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Abstract
Recent claims that Maxwell’s fish-eye is a perfect lens, capable of providing images with deep
subwavelength resolution, are examined. We show that the imaging properties of a
dispersionless fish-eye are very similar to those of an ideal spherical cavity. Using this
correspondence, we prove that the correct solution to Maxwell equations in the fish-eye gives
image sizes that are consistent with the standard diffraction limit. Perfect focusing is an optical
illusion that results from placing a time-reversed source at the position of the geometrical image
which, when combined with the field due to the primary (object) source, mimics the behavior of
a perfect drain. Issues of causality are briefly discussed. We also demonstrate that passive
outlets are not a good alternative to time-reversed sources for broadband drain-like behavior and
that, even if they were, they could not do a better job than conventional optical systems at
providing high resolution.
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(Some figures in this article are in colour only in the electronic version)

Maxwell’s fish-eye lens is a sphere of radius R for which the
refractive index varies according to

n(r) = 2

1 + (r/R)2
,

where r is the distance from the center of the sphere. Inside
the lens, ray paths are circles and all rays from an object at rO

converge at the image point at rI = −rO R2/|rO|2 [1]. The
fish-eye lens has recently attracted much attention, motivated
by claims that it provides perfect imaging of electromagnetic
waves, in an apparent violation of Abbe’s diffraction limit [2].
In a series of papers [3–8], Leonhardt et al have argued that
the mirrored fish-eye gives unlimited resolution in two [3]
and three dimensions [4], and responded to comments by
Blaikie [9], Kinsler and Favaro [10], and Merlin [11], who
questioned various aspects of their proposal, particularly
in regard to the meaning of electromagnetic drains [3–5],
causality [5, 11], image perfection [7, 8], and the assertion that
time-reversed sources can be represented by passive outlets [7].
We note that, using transformation optics methods, Benı́tez
et al [12] reached conclusions similar to those of Leonhardt
et al for scalar fields in lensing systems other than Maxwell’s
fish-eye, whereas Guenneau et al failed to observe deep
subwavelength resolution in both Maxwell’s fish-eye and the
Eaton lens [13].

Here, we compare Maxwell’s fish-eye to the mathemat-
ically simpler problem of a spherical mirror, and find strong
similarities in their imaging behavior. We used this analogy to
show that the perfect focusing claimed by Leonhardt et al [3, 4]
is not an intrinsic property of the fish-eye lens, but merely the
result of having placed an additional source at the image po-
sition. In this regard, their proposal is reminiscent of schemes
relying on time-reversed sources to attain subwavelength fo-
cusing [14, 15]. The extra source leads to a resulting field pat-
tern that imitates the behavior of a drain. Leonhardt et al assert
that drains are necessary to achieve a stationary state and that
solutions without them violate causality [4]. In contrast, we
find that the problem of a single dipole in an ideal spherical
cavity does exhibit causal stationary states without the need
for drains, and that the images obtained in that situation obey
Abbe’s constraint. Disproving the belief that mirrors are not
good analogs of Maxwell’s lens [7, 8] our analysis shows that,
as for the dispersionless fish-eye, electromagnetic pulses do not
experience shape distortion as they propagate in large spheri-
cal cavities. Finally, we show that passive outlets can imitate
drains, but only at a single frequency (this is consistent with a
recent study by Kinsler [16]) and under conditions that require
fine tuning of parameters.
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Figure 1. A cartoon view of imaging in Maxwell’s fish-eye and ellipsoidal cavities. (a) A single dipole source gives diffraction-limited
focusing. (b) The result of adding a second, time-reversed electric dipole at the position of the image is a field pattern that emulates that of a
drain.

The problem of a point electric-dipole source at the center
of a spherical cavity can be solved exactly [11, 17]. We assume
that the dipole is driven with a current whose time dependence
is known a priori to be of the form exp(−iωt), and which
cannot be modified by the radiation fields. The sphere, of
radius R, is covered on the inside with a perfectly reflecting
material. Ray optics dictates that the image is also at the
center of the sphere. For a dipole oriented along the z-axis,
the harmonic solutions for the Hertz vector are of the form
Π = �ωe−iωt ez where

�ω = kp0

(
eikr

kr
+ iA

sin kr

kr

)
; (1)

k = ω/c (c is the speed of light). This gives H = Hϕe−iωt eϕ

and E = (Er er + Eθ eθ )e−iωt with

Hϕ = Hd + Ak3 p0 j1(kr) sin θ Eθ = − i

kr

∂

∂r
(r Hϕ)

Er = i
2Hϕ

kr tan θ
.

Here, H and E are the magnetic and electric field, j1 and
h(1)

1 are the first-order spherical Bessel and first-kind Hankel
functions, and Hd = k3 p0h(1)

1 (kr) sin θ is the contribution of
the dipole alone, which gives outgoing waves ∝eiω(r/c−t)/kr
for kr � 1. From the boundary condition, requiring that
Eθ = 0 at r = R, we get

A = −h(1)
1 (k R) + k Rh(1)′

1 (k R)

j1(k R) + k R j ′
1(k R)

where the prime indicates the derivative with respect to k R.
Note that the boundary condition for k R � 1 is �ω(R) = 0.

In equation (1), the non-singular solution to the
homogeneous equation, sin(kr)/kr , represents the field due
to the induced currents at the inner surface of the sphere. It
is apparent that this term gives a diffraction-limited image at
r = 0. The corresponding expression for scalar waves in the

fish-eye lens [7, 8] is

Dω ≈ sin(2ω�)

16π2� sin(πω)
, (2)

which is also consistent with Abbe’s standard diffraction limit;
� = |r−rI|	/|r 2

I +	2|. Leonhardt et al assert generally that ‘to
maintain a stationary regime, we must supplement the source
by a drain’ [4]. However, given that the fields in equations (1)
and (2) are drain-free, it is clear that this statement is incorrect.
Thus, there is no need to include a drain to achieve a steady
state.

Let us now add a second dipole p′
0 = αp0, also oriented

along the z-axis, at the center of the sphere, and choose α

so that its associated field exactly cancels the outgoing wave
due to the induced currents (the two dipoles coincide here
because both object and image are at r = 0; in the fish-eye or
an ellipsoidal cavity, the conjugate foci and, thus, the dipoles
occupy different positions). That is, we require that

α = − A

2 + A
= h(1)

1 (k R) + k Rh(1)′
1 (k R)

h(2)
1 (k R) + k Rh(2)′

1 (k R)
= −ei�

so that

�ω = kp0

(
eikr

kr
− ei� e−ikr

kr

)
. (3)

This expression, emphasizing the drain-like look of the
resulting field, is analogous to what Leonhardt et al found for
the mirror-coated fish-eye [3, 4]. It is easy to see that what
Leonhardt et al refer to as ‘subwavelength imaging’ is nothing
more than the singularity introduced by the extra source of
radiation. Similar to the results for the fish-eye, the phase shift
is � ≈ 2k R + π for k R � 1. The cartoons in figure 1 provide
a comparison between the cases represented by equations (1)
and (3). We emphasize that both expressions are physical,
causal solutions to different problems (involving, respectively,
one and two sources), none of which contains a drain.

Consider now imaging in the time domain. For
wavelengths that are significantly shorter than the radius of the
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Figure 2. Time domain focusing. The solid black curves delimiting the red shaded areas are � versus r (arbitrary units) at t ∼ 2m R/c; see
equation (4). Time runs from left to right. Waves for r > 0 (r < 0) are real (virtual). Interference between the incoming and outgoing waves
(blue curves) gives the diffraction-limited image at r = 0, with � = 0 at t = 2m R/c. Drain-like behavior results from adding a time-reversed
source at the image position that exactly cancels the outgoing wave. (Color online.)

sphere, we can approximate A ≈ ieikR/ sin k R. Thus

�(r, t) = R

2πc

∫ +∞

−∞
�ωe−iωt dω

≈ p0 R

2πr

∫ +∞

−∞

(
eikr − eikr − e−ikr

1 − e−2ikR

)
e−iωt dk.

Applying Cauchy’s theorem, we get

�(r, t) = p0 R

r

[
δ(ct − r) − 
(t)

2R

×
∞∑

m=−∞

(
e−imπ(ct−r)/R − e−imπ(ct+r)/R

)]

= p0 R

r

{
δ(ct − r) − 
(t)

∞∑
m=−∞

[δ(ct − r − 2m R)

− δ(ct + r − 2m R)]
}

(4)

where 
(t) is the Heaviside (step) function. The above
expression indicates that a pulse emitted by the source
periodically reflects off the inner mirrored surface and
converges at the center of the sphere without distortion. The
r -dependence of � is shown in figure 2 at times when the pulse
is close to r = 0. The diffraction-limited field at the image site
can be thought of as resulting from the interference between an
incoming and an outgoing wave. The introduction of a second,
time-reversed source, which interferes destructively with the
outgoing wave, creates the mirage of a drain. If one ignores
the wavelength dependence of the refractive index, a nearly
identical result can be obtained for the fish-eye [7, 8]

D =
∫ +∞

−∞
Dω(r)e−iωt dω = 
(t)

8π

(
� + 1

�

)

×
+∞∑

m=−∞
[δ(ct/	 − 2 tan−1� − 2mπ)

− δ(ct/	 + 2 tan−1� − 2mπ)].
It follows that the statement by Leonhardt et al that ‘Maxwell’s
fish-eye has imaging properties different from mirrors’ [7]
is inaccurate. We notice that, even though subwavelength
resolution and chromatic aberration (pulse dispersion) are

unrelated problems, Leonhardt et al treat the absence of pulse
broadening as a requirement for perfect imaging [7]. We
also note that their statement that ‘in imperfect imaging, the
drain would be in conflict with causality’ [8] is mistaken since
equation (3) applies for all values of k R, including the range
k R < 1 for which the pulses experience significant chromatic
distortion.

Finally, we discuss the possibility that time-reversed
sources may be replaced by passive outlets. Leonhardt et al
[6] claim that ‘Maxwell’s fish-eye [· · ·] makes a perfect lens
for electromagnetic waves but only when such waves are
detected by perfect point detectors’. As we have seen, the
spherical mirror has properties similar to those of the fish-eye
lens. Can a passive detector at the origin lead to behavior
that imitates a drain in the spherical mirror? As recent work
has shown for the general case [16], the answer is yes, but
only at a single predetermined frequency. Here, we give an
alternative argument. Detectors of dimensions ∼	 that are
small compared with the wavelength λ behave as particles in
a uniform field [18]. Let pD be the electric dipole acquired
by the detector and γD its electrical polarizability (we ignore
magnetic effects). A calculation of the field at the origin, due to
the induced currents at the mirror, gives E(0) = E(0)ez where
E(0) = (2i/3)Ak3(p0 + pD). A perfect drain-like pattern
requires that pD = γD E(0) = −p0ei� which gives

γD = 3i/4k3. (5)

Since the polarizability is proportional to the volume of the
detector, it is clear that this condition together with 	 �
λ can only be met in the vicinity of a high-Q resonance
and at a single frequency. As an example, if we model
the outlet as a sphere of radius rD and permittivity εD, the
polarizability is γD = (ε − 1)r 3

D/(ε + 2) [18], and the
relevant resonance is that of the so-called surface plasmon.
Therefore, the condition set by equation (5) reads εD ≈
−2 + 4ik3r 3

D. Similar considerations apply to the microwave
experiments reported by Ma et al [19] in which the outlets
were absorbers identical to the source and impedance matched
to the cables, which thus behaved as sources in reverse. It
is important to note that, even if passive elements could be
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used for broadband operation, their associated drains would
not provide subwavelength resolution. The reason is that
the spatial dependence of the amount of radiation emitted or
absorbed by the device would still be limited by diffraction
effects and, as such, by the same signal-to-noise problems that
arise when trying to resolve objects whose separation is smaller
than that allowed by Abbe’s formula.
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