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We develop a method for obtaining state estimates for a possibly nonminimum-phase

system in the presence of an unknown harmonic input. We construct a state estimator

based on the system model, and then introduce an estimator input provided by an adap-

tive feedback model whose goal is to drive the estimated output to the measured output

despite the presence of the unknown harmonic input. Using input reconstruction based

on a retrospective surrogate cost, we reconstruct the unknown harmonic input. Using the

reconstructed input we update the parameters of the adaptive model using recursive least

squares identification. We then extend the method to nonlinear systems. The performance

of this method is compared with the Kalman filter for linear examples, as well as with the

extended and unscented Kalman filters for nonlinear examples.

I. Introduction

The classical Kalman filter is the optimal state estimator for linear systems under white process and
sensor noise with zero mean and finite second moments. Implementation of the optimal estimator under
these idealized conditions depends on knowledge of the linear dynamics and noise covariances. When these
assumptions are not satisfied, the accuracy of the Kalman filter can be degraded.13, 14, 16

If the transfer function from the process noise to the measurements is minimum phase, the number
of outputs equals the number of disturbances, and there is no sensor noise, then the minimum achievable
estimation error is zero.10 On the other hand, the presence of nonminimum-phase zeros increases the
minimum achievable estimation error and thus, for harmonic disturbances, the Kalman filter does not give
perfect state estimates.8, 9

A more proactive approach is to implement an adaptive state estimator, where the goal is to identify
the dynamics and noise statistics during system operation and use this information to tune the estimator
on-line.15

In addition to compensating for white process noise, the Kalman filter accommodates the presence
of a known, deterministic input. By injecting this signal into the estimator, the estimator experiences no
loss of estimation accuracy relative to the case in which no deterministic input is present. This feature is
essential when the Kalman filter is used in conjunction with the linear-quadratic regulator for constructing
the full-order dynamic LQG controller.
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In practice, however, the deterministic input may not be known exactly, and this error can viewed as
a component of the process noise. However, this approach may be conservative and can lead to bias when
the unknown input has a nonzero “mean” value. Consequently, a more direct approach is to extend the
estimator to include an estimate of the unknown input.21–25 Yet another approach is to constrain the gains
of the estimator in order to guarantee that the state estimates are unbiased.17–20

In the present paper we consider state estimation for minimum- or nonminimum-phase systems in
the presence of an unknown harmonic input. To address this problem we consider the estimator structure
shown in Figure 1 with an auxiliary input û, which is the output of an adaptive feedback system that is
updated on-line. The signal û is estimated using a retrospective-cost-based input-reconstruction technique.
In this way, the adaptive feedback system uses knowledge of the estimator residual to improve the accuracy
of the state estimator by reconstructing the harmonic disturbance, thereby achieving perfect estimates in
the minimum and nonminimum-phase cases. A related technique is used in.26

The contents of this paper are as follows. In Section II we describe the state estimation problem and
construct a state estimator that uses an auxiliary input from an adaptive subsystem. In Section III, we
describe an input-reconstruction technique that constructs the auxiliary input by minimizing the residual
error, that is, the difference between the measured output and the output of the estimator system. In Section
IV we use least squares to estimate the adaptive subsystem parameters from the reconstructed auxiliary input
and current state estimates.

Next, we numerically examine the adaptive state estimation error in comparison to the optimal state
estimator. In Section V we demonstrate the adaptive state estimator on linear numerical examples, and
compare the results to the Kalman filter. In Section VI we extend the method to nonlinear state estimation,
and in Section VII we demonstrate the method on nonlinear examples with comparisons to the extended
and unscented Kalman filters.

II. Problem Formulation

Consider the linear-time-invariant system

x(k + 1) = Ax(k) + Bu(k) + Bw(k), (1)

y(k) = Cx(k), (2)

where x(k) ∈ R
n is the unknown state, u(k) ∈ R

m is an unknown input, w(k) ∈ R
m is unknown zero-mean

Guassian white noise, and y(k) ∈ R
p is the measured output, which is assumed to be bounded. The matrices

A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n are known, and (A, C) is observable. Furthermore we assume that

u(k) is the output of a Lyapunov-stable, linear system.

In order to obtain an estimate x̂(k) ∈ R
n of the state x(k), we construct an adaptive state estimator

(ASE) of the form

x̂(k + 1) = Ax̂(k) + Bû(k), (3)

ŷ(k) = Cx̂(k), (4)

z(k) = y(k) − ŷ(k), (5)

where ŷ(k) ∈ R
p is the estimated output, û(k) ∈ R

m is the estimator input, and z(k) ∈ R
p is the measured

output error. Furthermore, û(k) is the output of the strictly proper adaptive feedback system of order nc,
with input z(k), given by

û(k) =

nc
∑

i=1

M(k)iû(k − i) +

nc
∑

i=0

N(k)iz(k − i), (6)

where Mk,i ∈ R
m×m, i = 1, . . . , nc, and Nk,i ∈ R

m×p, i = 0, . . . , nc. The goal is to update Mi,k and Ni,k

using the measured output error z(k). Figure 1 shows the adaptive estimator structure.
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Figure 1. Adaptive State Estimator Architecture

III. State Estimation Using a Retrospective Surrogate Cost

For i ≥ 1, define the Markov parameter Hi of (A, B, C) given by

Hi
△
= CAi−1B. (7)

For example, H1 = CB and H2 = CAB. Let r be a positive integer. Then, for all k ≥ r,

x̂(k) = Arx̂(k − r) +
r

∑

i=1

Ai−1Bû(k − i), (8)

and thus

z(k) = CAr x̂(k − r) − y(k) + H̄ ˆ̄U(k − 1), (9)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
p×rm

and

Ū(k − 1)
△
=









û(k − 1)
...

û(k − r)









.
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Next, we rearrange the columns of H̄ and the components of ˆ̄U(k − 1) and partition the resulting matrix
and vector so that

H̄ ˆ̄U(k − 1) = H
′Û ′(k − 1) + HÛ (k − 1), (10)

where H′ ∈ R
p×(rm−l

Û
), H ∈ R

p×l
Û , Û ′(k − 1) ∈ R

rm−l
Û , and Û(k − 1) ∈ R

l
Û . Then, we can rewrite (9) as

z(k) = S(k) + HÛ(k − 1), (11)

where

S(k)
△
= CArx̂(k − r) − y(k) + H

′Û ′(k − 1). (12)

For example, H̄ =
[

H1 H2 H3 H4 H5

]

,

H
′ =

[

H1 H2 H4

]

, U ′(k − 1) =







û(k − 1)

û(k − 2)

û(k − 4)






,

and

H =
[

H3 H5

]

, Û(k − 1) =

[

û(k − 3)

û(k − 5)

]

.

Next, for j = 1, . . . , s, we rewrite (11) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the
form

z(k − kj) = Sj(k − kj) + Hj Ûj(k − kj − 1), (13)

where (12) becomes

Sj(k − kj)
△
= CA

r
x(k − kj − r) − y(k − kj) + H

′
jÛ

′
j(k − kj − 1)

and (10) becomes

H̄ ˆ̄U(k − kj − 1) = H
′

j Û
′

j(k − kj − 1) + HjÛj(k − kj − 1), (14)

where H′
j ∈ R

p×(rm−l
Ûj

)
, Hj ∈ R

p×l
Ûj , Û ′

j(k − kj − 1) ∈ R
rm−l

Ûj , and Ûj(k − kj − 1) ∈ R
l
Ûj . Now, by

stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=









z(k − k1)
...

z(k − ks)









∈ R
sp. (15)

Therefore,

Z(k)
△
= S̃(k) + H̃

ˆ̃
U(k − 1), (16)

where

S̃(k)
△
=









S1(k − k1)
...

Ss(k − ks)









∈ R
sp, (17)
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ˆ̃
U(k − 1) has the form

ˆ̃
U(k − 1)

△
=









û(k − q1)
...

û(k − ql ˆ̃
U
)









∈ R
l ˆ̃
U , (18)

where, for i = 1, . . . , l ˆ̃
U
, k1 ≤ qi ≤ ks + r, and H̃ ∈ R

sp×l ˆ̃
U is constructed according to the structure of

ˆ̃
U(k − 1). The vector ˆ̃

U(k − 1) is formed by stacking Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) and removing copies
of repeated components.

For example, with k1 = 0 and k2 = 1, stacking Û1(k − 1) =

[

û(k − 1)

û(k − 2)

]

and Û2(k − 2) = û(k − 2)

results in ˆ̃
U(k − 1) =

[

û(k − 1)

û(k − 2)

]

. The coefficient matrix H̃ consists of the entries of H1, . . . , Hs arranged

according to the structure of ˆ̃
U(k − 1).

Next, we define the surrogate performance

ẑ(k − kj)
△
= Sj(k − kj) + HjU

∗

j (k − kj − 1), (19)

where the past controls Ûj(k − kj − 1) in (13) are replaced by the surrogate controls U∗
j (k − kj − 1). In

analogy with (15), the extended surrogate performance for (19) is defined as

Ẑ(k)
△
=









ẑ(k − k1)
...

ẑ(k − ks)









∈ R
sp (20)

and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (21)

where the components of Ũ∗(k − 1) ∈ R
l ˆ̃
U are the components of U∗

1 (k − k1 − 1), . . . , Û∗
s (k − ks − 1) ordered

in the same way as the components of ˆ̃
U(k − 1). Subtracting (16) from (21) yields

Ẑ(k) = Z(k) − H̃
ˆ̃
U(k − 1) + H̃Ũ∗(k − 1). (22)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (23)

where R(k) ∈ R
ps×ps is a positive-definite performance weighting. The goal is to determine refined controls

ˆ̃
U(k − 1) that would have provided better performance than the controls U(k) that were applied to the
system. The refined control values Ũ∗(k − 1) are subsequently used to update the controller.

IV. Cost Function Optimization with Adaptive Regularization

To ensure that (23) has a global minimizer, we consider the regularized cost

J̄(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (24)
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where η(k) ≥ 0. Substituting (22) into (24) yields

J̄(Ũ∗(k − 1), k) = Ũ∗(k − 1)TA(k)Ũ∗(k − 1) + B(k)Ũ∗(k − 1) + C(k), (25)

where

A(k)
△
= H̃

TR(k)H̃ + η(k)Il ˆ̃
U
, (26)

B(k)
△
= 2H̃

TR(k)[Z(k) − H̃
ˆ̃
U(k − 1)], (27)

C(k)
△
= ZT(k)R(k)Z(k) − 2ZT(k)R(k)H̃ ˆ̃

U(k − 1) + ˆ̃
UT(k − 1)H̃TR(k)H̃ ˆ̃

U(k − 1). (28)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this case, J̄( ˆ̃
U(k − 1), k) has

the unique global minimizer

Ũ∗(k − 1) = −
1

2
A

−1(k)B(k). (29)

IV.A. Adaptive Feedback Update

The control û(k) is given by the strictly proper time-series controller of order nc given by

û(k) =

nc
∑

i=1

Mi(k)û(k − i) +

nc
∑

i=1

Ni(k)z(k − i), (30)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
m×m and Ni(k) ∈ R

m×p. The control (30) can be expressed as

û(k) = θ(k)φ(k − 1), (31)

where

θ(k)
△
= [M1(k) · · · Mnc

(k)N1(k) · · · Nnc
(k)] ∈ R

m×nc(m+p) (32)

and

φ(k − 1)
△
=























û(k − 1)
...

û(k − nc)

z(k − 1)
...

z(k − nc)























∈ R
nc(m+p). (33)

Let d be a positive integer such that Ũ(k − 1) contains u(k − d). Next, we define the cumulative cost
function

JR(θ(k))
△
=

k
∑

i=1

λk−i‖φT(k − d − 1)θT(k − 1) − ûT(k − d)‖2, (34)

where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. Minimizing (34) yields

θT(k) = θT(k − 1) + P (k − 1)φ(k − d − 1)[φT(k − d)P (k − 1)φ(k − d − 1) + λ(k)]−1

× [φT(k − d − 1)θT(k − 1) − ûT(k − d)]. (35)

The error covariance is updated by

P (k) = λ−1(k)P (k − 1) − λ−1(k)P (k − 1)φ(k − d − 1) · [φT(k − d − 1)P (k − 1)φ(k − d) + λ(k)]−1

× φT(k − d − 1)P (k − 1). (36)

We initialize the error covariance matrix as P (0) = γI, where γ > 0.
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V. Linear Examples

In this section, we apply the adaptive state estimator to several linear examples and compare its
performance with the Kalman filter (KF). Define the error metric

εk =
1

ℓ

k+l−1
∑

i=k

||ei||, (37)

where ℓ is the window size. For all examples in this section, ℓ = 2000.

V.A. Example 1: Dual Spring-Mass-Damper System, Minimum-Phase

Consider the dual spring-mass-damper system shown in Figure 2. For i = 1, 2, let qi be the position
of ith mass, let mi be the mass of the ith block, let ki be the stiffness of the ith spring, and let ci be the
damping coefficient of the ith damper. Finally, let u be the force applied to the first block.

m1 m2
k1 k2

c2c1

q1

q2

u

Figure 2. Dual spring-mass-damper system

The equations of motion of this system are

ẋ = Acx + Bcu,

where

x =











q1

q̇1

q2

q̇2











, Ac =











0 1 0 0

−k1+k2

m1
− c1+c2

m1

k2

m1

c2

m1

0 0 0 1
k2

m2

c2

m2
− k2

m2
− c2

m2











, Bc =











0
1

m1

0

0











. (38)

We choose m1 = 5, m2 = 4, k1 = k2 = 0.01, c1 = 0.5, and c2 = 0.05. We discretize the system using

A = eAcTs , B = A−1
c (A − I)Bc, (39)

where Ts = 1 is the sampling time. The output matrix is

C =
[

1 0 0 0
]

, (40)

which represents the position of the first mass. The zeros of the discretized system are −0.9680 and 0.9852±
0.0687. For the ASE, let η(k) = 0, nc = 3, P (0) = 1 × 1015I6×6, and H̃ = CB. For the Kalman filter,
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the noise covariance matrix is Q = BBT, and the initial error covariance is I4×4. Finally, u(k) = 20 sin(k).
Figure 3 shows that εk converges to zero for both the KF and ASE.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−15

10
−10

10
−5

10
0

10
5

Time Step k

ε
k

 

 

ASE

KF

Figure 3. Comparison of the performance εk of the ASE and KF for the minimum-phase spring-mass-damper system.

V.B. Example 2: Dual Spring-Mass-Damper system, Nonminimum-Phase

For this example, we consider the system defined by (39) with the output matrix

C =
[

−10 0 1 0
]

, (41)

which represents a difference in the positions of the two masses. The zeros of the discretized system are
−0.9632, 1.1293, and 0.8767, and thus (A, B, C) is nonminimum phase. For the ASE, let η(k) = 5 × 10−5,
nc = 5, P (0) = 10I10×10, and H̃ = CAB. For the Kalman filter, the noise covariance matrix is Q = BBT,
and the initial error covariance is I4×4. Finally, u(k) = 20 sin(k). Figure 4 shows the performance εk of the
ASE and KF.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Time Step k

ε
k

 

 

ASE

KF

Figure 4. Comparison of the performance εk of the ASE and KF for the nonminimum-phase spring-mass-damper

system.

8 of 18

American Institute of Aeronautics and Astronautics



V.C. Example 3: Nonminimum-Phase Linearized Planar Linkage

We consider the planar linkage system shown in Figure 5. Let p1 be the point where the first link is
attached to the horizontal plane, and let p2 be the point where the two links are connected. Furthermore, for
i = 1, 2, let qi be the center of mass of the ith link, let mi be the mass of the ith link, let ci be the damping
at the joint pi, and let ki be the stiffness of the joint pi.

Next, let FA be an inertial frame with the orthogonal unit vectors (̂ıA, ̂A, k̂A), where ı̂A and ̂A lie in
the plane of motion of the planar linkage system. For simplicity, we assume that the origin of FA is located
at p1. In addition, for i = 1, 2, let FBi

be a body-fixed frame attached to the ith link. More specifically, FBi

is a body-fixed frame that rotates as the ith link rotates. For i = 1, 2, let FBi
have orthogonal unit vectors

(̂ıBi
, ̂Bi

, k̂Bi
), where ı̂Bi

is in the direction from pi to qi, and ̂Bi
is orthogonal to ı̂Bi

in the plane of motion.
Furthermore, u1 is an external torque applied at p1. Finally, for i = 1, 2, let θi be the angle from ı̂A to ı̂Bi

.
All frames are right handed.

The equations of motion of the planar linkage system6 are given by

u1 = (
1

3
m1l

2
1 + m2l

2
1)θ̈1 +

1

2
m2l1l2 sin(θ1 − θ2)θ̇

2
2 +

1

2
m2l1l2 cos(θ1 − θ2)θ̈2

+ (k1 + k2)θ1 − k2θ2 + (c1 + c2)θ̇1 − c2θ̇2,

0 = (
1

3
m2l

2
2)θ̈2 −

1

2
m2l1l2 sin(θ1 − θ2)θ̇

2
1 +

1

2
m2l1l2 cos(θ1 − θ2)θ̈1

− k2θ1 + k2θ2 − c2θ̇1 + c2θ̇2, (42)

where m1 = 2, m2 = 1, l1 = 3, l2 = 2, k1 = 7, k2 = 5, c1 = 10, and c2 = 1. The output of the system

y = θ2, (43)

is the angle θ2, which represents the angle from ı̂A to ı̂B2
. Linearizing and discretizing (42) with sampling

time Ts = 1 yields
x(k + 1) = Ax(k) + Bu(k),

where

x(k) =











θ1(k)

θ2(k)

θ̇1(k)

θ̇2(k)











, A =











0.661 0.174 0.5517 0.1408

1.0993 −0.0223 0.928 0.26

−0.134 −0.065 0.39 0.161

0.009 −0.3 0.744 −0.083











, B =











0.024

−0.011

0.028

0.042











T

. (44)

-
ı̂A

6̂A
�

�
�

�
�

�
�

θ1•
p1

•q1

���������

θ2
•

p2
•

q2

•
p3

�
�7ı̂B1ZZ}̂B1

��1
ı̂B2

B
BM

̂B2

Figure 5. Planar linkage system. All motion is in the horizontal plane.

The zeros of the discretized system are 6.6598, 0.3219, and −0.2619, and thus (A, B, C) is nonminimum
phase. For the ASE, let η(k) = 5 × 10−4, nc = 10, P (0) = 1 × 106I20×20, and H̃ = CB. For the Kalman
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filter, the noise covariance matrix is chosen to be Q = BBT, and the initial error covariance is I4×4. Finally,
u(k) = 20 sin(k). Figure 6 shows the performance εk of the ASE and KF.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−2

10
−1

10
0

Time Step k

ε
k

 

 

ASE

KF

Figure 6. Comparison of the performance εk of the ASE and KF for the nonminimum-phase linearized planar linkage.

Next, consider the linearized planar linkage system in Example 3 with the input u(k) = 20 sin(k) +
5 sin(0.3k)+80 sin(0.01k). For the ASE, η(k) = 1×10−5, nc = 7, P (0) = 1×104I14×14, and H̃ = CAB. For
the Kalman filter, the noise covariance matrix is chosen to be Q = BBT, and the initial error covariance is
I4×4. For this example, Figure 7 shows the performance εk of the ASE and KF.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−3

10
−2

10
−1

10
0

10
1

Time Step k

ε
k

 

 

ASE

KF

Figure 7. Comparison of the performance εk of the ASE and KF for the nonminimum-phase linearized planar linkage

with a multi-harmonic input.

Next, consider the linearized planar linkage system in Example 3 with the input u(k) = 10. For the
ASE, η(k) = 2 × 10−3, nc = 1, P (0) = 1 × 103I1×1, and H̃ = CAB. For the Kalman filter, the noise
covariance matrix is chosen to be Q = BBT, and the initial error covariance is I4×4. For this example,
Figure 8 shows the performance εk of the ASE and KF.
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Figure 8. Comparison of the performance εk of the ASE and KF for the nonminimum-phase linearized planar linkage

with a constant input.

V.D. Example 5: Linearized Planar Linkage with Process Noise

Consider the system
x(k + 1) = Ax(k) + Bu(k) + αBw(k),

where x(k), A, and B are given by (44). The output of this system is given by (43). We test the ASE and KF
for α = 0, α = 10−6, α = 10−4, and α = 10−2. For the ASE, η(k) = 1× 10−5, nc = 5, P (0) = 1× 103I10×10,
and H̃ = CA2B. For the KF, the noise covariance matrix is Q = αBBT, and the initial error covariance is
I4×4. Finally, u(k) = 20 sin(k). Figure 9 shows the performance εk of the ASE and KF. For the KF, the
effect of α is negligible and thus we show εk of the KF for only α = 0.
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Figure 9. Comparison of the performance εk of the ASE and KF for the nonminimum-phase linearized planar linkage

with process noise.
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VI. Nonlinear State Estimation

Consider the MIMO nonlinear time-invariant system,

x(k + 1) = f(x(k)) + g(u(k), w(k)), (45)

y(k) = h(x(k)), (46)

where x(k) ∈ R
n is the state, u(k) ∈ R

p is an unknown input, w(k) ∈ R
m is unknown zero-mean Gaussian

white noise, y(k) ∈ R
p is the measured output, which is assumed to be bounded, f : R

n → R
n, g : R

m → R
n,

and h : R
n → R

p are known functions. Furthermore, we assume that u(k) is the output of a Lyapunov-stable
linear system.

In order to obtain estimates x̂(k) ∈ R
n of the state x(k), we construct a state estimator of the form

x̂(k + 1) = f(x̂(k)) + g(û(k)), (47)

ŷ(k) = h(x̂(k)), (48)

where the estimated output is ŷ(k) ∈ R
p, and û(k) ∈ R

m is the estimator input given by (6). Mk and Nk

are updated as in the linear case, where Hi is redefined as

Hi
△
= HF i−1G, (49)

where xeq is an equilibrium point and

F
△
=

∂f

∂x̂

∣

∣

∣

∣

xeq

, H
△
=

∂h

∂x̂

∣

∣

∣

∣

xeq

, G
△
=

∂g

∂x̂

∣

∣

∣

∣

xeq

. (50)

Unlike the extended Kalman filter, the adaptive state estimator does not require a linearization of
f, g, h, at each step k, which is used by the extended Kalman filter to propagate the error covariance.

VII. Nonlinear Examples

In this section, we compare the adaptive state estimator (ASE) with the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF). We consider the nonlinear planar linkage system and the Van der
Pol oscillator. For all examples, the error metric is given by (37) with ℓ = 2000.

VII.A. Example 5: Nonlinear Planar Linkage

In this example, we consider the nonlinear planar linkage given by discretizing (42) with Ts = 1, and
with the output matrix (43). For the ASE, let η(k) = 5 × 10−4, nc = 10, P (0) = 10I20×20, and H̃ = HG,
where H and G are obtained by linearizing and discretizing the system about the origin. For the EKF
and UKF, we set Q = 100BkB

T
k , where Bk is the input vector obtained by linearizing and discretizing the

system about the current state estimate x̂(k). The initial error covariance matrix for the EKF and UKF is
I4×4. Furthermore, for the UKF, we use nine sigma points, and we set κ = 0, β = 2, and α = 0.1. Finally,
u(k) = 20 sin(k). Figure 10 shows the state estimates of the ASE and UKF for the last fifty steps. Figure
11 shows the performance εk of the ASE, UKF, and EKF.
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Figure 10. State estimates for the nonlinear planar linkage.
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Figure 11. Comparison of the performance εk of the ASE, EKF, and UKF for the nonlinear planar linkage.

VII.B. Example 6: Van der Pol Oscillator

We consider the Van der Pol oscillator

q̈ − µ(1 − q2)q̇ + q = u,

where µ = 1. The output of this system is y = q. We discretize this system with Ts = 0.1 to obtain

x1(k + 1) = Tsx2(k) + x1(k),

x2(k + 1) = Tsµ(1 − x1(k)2)x2(k) − Tsx1(k) + Tsu(k) + x2(k),
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where x1 = q and x2 = q̇. For the ASE, let η(k) = 5 × 10−4, nc = 2, P (0) = 100I4×4, and H̃ = HG, where
H and G are obtained by linearizing the discretized system about the origin. For the EKF and UKF, the
noise covariance matrix is Q = [0 10]T[0 10], and the initial error covariance matrix is I2×2. Furthermore,
for the UKF, we use five sigma points and we set κ = 0, α = 0.01, and β = 1. Finally, u(k) = 10 sin(k).
Figure 12 shows the phase portrait for this example. Figure 13 shows the state estimates for the ASE and
UKF. Figure 14 shows the performance εk of the ASE, EKF, and UKF.
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Figure 12. Phase portrait of the Van der Pol oscillator.
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Figure 13. State estimates for the ASE and UKF.
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Figure 14. Comparison of the performance εk of the ASE, EKF, and UKF for the Van der Pol oscillator.

Next, consider the Van der Pol oscillator in Example 6 with the alternative output

y = q̇. (51)

For the ASE, let η(k) = 1× 10−4, nc = 3, P (0) = 100I6×6, and H̃ = HFG, where H , F and G are obtained
by linearizing the discretized system about the origin. For the EKF and UKF, the noise covariance matrix
is Q = [0 10]T[0 10], and the initial error covariance matrix is I2×2. Furthermore, for the UKF, we use five
sigma points and we set κ = 0, α = 0.01, and β = 1. Finally, u(k) = 10 sin(k). Figure 15 shows the state
estimates for the ASE and UKF. Figure 14 shows the performance εk of the ASE, EKF, and UKF.
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Figure 15. State estimates for the ASE and UKF.
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Figure 16. Comparison of the performance εk of the ASE, EKF, and UKF for the Van der Pol oscillator.
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VII.C. Example 7: Van der Pol Oscillator with Process Noise

Consider the discretized nonlinear Van der Pol oscillator

x1(k + 1) = Tsx2(k) + x1(k),

x2(k + 1) = Tsµ(1 − x1(k)2)x2(k) − Tsx1(k) + x2(k) + Tsu(k) + γTsw(k),

where µ = 1 and Ts = 0.1. The output of this system is y = x1. Furthermore, u(k) = 20 sin(k) and w(k)
is the realization of a zero mean Gaussian white noise process with unit variance. We test the ASE for
γ = 0, γ = 10−2, and γ = 1. We let η(k) = 5 × 10−4, nc = 2, P (0) = 100I4×4, H̃ = HG, where H and
G are obtained by linearizing the discretized system about the origin. For the UKF, we choose the same
parameters as in Example 6. Figure 17 shows the performance εk of the ASE for several values of γ. For
the UKF, the effect of γ is negligible and thus we show εk of the KF only for γ = 0.
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Figure 17. Comparison of the performance εk of the ASE for the Van der Pol oscillator with process noise.

VIII. Conclusions

In this paper we demonstrated a method for obtaining state estimates for minimum- and nonminimum-
phase systems in the presence of harmonic process noise. First we constructed an estimator based on the
known system model. At each step k we reconstruct the signal u(k), called û∗(k), which minimizes the
residual error y(k)− ŷ(k). We then estimate a feedback system with input z(k) and output û(k). Using the
signal û(k) as the input to the estimator, we obtain estimates x̂ of the system state x(k).

We demonstrated the method on several linear examples including minimum and nonminimum-phase
systems. In the minimum-phase case, the adaptive input reconstruction filter and the Kalman filter asymp-
totically reach zero state-estimation-error. In the nonminimum-phase case, the Kalman filter reaches a finite
lower bound, on the state-estimation-error. The adaptive input reconstruction filter outperforms the Kalman
filter in this case.

Finally, we extended the method to nonlinear state estimation. We compare the adaptive input recon-
struction filter to the extended Kalman filter and the unscented Kalman filter. We note that the adaptive
input reconstruction filter does not require knowledge of the process noise covariance or linearizations of the
model about each state estimate.
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