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This paper presents atmospheric Shear Wind phenomena models and develops a Parti-
cle Filter estimator to characterize the phenomena. We describe a model for the Surface
Shear Wind and another for the Layer Shear Wind. The models are described and ad-
justed for Besian estimation. A Particle Filter was implemented and tested in simulation
for Surface Shear Wind parameter estimation. The estimator was idealized to be used
by small Unmanned Aerial Vehicles (UAVs). The implemented Particle Filter estimates
the surrounding 
ow �eld with a small number of variables, and as such, low memory
requirements.

Nomenclature

[x; y; z] Position vector
hSSW;ref Surface Shear Wind gradient reference altitude
WSSW;ref Surface Shear Wind reference speed
 SSW Surface Shear Wind main direction
hSSW;0 Surface Shear Wind roughness altitude

hLSW Layer Shear Wind mean altitude
�hLSW Layer Shear Wind height
wLSW Layer Shear Wind reference velocity
�wLSW Layer Shear Wind velocity variation

I. Introduction

Small Unmanned Aerial Vehicles (UAVs) are becoming a reference tool by �eld operatives that need
to enhance their situational awareness. However, the desired small size brings together the consequence of
reduced energy capacity, either in fuel or battery power. A solution for this problem is to increase their
endurance by harvesting energy from atmospheric phenomena.

Shear Wind is the atmospheric phenomenon which occurs on thin layers separating two regions where
the predominant air 
ow vector is di�erent. This di�erence can be either in speed, in direction, or in both
speed and direction. The air layer between these regions is usually less than 100 meters thick, originating a
persistent gradient in the 
ow �eld. This gradient may be exploited by UAVs1{4 as it is by birds.5,6

The Shear Wind phenomena can be classi�ed by directionality as Vertical or Horizontal Shear. Vertical
Shear Wind is a variation of the air 
ow with altitude. It exists near the ground or water surface,5,6 on the
inversion layer, and on the limits of the jet stream.7 Surface wind shear is known on the aviation community
mainly by its e�ects on aircraft landing and take-o� operations. The reduction of 
ow speed towards the
ground causes the aircraft airspeed to decrease in the same amount, if no compensation is applied. This
e�ect can induce stall, leading to possible catastrophic results. Glider pilots observe Shear Wind sometimes
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above 3 knots per 1000 feet.8 Horizontal Shear Wind is a variation of the air 
ow with a variation with the
horizontal position [x; y]. It appears across weather fronts and near the coast.

In this work the 
ow �eld is the spatial characterization of the air velocity vector. Further, we will refer
to the 
ow �eld horizontal velocity vector as the wind vector.

I.A. Literature review

The problem of harvesting energy from atmospheric phenomena was addressed by some authors regarding
updrafts, Shear Wind and gusts. Allen9 describes an updraft phenomenon, known as thermals, which is
used by glider pilots to remain aloft without a propulsion system. Edwards10 proved that thermal soaring
is feasible with UAVs. He achieved long 
ights, both in time and 
own distance, at several di�erent 
ight
sites. Langelaan4 describes how gusts a�ect aircraft and how 
ight controllers can lead the aircraft to loose
or gain energy with gusts. Lawrance and Sukkarieh1{3 presented energy based methods for soaring path
planning. The �rst work describes a method suitable for static and dynamic soaring, i.e., both in thermals
and shear 
ow �elds. The second work describes a promising controller for Shear Wind soaring. The third
work describes a path planner to simultaneously acquire information about the surrounding 
ow �eld and
explore the available 
ow energy. Sachs5 describes how birds and aircraft can harvest energy from surface
Shear Wind. He also determines the bound conditions for perpetual 
ight with this phenomenon. Sachs et
al.6 studied Albatross real 
ight paths while these were take advantage of the Surface Shear Wind.

I.B. General problem

As described before, energy harvest from Shear Wind phenomena should be feasible. We will focus on
Vertical Shear Wind, as surface, inversion, and jet stream shear are quite steady phenomena. Birds learn
how to use these phenomena. UAVs may be programmed to do the same. The main requirements are:
knowing the phenomenon characteristics and control the aircraft to execute an energy harvesting 
ight path.
The control methods developed by Lawrance and Sukkarieh1{3 required knowledge of the surrounding 
ow
�eld. These phenomena occur over large areas, which makes it di�cult to characterize as a whole. Lawrance
and Sukkarieh’s solution for this characterization is a Gaussian Progress (GP) regression that describes the

ow �eld over spatially distributed points.

I.C. Current approach

Our approach is a model-based estimation, requiring few characterization parameters. As such, we simplify
the phenomena to uniaxial (z) wind vector variations, i.e., de�ne the wind vector as a function of the altitude
only. We further distinguish the Vertical Shear Wind phenomena in Surface and Layer Shear Wind, as the

ow gradient is di�erent for each phenomena. We will describe both phenomena modelling functions and
the sensing method in section II.

To estimate the characterizing parameters we developed a Particle Filter. Particle Filters handle well
the phenomena nonlinearities and may be extended to simultaneously localize several di�erent Shear Wind
layers. In section III we de�ne the propagation and observation models and estimations method.

The results and conclusions are described in sections IV and V.

II. Models

II.A. Surface Shear Wind

Surface Shear Wind is a special case of vertical shear where instead of two air mass regions we have one
air mass region and a surface. The surface is usually still or moving at very low speeds relatively to the
general air mass, as is the case of water surfaces. The Shear Wind layer starts at the ground level and may
be modeled by:5,11

WH = WHref

ln (h=h0)

ln (href=h0)
; (1)

where WH is the total wind speed and WHref
, href , and h0 are reference values. WHref

is the reference wind
speed at an altitude href away from the surface. h0 de�nes the shape of the 
ow gradient, re
ecting the
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surface properties, like irregularity, roughness and drag. In the Military Speci�cation MIL-F-8785C:11

href = 6m

h0 =

8<:0:15 for Category C flight phases

2:0 otherwise

; (2)

if 1m � h � 300m. Category C 
ight phases are the terminal 
ight phases, which include takeo�, approach,
and landing, as de�ned in reference.11

Figure 1: Surface wind shear pro�le

II.B. Layer Shear Wind

We present a simple model for the layer wind shear. We approximate de wind gradient with a gaussian.
This results in a wind speed pro�le as the illustrated in �gure 2a and modeled by:

wH;hUAV
= wH;LSW;hmin

+
�wH;LSW

2

�
1 + erf

�
4
hUAV � hLSW

�hLSW

��
; (3)

where hmin and hmax are the wind shear layer limit altitudes, wH;LSW;h is the wind vector due to the wind
shear phenomenon at an altitude h, and:

�wH;LSW = wH;LSW;hmax
�wH;LSW;hmin

(4a)

hLSW =
hmax + hmin

2
(4b)

�hLSW = hmax � hmin: (4c)

The wind gradient is illustrated on �gure 2b and modeled by:

�wLSW

�h

����
hUAV

=
4 k�wLSW k
�hLSW

p
�
e
�
�

4
hUAV �hLSW

�hLSW

�2

; (5)

II.C. UAV sensing

The UAV is a�ected by the air 
ow. As such, it may estimate the 
ow �eld state through its sensors
measurements. This estimate is usually obtained through a 
ow �eld observer. If we regard the UAV with
its sensors and a 
ow �eld observer as a single system, this can now be considered as a sensor for the Shear
Wind phenomena.

In this work, the relevant UAV measurements are the local wind vector w and the position vector
pUAV = [xUAV ; yUAV ; hUAV ], where hUAV is the altitude above ground level. It is assumed the UAV can
estimate its position with good enough accuracy to take it as ground truth for the Shear Wind locator.
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(a) Layer wind shear pro�le (b) Layer wind shear gradient

Figure 2: Variation of wind speed over a Shear Wind layer

III. Shear Wind localization

III.A. Shear Wind propagation models

III.A.1. Surface Shear Wind

The surface Shear Wind state vector is xSSW = [WSSW;6;  SSW ; hSSW;0]
|
, where WSSW;6 is the wind speed

at 6 meters above ground level due to the surface Shear Wind, as speci�ed in the Military Speci�cation MIL-
F-8785C.11  SSW is the surface Shear Wind main direction, which we assume constant from the ground
level to the reference altitude, 6 meters in this case. hSSW;0 is roughness altitude, which de�nes the surface
Shear Wind gradient shape. The gradient dynamics are described by:

_xSSW = "SSW ; (6)

where "SSW is a disturbance vector. The dynamics can be discretized in time, yielding

xSSW;t = xSSW;t�1 + "SSW ; (7)

with "SSW � N
�

0;
h
�2
WSSW;6

; �2
 SSW

; �2
hSSW;0

i|�
and �(�) are the horizontal wind velocity, the Shear Wind di-

rection, and roughness altitude rates of change, respectively. This rates of change account for the parameters
time variation and for the spacial variation of the aircraft position.

An alternative propagation model for the surface Shear Wind is one which allows the altitude refer-
ence to vary from the one speci�ed in the MIL-F-8785C.11 The state vector would then be xSSW =
[hSSW;ref ;WSSW;ref ;  SSW ; hSSW;0]

|
, where hSSW;ref is the gradient reference altitude, WSSW;ref is the

average horizontal wind velocity at hSSW;ref ,  SSW is the surface Shear Wind main direction, and hSSW;0
is roughness altitude. The gradient dynamics are now described by:

hSSW;ref;t = hSSW;ref;t�1 + "hSSW;ref
(8a)

WSSW;ref;t = WSSW;ref;t�1
ln (hSSW;ref;t=hSSW;0;t�1)

ln (hSSW;ref;t�1=hSSW;0;t�1)
+ "WSSW;ref

(8b)

 SSW =  SSW;t�1 + " SSW
(8c)

hSSW;0;t = hSSW;0;t�1 + "hSSW;0
(8d)

(8e)

with "hSSW;ref
� N

�
0; �2

hSSW;ref

�
, "WSSW;ref

� N
�

0; �2
WSSW;ref

�
, " SSW

� N
�

0; �2
 SSW

�
, and "hSSW;0

�

N
�

0; �2
hSSW;0

�
. �(�) are the surface Shear Wind reference altitude, the horizontal wind velocity, the Shear

Wind direction, and the roughness altitude rates of change, respectively.
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III.A.2. Layer Shear Wind

The layer Shear Wind state vector is xLSW =
�
hLSW ;�hLSW ;wLSW ;�wLSW

�|
, where hLSW is the mean

altitude of the Shear Wind layer, �hLSW is Shear Wind layer height, wLSW and �wLSW are the horizontal
wind vector mean and variation over the Shear Wind layer. As with the surface Shear Wind, this is only a
correct representation of the layer Shear Wind if we assume a constant wind gradient direction. The gradient
dynamics are described by:

_xLSW = "LSW ; (9)

where "LSW is a disturbance vector. The dynamics can be discretized in time, yielding

xLSW;t = xLSW;t�1 + "LSW ; (10)

with "LSW � N
�

0;
h
�2
hLSW

; �2
�hLSW

; �2
�W;LSW

|
; �2

�WLSW

|
i|�

and �(�) are the rates of change of the all layer

Shear Wind state parameters, respectively. As with the surface Shear Wind parameters, this rates of change
account for the parameters time variation and the change with spacial variation of the aircraft position.

III.B. Shear Wind observation models

The horizontal wind vector observation (wH) may be described by

wH = [Wx;Wy]
| � h (xSW ;pUAV ) + "WH

; (11)

where Wx and Wy are estimated with a wind observer.
The observation uncertainty ("WH

) is caused mainly by gusts, but also by the UAV sensing noise, i.e.,
the wind observer errors. As such, it may be de�ned as:

"WH
= "WH ;Gust + "WH ;Sens (12a)

"WH ;Gust � N
�
0; kGust � ŵH

�
(12b)

"WH ;Sens � N (0; �WObs) ; (12c)

where kGust is an adimensional ratio relating the wind variation with the wind average:

kGust =

s
E

��
kwHk � kwHk

�2
�

kwHk
; (13)

ŵH is the estimate of the average horizontal wind, and �WObs is the wind observer uncertainty vector.

III.B.1. Surface Shear Wind

The surface Shear Wind observation model is derived from (1):

ŵH = h (xSSW ;pUAV ) = WSSW;ref
ln (hUAV =hSSW;0)

ln (hSSW;ref=hSSW;0)

"
cos SSW

sin SSW

#
: (14)

III.B.2. Layer shear

The layer Shear Wind observation model is derived from (15):

ŵH = h (xLSW ;pUAV ) = whmin;LSW +
�wLSW

2

�
1 + erf

�
4
hUAV � hLSW

�hLSW

��
; (15)

where whmin;LSW = wLSW � �wLSW

2 .
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III.C. Inference framework

In this work, the estimation is implemented through a Particle Filter. The belief distribution at each
estimation step is represented by particles de�ned by the state vector xSSW or xLSW . Each particle is an
hypothesis of the current state. At each step, particles are propagated, evaluated and resampled, to create
a new estimate. The particles are propagated through the propagation model described in section III.A.
This step allows the �lter to track the state evolution and represent the uncertainty. The observation model,
presented in section III.B, generates the expected observation for each particle. This is combined with the
UAV observation to provide a measurement of likelihood of the hypothesis represented by each particle. The
resampling prunes the unlikely particles (hypothesis).

III.D. Particle generation

Figure 3: Surface Shear Wind "roughness" altitude distribution generated

III.D.1. Surface Shear Wind

The estimation particles are generated when the UAV is low enough to measure the e�ect of the Surface
Shear Wind. The current application of Particle Filter assumes a �xed reference altitude as speci�ed in
MIL-F-8785C.11 The generated particles represent distribution of the "roughness" altitude as illustrated in
�gure 3. The reference wind vector distribution is centered on the current wind measurement adjusted for
the reference altitude (1), with a Gaussian distribution. Figure 4 illustrates the typical particle generation
distribution, in terms of wind vector.

Figure 4: Particle generation

IV. Results

The results presented next were obtained through multiple simulation of UAV 
ights sweeping Shear Wind
phenomena. The UAV was simulated by an extended unicycle model, which included altitude variations. In
the simulation the UAV is commanded to sweep a range of altitudes, including those a�ected by Shear Wind
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phenomena. The wind simulation summed the Shear Wind e�ects to gusts. The gusts were generated by a
scalar Gauss-Markov process, which simulates well the kind of sensing noise the system would be subject to
in reality.

Figure 5: Surface Shear Wind Particle Filter cycle run time with the number of estimation particles.

We run the 20 independent simulations with each particle quantity choice to characterize statistically the
developed Particle Filters. As expected the time required by the Particle Filter for each estimation cycle
grows almost linearly with the number of particles (�g. 5). However the estimation quality doesn’t improve
linearly with the number of particles. In fact, for the Surface Shear Wind the estimation quality is almost

the same for 200 estimation particles or more (�g. 6). In MatLab R
, on a Intel R
 Core
TM

2 Duo CPU, T9300
@ 2.5GHz, a Particle Filter estimation cycle takes less then 5� 10�30s. Further, the Particle Filter doesn’t
need to run at more than 5Hz to obtain good quality estimations. This means that this Particle Filter with
200 particles can run in real time, with almost no extra load to the processor, and good quality estimates.

(a) Reference wind vector estimation error (b) "Roughness" altitude estimation error

Figure 6: Surface Shear Wind parameters estimation error as a function of the number of particles in particle
�lter.

The average wind prediction error (�g. 7) is mostly under half a meter per second. This error is mostly
due to the gusts, as the �lter is estimating the e�ect of the steady Shear Wind and not the gusts.

V. Conclusion

A regular Particle Filter with 200 particles is well suited for real time estimation of Surface Shear Wind
parameters. We were able to estimate and track the Surface Shear Wind e�ects using a Particle Filter
with only three parameters. This avoids the need to maintain a time history of the observed 
ow �eld or a
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Figure 7: Wind prediction error of Surface Shear Wind Particle Filter with the number of estimation particles.

spatially distributed characterization of it.

V.A. Future Work

We will test the Layer Shear Wind estimator in the near future and expect to obtain results very similar
to the Surface Shear Wind one. We’ll also couple this methods with a wind observer and test them on real
UAV 
ights. This should validate not only the methods, but also the atmospheric phenomena models on
which they were based. Further, we intend to use the estimates to feed a 
ight controller to take advantage
of the Shear Wind and improve UAVs’ endurance.
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