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OBJECTIVES: To test whether lower serum uric acid
(UA) levels are associated with longevity independent of
renal function.

DESIGN: Cross-sectional cohort study.

SETTING: Ashkenazi Jewish individuals with exceptional
longevity (Longevity Genes Project at Albert Einstein Col-
lege of Medicine).

PARTICIPANTS: Long-lived individuals (LLI) of Ashken-
azi Jewish ethnicity (mean age + standard deviation 97.7 +
2.9, n = 3695), their offspring (mean age =+ standard devia-
tion 68.2 8.2, n=593) and controls (without family
history of longevity, mean age + standard deviation 72.5 +
9.9, n = 356).

MEASUREMENTS: Association between UA levels and
estimated glomerular filtration rate (eGFR) as well as
chronic kidney disease (CKD) stage, and correlation of UA
levels of LLI and offspring were determined. Because LLI
lack an appropriate control group, UA levels, eGFR,
and prevalence of hyperuricemia and CKD stages were
compared between offspring and controls.

RESULTS: Offspring were less likely to have hyperurice-
mia and had lower UA levels than controls. Despite nega-
tive correlation between UA levels and eGFR and positive
correlation between UA levels and CKD stages, eGFR and
the prevalence of CKD stage III to V were not found to be
different between offspring and controls. Furthermore, sig-
nificant association between UA levels in LLI and their off-
spring (B estimate 0.1544, 95% confidence interval = 0.08
—0.23, P < .001) has been observed.

CONCLUSION: Offspring had lower UA levels than con-
trols despite similar renal function, suggesting that other
factors such as UA metabolism or renal tubular transport
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determine UA levels. The association between UA levels
and longevity is particularly intriguing because UA levels
are potentially modifiable with diet and drugs. J Am
Geriatr Soc 60:745-750, 2012.
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Uric acid (UA) is an organic compound and a potent
reducing agent that uricase further oxidizes to allan-
toin in lower species, but it is the end product of purine
catabolism in higher primates and humans.' Loss of uri-
case and associated rise in UA levels are thought to protect
against oxidative stress and prolong maximum life span,”
suggesting a protective role of UA against the aging pro-
cess; however, in epidemiological studies, high UA levels
are a risk factor for cardiovascular disease,’ stroke,* diabe-
tes mellitus (DM),” and renal disease.® Individuals who
achieve exceptional longevity, as well as their offspring,
exhibit signs of delayed aging by escaping or delaying
age-related chronic diseases,” suggesting inheritance of this
extreme phenotype.® A cohort of Ashkenazi Jews with
exceptional longevity (long-lived individuals (LLI)), their
offspring, and control subjects, mostly comprising off-
spring’s spouses, chosen to minimize environmental effects,
was established in 1998,>1° Study of this cohort has iden-
tified biomarkers and candidate mechanisms associated
with longevity including lipoproteins size®'%!! and thyroid
hormone levels.

Genetic and environmental factors, including diet,
control UA metabolism and excretion.'®> Two-thirds of the
daily production of urate is eliminated through urinary
excretion, and one-third is excreted through the gastroin-
testinal tract. Thus, high UA levels and poor renal function
are strongly associated.®'*

The prevalence of chronic kidney disease (CKD) as
defined according to the Kidney Disease Outcomes Quality
Initiative (KDOQI), rises continuously with age,'> with
epidemiological studies detecting CKD in 35% to 50% of
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individuals aged 70 and older.'® In addition, individuals
with age-associated diseases, including DM and cardiovas-
cular disease, have a high incidence of CKD. Because high
UA has been implicated as a risk factor for age-related
chronic diseases and subjects with family history of lon-
gevity appear to be healthier,”® it was hypothesized that
lower UA levels would be associated with longevity
because of better renal function.

METHODS

Setting and Participants

Cross-sectional data from three groups were analyzed: Ash-
kenazi Jewish individuals aged 95 and older and living inde-
pendently at enrollment in the Einstein Longevity study
(LLI) (n = 365; mean age = SD 98 +£ 2.9, 73% female);
their offspring (individuals with a family history of longev-
ity, defined as survival of at least one parent to age 95 or
older; n = 593; mean age + SD 68 + 8.2, 55% female); and
age-, sex-, ethnicity-, and sociodemographic-matched con-
trols (individuals without a family history of longevity,
defined as both parents having died before age 85; n = 356;
mean age = SD 73 £ 9.9, 57% female). Sixty percent of
participants in the control group lived in the same house-
hold as their spouse, the offspring (group A). The remainder
were individuals living in the same geographic region with-
out any relation to the offspring group (group B). All
parameters tested were virtually identical in both control
groups (data not shown). Thus, the controls represent con-
trol groups A and B combined. Participants were recruited
through publicity as described in detail elsewhere.””'" Birth
certificates or U.S. passports were used to verify age.

Health Outcomes and Definitions

Data used for analysis included medical history, labora-
tory results, and measurements of body fat. Structured
questionnaires were uniformly obtained to identify
chronic disease status (including hypertension, DM, myo-
cardial infarction (MI), and stroke) as previously
described.” Hypertension was defined according to Sev-
enth Report of the Joint National Committee on Preven-
tion, Detection, Evaluation, and Treatment of High
Blood Pressure criteria as blood pressure greater than
130/85 mmHg'” or self-report of taking antihypertensive
medication. All routine blood tests were performed at the
Montefiore Medical Center clinical laboratory, which
adheres to general laboratory quality guidelines and
annually performed quality control checks. Hyperuricemia
was defined as UA levels greater than 7 mg/dL in men
and greater than 6.5 mg/dL in women. Kidney function
was estimated using three creatinine-based formulas: the
Chronic  Kidney Disease Epidemiology Collaboration
(CKD-EPI)!® and the four-variable Modification of Diet
in Renal Disease (MDRD) Study'® for estimated glomeru-
lar filtration rate (eGFR) and the Cockcroft-Gault (CG)
for estimation of creatinine clearance.?’ Insulin resistance
was calculated using the homeostatic model assessment—
insulin resistance (HOMA-IR).?!

Percentage of body fat was assessed using a body fat
analyzer (Body Fat Monitor Scale, BF-625; Tanita Corpo-

ration of America. Inc., Arlington Heights, IL), and results
were used to calculate lean body mass (LBM):

LBM = body weight (kg) — [body weight (kg)
x Tanita fat (%)]/100

Statistical Analysis

Baseline characteristics of offspring and controls were
compared. A nonparametric Wilcoxon rank sum test was
used to compare age and a two-sample test for propor-
tions was used to compare distribution of sex of off-
spring and controls. Comparison of age-adjusted chronic
disease status (hypertension, DM, MI, and stroke) was
performed using logistic regression, and comparison of
the other age-adjusted continuous variables, including
LBM, weight, UA, albumin, blood urea nitrogen (BUN),
creatinine, insulin and HOMA-IR, were completed using
linear regression.

Prevalence of hyperuricemia and UA levels were com-
pared between offspring and controls using univariate and
multivariate logistic regression and linear regression. UA
levels were transformed into natural logarithmic values to
achieve a normal distribution. The multivariate regression
models were adjusted for age, sex, weight, albumin, BUN,
UA, hypertension, CKD, cardiovascular disease, and
metabolic syndrome (potential confounders).

The association of UA levels within LLI-offspring
pairs was analyzed using a linear mixed random effects
model with offspring UA levels as the outcome and LLI
UA levels as the explanatory variable. Heritability was
calculated as two times the B-estimate (because only one
parent was available) of the correlation between UA levels
of the offspring and those of their parents (LLI).**

Estimated kidney function (CKD-EPI, MDRD, CG)
was dichotomized into less than 60 mL/min per 1.73 m*
(presence of CKD Stages III-V) and 60 mL/min per
1.73 m? or greater (absence of CKD Stages III-V) to repre-
sent kidney disease status. The association between UA
levels and estimated kidney function or kidney disease sta-
tus was examined in offspring and controls using multivar-
iate linear and logistic regression adjusted for potential
confounders and family history of longevity (offspring vs
controls). Multivariate linear and logistic regression adjust-
ing for potential confounders was also used to determine
whether there was a difference in eGFR and kidney disease
status between offspring and controls. eGFR was trans-
formed into natural logarithmic values to achieve normal
distribution.

To examine the associations between insulin resis-
tance and the parameters, insulin levels and HOMA-IR,
based on serum glucose and insulin levels (as described
previously®!), were used as the response variable in the
regression. Multivariate linear and logistic regression were
used to examine the association between insulin or
HOMA-IR and UA levels, kidney disease status, or family
history of longevity (offspring vs controls). HOMA-IR
was dichotomized at a cut off of 2.71 in the logistic
regression.”” Insulin and HOMA-IR were transformed
into natural logarithmic values to achieve normal
distribution.
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RESULTS

Subject Characteristics

General characteristics of the participants are presented in
Table 1. Despite the matching efforts, offspring and con-
trols (groups A and B combined) differed significantly in
age, requiring adjustment for age in any analysis con-
ducted. As expected, the offspring group had fewer MIs
(P =.04),> but no other significant differences were
detected between the two groups (Table 1).

Family History of Longevity Is Associated with Lower
UA levels

To identify association between UA levels and longevity,
the prevalence of hyperuricemia and UA levels of the
studied groups were compared. The prevalence of hyper-
uricemia was 35%, 15%, and 23% in LLI, offspring,
and controls, respectively. In univariate and multivariate
logistic analysis adjusted for potential confounders, off-
spring were less likely to have hyperuricemia (Table 2).
Furthermore, UA levels were found to be lower in the
offspring than in controls according to univariate and
multivariate linear analyses (Table 2). UA levels were

approximately 1 mg/dL lower in offspring than in
controls after back-transformation of natural logarithmic
values.

Heritability of UA levels

The observation of lower UA levels in offspring led to the
exploration of the association between UA levels in off-
spring-LLI pairs. A linear mixed random effects model
indicated that UA levels in LLI were significantly associ-
ated with UA levels in offspring (unadjusted p-esti-
mate = 0.1544, P <.001), with a heritability of 0.31.
Because there was insufficient clinical information for LLI,
the adjusted linear mixed random effects model was not
applied.

Association Between UA Levels and Renal Function
and Kidney Disease Status

As expected, there was a significant negative correlation
between UA levels and eGFR, and higher UA levels were
associated with greater likelihood of CKD Stage III to V
after adjusting for potential confounders and family his-
tory of longevity (offspring vs controls) (Table 3). This
association suggests that lower UA levels in offspring are

Table 1. Characteristics of Long-Lived Individuals, Offspring, and Controls

Long-Lived Offspring Controls Age-Adjusted
Characteristic Individuals (n = 365) (n = 593) (n = 356) P-Value*

Age, mean + SD 97.7 £ 29 68.2 + 8.2 725+ 99 <.0017
Female, % 73 55 57 .59
Hypertension, % 54 62 67 44
Diabetes mellitus, % 9 8 10 .29
Myocardial infarction, % 15 4 9 .04
Stroke, % 13 2 3 .73
LBM, kg

Subjects, n 191 514 247

Mean + SD 25+ 84 29 + 8.0 29 + 8.1 .93
Weight, kg

Subjects, n 323 579 273

Mean + SD 55 + 10.6 73 + 16.1 72 +14.2 .25
Serum concentration of uric acid, mg/dL

Subjects, n 299 518 280

Mean + SD 6.2+1.9 54+15 58+ 16 21
Serum concentration of albumin, g/dL

Subjects, n 363 591 355

Mean+SD 38+04 43 +0.3 43 +03 .55
Serum concentration of blood urea nitrogen, mg/dL

Subjects, n 302 524 285

Mean + SD 27.3 £ 10.6 20.2 £ 6.1 20.7 £ 6.2 45
Serum concentration of creatinine, mg/dL

Subjects, n 300 522 283

Mean + SD 11+04 09+0.2 09=+0.3 48
Serum concentration of insulin, pU/mL

Subjects, n 221 353 206

Mean + SD 26.5 + 21.8 23.7 £ 264 229 +£22.9 .70
Homeostatic model assessment

Subjects, n 221 350 206

Mean + SD 79+83 6.4 £ 9.1 6.6 = 8.8 .94

* Based on comparison between offspring and controls.
¥ Not adjusted for age.
SD = standard deviation; LBM = lean body mass.
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Table 2. Likelihood of Hyperuricemia and Comparison of UA-levels in Offspring and Control in Logistic and Lin-

ear Regression (n = 581 vs 280 in Offspring vs Control)

Hyperuricemia* UA-levels
Covariates adjusted Variable OR 95% ClI P-value p-estimate 95% CI P-value
Unadjusted Offspring control 0.58 ref 0.40-0.84 .004 —0.05 (—0.09)—(—0.01) .009
Age, gender, weight adjusted Offspring control 0.62 ref 0.40-0.96 .03 —0.05 (—0.09)—(—0.01) .009
Multivariate adjusted" Offspring control 0.59 ref 0.35-0.99 .04 —0.06 (—0.1)—(-0.02) .004

* Hyperuricemia prevalence is 15% vs 23% in offspring vs control; Hyperuricemia is defined as UA-level > 7 mg/dL in male and >6.5 mg/dL in female.
T Adjusted for age, gender, weight, albumin, blood urea nitrogen, hypertension, diabetes mellitus, myocardial infarction, and stroke.

CI = confidence interval; OR = odds ratio; UA = uric acid.

Table 3. Association Between Serum UA-Level and CKD or eGFR in Offspring and Control in Logistic and Linear

Regression (n = 565)*

CKD' eGFR
Variable eGFR formula OR 95% CI P-value p-estimate 95% CI P-value
UA-levels CKD-EPI 1.47 1.21-1.79 <.0001 —0.03 (—0.04)—(-0.02) <.0001
MDRD 1.44 1.18-1.76 <.0001 —0.04 (—0.05)—(—0.03) <.0001
CG 1.52 1.22-1.89 <.0001 -0.04 (—0.05)—(—0.03) <.0001

* Adjusted for offspring versus control, age, gender, weight, albumin, blood urea nitrogen, hypertension, diabetes mellitus, myocardial infarction, and

stroke.
T CKD is defined as eGFR < 60 mL/min/1.73 m? using CKD-EPI formula.

CKD = chronic kidney disease; CI = confidence interval; eGFR = estimated glomerular filtration rate; OR = odds ratio; UA = uric acid.

due to better renal function because the latter is the main
determinant of UA level.

Likelihood of Offspring and Controls Developing
Stage III to V CKD

To test this hypothesis, whether offspring have a lower
prevalence of kidney disease (Stage III-V CKD) than con-
trols was examined. Based on kidney function estimates,
the prevalence of Stage III to V CKD in LLI, offspring,
and controls was 76%, 21%, and 29%, respectively,
according to the CKD-EPI equation; 52%, 18%, and
23%, respectively, according to the MDRD equation; and
99%, 27%, and 34%, respectively, according to the CG
formula. The prevalence of CKD in offspring did not sig-
nificantly differ from that in controls after adjusting for
potential confounders based on the CKD-EPI formula
(OR = 0.98, 95% CI = 0.57-1.7; P = .95) or the MDRD
and CG formulas (data not shown). Furthermore, in multi-
variate linear analysis with CKD-EPI eGFR as the out-
come, family history of longevity was not associated with
higher eGFR (offspring vs controls; B-estimate = 0.01;
standard error = 0.02; P = .49, same results were obtained
using MDRD and CG, data not shown). The formula gen-
erated vastly different eGFR values in participants aged 90
and older.

In summary, family history of longevity is not associ-
ated with better kidney function. These findings suggest
that, despite the reported association between high UA lev-
els and poor kidney function, and similar kidney function
in offspring and controls, offspring have lower UA levels
independent of kidney function.

Insulin Resistance and LBM Analyses

No significant differences between offspring and controls
were detected for insulin levels and insulin resistance
assessed using continuous and dichotomized HOMA-IR.*3
In addition, no associations between HOMA-IR or insulin
levels and Stage IIIl to V CKD or UA levels were found
(data not shown). Muscle mass has been shown to influ-
ence serum creatinine levels.”* Nevertheless, replacing
weight with LBM for covariate adjustment did not influ-
ence the significance of the statistical comparison of pres-
ence of CKD Stage III to V or distribution of eGFR
between offspring and controls.

DISCUSSION

Many factors contribute to the increasing number of LLI
worldwide. A limitation of studying factors that distin-
guish exceptionally LLI is the lack of an appropriate con-
trol group. This limitation was overcome by comparing
offspring with appropriate controls. This well-defined
group of genetically relatively homogeneous subjects of
Ashkenazi descent LLI, offspring, and controls allowed
detection of differences that may require a much larger
number of participants when studying heterogeneous pop-
ulations. Examination of this cohort has revealed lower
prevalence of age-associated diseases and better cardiovas-
cular, cognitive, and metabolic performance than in age-
and ethnicity-matched subjects without a family history of
longevity.” Thus, it was hypothesized that lower UA levels
would be associated with longevity because of relatively
better renal function.



JAGS APRIL 2012-VOL. 60, NO. 4

URIC ACID AND LONGEVITY 749

UA and Longevity

It has been proposed that higher UA levels across species
are an evolutionary survival advantage of long-lived spe-
cies based on the free radical theory of aging, which postu-
lates that opposing free radicals such as reactive oxygen
species damaging components of the cellular machinery
through a natural defense system of anti-oxidants such as
UA leads to longer life period."* By contrast, in humans,
higher UA levels have been associated with greater mor-
bidity and mortality. To contribute to the understanding
of UA in human longevity, it was determined that the
prevalence of hyperuricemia is lower in offspring of LLI
than in controls. Moreover, offspring of LLI are less likely
to have hyperuricemia and have UA levels that are close to
1 mg/dL lower than controls. Even though these findings
do not uncover a mechanistic link, it could be hypothe-
sized that further elevation of UA levels negatively affects
longevity, possibly through vascular endothelial injury.”’
The moderate calculated heritability of UA levels in LLI-
offspring pairs detected suggests that genetic components
contribute to the determination of UA levels. Overall, our
findings support the hypothesis that lower UA levels are
associated with longevity. Future studies may explore UA
as a biomarker for longevity and as a modifiable risk fac-
tor for premature mortality.

Kidney Function and Longevity

Renal function is the major determinant of UA levels,
because glomerular filtration is the main mode of elimina-
tion of UA. GFR represents renal function and is
commonly assessed by measuring serum creatinine concen-
tration and calculating eGFR. Unfortunately, eGFR values
calculated using various formulas differ significantly,
particularly in older adults,*® so three independently
developed formulas were used. The CG formula, which
estimates creatinine clearance, probably underestimates
GFR, whereas the MDRD formula may overestimate the
true value in older adults.*” It has been proposed that the
CKD-EPI formula is more accurate according to data from
different studies including the National Health and Nutri-
tion Examination Survey, but the number of older study
participants is limited.'®

Because none of the equations have been validated in
LLI and generate vastly different eGFR values in subjects
aged 90 and older, the analysis was focused on offspring
and controls. Furthermore, participants were classified
according to kidney disease status (Stages III-V) using an
eGFR of 60 mL/min per 1.73 m? as a cut off, according to
the KDOQI guideline to determine presence (eGFR <
60 mL/min per 1.73 m?) or absence (eGFR > 60 mL/min
per 1.73 m?) of Stage IIl to V CKD. In addition, adjusted
multivariate analysis replacing weight with LBM failed to
detect an association between continuous eGFR or kidney
disease status and offspring status, but only a subgroup of
subjects had data on LBM available. In summary, the find-
ings indicate that a family history of longevity is not
linked to better renal function in Ashkenazi Jews.

This observation is somewhat surprising because it has
been reported that individuals with a family history of
longevity in this cohort delay or escape other chronic

diseases,® and poor renal function has been found to be
associated with greater morbidity and mortality in other
cohorts.?® Nevertheless, it is possible that using serum cre-
atinine values to calculate eGFR does not accurately reflect
true renal function in older adults.'®2° Other methods to
estimate kidney function, including serum cystatin C mea-
surements, should be evaluated in this age group.”” The
finding of lower UA levels without difference in kidney
function in offspring as determined using three different
formulas suggests that factors independent of GFR, possi-
bly diet and genetic components of UA metabolism, influ-
ence UA levels.

Kidney Function and UA

Epidemiological evidence supports that higher UA levels
are associated with poorer renal function.®'* Examining
all participants, UA levels exhibiting a negative association
with eGFR and a positive association with kidney disease
status were found. In addition, lower eGFR and higher UA
levels were found in LLI than in offspring or controls, con-
sistent with age-associated decline in renal function and
increase in UA levels and with previously reported negative
correlation between UA levels and eGFR.*'*

Insulin Resistance and UA

Insulin resistance is the basis for metabolic syndrome and
DM, which are accelerated with aging. Higher UA levels
are associated with greater insulin resistance, possibly
through inhibition of nitric oxide bioavailability, which is
known to promote glucose uptake by insulin.>® No signifi-
cant associations with the tested parameters were detected.
This may be because the HOMA-IR model, which does
not account for endogenous beta-cell function, was used.

CONCLUSION

Heritable lower UA levels have been observed in geneti-
cally relatively homogeneous individuals with a family
history of longevity. Even though the participants studied
were not representative of the general population, the
findings support the hypothesis that lower UA levels may
constitute a marker for longevity in humans. It remains to
be determined whether lower UA levels are a cause or an
effect of the delay or escape of chronic diseases and
whether UA has other properties in addition to oxidant
scavenger. Nevertheless, these findings are intriguing
because UA levels are modifiable using diet or drugs that
lower UA levels. Several interventional studies are under-
way to attempt to reveal mechanistic links between UA
and chronic diseases (http:/clinicaltrials.gov/).
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