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The current gold standard for diagnosis of hepatic fibrosis and cirrhosis is the traditional
invasive liver biopsy. It is desirable to assess hepatic fibrosis with noninvasive means. Targeted
proteomic techniques allow an unbiased assessment of proteins and might be useful to identify
proteins related to hepatic fibrosis. We utilized selected reaction monitoring (SRM) targeted
proteomics combined with an organ-specific blood protein strategy to identify and quantify
38 liver-specific proteins. A combination of protein C and retinol-binding protein 4 in serum
gave promising preliminary results as candidate biomarkers to distinguish patients at different
stages of hepatic fibrosis due to chronic infection with hepatitis C virus (HCV). Also, alpha-1-B
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glycoprotein, complement factor H and insulin-like growth factor binding protein acid labile
subunit performed well in distinguishing patients from healthy controls. T
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1 Introduction

Human liver is the primary target for damage by hepatitis
viruses, many chemicals and drugs. Liver biopsy is recom-
mended in the management of patients with chronic hepati-
tis C (CHC) to provide important information about fibrosis
stage and disease prognosis [1]. As an invasive procedure,
liver biopsy is frequently accompanied by transient pain and
may occasionally be associated with serious complications.
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The accuracy of liver biopsy in staging liver disease is limited
by the size and quality of the samples and sampling error [2].

In recent years, intensive research in the field of non-
invasive tests of liver fibrosis has yielded a few laboratory
markers, which enabled the assessment of some aspects of
the severity of hepatitis C virus (HCV)-induced liver disease.
For example, the FibroTest, combines six serum markers
(Alpha-2-macroglobulin, Haptoglobin, Apolipoprotein A1,
Gamma-glutamyl transpeptidase, Alanine transaminase, and
total bilirubin) with the age and gender of the patient to gen-
erate a score that correlates with stage of fibrosis in patients
with a variety of liver diseases [3]. Platelet counts [4], AST/ALT
ratio [5], and AST-platelet ratio index (APRI) [6] have been re-
ported as predictors of degree of fibrosis in CHC patients.
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In the hepatitis C antiviral long-term treatment against cir-
rhosis (HALT-C) Trial, a model based on a combination of
standard laboratory tests comprising platelet count, AST/ALT
ratio, and INR (international normalized ratio of prothrom-
bin time) predicted histological cirrhosis with high accuracy
in 50% of patients with CHC [7].

Molecular signatures specific for the liver and/or specific
for particular causes of liver damage would be very useful
for experimental, clinical, and epidemiology studies of liver
diseases. Through development of targeted proteomic assays
utilizing SRM incorporating heavy-isotope doping of labeled
matched peptides [8,9], and use of the Human SRMAtlas
with optimized transitions associated with typically six dif-
ferent peptides for nearly all of the 20,300 human protein-
coding genes (Kusebauch, manuscript in preparation), ac-
curate quantitation of target proteins can be achieved for
most human proteins present at levels that can be detected by
targeted mass spectrometry. Here, we report application of
SRM proteomics to identify many liver-specific proteins and
to characterize the critical progression of fibrosis of the liver
to cirrhosis in CHC patients. This objective is quite challeng-
ing in the population we studied as liver biopsies used to stage
fibrosis may not be accurate for all the patients and the states
being compared represent a continuum of liver damage.

2 Materials and methods
2.1 Serum samples

Serum samples were obtained from patients who participated
in the HALT-C Trial [10]. Typical clotting time is 30 min to 2 h.
This trial enrolled patients with CHC who had liver biopsies
showing Ishak stages 2-6 (range 0-6) fibrosis at enrollment.
Blood samples at enrollment were studied. Patient informa-
tion at enrollment is listed in Supporting Information Table
S1. Control sera from normal female and male donors ages
30-50 years were collected at FDA-regulated blood facilities
with a clotting time of about 60 minutes and were nonre-
active for HCV antibody (ProMedDx). Pooled plasma from
ten normal donors was obtained using EDTA as anticoagu-
lant from Innovative (Novi, Michigan). Collection and use of
control and patient samples were approved by institutional
review boards. Samples were stored at —80°C.

2.2 Sample preparation for SRM

To reduce the complexity of samples, the top 14 highly abun-
dant proteins were depleted using an AKTA FPLC system (GE
Healthcare, Piscataway, NJ, USA) coupled with a Seppro®
IgY14 human LC2 depletion column (Sigma-Aldrich, St.
Louis, MO, USA). We observed significant sample-to-sample
variations with the Seppro® IgY14 spin column. In contrast,
the LC system coupled with an IgY14 human LC2 deple-
tion column dramatically improved the reproducibility (Sup-
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porting Information Fig. S1). All 40 HALT-C and 17 normal
serum samples were processed similarly; about 95% of the
total protein was depleted. Proteins in depleted sera were de-
natured in 50% (v/v) 2,2,2-trifluoroethanol (TFE, ].T. Baker,
Philipsburg, NJ, USA) for 30 min at 55°C, then cysteine
residues were reduced and alkylated. Samples were diluted
ten-fold with 100 mM NH,HCO; (pH 8.3) before adding
trypsin (1:25 trypsin versus serum protein) for overnight di-
gestion at 37°C. Peptides were desalted with Oasis MCX car-
tridges (Waters, Milford, MA, USA).

2.3 Building the liver-specific and liver-enriched
proteins list

We used a targeted approach focusing on organ-specific pro-
teins to increase the likelihood of identifying protein biomark-
ers in blood that may reflect pathology of a particular organ.
Our list of liver-specific or liver-enriched proteins (liver pro-
teins) was created by mining multiorgan transcriptomic data
generated through Massively Parallel Signature Sequencing
(MPSS). The MPSS dataset contains transcriptomes of 34
pooled normal (Caucasian) human tissues [11]. Signatures
with their expression levels in liver either five-fold higher
than any other organs or two-fold greater than the sum of
all other organs were selected as liver protein candidates. We
also performed organ-specific protein search with Gene Atlas
Interface analysis. The databases searched against were three
datasets from NCBI-GEO (Gene Expression Omnibus) with
a total of 180 human tissues from multiple donors [12-14].
We also included 21 enzymes and other proteins used in
clinical practice or previously reported as liver biomarker
candidates.

2.4 Peptide selection from the liver protein list

Two to three peptides were selected for each liver pro-
tein based on the sequence of individual liver proteins that
were previously detected by MS. Peptide selection criteria
are as follows [15]: (i) length 8-20 amino acid residues; (ii)
no chemically unstable residues (single letter notation; M,
NG, DG, QG, N-terminal N, and N-terminal Q); (iii) LC-
compatible; (iv) avoid cysteine residue if possible; and (v)
sequence specific for the target protein (e.g. proteotypic pep-
tides). Peptides previously identified in PeptideAtlas [16] were
preferentially chosen. All peptides used in this study were
checked by BLAT (http://genome.ucsc.edu/) and Protein
BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) searches to
ensure that they are unique to the target protein at both pro-
teomic and genomic levels. Finally, the uniqueness of every
Q1/Q3 pair from the target peptides was confirmed by an
SRM theoretical collision calculator tool (http://proteomicsre
source.washington.edu/cgi-bin/srmcalc.cgi). Mass toler-
ances for searching both Q1 and Q3 were £ 0.35 Da, which
matches the Agilent QQQ settings for SRM.
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25 MS and HPLC

All SRM analyses were performed on an Agilent 6460A triple
quadrupole (QQQ) mass spectrometer with a ChipCube na-
noelectrospray ionization source coupled with an Agilent
1200 nanoFlow HPLC system. Serum samples were eluted
over a 60-min gradient with 0.66% per minute acetonitrile
slope in the presence of 0.1% formic acid using a large
capacity Agilent HPLC chip (Cat number G4240-62101,
160 nL trap, 150 mm C18 column). Spray voltage was set
at 1900 V. The scheduled SRM were performed with 5-min
retention time windows and an instrument cycle time of
2000 & 500 ms. Dwell times varied depending on the number
of concurrent transitions; in all cases they were at least 10 ms.

2.6 Monitoring liver-specific proteins in blood
by SRM

Crude unpurified peptide standards that correspond to the de-
tected natural counterparts (light peptides) were synthesized
with heavy isotopic Lysine (*C6'°N2) or Arginine (*C6'°N4)
at the C-termini (heavy peptides) (Thermo-Fisher Scientific,
Ulm, Germany or Sigma-Aldrich). Collision energies (CE)
were determined using the default formula from Agilent
(0.036 x precursor mass m/z —4.80) and then optimized with
four additional CE steps (5 V, £10 V). The best four transi-
tions were selected. Detected heavy peptides were titrated at
six concentrations in a normal human serum background to
build a titration curve and to determine the proper amount of
each peptide standard to spike-in. (Supporting Information
Fig. S2).

2.7 SRM data analysis

All SRM data were processed using the Skyline Targeted
Proteomics Environment (v1.1) [17]. The setting of 0.055 Th
match tolerance m/z was used. The default peak integration
and Savitzky-Golay smoothing algorithm were applied. All
data were manually inspected to ensure correct peak detec-
tion and accurate integration. Peptides with at least three-
fold signal-to-noise ratio were considered detectable. The total
peak area and light/heavy ratio of each peptide were exported
for statistical analysis.

2.8 Statistic analysis

The exported SRM results were analyzed using R scripts gen-
erated for this data set, using standard methods of supervised
analysis from R Bioconductor [18]. The key challenge for the
present analysis is a high dimension of the feature vector
(large number of potentially predictive proteins). Our prepro-
cessing selection included proteins that have no more than
30% missing data. A similar criterion was applied to samples.
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Missing data were handled using k-nearest neighbor imputa-
tion algorithms (k = 10) [19]. Repeated (duplicate) measure-
ments for the same protein-peptide-m/z combination were
averaged. Platelet level and gender were included as a clinical
predictor of liver damage. Regularization methods based on
logistic regression were used to reduce overfitting: LASSO
(least absolute shrinkage and selection operator) and Elastic
Nets penalty [20] were applied. The choice of the optimal reg-
ularization parameter was done using the Area Under the
Receiver-Operating-Characteristic (AUROC) curve as a crite-
rion. Such regularized regression methods make it possible to
handle high dimension within the model-based (regression)
classification framework and to improve the multivariate cor-
relation of the panel under design with the disease risk. In
order to obtain an approximately unbiased assessment of the
performance of predictive signatures, ten-fold cross valida-
tion was used to correct for potentially overoptimistic model
building and signature optimization bias. An average over
cross-validation runs is reported as the final optimal area un-
der curve (AUC) characterizing the predicted performance of
the biomarker signature. LASSO penalty was preferred for its
ability to drop nonessential biomarkers from the signature
by explicitly assigning them zero weights. All other analyses
including calculation and graphics were generated by Prism
5 (GraphPad software, La Jolla, CA, USA).

3 Results

We adopted an organ-specific protein-based strategy for blood
biomarker discovery. The approach is centered on the idea
that concentration of organ-specific proteins in the blood can
be used to monitor the health status of a specific organ be-
cause changes in blood concentrations reflect the normal
as opposed to disease-perturbed status of their cognate bi-
ological networks. We mined comprehensive transcriptomic
databases to identify organ-specific proteins. To demonstrate
the power of this approach, we undertook a study to identify
biomarkers related to HCV infection. We have found several
liver proteins that can be used to separate HCV-infected pa-
tients from healthy individuals. In addition, the levels of two
proteins showed strong correlations with progressive stages
of the disease.

3.1 The identification of liver proteins

Using strategies described in Section 2.3, we identified 109
liver proteins that passed GeneCards verification. GeneCards
summarized each gene’s expression in normal and diseased
human tissues by three categories: (i) mRNA expression data
from GeneNote and GNF BioGPS, (ii) UniGene electronic
Northern, and (iii) SAGE (Serial Analysis of Gene Expres-
sion). In combination with the 21 proteins that have been
used in clinic practice or reported as liver biomarker candi-
dates, a list composed of 130 proteins was created.
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3.2 Proteins detected by SRM

After suitable peptides and transitions for each liver protein
were selected, we used control plasma and serum to deter-
mine how many liver proteins can be detected by SRM. From
the 89 liver proteins previously observed in MS/MS exper-
iments, we detected 100 peptides derived from 54 proteins
in pooled control plasma (Supporting Information Table S2).
However, the HALT-C samples were in the form of serum,
which is not ideal for mass spectrometry-based blood pro-
tein measurements due to variation in proteolysis derived
from the coagulation cascade, resulting in decreased con-
centrations of proteins compared to plasma [21]. In order to
determine how many of our proteins detected in plasma can
be detected in serum; we performed the same SRM analyses
against pooled healthy human serum samples. Altogether 38
proteins (represented by 65 peptides) were detected in sera
(Supporting Information Table S3). All SRM parameters and
results are deposited in the SRM chromatographic repository
at ISB and are publicly available (http://www.srmatlas.org
and http://www.peptideatlas.org/passel/). Typical SRM chro-
matograms of five target peptides are presented in Supporting
Information Fig. S3.
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3.3 Consistency and accuracy of SRM data
3.3.1 Duplicate SRM runs are well correlated

Duplicate runs were performed for each sample, techni-
cal variations between the two runs were generally small
(Fig. 1A). Pearson tests showed good correlations between
runs (>0.9 in most cases; e.g. PROC = 0.90, RBP4 = 0.90,
CFH = 0.95, A1BG = 0.94). Samples from two HALT-C pa-
tients, DA000739 and DJ000004, were eliminated from the
analysis due to sample degradation.

3.3.2 Protein levels measured by multiple features
are consistent

When a protein level is measured by more than one fea-
ture (i.e. multiple peptides or same peptide with differently
charged precursor ions), close agreement in quantification
was observed; an example is the set of three features for the
protein of A1BG (Fig. 1B). This observation gave us reason-
able confidence that protein levels in samples estimated even
from a single peptide can be reliable.
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Table 1. Five informative protein concentrations in control sera measured by crude heavy peptides in SRM

NCBI official Peptide Average conc. Conc. range Ref_1 conc. Ref_2 conc.
symbol sequence in SRM assay in SRM assay (pg/mL) [22,23] pg/mL [24]
(pg/mL) (pg/mL)
A1BG SGLSTGWTQLSK 5.53E07 1.23E07-1.62E08 2.20E8 5.00E + 07
CFH CTSTGWIPAPR 5.51E07 2.35E07-1.07E08 5.70E + 07
IGFALS VAGLLEDTFPGLLGLR 6.52E05 1.64E05-1.36E06 1.50E + 06
PROC TFVLNFIK 1.00E05 2.61E04-1.72E05 3.70E06 6.50E + 04
RBP4 YWGVASFLQK 3.22E06 1.72E06-5.79E06 3.17E07 5.80E + 08

Assuming purity of crude peptide is 80% for 10-mers and 70% for 15-mers, respectively.

3.3.3 Absolute protein levels in sera measured
by SRM are similar to prior report

In this study, we did not aim to quantify absolute protein con-
centrations. The crude heavy peptides synthesized by rapid
process were not appropriate for absolute quantitation of pro-
tein levels in specimen due to the wide range of purity (~50-
80%). In addition, the immunodepletion procedure during
sample preparation induces additional variation in protein
concentrations. Nevertheless, as summarized in Table 1, lev-
els of five informative proteins in depleted control sera mea-
sured by SRM are close to concentrations reported in pub-

lished literature. The only exception is RBP4; the concentra-
tion in our SRM study is ten-fold lower than the studies of
Gahne et al. and Polanski et al. [22, 23] and 100-fold lower
than the study of Farrah et al. [24].

3.4 Five informative proteins were found to
distinguish normal controls and HCV-infected
patients or CHC patients at different stages of
fibrosis

We identified five proteins, namely A1BG, CFH, IGFALS,
PROC, and RBP4, that are able to separate HCV-infected
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Figure 2. Box plot analysis shows significant differences when comparing serum protein levels of A1BG, CFH, and IGFALS in patients from
Ishak fibrosis 2-6 against controls (C). The combined serum A1BG level of all patients is significantly elevated compared to the controls
(p = 7.4E-15), while the combined serum CFH and IGFALS levels are significantly decreased in patients versus controls (p = 4.5E-08 and
5.7E-12, respectively) (A). PROC and RBP4 levels in serum classify HCV patients in different stages of fibrosis. Box plot analysis shows
strong evidence that the median serum levels of PROC and RBP4 in every Ishak fibrosis group decreased with the progression of the
disease (B). Each box represents the range between upper (75th) and lower (25th) quartiles with the median level shown as an intersect
line. The minimum and maximum values (whiskers) were within 1.5 IQR (the interquartile range).
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patients from healthy individuals or distinguish CHC patients
at different stages of fibrosis.

3.4.1 A1BG, CFH, and IGFALS can distinguish
controls from patients

As shown in Fig. 2A, the average A1BG level in sera of all HCV
patients in this study was significantly elevated compared
with controls (p = 7.4E-15), while CFH and IGFALS levels
were significantly decreased in patients versus in controls
(p = 4.5E-08 and 5.7E-12, respectively). AUROC scores for
controls versus HALT-C patients were 0.99, 0.99, and 0.96 for
A1BG, CFH, and IGFALS, respectively.

3.4.2 PROC and RBP4 levels in serum can further
classify HCV patients

The concentrations of two proteins—PROC and RBP4-
showed good correlation with disease severity. Serum con-
centrations of PROC and RBP4 decreased as liver disease pro-
gressed. Box-and-whisker plots and Student’s t-test showed
that each protein can distinguish different disease stages
(Fig. 2B).

With Student’s t-test, the difference in serum concentra-
tions of PROC or RBP4 between patients with earlier stages
of fibrosis (Ishak 2—4) and patients with cirrhosis (Ishak 5-6)
is significant. PROC appears to be a good marker to distin-
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guish cirrhosis patients from those with fibrosis (p = 0.004).
RBP4 levels showed a similar decrease from normal control
to Ishak 5-6 but the difference between Ishak 2—4 and 5-6
was not statistically significant (p = 0.07 with outliers and
p = 0.02 without outliers) (Supporting Information Fig. S4).
AUROC scores for PROC were 0.77 for controls versus pa-
tients, 0.75 for Ishak <5 versus Ishak >5, and 0.83 for Ishak
<5 versus Ishak 6. AUROC scores for RBP4 were 0.79 for
controls versus patients, 0.68 for Ishak <5 versus Ishak >5,
and 0.80 for Ishak <5 versus Ishak 6.

3.5 Multivariate analysis

Multivariate analysis of Ishak 2—4 versus 5-6 patients us-
ing PROC and RBP4 proteins, gender, and platelets gave a
cross-validated AUROC = 0.89. PROC, RBP4, and platelets
distinguish advanced stages of fibrosis patients (Ishak 5-6)
from patients in earlier stages with an impressive sensitivity
0f 95% and specificity of 84% (Fig. 3). A minor improvement
(AUROC = 0.72 versus 0.69) was observed with platelets
excluded in the analysis based on all available versus only
PROC and RBP4 proteins.

Classifying stages of liver fibrosis by biopsy has an accuracy
of about 80% [25]. Other studies have suggested that there can
be up to a 33% error in the diagnosis of cirrhosis by biopsy
[26]. When the value of biomarkers is validated against biopsy,
it is improbable to have a discrimination power that exceeds
biopsy. In fact, reported noninvasive methods intended for
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discriminating hepatic fibrosis rarely have an AUROC (accu-
racy) exceeding 0.8-0.9 [27].

4 Discussion

As shown by multivariate analyses, people with the disease
and patients at different disease stages may be classified
better by employing a combination of new markers with
existing markers to increase the sensitivity and specificity.
In this study, a three-protein panel of A1BG, CFH, and
IGFLAS performed well to distinguish healthy controls from
HCV-infected patients with fibrosis. An integrated analysis
of A1BG, CFH, and IGFALS or A1BG with either of the other
two markers resulted in an AUROC score of 1.0 for discrim-
inating healthy controls and HCV-infected patients (Fig. 4A
and B). We have observed from this and an independent study
of chemical hepatotoxicity that sets of markers for discrimi-
nating acute and chronic liver diseases may be very different
(unpublished observation). The conventional liver markers
AST and ALT may be better markers for acute liver injuries
but not as good for chronic liver diseases. This three-protein
panel of A1BG, CFH, and IGFALS may potentially prove use-
ful for chronic liver diseases. Apparently, these proteins have
not previously been reported as liver disease markers. Eval-
uation will require sampling a larger patient population. Al-
though sera obtained from ProMedDx and HALT-C trial were
prepared under similar conditions, these specimens were ob-

Proteomics 2012, 12, 1244-1252

tained from separate sources. Thus, the risk of batch effects
generated from sera preparation and storage on the differ-
ences for these three proteins between controls and patients
cannot be excluded.

PROC and RBP4 have been related to liver diseases.
Kloczko et al. reported that the plasma PROC level of pa-
tients with liver damage due to chronic alcohol consumption
was decreased and correlated with clinical performance of the
patients [28]. Our results with different methods confirmed
that serum or plasma PROC levels might constitute a useful
marker of advanced liver disease. Romanowska et al. reported
serum concentrations of RBP-4 were significantly higher in
obese children with nonalcoholic fatty liver disease (NAFLD)
compared to controls and proposed RBP4 as a serum marker
of intrahepatic lipid content in obese children [29]. A contra-
dictory report showed serum RBP4 levels were not different
between the steatosis group and controls as well as between
subgroups with high and normal ALT, indicating that serum
RBP4 may not be a predictive factor in NAFLD [30]. In this
study, we showed a significant decrease of serum RBP4 in
patients with advanced stages of disease due to HCV infec-
tion. Our findings are the first to show PROC and RBP4 may
be used for discriminating fibrosis versus cirrhosis in these
patients.

Correct classification of different stages of liver fibrosis
needs a multiparameter test. Our preliminary results re-
lated to staging the progression of fibrosis do not constitute
a new biomarker panel, but do provide additional markers
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Figure 4. SRM data of serum A1BG and CFH levels in both patients DJ001705 and DJ001652 (arrows) are of good quality; their relative
protein levels are probably truly different from other patients. However, this discrepancy can be resolved by examining simultaneously
A1BG and CFH or A1BG and IGFALS levels in these patients (A). A combination of A1BG, CFH, and IGFALS is able to discriminate healthy
controls from HCV patients from Ishak scores 2 to 6 with predicted high sensitivity and specificity (B).
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to strengthen the existing noninvasive methods, including
platelet counts. Since there are many other causes of low
blood platelet levels, addition of liver-specific proteins to a
diagnostic test panel can increase the diagnostic relevance.
Moreover, protein analytes can be good targets for developing
antibodies or synthetic capture agents that can be integrated
into microfluidic chips (Integrated Blood-Barcode Chip) —
devices that have the potential to analyze large numbers of
patient samples rapidly (in a few minutes), inexpensively,
and in a highly multiplexed format (100s or even 1000s of
different assays investigating many different diseases) em-
ploying blood from a pinprick [31]. Such microfluidic devices
are likely to constitute an important foundation for P4 (Pre-
dictive, Preventive, Personalized, and Participatory) Medicine
with Point-of-Care Diagnosis [32].

In summary, by employing a liver-specific protein strat-
egy and targeted quantitative SRM proteomics technology,
we have analyzed 38 liver-specific protein levels in sera of
17 healthy controls and of 38 HCV patients at Ishak fibro-
sis stages from 2 to 6. In this pilot study, we found that the
measured levels of two proteotypic peptides derived from Pro-
tein C and retinol-binding protein 4, were present at lower
levels in patients than in controls. With AUC statistical anal-
yses, these two proteins represented by their corresponding
peptides together appear promising for distinguishing fibro-
sis versus cirrhosis among HALT-C patients. We also report
three proteins, A1BG, CFH, and IGFALS, as measured with
their unique peptides, that performed well in distinguishing
HCV-infected patients from healthy controls, with an individ-
ual AUROC score >0.96 for each marker. These five proteins
may contribute to multiparameter panels that will have useful
diagnostic potential for CHC and other liver diseases.
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