeling procedure proposed by
Song et al.1 and is described in the Mathematical Formulation section.

This paper is organized as follows. First, a brief overview of multi-stage turbomachinery analysis is
provided. Then, a mathematical description of the proposed modeling approach is described. Next, the
proposed methodology is validated by using a numerical example of an industrial multi-stage bladed disk
system. In particular, nonlinear forced response calculations are performed, and the applicability of the
proposed method to the vibration problem of multi-stage bladed disks is demonstrated. Finally, conclusions
of the work are given.

II. Background

An extensive literature survey of linear and nonlinear vibration modeling of mistuned bladed disk systems
is given by Castanier and Pierre.2 Bladh et al.3 investigated the e�ects of multi-stage coupling on the
dynamics of bladed disks with blade mistuning. It was pointed out that the mistuning due to inter-stage
coupling is inherent in multi-stage systems. Furthermore, it was reported that the inter-stage coupling may
be signi�cant and cannot be neglected when the frequency ranges of interest pass veering regions, where
the motion of the disk is dominant. A novel reduced order modeling technique for multi-stage bladed disk
systems was proposed by Song et al.,4 which enables the use of stage-wise reduced order models (ROMs) by
cyclic-symmetry. The method was then incorporated5 with an e�cient mistuning modeling method called
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component mode mistuning (CMM).6 It was successfully applied to the modal parameter identi�cation of
multi-stage bladed disks,7 and also to mistuning identi�cation and structural health monitoring.1 Laxalde
et al.8 also proposed a method to deal with multi-stage bladed disk systems with a similar concept as
that proposed by Song et al.,1 and successfully applied their method to modal analysis and forced response
calculations for industrial bladed disks.9 However, in that work each stage was assumed to be tuned.
Sternch�us et al.10 extended the method proposed by Laxalde et al.,8,9 by representing the inter-sector
elements as super-elements, and by using inter-stage ring elements. The methodology presented in this
paper is a generalization of the method proposed by Song et al.,1 which applies the inter-stage compatibility
by Fourier coe�cients, and handles the mistuning with CMM.6

Sinha11 also developed a lumped parameter model of mistuned multi-stage models where inter-stage
coupling is handled by discrete springs, and conducted Monte Carlo simulations on these models. Although
the model was shown to be able to simulate the overall dynamics of the multi-stage rotors, its applicability
to industrial models with realistic geometry was not discussed.

In addition to the modeling of blades, there have also been e�orts to accurately capture the coupling
e�ects between the torsional vibration of shafts and blades. For example, Chatelet et al.12 investigated the
complicated dynamics of rotors and shafts by assuming that all the rotors and shafts are axisymmetric and
by applying cyclic-symmetry analysis. Turhan and Bulut13 considered the coupling between shaft torsion
and blade bending vibrations by using a qualitative model of multi-stage bladed disks, where the disks are
modeled as rigid and the blades are modeled as Euler-Bernoulli beams. Their eigenanalysis (of the analytical
model) indicated that there are two types of modes: the coupled modes where shaft torsion and blade bending
are coupled, and the rigid shaft modes where the dominant motion is a rigid-body motion of the disk and
blades. They also reported that the coupled shaft torsion and blade bending modes are subject to eigenvalue
loci veering.

Rzadkowski and Sokolwski,14 and Rzadkowski and Drewczynski15 examined the free response of an eight
bladed disk assembly connected by a 
exible shaft. For that speci�c model, they reported that the bladed
disk modes of nodal diameters zero, one and two are a�ected by the shaft 
exibility, and multi-stage e�ects
are visible. However, they assumed that the bladed disks are all tuned and have the same number of blades.
That is a signi�cant drawback which means that the entire multi-stage bladed disk system has to be cyclically
symmetric.

Segu�� and Casanova16 also developed a reduced order modeling method for a (single stage) mistuned
bladed disk mounted on a shaft. The method utilizes the Craig-Bampton component mode synthesis (CMS)
method17 where the blades, the disk, and the shaft are considered to be separate substructures. As was also
reported by other researchers, their work suggested that the stage-wise modal analysis is not enough for ac-
curately predicting the global dynamic response of rotating turbomachines. Later, Boulton and Casanova18

extended the modeling approach of Segu�� and Casanova16 to the dynamical modeling of a two-stage, mis-
tuned, industrial gas turbine model, and showed that the interaction between the bladed disk and shaft
contributes to the variations in the modes predicted from the stage-wise modal analysis.

All the references cited above deal with linear vibration problems. Nonlinearity comes from various
sources in the dynamics of turbomachinery rotors. To date, only a few attempts have been made to deal
with a multi-stage bladed disk assembly with nonlinearities. Laxalde and Thouverez19 investigated the
modeling of friction-ring dampers, which cause strong nonlinearity due to friction between the rotors and
the dampers. The nonlinear forced response analysis was performed based on a multi-harmonic hybrid-
frequency time domain method with an augmented Lagrangian approach.20 They showed the applicability
of the reduced order modeling of the multi-stage bladed disks based on cyclic-symmetry, and the multi-
harmonic hybrid-frequency time domain method.

There have been only a few papers published to date regarding the issue of vibration problems of bladed
disks with cracked blades. Saito et al.21 investigated the e�ects of a cracked blade on the forced response
vibration of a single stage mistuned bladed disk. They revealed that there can be a cracked-blade-localized
vibration response for some families of modes. Kharyton et al.22 also investigated the e�ects of a cracked
blade on the vibration response of a bladed disk without blade-to-blade mistuning.

III. Mathematical Formulation

In this section, the proposed reduced order modeling method for multi-stage bladed disk assemblies is
described. When modeling the multi-stage bladed disk assemblies, the challenge is that the entire multi-stage
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Figure 1. (a) Cyclic stage with N sectors, (b) single sector of the cyclic stage, (c) blade and disk partitions of
the sector model.

assembly does not possess cyclic-symmetry because the stages do not necessarily have the same number of
blades. Therefore, any reduced order modeling method based on cyclic-symmetry su�ers from this issue.
Furthermore, e�cient modeling of mistuning is crucial for statistical analyses such as Monte-Carlo simulations
for many mistuning patterns. The proposed method addresses these challenges.

Recently, e�cient mistuning modeling methods for a single stage bladed disk have been reported. For
example the CMM approach proposed by Lim et al.6 was shown to be e�ective and accurate for single stage
bladed disks. Song et al.1 successfully applied CMM for the modeling of multi-stage bladed disks. The
methodology is capable of modeling the mistuned bladed disks based on a stage-wise cyclic CMS method,
and the application of compatibility conditions at the inter-stage boundaries using Fourier basis functions.
In this paper, this modeling framework is further generalized for the cases where the system consists of a
mixture of stages that in the absense of small blade-to-blade mistuning can be modeled by cyclic-symmetry,
and those that cannot be modeled by cyclic-symmetry. Herein, a bladed disk that can be modeled via
cyclic-symmetry is referred to as a cyclic stage. Strictly speaking, if there is blade-to-blade mistuning, no
stage possesses cyclic-symmetry. However, the small mistuning can be added to a stage modeled by cyclic-
symmetry by using CMM.6 Furthermore, the stage that cannot be modeled via cyclic-symmetry is referred
to as a non-cyclic stage. These stages cannot be modeled via cyclic-symmetry for various reasons, e.g., the
presence of large geometric variations, symmetry-breaking components, or a cracked blade. In this paper,
the disk with a cracked blade is treated as a non-cyclic stage.

The modeling framework is designed such that it is capable of modeling each stage separately, and it can
handle any small mistuning pattern e�ciently. First, the model reduction method is formulated for cyclic
stages (with distinct number of blades). Then it is formulated for non-cyclic stages. Finally, the assembly
of the stage-wise ROMs is discussed.

A. Reduced Order Modeling of Cyclic Stages

1. Modeling of Cyclic Stages

Let us assume that stage 1 of a multi-stage system is cyclic and consists of N identical sectors that are
disconnected. Fig. 1(a) shows a cyclic stage where N is equal to 25, and Fig. 1(b) shows one of the N sectors
that make up the stage. Let x(t) denote the nodal displacement of all nodes on all sectors. Their kinetic
and potential energies can be written as T = (1/2) _xT�1 _x and U = (1/2)xT�1x, where �1 and �1 represent
the collections of matrices of the disconnected sectors, i.e.,

�1 = IN ⊗M;

�1 = IN ⊗K;
(1)

where M and K denote the mass and the sti�ness matrices of a sector, IN is an identity matrix of size N
× N , and ⊗ denotes a Kronecker product. Partitioning the displacement vector such that they are ordered
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based on the order of the sectors, i.e., x = [xT
1 ; : : :x

T
N ]T, it is known1,6 that the displacements of the nth

sector can be exactly described by the following Fourier series

xn =
1√
N

u0 +
√

2

N

~N−1

∑
h=1

(uhc cos(n − 1)�h + uhs sin(n − 1)�h) +
1√
N

(−1)n−1u
~N ; (2)

where �h = 2�h/N , n = 1; : : : ;N and ~N = N/2 if N is even, or ~N = (N − 1)/2 if N is odd. u denotes
a vector of Fourier coe�cients, subscripts c and s denote cosine and sine components respectively, and
superscripts denote the harmonic number. Also, the last term in Eq. (2) does not exist when N is odd. The
transformation from the Fourier coe�cients ~u, to physical coordinates x can be written as a linear map

x(t) = (FN;N ⊗ INs)~u(t); (3)

where
~u = [(u0)T; (uhc )T; (uhs )T; : : : ; (u ~N)T]T ; (4)

and Ns is the number of degrees of freedom (DOFs) in a sector. For the sake of brevity, let us now
partition the nodal displacement vector for a sector, and corresponding Fourier coe�cients based on the
physical partitions of the �nite element model (FEM). Namely, the Fourier coe�cients are partitioned as
uh = [(uh�)T; (uh�)T; (uhb )T]T , where �, � and b correspond to the DOF sets for the nodes of the blade part,
disk part, and the inter-stage boundary as shown in Fig. 1(c). Substituting Eq. (4) into the kinetic and
potential energies, the Lagrangian of this stage can be expressed with the Fourier coe�cients as

L = 1

2
_xT�1 _x − 1

2
xT�1x

= 1

2
_~u

T(FN;N ⊗ INs)T(IN ⊗M)(FN;N ⊗ INs) _~u − 1

2
~uT(FN;N ⊗ INs)T(IN ⊗K)(FN;N ⊗ INs)~u:

Hamilton’s principle requires the action integral be stationary, i.e.,

�∫
t2

t1
L(~u; _~u)dt = 0: (5)

Without any constraint between the (identical) sectors, this yields the following set of equations of motion

M�u0 +Ku0 = 0;

(M 0

0 M
)[�uhc

�uhs
] + (K 0

0 K
)[u

h
c

uhs
] = [0

0
] ; for h = 1; : : : ; ~N − 1;

M�u
~N +Ku

~N = 0:

At this point, all the sectors are assumed to be disconnected. However, the symmetry in the circum-
ferential direction implies that the nodal displacement �eld of one side of a sector is dependent on that of
the other side of the sector. Furthermore, the constraints are dependent on the harmonic number. Namely,
the equations of motion are derived by the extremization of the action integral in Eq. (5) subject to the
constraints

uhc;� = uhc;� cos�h + uhs;� sin�h;

uhs;� = −uhc;� sin�h + uhs;� cos�h;
(6)

where � represents the boundary considered to be independently moving (on one side of the boundary),
� represents the boundary considered to be dependent on the movement of the � boundary (due to the
constraints). After the application of Eq. (6) to Eq. (5), the equations of motion of the hth harmonic number
can be written in a partitioned format as

⎛
⎜⎜
⎝

Mh
i;0 Mh

i;1

(Mh
i;1)T Mh

i;0

Mh
ib

(Mh
ib)T Mh

b

⎞
⎟⎟
⎠

⎡⎢⎢⎢⎢⎢⎢⎣

�uhc;i
�uhs;i
�uhb

⎤⎥⎥⎥⎥⎥⎥⎦

+
⎛
⎜⎜
⎝

Kh
i;0 Kh

i;1

(Kh
i;1)T Kh

i;0

Kh
ib

(Kh
ib)T Kh

b

⎞
⎟⎟
⎠

⎡⎢⎢⎢⎢⎢⎢⎣

uhc;i
uhs;i
uhb

⎤⎥⎥⎥⎥⎥⎥⎦

= 0; (7)
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where

Mh
i;0 = (M�� + cos�h(M�� +M��) +M�� M�� + cos�hM��

M�� + cos�hM�� M��

) ;

Mh
i;1 = ((M�� −M��) sin�h sin�hM�b

sin�hM�� 0
) ;

Mh
ib =

⎛
⎜⎜⎜⎜⎜
⎝

M�b + cos�hM�b − sin�hM�b

M�b 0

sin�hM�b M�b + cos�hM�b

0 M�b

⎞
⎟⎟⎟⎟⎟
⎠

;

Mh
b = (Mbb 0

0 Mbb

) ;

and i denotes the set of internal DOF de�ned as i ≜ {�;�;�}, and b denotes the set of DOF on the inter-stage
boundary. The structure of the sti�ness matrix is omitted here for the sake of brevity because it is the same
as the one for the mass matrix.

2. Reduced Order Modeling of Cyclic Stages by the Craig-Bampton Method

For the reduction of the cyclic stages, the reduction method proposed by Song et al.4 is employed. That
method is based on the cyclic Craig-Bampton method developed by Bladh et al.23 Namely, the displacement
�eld of the entire stage x(t) is assumed to be represented as a linear combination of �xed-interface normal
modes and constraint modes. The model reduction method with these types of modes is usually referred to
as the Craig-Bampton method.17 The �xed-interface normal modes are a truncated set of normal modes of
the entire stage with all DOFs on the inter-stage boundary being �xed. A constraint mode for a stage is
computed as the static deformation shape of the entire stage due to a unit displacement applied to one of
its DOF on the inter-stage boundary (while all the other DOFs on the inter-stage boundary are �xed). A
complete set of constraint modes is obtained by repeating such computation for all DOFs on the inter-stage
boundary. One disadvantage of this method is that the computation of these constraint modes becomes
prohibitively expensive as the model size grows. However, by the application of cyclic-symmetry, these
modes can be e�ciently computed by solving eigenvalue problems and static problems of a sector and a
duplicated sector alone, with appropriate inter-sector boundary conditions. Recalling that the set of DOFs
for the inter-stage boundary are denoted by a subscript b, and that all the other DOFs are denoted by a
subscript i, the Fourier coe�cients can be well approximated by the following coordinate transformation

[u
h
b

uhi
] ≃ (INb

0

	h
i �h

i

)[u
h
b

ph
] ; for h = 0; : : : ; ~N; (8)

where Nb is the number of DOFs on the inter-stage boundary (the b-partition), the matrices [INb
; (	h

i )T]T
and [0; (�h

i )T]T are called the constraint modes and the �xed-interface normal modes for harmonic number
h, and ph is the set of modal coordinates associated with the �xed-interface normal modes.

Assuming harmonic motion and substituting u(t) = ’e!t into Eq. (7), then the kth �xed-interface normal
mode for harmonic number h can be computed by solving the following eigenvalue problem

⎛
⎝

Kh
i;0 Kh

i;1

(Kh
i;1)T Kh

i;0

⎞
⎠
⎡⎢⎢⎢⎣
(’hc;i)
(’hs;i)

⎤⎥⎥⎥⎦k
= �k

⎛
⎝

Mh
i;0 Mh

i;1

(Mh
i;1)T Mh

i;0

⎞
⎠
⎡⎢⎢⎢⎣
(’hc;i)
(’hs;i)

⎤⎥⎥⎥⎦k
; for k = 1; : : : ;mh

1 ; (9)

where �k = !2
k, and mh

1 denotes the number of free-interface normal modes to be kept for stage 1.
In contrast, the i-partition of the constraint modes can be computed by solving the following static

problem for 	h
c;i and 	h

s;i

⎛
⎜⎜
⎝

Kh
i;0 Kh

i;1

(Kh
i;1)T Kh

i;0

Kh
ib

(Kh
ib)T Kh

b

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

	h
c;i

	h
s;i

INb

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0

0

Rh
b

⎞
⎟⎟
⎠
; (10)
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inter-stage boundary
(b – partition, Nb DOFs)

µ2 , k2

~

Figure 2. Non-cyclic stage with M sectors.

where Rh
b represents the forces applied to the inter-stage boundary, which cause a unit displacement at

one DOF while keeping the rest of the DOFs along the boundary �xed, and Nb is the number of DOFs

along the inter-stage boundary for the sector. De�ning ~p ≜ [(u0)T; (p0)T; : : : ; (u ~N)T; (p ~N)T]T, the linear
transformation between the Fourier coe�cients for all harmonic numbers ~u(t) and the generalized coordinates
~p(t) can be written as

~u(t) ≃ �CB ~p(t); (11)

where

�CB = bdiag
h=0;:::; ~N

(INb
0

	h
i �h

i

) ; (12)

and bdiagh=0;:::; ~N(⋅) designates a block-diagonal matrix with the arguments being the hth block of a matrix.
Combining the transformations from Eq. (3) and Eq. (11), the physical displacement of the entire cyclic
stage can be approximated by ~p(t), i.e.,

x(t) ≃ (FN;N ⊗ INs)�CB ~p(t); (13)

where the size of the vector ~p(t) is much less than that of x(t). It is noted that the motion of the inter-stage
boundary is now represented as

xb(t) = (FN;N ⊗ INb
)~ub(t): (14)

B. Reduced Order Modeling of Non-Cyclic Stages

Let us assume that stage 2 consists of M sectors and does not possess cyclic-symmetry. Fig. 2 shows stage
2 where M equals 23. Furthermore, let us also assume that the dynamics of this stage cannot be projected
onto the tuned system modes for this stage. Hence, the model may not be reduced by a method based on
cyclic-symmetry as done in the previous section. In this paper, stage 2 is assumed to have a cracked blade
which also induces a nonlinearity caused by the intermittent contact at the crack surfaces. Let all FE nodal
displacements of stage 2 be denoted by y(t). The equation of motion can be written as

�2�y(t) +�2y(t) = f(y); (15)

where �2 and �2 denote mass and sti�ness matrices, and f denotes a vector of nonlinear forces due to the
intermittent contact at the crack surfaces. The nodal displacement vector can be partitioned as

y(t) = [yb(t)
yi(t)

] ; (16)

where yb contains all the displacements of the nodes on the inter-stage boundary, and yi contains the rest
of the internal DOFs. There are various ways to reduce the number of DOFs in the i-partition. In this
paper, the motion of y is expressed as a linear combination of static constraint modes 	 associated with the
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Figure 3. Inter-stage boundary (b-partition) for a cyclic stage (i denotes a sector, j denotes a radial line
segment).

inter-stage boundary, and a set of modi�ed free-interface normal modes �̂ as was employed by Saito et al.21

Namely,

[yb(t)
yi(t)

] ≃ (IN~b
0

	i �̂i

)[yb(t)
q(t)

] ; (17)

where N~b is the number of DOF along the inter-stage boundary for stage 2, �̂i = �ii −	i�ib, with �ii and
�ib denoting the interior and the inter-stage boundary partitions of � respectively. Herting24 provides a
detailed formulation of this type of CMS.

C. Inter-Stage Coupling

After constructing the ROMs of all cyclic and all non-cyclic stages, the next step is to assemble the stages,
which means that the geometric compatibility conditions should be applied to the inter-stage boundary
nodes. However, the FE meshes of all stages do not necessarily match at the inter-stage interfaces. Most
importantly, the stages do not necessarily have the same number of sectors, which means that the stages do
not possess the same periodicity. In this paper, the method proposed by Song et al.4 is extended for the
case with coupling between cyclic and non-cyclic stages. Namely, the motion of the inter-stage nodes are
projected onto harmonic functions that are periodic in the circumferential direction. For the cyclic stage,
let us �rst partition the displacement vector for the inter-stage boundary DOF as follows

xb =

⎡⎢⎢⎢⎢⎢⎢⎣

xb1
⋮

xbN

⎤⎥⎥⎥⎥⎥⎥⎦

; (18)

where xbi corresponds to the inter-stage boundary partition of the nodal displacements of the ith sector. We
also assume that the FE nodes of the inter-stage boundary of each sector are aligned such that the nodes can
be divided into another kind of groups of nodes having the same angle in a cylindrical coordinate system.
The number of such groups in each sector is denoted here as Z, and each group is referred to as a radial
line segment in this paper. This means that the inter-stage boundary of stage 1 consists of NZ radial line
segments. Each radial line segment for stage 1 is considered to have Nr DOF, and each radial line segment
for stage 2 is considered to have Mr DOF. The schematic depicting the inter-stage boundary and the radial
line segments is illustrated in Fig. 3. Namely, xb can also be partitioned as

xb =

⎡⎢⎢⎢⎢⎢⎢⎣

xr1
⋮

xrNZ
;

⎤⎥⎥⎥⎥⎥⎥⎦

(19)
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where the subscript r stands for the radial line segment. Note that there is a relationship between xbi and
xrj such that xbi contains xrj for 1 + (i − 1)Z ⩽ j ⩽ iZ.

Next, we assume that the motion of the jth radial segment can be approximated by a truncated Fourier
series. Namely, de�ning �h ≜ 2�h/(NZ),

xrj ≃
1√
B

z0 +
√

2

B

P−1

∑
h=1

(zhc cos(j − 1)�h + zhs sin(j − 1)�h) +
1√
B

(−1)j−1zP ; (20)

where z represents the Fourier coe�cients with superscript denoting the harmonic number and subscript
denoting either cosine or sine term, and B is the number of basis harmonic functions used for the Fourier
expansion. Note that P = B/2 if B is even. If B is odd, P = (B − 1)/2 and the last term in Eq. (20) does
not exist. Therefore, in matrix form,

xb =

⎡⎢⎢⎢⎢⎢⎢⎣

xr1
⋮

xrNZ

⎤⎥⎥⎥⎥⎥⎥⎦

≃ (FNZ;B ⊗ INr) ~z; (21)

where recall that Nr is the number of DOF per radial line segment for stage 1, FNZ;B is a NZ ×B Fourier
matrix, and ~z = [(z0)T; (zhc )T; (zhs )T; : : : ; (zP )T]T. Inverting Eq. (14) and combining it with Eq. (21),

~ub(t) ≃ (FN;N ⊗ INb
)T (FNZ;B ⊗ INr) ~z: (22)

For the non-cyclic stage (stage 2), the displacement vector of the inter-stage boundary yb can be partitioned
as

yb =

⎡⎢⎢⎢⎢⎢⎢⎣

yb1
⋮

ybM

⎤⎥⎥⎥⎥⎥⎥⎦

: (23)

Furthermore, as was done for the cyclic stage (stage 1), ybi can also be partitioned based on the radial line
segments, i.e.,

ybi =

⎡⎢⎢⎢⎢⎢⎢⎣

yr1
⋮

yrW

⎤⎥⎥⎥⎥⎥⎥⎦

; (24)

where W is the number of radial line segments per sector. Next, the motion of the inter-stage boundary is
represented by a truncated Fourier series assuming that the number of basis harmonic functions is the same
as the one used for the cyclic stage. Namely,

yb =

⎡⎢⎢⎢⎢⎢⎢⎣

yr1
⋮

yrMW

⎤⎥⎥⎥⎥⎥⎥⎦

≃ (FMW;B ⊗ IMr) ~w; (25)

where ~w is a vector of Fourier coe�cients, i.e., ~w = [(w0)T; (wh
c )T; (wh

s )T; : : : ; (wP )T]T. Recall that Mr is
the number of DOF per radial line segment for stage 2. In this paper, it is assumed that Nr =Mr.

At this point, the displacement of the inter-stage boundary of the cyclic and non-cyclic stages are rep-
resented by vectors of Fourier coe�cients ~z and ~w. The geometric compatibility condition is now enforced
as

~z = ~w: (26)

Even though the compatibility conditions are enforced approximately, as long as a su�cient number of
Fourier coe�cients B are used, the geometric compatibility conditions are very well imposed.1

IV. Analysis

Two ROMs were developed using the methodology presented in the Mathematical Formulation section
and are numerically validated in this section. Both ROMs were developed only from FEMs of single stage

9 of 14

American Institute of Aeronautics and Astronautics



cracked blade 
in stage 2

mistuning in stage 1

Figure 4. FEM of multi-stage turbomachinery rotor.

models created in ANSYS. To validate the ROMs, two full-order multi-stage FEMs were also created in
ANSYS. These two multi-stage systems di�er only in stage 2. A full-order multi-stage FEM of one of the
two multi-stage systems is shown in Fig. 4.

Stage 1 of both full-order multi-stage FEMs has 25 identical blades and 63;996 DOFs. Stage 1 also has
blade-to-blade small mistuning (in the blade sti�ness) with standard deviation of 0:04%. Stage 2 of one of
the full-order multi-stage FEM has 23 identical blades and 74;886 DOFs. Stage 2 of the other full-order
multi-stage FEM has 23 identical blades (one of which has a cracked blade), and has 76;404 DOFs. The
crack occurs at the leading edge of one of the blades and has a length of about one third of the chord.

To create the multi-stage FEMs, multi-point constraint equations were applied at the inter-stage bound-
aries to connect the individual stages in ANSYS. The total number of DOFs for the FEM of the multi-stage
system with a crack is 138;006. The corresponding ROM for the system with a crack contains 705 DOFs
(0:5% of the original FE size). The total number of DOFs for the multi-stage system without a crack is
136;488. The corresponding ROM for the system without a crack is 592 DOFs (0:4% of the original FE size).
Each ROM uses 23 basis functions to model the dynamics at the interface between stages (as discussed in
the Inter-Stage Coupling section).

The ROMs were developed to be valid over a frequency range of 0−20 kHz. The bulk of the results below
are focused on a narrower frequency range of 0 − 5 kHz, where multi-stage modes and crack e�ects interact.
In this work, multi-stage modes refer to modes that are not dominated by motion in a single stage, rather
both stages respond at these frequencies. Note that the e�ects which multi-stage phenomena have on the
dynamics in the presence of cracks are of particular interest since this topic has not yet been explored. Also,
in this work nonlinear forced response results were computed for the ROMs using a hybrid frequency/time
domain method, which prevents inter-penetration at the crack surfaces using a penalty coe�cient as done
by Saito et al.21

Before studying the interactions between the multi-stage and crack e�ects the ROMs were validated with
respect to the full FEMs. The relative error of the ROM frequencies with respect to their FEM for the �rst
200 modes was less than 0:05%. Additionally, linear forced response calculations were validated (for the
ROM with a crack and the ROM without a crack) in the multi-stage frequency regime 2:8 − 3:4 kHz. The
error at the peak responses for both ROMs was approximately 1% on both stages. For all forced response
calculations in this work, a proportional damping C = �M + �K was applied to the system. Here, C is the
damping matrix with � = 1:9295×10−2 and � = 5:1340×10−5. Engine order 1 excitation was applied to nodes
at the blade tips of each stage. Since the multi-stage modes were of particular interest, forced responses
were calculated at 1;024 evenly sampled frequencies from 2:8 kHz to 3:4 kHz.

Figure 5 displays the multi-stage forced response results for three di�erent cases. The �rst case is a
forced response analysis for the ROM of the system without a crack. The second case corresponds to
a forced response analysis using a ROM of a system with a crack and a linear analysis (allowing inter-
penetration). The �nal case corresponds to a forced response using a ROM of a system with a crack and
a nonlinear analysis (not allowing inter-penetration at the crack surfaces as done by Saito et al.21). The
results for stage 1 are shown in Fig. 5(a) and the results for stage 2 are shown in Fig. 5(b).

The di�erences between the responses for stage 1 are not nearly as large as the di�erences for stage 2,
since the crack is located in stage 2. For stage 1, the largest response for the peak near 3:2 kHz is predicted
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Figure 5. Comparison of the multi-stage forced response for the ROM of the system without a crack (-), for
the ROM of the system with a crack using a linear analysis (o), and for a ROM of the system with a crack
using a nonlinear analysis (*) for (a) stage 1 and (b) stage 2.

by the nonlinear forced response analysis. This response is only about 5% larger than the response of the
system without a crack and 25% larger than the linear forced response.

For stage 2, the structural response is as expected for all three cases. The system without a crack is the
sti�est and has the lowest amplitude. The linear forced response for the system with a crack is the softest
and has the largest amplitude. In fact, the peak response near 3:2 kHz is almost eight times that of the
system without a crack. The nonlinear forced response amplitude for the system with a crack is between the
other two cases. However, the range of amplitudes between the two cases is very large. Hence, performing
the nonlinear analysis is very important in obtaining an accurate response for the stage with a crack. For
the peak response near 3:2 kHz, the nonlinear analysis yields a response of just 25% of that obtained using
a linear analysis, but double that of the system with no crack.

A plot of the mode shape corresponding to the natural frequency at 3:21 kHz for the FEM of the multi-
stage system with a crack is shown in Fig. 6 to better understand the results in Fig. 5. Fig. 6 shows that
the motion in stage 1 is distributed throughout the stage, which explains why the response of stage 1 is not
greatly a�ected by the crack in stage 2. In contrast, the motion of stage 2 is localized to the cracked blade;
therefore a full nonlinear analysis is critical in accurately capturing the response of the cracked blade.

To show the importance of the multi-stage modeling, a single-stage analysis was conducted on stage
2 (with both of its inter-stage surfaces being �xed). The results are summarized in Fig. 7. The forced
response was computed for 4;092 evenly spaced frequencies in the range 1:5−4:5 kHz. This larger range was
chosen since the response is very low. That is because the modes in the range 2:8 − 3:4 kHz are multi-stage
modes and are not present when a single-stage analysis is performed. The low level response in the range
2:8 − 3:4 kHz demonstrates the need for multi-stage modeling for accurately capturing the dynamics. Three
cases are plotted (nonlinear forced response of the stage with a crack, linear forced response of the stage
with a crack, and the response of the same stage when it does not have a crack). The behavior is similar to
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Figure 6. Mode shape corresponding to a frequency of approximately 3:21 kHz from the FEM of the multi-stage
system with a crack.
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Figure 7. Comparison of the forced response for stage 2 only for the ROM of a stage that does not have a
crack (-), for the ROM of the stage with a crack using a linear analysis (o), and for a ROM of the same stage
with a crack using a nonlinear analysis (*).

the results in Fig. 5 in that the nonlinear forced response is bounded by the linear forced response and the
response of the system without a crack.

A single-stage analysis was also conducted on stage 1 to show the importance of multi-stage modeling.
The results are summarized in Fig. 8. Three cases are plotted. The �rst corresponds to the response of just
stage 1 (with both of its inter-stage surfaces being �xed). The next two cases correspond to the response
of stage 1 when a full multi-stage analysis is conducted. One of these latter two cases corresponds to the
system where there is no crack in stage 2, and the other when there is a crack in stage 2 (and a nonlinear
analysis is conducted). It is evident that for stage 1 the e�ect of single versus multi-stage modeling is very
important. However, the e�ect of modeling the crack (in stage 2) is not that important for stage 1 (although
it is important for predicting the response of stage 2).

V. Conclusions

A novel modeling methodology for combining single stage models (of di�erent types) was introduced.
The methodology was used to create reduced order models (ROMs) that combine a model of a single stage
with a crack with a model of another single stage containing small blade-to-blade mistuning. The full order
model of the stage with a crack was reduced using component mode synthesis (CMS), while the mistuned
stage was reduced using cyclic-symmetry analysis, CMS, and component mode mistuning (CMM). The novel
methodology enabled combining these two single stage ROMs with di�erent modeling frameworks. The two
stages were assembled by projecting the motion at the interface of the neighboring stages along a set of
harmonic basis functions.

The results presented demonstrate the interaction between multi-stage e�ects and cracked-blade e�ects
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Figure 8. E�ect of multi-stage versus stage-wise only analysis. Stage 1 only forced response (-), multi-stage
results for a system without a crack (o), and nonlinear forced response for the multi-stage system with a crack
(*).

on the response of the overall system. It was demonstrated that performing a multi-stage analysis (as
opposed to one single-stage analysis for each individual stage) is very important in certain frequency ranges
for realistic industrial blades. It was also shown that, although the nonlinear forced response of a system
with a cracked blade is bounded by the linear forced response of the system with a cracked blade and the
response of a system without a cracked blade, this range can be very large and only through a nonlinear
analysis can the true response be predicted.
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