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Transverse Target Moments of SIDIS Vector Meson

Production at HERMES

S. Gliske for the HERMES collaboration
Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA

E-mail: sgliske@umich.edu

Abstract. The on-going analysis of the transverse target (AUT ) moments of the non-collinear
cross section for SIDIS dihadron production at Hermes is discussed. These moments access the
transversity (h1), pretzelocity (h⊥1T ), and Sivers (f⊥1T ) distribution functions convoluted with the
unpolarized (D1) and Collins (H1) dihadron fragmentation functions. This measurement allows
greater insight into the flavor decomposition and factorization of these functions. Additionally,
the results will test the Lund/Artru fragmentation model, which predicts a sign change in
the Collins function between pseudo-scalar mesons and certain partial waves of vector mesons.
In preparation for this analysis, a new Monte Carlo generator has been written, and non-
collinear fragmentation functions have been computed in a spectator model. Additionally, an
alternate partial wave expansion is presented, providing a complementary interpretation of the
fragmentation functions and allowing computation of the next-to-leading twist cross section.

1. Introduction and Motivation
Semi-inclusive deep inelastic scattering (SIDIS), the scattering of high energy leptons from nuclei,
is one of the key processes used in probing the partonic spin structure. Many results for SIDIS
production of single hadrons (particularly pseudo-scalar mesons) are available, including results
from a variety of experiments.1 However, less data is available about the SIDIS production of
dihadrons, where a hadron pair is measured in the final state

l + N → l′ + h1 + h2 + X. (1)

Dihadron production includes subprocesses where h1 and h2 come from the decay of a parent
particle, such as a vector meson, as well as other subprocesses.2

Dihadron production involves an additional three variables over single hadron production.
They are chosen to be Mh, the invariant mass of the dihadron; cosϑ, the polar angle of one of
the hadrons in the dihadron center of mass frame (identical to the polar angle used in exclusive
vector meson production [3]); and φR, the azimuthal angle of the difference between the momenta
of the two hadrons with respect to the lepton scattering plane, measured perpendicular to the
momentum of the center of mass and in the virtual-photon nucleon center-of-mass frame [4].
The convention for dihadron production is such that if both both hadrons are charged, e.g.
π+π−, the positively charged hadron is used in computing cosϑ, and while if only one hadron

1 A nice review can be found in Ref. [1]
2 For example, the contributing subprocesses in π+π− dihadron production is detailed in Ref. [2].
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is charged, e.g. π±π0, the charged hadron is used. Letting p1, p2 be the momenta of the two
hadrons (p1 corresponding to the hadron used in defining cosϑ), the center of mass momentum
is denoted Ph, and the difference between the two momenta is denoted R = p1 − p2. Defining
k as the momenta of the incoming lepton and q as the momenta of the virtual photon, one can
define φR as

φR := signum [(R× Ph) · n)] arccos
(q × k) · (Ph ×R)
|q × k||Ph ×R| , (2)

with n = (q · Ph)k − (k · Ph)q, and where all momenta are with respect to the virtual-photon
nucleon center-of-mass frame.

The SIDIS process can be interpreted according to a factorization scheme [5, 6, 7], where
moments of the cross section are sums of integrals of distribution functions (describing
the partonic structure of the nucleon) and fragmentation functions (describing the quark
hadronization process). Dihadron production accesses the same distribution functions as does
pseudo-scalar production [4] and can be seen as a complementary access point. However,
additional flavor combinations are also available in dihadron production, most notable the nearly
pure access to the sum of strange and anti-strange quark flavors via the φ-meson. The Sivers
function for φ-mesons is also related to gluon orbital angular momentum [8]. Additionally,
dihadrons allow a collinear (transverse momentum integrated) access to transversity, which is not
possible with pseudo-scalar production. The advantage of collinear access is that the evolution
equations (Q2 scaling) are known, while the evolution equations in the non-collinear case are not
known. Another strong motivation for measuring both pseudo-scalar and dihadron production is
that the Lund/Artru fragmentation model predicts a sign change of the Collins function between
pseudo-scalar mesons and certain partial waves of vector mesons. A non-collinear analysis of
both dihadrons and pseudo-scalars is necessary to test this model.

Previous results are available for one transverse target azimuthal moment from both Hermes
and Compass for π+π− pairs [9, 10]. However, a model prediction for Compass, based on the
Hermes results, is a factor of three smaller than the actual Compass results. This may be due
to differences in the cos θ treatment, treatment of the depolarization factor, or possibly due to
both experiments using the angle φR⊥ instead of φR.3The angle φR⊥ is computed by defining
RT as the projecting of R perpendicular to Ph, and then considering the the azimuthal angle of
RT about the virtual photon direction, with respect to the lepton scattering plane, formally [9]

φR⊥ = signum [(q × k) ·RT )] arccos
(q × k) · (q ×RT )
|q × k||q ×RT | , (3)

While the difference between φR and φR⊥ is zero at leading twist, within the Q2 range
and acceptance of Hermes, the differences can be notable and show kinematic dependencies.
Compass also integrates over cosϑ, introducing an additional, unknown, scale factor. While
the scale factor is presumably near one, actually fitting with respect to cosϑ would remove
this possible source of discrepancy. Thus, to improve comparison of future measurements, all
experiments should fit with respect to cosϑ and also use the angle φR rather than φR⊥.

To test the Lund/Artru model and to gain additional information regarding flavor
dependence, future plans for Hermes measurements include considering additional dihadrons
as well as extracting moments of the non-collinear cross section. The most important additional
dihadrons include π±π0, and K+K− (related to vector mesons ρ± and φ). As the asymmetry
results for π0 are considerably smaller than those for charged pions [11], the charged ρ-mesons
are expected to yield a clearer test of the Lund/Artru model. The applicability of the leading
analysis must be also be considered—requiring knowledge of the subleading twist cross section to
test its effect. Several necessary items, not previously available for SIDIS dihadron production,

3 While Compass uses the quantity φR⊥, they refer to it by the symbol φR.
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have been prepared to accomplish these plans. These items include the non-collinear cross
section, a Monte Carlo event generator, and models of non-collinear fragmentation functions.

2. Partial Wave Analysis
The Lund/Artru model of string fragmentation posits that a gluon flux tube is produced between
the struck quark and the nucleon remnant. When the flux tube breaks, the produced quark, anti-
quark pair are assumed to be in a system with quantum numbers equal to those of the vacuum.
This requires the spins of the quark and anti-quark to be aligned and one unit of orbital angular
momentum opposing these spins. Considering the struck quark to be transversely polarized,
depending on whether the spins of the produced pair are parallel (states |12 ,±1

2〉|12 ,±1
2〉) or anti-

parallel (states |12 ,±1
2〉|12 ,∓1

2〉) with the spin of the struck quark, the orbital angular momentum
will cause the produced meson to prefer either the right (parallel) or left (anti-parallel) relative
to the struck quark spin. This reversal of the left-right asymmetry dependent on the alignment
of the quark spins is manifest as a sign change in the Collins function.

However, the SIDIS amplitude is most clearly written with the spins in the direct sum basis,
rather than the direct product basis, i.e. with reference to scalar and vector mesons, rather than
mesons with quark spin aligned or anti-aligned. Thus, at the amplitude level, one would expect
the Collins function of for pseudo-scalar mesons |0, 0〉 and longitudinally polarized vector mesons
|1, 0〉 to have one sign, and transversely polarized vector mesons |1,±1〉 to have the opposite
sign. However, since the cross section is product of the amplitude and the complex conjugate of
the amplitude, the concept of Collins functions for specific polarization states of vector mesons
can only be defined within a partial wave analysis.

Previous partial wave analyses of dihadron production have been in the direct product basis
[4], i.e. specifying the spin state of both the dihadron in the amplitude and the dihadron in
the conjugate of the amplitude. However, just as the direct sum basis (vector and pseudo-
scalar mesons) is more convenient than the direct product basis (mesons with quarks aligned
or anti-aligned) in describing the amplitude, the cross section can be more conveniently written
in terms of the direct sum basis of the two-dihadron state. Equivalently, one can expand the
fragmentation functions in terms of the partial waves of the two dihadron system.4This alternate
partial wave expansion does not change the form of the cross section, but rather provides an
alternate interpretation.

Advantages to this interpretation include having one symbol for each experimentally
accessible partial wave. Partial waves |2,±2〉 = |1,±1〉|1,±1〉 are exactly the square of the partial
waves for transverse vector mesons, and thus the |2,±2〉 partial wave of the Collins function is
expected to change sign with respect to the Collins function for pseudo-scalar production. There
is no clear access to a Collins function for longitudinal vector mesons, as the state |2, 0〉 includes
both longitudinal vector mesons and interference between the two transverse polarizations
of vector mesons. Additionally, the fragmentation function occurring in the collinear case,
previously denoted H�sp

1,UT , can be identified with the |1, 1〉 partial wave of the Collins function,

H
⊥|1,1〉
1 . Thus we see that fragmentation function is not pure sp interference, but also includes

interference between longitudinal and vector mesons. Additionally, the fragmentation functions
existing in the collinear cross section are just integrals of certain partial waves of the non-collinear
fragmentation functions. The specific partial wave which survives in the collinear case depends
on the distribution function with which the fragmentation function is paired.

An additional advantage of this alternate partial wave expansion is that the dihadron cross
section, before partial wave expansion, is identical to the pseudo-scalar cross section. This is
expected, since both are cross sections for producing a integer-spin system. Alternately, one can
identify the pseudo-scalar cross section with the |0, 0〉 sector of the dihadron cross section. All

4 A rigorous, mathematical presentation is in preparation for publication. Until then, see Ref. [12].
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Figure 1. Comparison of data from TMDGen (blue circles) for a given choice of parameters vs
Pythia (red squares) tuned to Hermes kinematics. The distributions are of the variables z (left
panel), Ph⊥ (center panel), and Mh (right panel).

additional complications in the dihadron cross section are just additional partial waves of the
same basic quantities. By noting this, one can then compute the dihadron cross section, at any
twist, given the pseudo-scalar cross section at the corresponding twist. This is a tremendous
computational savings over traditional methods [13]. A few terms of the next-to-leading twist
cross section are given in Appendix A.

3. Monte Carlo Generator TMDGen
A new Monte Carlo generator has been developed. Though early versions were denoted
GMC Trans, the name has been changed to TMDGen. The generator allows one to select among
available models for distribution and fragmentation functions, and throws events according to
the SIDIS cross section, using either weights or acceptance/rejection. Both pseudo-scalar and
dihadron production are currently included. Additionally, the intrinsic transverse momenta pT

and kT are specifically modeled. This allows one to include any general pT and kT dependence,
and to further study relations between the intrinsic transverse momenta and experimentally
accessible variables. The generator is designed to be flexible and to accommodate the inclusion
of additional models. Additionally, the generator is designed to link with any experiment’s
simulation chain as well as to work independent of any experiment.

A new non-collinear spectator model has been determined and implemented in the generator.
The model is based on Ref. [2], which describes a collinear spectator model for π+π− pairs. Both
models replace the SIDIS average over all possible other final states (the X in Equation 1) with a
single, on shell, spin-half spectator with mass Ms ∝ Mh. The tree level fragmentation correlator
can then be directly written, from which one can compute the fragmentation matrices by tracing
the correlator with certain Dirac matrices. The non-collinear model computes these traces
without the integration over the transverse momentum. Additionally, an extra z-dependent
kT -cutoff is needed, as the model only includes a cutoff with respect to k2,

k2 =
z

1− z
|kT |2 +

M2
s

1− z
+

M2
h

z
. (4)

Without the extra kT cutoff, it is not possible to match both the Mh and Ph⊥ distributions, as
shown in Figure 1. To consider π±π0 and K+K− pairs, one must also allow flavor dependence
for the parameter sets and slightly modify the p-wave vertex function.

4. Conclusion
Three important items for the analysis of SIDIS dihadron production at Hermes have been
discussed. The new partial wave analysis aids in the interpretation of these measurements and
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allows the computation of the dihadron cross section from the pseudo-scalar cross section, at any
twist. A new Monte Carlo generator, TMDGen, has been written and will later be released to the
public. This generator will not only assist in the systematic studies for the Hermes analysis,
but will also be useful for systematic studies for other experiments and in interpreting any SIDIS
result in terms of fragmentation and distribution functions. Additionally, preliminary Hermes
results for non-collinear dihadron production will be forthcoming.
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Appendix A. Selected Cross Section Terms
By identifying the non-expanded dihadron cross section with the pseudo-scalar cross section, at
any twist, one can compute the partial wave expanded dihadron cross section. The moments
can be written in terms of structure functions, as was done for pseudo-scalar mesons in Ref. [7].
For example, the 45 transverse target, unpolarized beam moments, at next-to-leading twist, are

(
1

ST

)
2πxyQ2

α2MhPh⊥

(
1 +

γ2

2x

)−1

d9σUT =
[ 2∑

l=0

l∑

m=−l

A(x, y)Pl(cosϑ) sin((1−m)φh − φS + mφR)FPl(cos ϑ) sin((1−m)φh−φS+mφR)
UT,T (A.1)

+ B(x, y)Pl(cosϑ) sin((1−m)φh + φS + mφR)FPl(cos ϑ) sin((1−m)φh+φS+mφR)
UT

+ B(x, y)Pl(cosϑ) sin((3 + m)φh − φS + mφR)FPl(cos ϑ) sin((3+m)φh−φS+mφR)
UT

+ V (x, y)Pl(cosϑ) sin(mφh + φS + mφR)FPl(cos ϑ) sin(mφh+φS+mφR)
UT

+ V (x, y)Pl(cosϑ) sin((2 + m)φh − φS + mφR)FPl(cos ϑ) sin((2+m)φh−φS+mφR)
UT .

The subscripts UT identify these moments as unpolarized beam and transverse target moments,
while the subscript UT, T additionally indicates the virtual photon is transversely polarized.
The terms with depolarization factors A(x, y) and B(x, y) are twist-2, while those with V (x, y)
are twist-3. The depolarization factors are defined as

A(x, y) =
y2

2(1− ε)
, B(x, y) =

y2

2(1− ε)
ε, V (x, y) =

y2

(1− ε)

√
2ε(1 + ε), (A.2)

consistent with Ref. [7]. These structure function can then be interpreted in terms of partial
waves of the fragmentation functions. For example, the structure functions with transversity
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and the Collins function are

F
Pl(cos ϑ) sin((1−m)φh+φS+mφR)
UT = C

[
−|kT |

Mh
cos((m− 1)(φh − φkT

))h1H
⊥|l,m〉
1

]
, (A.3)

where H
⊥|l,m〉
1 denotes the |l, m〉 partial wave of the Collins function, and C [·] denotes the

convolution over intrinsic momentum, defined in Equation 4.1 of Ref. [7].
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