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A central problem in crystallography is crystal structure determination directly

from diffraction intensities. For structures of small molecules, this problem has

been addressed by probabilistic direct methods that allow one to obtain the

structure coordinates with a high degree of certainty given a sufficiently large set

of intensities. In contrast, deterministic algebraic methods that could guarantee

a solution and may be applicable to macromolecules have not yet emerged. In

this study a basic algebraic question is posed: how many crystal structures can

be obtained from a given set of intensities? Recently, by using a new origin

definition and the method of elementary symmetrical polynomials, all small (N

� 4 atoms) one-dimensional crystal structures that could be obtained from the

minimum set of N � 1 lowest-resolution intensities were enumerated. Here, by

using methods of modern algebraic geometry the maximum number of one-

dimensional crystal structures that can be determined from the minimum set of

intensities for N > 4 is obtained. It is demonstrated that this ambiguity increases

exponentially with the increasing number of atoms in the structure N (�4N/N3/2

for N >> 1) and includes non-homometric structures. Therefore, a minimum set

of intensities, even in principle, is insufficient for structure determination for all

but very small structures.

1. Introduction

Determining a crystal structure from a single set of diffraction

intensities without an anomalous signal or a similar structure is

a central problem in crystallography with applications to other

imaging technologies. It has been known since the pioneering

studies by Ott (1927) and Avrami (1938) that an atomic model

of a crystal structure can, in principle, be obtained solely from

diffraction intensities when the number of such intensities

does not exceed greatly the number of unknown coordinates

of the atoms in the structure. Algebraic methodologies of

determining crystal structures from intensities have been

undergoing further development (Cervellino & Ciccariello,

1996, 1999, 2001, 2005; Pilz & Fischer, 1998, 1999, 2000; Fischer

& Pilz, 1997); however a practical algebraic method of crystal

structure determination has not yet emerged. Importantly,

general ideas from Ott’s and Avrami’s studies spurred devel-

opment of direct methods, starting from the determination of

structures of centrosymmetric crystals by using Harker–

Kasper inequalities (Harker & Kasper, 1947, 1948; Gillis,

1948a,b) and culminating in the powerful methodology

developed by Karle and Hauptman in the 1950s (Hauptman &

Karle, 1957; Karle & Hauptman, 1957). Today, software based

on these direct methods (most notably, SHELX and SnB) is

used for determining structures of most small molecules and is

gaining popularity in determining substructures of heavy

atoms and anomalous scatterers in macromolecular crystal-

lography (Sheldrick, 2008; Miller et al., 1994; Rappleye et al.,

2002; Weeks & Miller, 1999).

Because of their probabilistic character, direct methods do

not absolutely guarantee that a structure can be obtained. The

likelihood of determining structures larger than a thousand or

so atoms by these methods is vanishingly small, precluding

their use in macromolecular structure determination with the

exception of ultra high resolution (<1.2 Å) structures of very

small proteins. It is clear that an approach that is distinct from

the traditional direct methodology is required for obtaining

larger structures solely from intensities. The rapid improve-

ment in computer technology and progress in modern

computational mathematics led to re-examination of

previously intractable complex problems in many areas of

technology. In particular, it is time to re-evaluate the possi-

bility of development of a deterministic approach of obtaining

a crystal structure from a single set of intensities.

The first question that needs to be answered in assessing

such methods is a long-standing one: how many structures can

be determined from a given set of intensities? It is known that

even the idealized complete set of perfectly measured inten-

sities cannot yield a unique structure due to enantiomeric and

homometric ambiguities (Patterson, 1939, 1944). It was
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recently rigorously proven that at most two homometric one-

dimensional crystal structures of N = 4 equal atoms can be

obtained (Shkel et al., 2011). Only lower bounds on the

number of such structures are known for N = 5 and N = 6

(Bullough, 1963) and no information about crystal structure

ambiguity is available, to our knowledge, for larger N or

for any N in the cases of two- and three-dimensional crystals

of equal atoms, whereas an example of three-dimensional

homometric structures has been known for 80 years (Pauling

& Shappell, 1930). The number of crystal structures that yield

(or can be obtained from) a realistic, incomplete, set of

intensities is larger, because it may include non-homometric

structures. Recently, we investigated the ambiguity of struc-

ture determination for small (N � 4) one-dimensional crystal

structures of equal atoms given the minimum set of lowest-

resolution intensities, by applying the method of elementary

symmetric polynomials with a new origin definition (Shkel

et al., 2011). The ambiguity has not been investigated for

larger N. Here we report the analysis of the number of one-

dimensional crystal structures of any number of equal atoms

that can be obtained from the minimum of diffraction intensity

data, by using approaches of modern computational algebraic

geometry.

2. Enumeration of one-dimensional crystal structures
obtained from a minimum of intensities

2.1. Theoretical background

Normalized structure factors Fh describing X-ray diffraction

from a one-dimensional crystal of N equal point atoms located

at fractional coordinates xj (0 � xj < 1, j = 1, 2, . . . , N) of the

unit cell are

Fh ¼
PN
j¼1

expð2�ihxjÞ ¼
PN
j¼1

�h
j ; h ¼ �1; . . . ;�1; 0; 1; . . . ;þ1;

ð1Þ

where �j ¼ expð2�ixjÞ is a natural periodic coordinate.

In the experiment, only intensities Ih are measured, which

are proportional to the square of the amplitude of Fh.

Therefore, after appropriate normalization, these intensities

are given by the following system of equations:

Ih ¼ Fh

�� ��2 ¼ PN
j¼1

�h
j

 ! PN
j¼1

��h
j

 !
h ¼ 0; 1; . . . ;þ1: ð2Þ

Owing to the periodicity, the intensity values are invariant

with respect to the location of the coordinate origin. Once the

origin location is specified, N � 1 coordinates become inde-

pendent unknown variables in system (2) taken together with

the equation defining the origin. Therefore, structure deter-

mination will require a minimum of N � 1 intensity values.

The choice of the origin has a profound effect on the func-

tional form of system (2), which will become clear in this study.

We will use the two following origin definitions to enumerate

structures that can be obtained from solving system (2) for the

minimum lowest-resolution set of intensities Ih, h = 1, . . . ,

N � 1: (i) the origin coincides with the center of mass of the

structure (Shkel et al., 2011) and (ii) the origin coincides with

one of the atoms.

2.2. Crystal structure ambiguity analysis for the origin at the
center of mass of the structure

In a previous study from our group, the one-dimensional

crystal structure determination problem was formulated for

the origin located at the center of mass of the structure (Shkel

et al., 2011). This formalism, summarized as Appendix A in the

supplementary material,1 allows one to reduce this structure

determination problem to a system of polynomial equations

(A5) in Appendix A. The number of solutions of system (A5)

was previously analyzed by standard elimination techniques

of elementary algebra for N � 4 (Shkel et al., 2011). We

demonstrated that system (A5) has two, six and 16 solutions

for N = 2, 3 and 4, respectively. For N > 4, both the elementary

methods and advanced Grobner basis techniques [as imple-

mented in the powerful software CoCoA (CoCoA team; http://

cocoa.dima.unige.it) and Mathematica (Wolfram Research)]

could not simplify this system due to its steeply increasing

complexity with increasing N. Therefore, we used methods of

modern computational algebraic geometry to count the

number of solutions of system (A5). Specifically, for each

equation of the system, we constructed a geometrical object

called a Newton polytope and applied Bernstein’s theorem to

this collection of Newton polytopes. The basics of this meth-

odology are summarized in Appendix B in the supplementary

material. We will geometrically illustrate this method for N = 2

and N = 3.

For N = 2, system (A5) contains only one equation: I1 ¼ e2
1,

or e2
1 � I1 ¼ 0 in the standard form. The Newton polytope for

the polynomial on the left-hand side is a line segment from 0

to 2. The mixed volume in this case is simply the volume of this

polytope, or the length of the segment, equal to 2. Indeed,

there are two solutions in this case. For N = 3, system (A5)

consists of two equations:

e1e2 � I1 ¼ 0

e2
1e2

2 � 2 e3
1 þ e3

2

� �
þ 4e1e2 � I2 ¼ 0:

This problem is two dimensional as there are two variables, e1

and e2; therefore one needs to calculate the mixed area for this

system. The Newton polytopes for the second polynomial and

for the Minkowski sum of the two polynomials of this system

are shown in Fig. 1. The area of the first two-point polytope is

zero; therefore the mixed area, which is equal to the number

of roots of this system, is the difference between the area of

the Minkowski sum polytope and that of the second polytope,

i.e. 12 � 6 = 6 (Fig. 1), in agreement with the previous result

(Shkel et al., 2011). Because the dimensionality of system

(A5), N � 1, increases steeply with increasing structure size,

the calculations of the Newton polytopes (the convexity

operation on a number of points) and their volumes are
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difficult problems in modern algebra. We used the robust

Quickhull algorithm (Barber et al., 1996) as implemented in

the software QHULL (http://www.qhull.org) to calculate

mixed volumes for N � 8; for larger N, these calculations were

prohibitively time consuming. These mixed volumes are given

in Table 1. Even though, in general, the mixed volume is a tight

upper bound on the number of solutions, if the coefficients in

front of the monomial terms are generic, the mixed volume is

equal to the number of solutions of a polynomial system.

Because the mixed volumes given in Table 1 coincide with the

previously calculated number of solutions for N � 4 (as given

above; Shkel et al., 2011), the monomial coefficients in system

(A5) for any N are likely generic. The generic form of this

system arises owing to both the choice of the origin and the

substitution of the coordinates by the elementary symmetric

polynomials.

We demonstrated previously that for the origin in the center

of mass, solutions of system (A5) can be divided into groups of

2N non-unique structures (Shkel et al., 2011). The 2N struc-

tures within each group are obtained from a single structure

by N operations of the origin shift and, for each of these N

origin locations, by changing the signs of all coordinates to the

opposite, i.e. the 2N structures in each group are either

congruent or enantiomeric to each other. We define the

structures within each of these groups of 2N structures as

non-unique; consequently, the number of unique structures

equals the number of such groups, i.e. the total number of

structures divided by 2N. The number of unique structures is

given in Table 1. This number appears to increase exponen-

tially with increasing N, indicating that the ambiguity of the

structure determination from a minimum of perfectly

measured intensities increases exponentially with the struc-

ture size. The behavior of this ambiguity for large N is

analyzed in x2.4.

2.3. Non-homometric ambiguity of structures obtained from
a minimum of intensities

Even in the ideal case when all intensities are available and

measured without experimental uncertainty, the structure

determination problem does not have a unique solution. It was

recognized by Patterson that multiple structures that are

described by the same set of interatomic distances (called

homometric) can yield the same complete set of intensities.

Therefore, in addition to homometric structures, a minimum

set of intensities may yield non-unique structures that are not

homometric. We showed here (Table 1) and previously by a

different method (Shkel et al., 2011) that for N = 2 and N = 3,

the minimum set of lowest-resolution intensities always yields

a unique one-dimensional crystal structure and that non-

unique structures arise for N > 3 (Shkel et al., 2011). Can two

non-unique structures obtained for N = 4 from I1, I2 and I3

(Table 1) be non-homometric? The answer to this question is

yes. For example, two non-homometric four-atom structures:

{0.125, 0.225, 0.725, 0.925} and {0.041, 0.300, 0.772, 0.888}

yield the same three lowest-resolution intensities, I1 = 2.62,

I2 = 2.38 and I3 = 0.38. The two structures were obtained from

these intensities by solving system (A5) by elementary alge-

braic methods as described in Shkel et al. (2011) and then

equation (A6) numerically. By continuity, non-homometric

structures can also be obtained from intensities in some vici-

nity of this intensity point in the three-dimensional space (I1,

I2, I3). The non-homometry of structures obtained from a

minimum of intensities is likely a general property. Higher-

resolution intensities are expected to resolve this type of

ambiguity. For N = 4, the I4 values for the two structures are

identical; therefore, I4 cannot resolve the two structures. The

two I5 values are well separated: I5 = 4.00 and I5 = 1.34 for the

first and the second structure, respectively, resolving the

ambiguity.
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Figure 1
The Newton polytopes for the second equation (the inner polygon) and
for the Minkowski sum of the two polytopes (the outer polygon) of
system (A5) in the supplementary material for N = 3. The difference
polygon, whose surface area is equal to the mixed volume for the system,
is shown in gray.

Table 1
Mixed volumes and the number of unique one-dimensional crystal
structures that can be obtained from the minimum of intensities.

N
Vmix,
system (A5)

nuniq,
system (A5)†

Vmix,
system (4)

nuniq,
system (4)‡

2 2 1§ 2 1}
3 6 1 12 1
4 16 2 120 2.5
5 60 6 1680 7
6 180 15 30240 21
7 714 51 665280 66
8 2432 152 17297280 214.5
9 518918400 715
10 17643225600 2431
11 6.70443 � 1011 8398
12 2.81586 � 1013 29393

† The number of unique solutions of system (A5), nuniq = Vmix/(2N). ‡ The
approximate number of unique solutions of system (4), nuniq = Vmix/(2N!). In this
column, fractional numbers arise as a result of this division, because Vmix is an
approximation of the number of solutions of system (4). § For N = 2 and the origin in
the center of mass, the enantiomer of a structure coincides with the structure; hence
here nuniq = Vmix/2. } For N = 2 and the origin in one of the atoms, the enantiomer
of a structure is equivalent to choosing the origin in the other atom; hence here nuniq =
Vmix/2.



2.4. Crystal structure ambiguity analysis for the origin
coinciding with one of the atoms

Defining the origin so that it coincides with one of the atoms

yields an elegant generalization of the dependence of the

crystal structure ambiguity for large N within the framework

of Bernstein’s theorem. Without restricting generality, we set

xN = 0, i.e. �N = 1. Then there are N � 1 remaining unknown

coordinates �1, . . . , �N�1; therefore, the minimal data set

consists of N � 1 low-resolution intensities given by the

following system of N � 1 equations with N � 1 unknowns:

Ih ¼ 1þ
PN�1

j¼1

�h
j

 !
1þ

PN�1

j¼1

��h
j

 !
; h ¼ 1; . . . ;N � 1 ð3Þ

or

1þ
PN�1

j¼1

�h
j

 !
1þ

PN�1

j¼1

��h
j

 !
� Ih ¼ 0; h ¼ 1; . . . ;N � 1:

ð4Þ

The left-hand side of each equation of system (4) is a Laurent

polynomial. For a given h, this polynomial corresponds to

an (N � 1)-dimensional Newton polytope that is formed by

N(N � 1) vertices: 2(N � 1) vertices with one coordinate

equal to either h or�h and the rest of the coordinates equal to

zero and (N � 1)(N � 2) vertices with one coordinate equal

to h, another equal to�h and the rest of the coordinates equal

to zero (Appendix C in the supplementary material). We will

call this Newton polytope an h-polytope. The two-dimensional

and three-dimensional h-polytopes are shown in Fig. 2. The

origin corresponds to the free term in equation (4) and always

lies inside these polytopes (Appendix C); therefore, it does not

form a vertex. In Appendix C, we prove that h-polytopes have

a remarkable property: the convex hull of the Minkowski sum

of an h1-polytope and an h2-polytope is an (h1 + h2)-polytope.

In addition, in Appendix C we prove that the volume of an

M-dimensional h-polytope is

VM;h ¼ hMVM;1 ¼ hM 2Mð Þ!

M!ð Þ3
; ð5Þ

where VM,1 is the volume of the M-dimensional h-polytope in

which h = 1. In the calculations for a given number of atoms N,

one needs to set M = N � 1 in this expression as N � 1 is the

dimensionality of the problem.

The above properties of an h-polytope allow one to apply

Bernstein’s theorem to system (4) without time-consuming

convex hull and N-dimensional volume calculations as the

mixed volume of this system can be expressed in the closed

form. For example, for N = 3, the mixed volume (area in this

case) of system (4) is equal to

Vmix ¼ 1þ 2ð Þ
2
� 22
� 12

� �
V2;1 ¼ 4V2;1 ¼ 12: ð6Þ

In the general case of N atoms, the expression in the

parentheses in equation (6) is equal to [(N � 1)!]2. Finally, the

mixed volume is

Vmix ¼ N � 1ð Þ!½ �
2
VN�1;1 ¼

2 N � 1ð Þ½ �!

N � 1ð Þ!
: ð7Þ

The mixed volume values for N � 12 are given in Table 1.

In contrast to system (A5), system (4) contains coordinates

of individual atoms explicitly as independent variables.

Because the origin can be placed at any one of the N atomic

coordinates and the rest of the coordinates can be permuted

without changing the functional form of system (4), its number

of solutions should be a multiple of N!. Moreover, for each of

these N! structures, an enantiomer whose coordinates have the

opposite sign is also a solution of system (4). Therefore, all

solutions of this system can be divided into groups of 2N! non-

unique structures. Therefore, the ratio of the mixed volume to

2N! approximates the number of unique structures:

Vmix

2N!
¼

2 N � 1ð Þ½ �!

2N! N � 1ð Þ!
: ð8Þ

These values for N� 12 are given in Table 1. One can see from

this table that even though for this origin definition the mixed

volume calculations do not yield the exact root number for

this system, they are a very good approximation. The closed

form of equation (8) allows us to apply Stirling’s approxima-

tion to obtain the behavior of the number of solutions for

large N:

2 N � 1ð Þ½ �!

2N! N � 1ð Þ!
’

N>>1 4N

8�1=2N3=2
: ð9Þ
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Figure 2
(a) A two-dimensional h-polytope. (b) A three-dimensional h-polytope.



Equation (9) demonstrates that the ambiguity of one-

dimensional structure determination from the minimum of

diffraction intensities increases exponentially, in line with

observations made in x2.2 for N � 8.

3. Discussion

Development of direct methods that now allow researchers to

determine routinely most crystal structures of small molecules

revolutionized the field of crystallography, from their first

applications 60 years ago to modern user-friendly software

implementations. The field of crystal structure determination

was hampered early on by the notion that the correspondence

between the structure and the observed intensity data is not

one-to-one. Intensities can be generated from a given struc-

ture unambiguously, whereas even an idealized complete

infinite set of intensities cannot yield a unique structure. This

ambiguity is comprised of congruent structures that are

related by some symmetry and homometric structures

(Patterson, 1939, 1944) that are characterized by the same set

of interatomic distances. The number of homometric multi-

plets increases with increasing structure size (Bullough, 1963).

In addition, errors in intensities lead to quasi-homometric

structures that produce the same intensities within these

errors. The success of direct methods overcame this initial

psychological barrier (Hauptman, 1986). Nevertheless, direct

methods are intrinsically probabilistic and are limited to

crystals of small molecules or, at best, to very small proteins

for which data of exceptional quality are available. Because of

their probabilistic nature, these methods do not always yield a

structure even for small molecules (Langs & Hauptman,

2011). Therefore it would be highly desirable to develop an

exhaustive deterministic approach that would guarantee

obtaining the structure of interest from good-quality data

without a limitation on the size of the structure. This idea

recently prompted us to revisit some poorly understood basic

crystallographic notions, by methods of elementary and

modern computational algebra.

In this study we ask arguably the most basic question: how

many one-dimensional structures can be obtained from a

minimum of perfectly determined intensities of lowest reso-

lutions? The answer is somewhat unexpected: exponentially

many. This, of course, means that the minimum set of inten-

sities (N � 1 intensities for a one-dimensional crystal) is

fundamentally insufficient for structure determination even

when the intensities are error free. However, the success of

probabilistic direct methods indicates that adding higher-

resolution intensities to the input data set is expected to

resolve this ambiguity very efficiently. In fact, overdetermining

the problem is essential for successful application of the direct

methods (Hauptman & Karle, 1957; Karle & Hauptman,

1957). The dependence of the structure ambiguity on the

number of intensities beyond the minimum is being currently

investigated by our group. Karle and Hauptman illustrated

how one intensity beyond the minimum set resolved the

ambiguity for a one-dimensional three-atom structure of non-

equal atoms (Hauptman & Karle, 1951). For equal atoms, we

previously demonstrated that the ambiguity exists for N � 4

(Shkel et al., 2011) and in this study showed how it gets

resolved by an additional intensity. We propose that the effi-

cient resolution of error-free intensities to a unique structure

can be achieved by a sufficiently large number of intensities

owing to the fact that the ambiguity is likely non-homometric.

This proposition is consistent with the previous notion that a

finite set of error-free intensities that obey certain determinant

conditions is sufficient for structure determination (Cervellino

& Ciccariello, 1996). Homometry imposes a very special set of

constraints and relationships on the interatomic distances, as

exemplified by homometric structures generated from cyclo-

tomic sets (Patterson, 1944), whereas a random structure is

unlikely to satisfy these relationships. Another serious issue

noted previously is that the errors in intensities are a source of

great structure ambiguity if the number of intensities is suffi-

ciently small (in line with our results); whereas when the

number of the inaccurate intensities is too large, the poly-

nomial equations become inconsistent and their system cannot

yield a solution (Cervellino & Ciccariello, 1996). Ongoing

research in our group using modern numerical algebra is

aimed at overcoming these obstacles.

In summary, we developed a novel analysis of ambiguity of

one-dimensional crystal structures of equal point atoms, by

application of methods of modern computational algebraic

geometry to the century-old problem of crystal structure

determination solely from algebraic intensities. We introduced

a geometrical object, an h-polytope, which due to its

remarkable properties demonstrated here yielded a general-

ization of this analysis to any number of atoms.

The authors thank Dr Karl Fischer for stimulating discus-

sions and critical reading of the manuscript and the University

of Michigan College of Pharmacy for financial support.
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