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Integrating mass spectrometry of intact protein

complexes into structural proteomics
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MS analysis of intact protein complexes has emerged as an established technology for assessing
the composition and connectivity within dynamic, heterogeneous multiprotein complexes at
low concentrations and in the context of mixtures. As this technology continues to move
forward, one of the main challenges is to integrate the information content of such intact
protein complex measurements with other MS approaches in structural biology. Methods such
as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion
mobility separation add complementary information that allows access to every level of protein
structure and organization. Here, we survey the structural information that can be retrieved
by such experiments, demonstrate the applicability of integrative MS approaches in structural
proteomics, and look to the future to explore upcoming innovations in this rapidly advancing
area.
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1 Introduction

Most critical biological processes are orchestrated by net-
works of macromolecular protein complexes. While such
complexes are discovered continuously, our knowledge of
protein–protein interactions at a global level remains lim-
ited, as demonstrated in recent genome-wide screens that
revealed a surprisingly large number of biological connec-
tions previously unidentified in simple cellular systems [1,2].
The inventory of functions performed by protein complexes
can be further diversified through regulation by binding part-
ners such as small molecule ligands [3], metal ions [4], and by
structural rearrangements through posttranslational modifi-
cations [5]. As such, characterizing multiprotein complexes
that result from associations at a proteome level necessitates
the analysis of mixtures of stunning complexity, heterogene-
ity, and dynamic range. The field of structural proteomics
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is primarily concerned with converting such complex cellular
mixtures of interacting proteins into three-dimensional struc-
ture information. Like other pursuits that lie under the banner
of proteomics, structural proteomics is characterized by high-
throughput experiments that are, by definition, less amenable
to the dedicated optimization procedures that typically charac-
terize more traditional structural biology approaches. There-
fore, it is instructive to consider the various elements of pro-
tein structure as a function of the spatial resolution required
to obtain useful and biologically relevant information. Protein
structures can be annotated with descriptors such as size,
shape, subcomplex topology, inter-subunit distances, inter-
subunit orientation, interface size, interface stability, subunit
fold and, ultimately, the spatial location of individual atoms
that comprise the protein complexes (Fig. 1).

Experimental determination of protein structures with-
out a priori knowledge of protein function remains a chal-
lenging goal despite the rapid developments in ab initio or
bioinformatics-based prediction methods [6]. The difficulty
associated with elucidating the structural features of interest
for protein complexes is compounded by the highly heteroge-
neous, transient character of biomolecules and their low rel-
ative concentrations within physiologically relevant samples.
While analytical techniques traditionally used in structural bi-
ology, such as X-ray crystallography and NMR spectroscopy,
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Figure 1. There are multiple levels of pro-
tein structure accessible through MS-based
technologies. The center section of this fig-
ure depicts the same complex at various res-
olution levels, progressing toward a high-
resolution structure, in order to illustrate
some of the structural elements accessible
by MS. The top and bottom sections of the
figure are color-coded to correspond with
the highlighted structural elements indicated
on each structural representation shown,
and they also list the specific MS technolo-
gies capable of providing the information
specified. This information includes com-
plex shape (gray), cavity size (red), distance
between protein subunits (purple), inter-
subunit angles (blue), protein connectivity
(green) monomer topology (black), subcom-
plex topology (maroon), protein–protein in-
terface structure (light blue), and atomic-level
structural detail (mauve). The techniques as-
sociated with each level of structural informa-
tion are indicated by abbreviations that are
defined in the text.

excel at revealing structures and dynamics of biomolecules
at the atomic level, the result of such experiments is often
reduced to a static “snapshot” of protein complex structure.
Moreover, larger protein complexes and membrane proteins
are less amenable to NMR or X-ray crystallography due to
their common requirements for large amounts of sample
and long acquisition times. Thus, characterizing and anno-
tating the structural details of a complete set of multiprotein
complexes found in cellular proteomes necessitates the devel-
opment of novel structural biology tools capable of capturing
the dynamic nature of heterogeneous protein complexes with
high sensitivity.

A highly promising approach for addressing such chal-
lenges relies upon the integration of information acquired
through multiple analytical technologies that offer comple-
mentary structural constraints. There are, however, many
practical challenges in developing such an integrated ap-
proach for solving the architecture of multiprotein complexes.
Mining data sets derived from several analytical tools for geo-
metrically or topologically informative structural constraints
typically involves integrating disparate expertise in data in-
terpretation, software, and automation, in addition to find-
ing the appropriate normalization procedures to align spa-
tial constraints acquired by the different approaches utilized.
Recently, many of these challenges were overcome to con-
struct highly complex structures of the nuclear pore complex,
illustrating both the potential and scope of integrated ap-
proaches for applications in structural biology and structural
proteomics [7].

Recent innovations in sensitivity, speed, and accuracy
have established MS as a key technology within the field
of structural biology and proteomics, revealing the intri-
cate interconnections of cellular processes [8]. MS is ca-

pable of probing the structure and dynamics of mul-
tiprotein complexes present at physiologically relevant
concentrations over a wide range of solution conditions.
Concurrent with developments in instrumentation, the
integration of novel analytical techniques and chemical
probes has strengthened the capacity of MS to charac-
terize heterogeneous samples and retrieve structural in-
formation. Techniques like hydrogen-deuterium exchange
(HDX) [9–13], chemical cross-linking (CXL) [14–16], ox-
idative footprinting (OFP) [17, 18], limited proteolysis
[19,20], affinity purification (AP) [8,21], and ion mobility (IM)
separation [22–24] have been partnered with MS as key ap-
proaches for the determination of protein structure and have
established themselves as crucial tandem technologies for re-
vealing the structure of multiprotein complexes at various
levels of structural resolution (Fig. 1).

MS approaches currently being applied in structural biol-
ogy and structural proteomics can be broadly categorized into
those that generate spatial constraints from measurements of
proteins in solution, and those that derive structural informa-
tion from measurements of protein ions in the gas phase. The
latter approaches require that the structural integrity of pro-
tein complexes be maintained upon the transfer of protein
to gas phase, and MS instruments have been developed or
modified with this goal in mind, specifically by increasing the
ion guide pressures, incorporating low-frequency quadrupole
mass analyzers, and accessing higher acceleration potentials
[25–27]. Gas-phase methodologies take advantage of the des-
olvation process to effectively reduce sample complexity and
make use of the spectrometric and spectroscopic tools avail-
able for molecular characterization in the absence of bulk
solvent. MS can also be used primarily as a detector for chem-
ical modifications designed to report on protein structure and
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dynamics in solution. While the integration of these two
tracks of MS-based approaches is yet to be explored rigor-
ously, the broad range of biological problems that can be
investigated by each technique suggests that the combina-
tion of multiple MS approaches can provide complementary
sets of information to answer previously intractable structural
biology questions.

Here, we review advances in the structural characterization
of proteins using MS-based methods. Although relatively new
compared to other technologies for analyzing protein struc-
ture, MS measurement of intact protein complexes [28–30]
is now a central methodology in such experiments and we
pay special attention to the role of this technology within
structural proteomics. This, along with other technologies
discussed herein, demonstrates that the integration of MS
technologies offers a suite of tools for discovering both the
composition of protein networks and their three-dimensional
organization.

2 MS for protein primary and secondary
protein structure

MS approaches have played an indispensable role in iden-
tifying and characterizing the primary structure of proteins
[21]. Experiments that seek to characterize protein at the in-
dividual amino acid residue level include those that involve
enzymatic digestion of proteins and MS analysis of the pep-
tide products produced (i.e. “bottom-up” approaches) [31] and
“top-down” type experiments involving manipulation of in-
tact, typically denatured, proteins within MS instrumentation
[32]. Ongoing research in this area has been extensively re-
viewed, including the critical developments in tandem MS
[33, 34] and automated strategies for collecting detailed in-
formation on protein sequences, composition, quantity, and
dynamics [35].

Approaches involving MS for the analysis of secondary
structure, in the context of structural proteomics, are among
the least developed of those discussed here. Typically, such ap-
proaches involve a focused study of small and isolated protein
systems by integrating MS with molecular dynamics simu-
lations. For example, IM-MS has been used extensively in
the analysis of peptides and small proteins and has provided,
in combination with structural models generated in silico,
secondary structure details for linear [36, 37], cyclic [38], and
modified [39–41] peptide systems, as well as proteins less
than approximately 10 kDa [42]. Since these systems are sup-
ported by few intramolecular interactions, rearrangements of
the peptide backbone can readily occur during desolvation in
some cases [43, 44] and the role of solvent in protein struc-
ture can be elucidated in conjunction with gas-phase spectro-
scopic techniques [45]. Further, chemical labeling MS data
sets combined with molecular simulation approaches com-
monly employed to refine protein structures based on NMR
information have been used to determine detailed structures
of model protein systems over a size range similar to the

IM-MS experiments discussed above [46]. Overall, while MS
has often been considered a “low-resolution” tool within the
field of structural biology, this view is rapidly changing, espe-
cially in the context of smaller protein systems.

3 MS for technologies for higher order
protein structure

MS approaches are capable of characterizing higher order
protein structures (Fig. 2), and in this section, we pay special
attention to those methodologies that, in our view, are most
readily integrated with the analysis of intact protein com-
plexes by MS (see section 4). Therefore, we have structured
the section below to discuss experimental results aimed at de-
termining protein tertiary and quaternary structure according
to the MS technology used to generate the structural informa-
tion. In addition, we have included a section that covers recent
MS results on protein–ligand interactions, focusing on those
experiments that provide information on a proteome-wide
scale. There are excellent reviews already available for many
of the techniques discussed in this section [8,16,28–30,47,48],
some of which will appear within this special issue, and as
such we will confine our comments to those experiments
that are critical for integrating MS measurements of intact
protein complexes with information from other MS-based
technologies.

3.1 Hydrogen-deuterium exchange MS

HDX, a technique traditionally associated with NMR, is now
frequently used in conjunction with MS for monitoring pro-
tein dynamics and structure. At its core, HDX-MS enables
the quantitative determination of rates at which protons in
a particular region within a protein exchange with a deuter-
ated solvent [9, 13]. Surface amide protons not participating
in intermolecular interactions that comprise secondary and
tertiary structural elements exchange rapidly, while those that
are involved in hydrogen bonding or shielded in the protein
interior exchange at a much slower rate. Thus, the technol-
ogy effectively measures the solvent accessibility of a protein
structure, and this information can be further used to an-
notate regions of a protein according to its apparent flexibil-
ity and stability. HDX-MS is amenable to a wide range of
physiologically relevant solvent conditions and the exchange
reaction can be efficiently quenched by rapidly lowering ei-
ther the solution pH or temperature. Maintaining the condi-
tions that prevent further HDX during proteolytic digestion
and subsequent MS analysis is required to obtain accurate
rates of HDX. The resolution of HDX-MS data is limited by
the size of the peptide fragments generated from proteoly-
sis or gas-phase dissociation, and also by the migration of
protons in activated peptide and protein ions. Recently, sig-
nificant improvements in the spatial resolution of HDX-MS
information, extending to the single amino acid residue level,
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Figure 2. Several MS data sets from the
literature are highlighted, and illustrated
in context relative to how they might
be used in a broader determination of a
3D protein interactome model. These in-
clude studies of monomeric protein struc-
ture (A) gp120-based antigen [70] and (B)
�-immuoglobulin [51]. Binary protein or
protein-ligand systems can also be stud-
ied by MS, as in the cases of (C) the
GPCR-rodopsin complex [71] and (D) the
S100A11 dimer [69]. Finally, the structure
of multiprotein systems can be studied by
MS as in the cases of (E) the RNA poly-
merase II [99] and (F) the yeast exosome
[182]. Each pair of data is contained within
color-coded regions that correspond to the
same shaded area of the 3D protein inter-
actome cartoon at the center of the figure.

have been attained through both the optimization of diges-
tion and exchange conditions [44, 45], and also by employing
gas-phase fragmentation methods that suppress the scram-
bling of protons such as electron transfer dissociation (ETD)
or electron capture dissociation (ECD) [49–51]. A compari-
son between the deuterium levels measured by HDX-MS for
�2-microglobulin and HDX-NMR shows an excellent correla-
tion (Fig. 2), demonstrating that HDX exchange levels across
a protein sequence can be annotated with resolution similar
to those generated by HDX-NMR. Developments in top-down
MS enable improved characterization of HDX-NMR, signif-
icantly simplifying the workflow required to analyze the ar-
chitecture of protein complexes [50].

Recently, HDX-MS has been applied to detect coexisting
populations of protein conformers to exploit its ability to ex-
amine structural changes on the millisecond timescale. Such
conformations include those induced upon ligand or cofactor
binding [52–54], those generated during protein folding and
unfolding [55, 56], conformational mobility of nuclear recep-
tors upon ligand binding [57], and those related to protein
stability under different solution conditions [58]. Moreover,
HDX-MS shows considerable promise for studying mem-
brane proteins, and recent results demonstrate that G-protein
coupled receptors [59] and membrane-like nanodisks [60] are
amenable to HDX-MS workflows. The ability of HDX-MS to
measure samples over a virtually unlimited size range has
also been applied to heterogeneous aggregates in an attempt
to infer the degree to which intramolecular protein interac-
tions contribute to global aggregate architecture. The progres-
sion of amyloid fibril formation was monitored by HDX-MS
in order to estimate the oligomer and fibril regions inacces-
sible by solvent and to annotate dynamic regions of the fibril
structure [61, 62]. Further HDX-MS on soluble monomers
and oligomers allowed aggregate growth rates for SH3 [63]
and Aβ 1–40 [64] to be determined. These studies, where mea-
surements of protein monomers act as reporters for the struc-
tures of larger aggregates that escape detection by MS analy-
sis, represent an important bridge between HDX-MS studies

and those that involve MS measurements of intact protein
complexes (see Section 4.3).

3.2 Oxidative foot-printing MS

OFP coupled to MS probes the conformational states of pro-
tein complexes by covalently modifying surface-accessible
amino acid residues through chemical oxidation. The ex-
tent of labeling depends on the protein surface area ex-
posed to the solvent and the reactivity of exposed amino acid
residues. Thus, analyzing proteolytic peptide fragments of
an oxidatively-labeled protein can reveal the structures and
dynamics of proteins in solution, similar to other methods
such as HDX-MS and limited proteolysis. While OFP exper-
iments can provide information similar to HDX-MS, amino
acid modifications generated in OFP differ in that they are
typically irreversible. Some OFP chemistries can be relatively
selective for specific functional groups within proteins [65].
Thus, selecting the appropriate oxidation chemistry for the
protein sequence under investigation is a crucial starting
point for maximizing the information content of OFP-MS
data sets.

Many OFP-MS protocols utilize oxidation chemistries de-
signed to be both rapid and untargeted in terms of oxida-
tion site, and most commonly involve hydroxyl radicals as
the oxidative species. Activated radical precursors can rapidly
generate populations of hydroxyl radicals in solution using
timed laser pulses to enable the investigation of protein fold-
ing reactions with sub-millisecond time resolution [66]. In
these experiments, protein folding or unfolding is triggered
by a temperature or a pH jump, followed by a laser pulse
for radical generation. With the incorporation of an appropri-
ate microfluidic device that allows for rapid mixing, oxidative
labeling can be precisely quenched [67, 68], and unfolding
or folding transitions can be monitored concurrently with
formation of protein–protein interfaces with high temporal
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resolution (Fig. 2) [69]. The versatility and resolution of OFP-
MS experiments are best demonstrated by both the number
and diversity of protein structures characterized to date. For
example, studying the footprinting pattern of the loop region
of HIV-1 envelope protein gp120 during its association with
critical cell receptors revealed the important role of this region
in the formation of higher order protein contacts (Fig. 2A)
[70]. Furthermore, the functional interaction between crit-
ical water molecules conserved within the transmembrane
portion of a G protein-coupled receptor during signal trans-
mission was resolved using OFP measurements (Fig. 2C)
[71]. In all of the applications above, OFP-MS has played a
crucial role in identifying and characterizing key amino acid
residues involved in subunit folding and interfacial regions
that result in multiprotein complex formation.

3.3 AP coupled to MS

The combination of AP and MS is arguably the most per-
vasive MS-based technology for the assessment of protein–
protein interactions in vivo, and has been used to generate
exhaustive interaction maps for several organisms, covering
an unprecedented range of genomic sequences [1, 72–75].
The technology works by first labeling a protein of interest
(the “bait”) using a molecule incorporating an affinity tag sus-
ceptible to chromatographic purification. In order to increase
the selectivity of this AP step, multifunctional tags that in-
corporate a protease-cleavable site have been developed. The
additional elution step acts to reduce the background levels of
proteins bound nonspecifically to both the solid-phase sup-
port and epitope tag used for separation of protein mixtures
[76]. While this tandem affinity purification (TAP) strategy
was developed independently from its implementation with
MS, such methods have since been honed for their combi-
nation with MS detection [77]. Another critical development
in the AP of proteins involves the genetic modification of the
bait protein to include an 8–11 residue epitope sequence for
separation on a specific sepharose column [78]. The so-called
“flag tag” can capture protein–protein interactions weaker
than TAP, however, false-positive results arising from back-
ground nonspecific protein interactions need to be carefully
discriminated from biologically relevant interactions. Com-
parison of protein–protein interactions revealed by AP-MS
against biochemical interactions determined independently
verifies the high fidelity of AP-MS data sets to more broadly
informed protein–protein interaction databases [74]. AP-MS,
like other technologies for screening protein–protein inter-
actions such as yeast two hybrid and phage display, excels
at revealing high-confidence binary interactions between two
proteins, leading eventually to the definition of a broader pro-
tein network following the accumulation of sufficient data.

MS approaches for the analysis of affinity purified proteins
can be broadly classified into “bottom-up” and “top-down”
assessments of the protein interactions. The latter approach,
which involves the analysis of intact multiprotein complexes

directly by MS, is covered in detail below (Section 4). “Bottom-
up” MS analysis involves separation of the individual protein
components and enzymatically digesting the isolated protein
with its partner proteins to assess their mass and composi-
tion. Characterization of vast protein mixtures tagged across
an entire proteome can be performed in a high-throughput
manner by automated data acquisition and analysis. An im-
portant development in the AP-MS method involves quanti-
tative stoichiometry determinations of isolated protein com-
plexes. In these experiments the isolated protein is either
labeled following expression [79], separation [80], or spiked
with synthetic, labeled peptides or proteins of known con-
centration that are identical in sequence to those of interest
[81], in order to quantify proteins in a particular mixture and
subsequently to infer the relative extent of protein expression.
Comparing the relative expression levels of proteins allows
an inference to be made regarding the binding stoichiom-
etry of the isolated complex. Quantitative AP-MS is also an
important tool in distinguishing interactions of biological im-
portance from weak and nonspecific interactions that result
in false positives for standard TAP and flag-tag experiments
[76].

AP-MS data, acquired in a “bottom-up” mode (as described
above) have been utilized to assess the organization of pro-
teins in multiple organisms, from Saccharomyces cerevisiae
[72,74,75] to Homo sapiens [82–85]. In ground-breaking work,
yeast AP-MS data have illustrated the modularity and inter-
connectivity of many cellular processes [72, 74]. Further, the
expression levels of individual proteins were quantitatively
determined to estimate the binding stoichiometries and sub-
sequently postulate contact maps for a number of critically
important protein complexes [75], assisted by development
of a scoring scheme. Such experiments have elucidated con-
nectivity for ribosomal [86], transcriptional [83], prespliceoso-
mal [87], and kinetochore protein assemblies [88] of varying
size, complexity, and dynamics. Of special interest for struc-
tural proteomics are the latter two studies. In the case of the
prespliceosomal A complex, EM data, along with AP-MS and
CXL-MS data are integrated to provide a more complete struc-
tural picture of a dynamic multi-MDa complex comprised of
well over 100 proteins [87]. For kinetochore subcomplexes,
some of which exceed 5 MDa in weight, AP-MS data have
been integrated with ultracentrifugation, size exclusion chro-
matography, fluorescence-based imaging, and other data sets
to project structural models for several, previously unknown,
complexes involved in the assembly of centromeric DNA,
and their attachment to both chromosomes and microtubules
[88].

3.4 Chemical cross-linking and chemical labeling MS

CXL-MS strategies for obtaining higher order structure infor-
mation of protein have been under development for decades,
but only now, after sufficient development of informatics
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tools and chemistries, has the utility of this technology ma-
tured to the point where significant endeavors in structural
biology are tenable [89]. CXL-MS methods can capture inter-
actions between flexible regions of proteins in solution by co-
valently linking functional groups of amino acid side chains.
The covalent bonds may be formed by reaction between dif-
ferent components of protein complexes (intermolecular),
or amino acid residues belonging to the same polypeptide
(intramolecular). Identifying the cross-linked sites by MS
analysis reveals proximal amino acid residues. The length
of the cross-linker serves to constrain pair-wise interaction
sites in the protein sequence and imposes spatial constraints
in order to eliminate candidate structural models [90], and
subsequently provides information on both the identity of
the interacting partners involved in protein–protein inter-
faces. Such an approach has been demonstrated as an ef-
fective means of generating accurate backbone structures
for small monomeric systems [46]. In combination with
AP-MS, or in cases where affinity reagents are engineered
into the molecules used for CXL, such data can provide
high-confidence protein interaction information with limited
chemical background [91].

Like OFP, CXL agents can exploit a number of solution
chemistries for targeting a specific functional group. The
cross-linker additionally provides an opportunity to introduce
many tunable traits in the analyte of interest, including iso-
topic coding, cleavability, affinity groups, linker length, and
reactivity. Both formaldehyde and di-thiobis-succinimidyl
propionate (DSP; an amine-reactive, homobifunctional, thiol-
cleavable, and membrane-permeable cross-linker) are used
frequently in such experiments, owing to their amenability to
a wide range of solution conditions [92–99]. Designing func-
tionally tailored CXL agents that possess desirable attributes
is currently an area of active research [100,101]. Significantly,
recent technical developments have produced cross-linking
reagents capable of covalently modifying proteins within liv-
ing cells, and allow for the assessment of protein quaternary
structure under in vivo conditions. Photoactive CXL reagents
have enabled the analysis of protein–protein interactions on
fast timescales, and in quantitative manner for determination
of the stoichiometry of proteins [102].

MS approaches that rely upon “top-down” characteriza-
tion of proteins are also gaining prominence, typically involv-
ing Fourier transform-ion cyclotron resonance (FT-ICR) and
subsequent activation with one of the various fragmentation
techniques such as ECD, infra-red multi-photon dissociation
(IRMPD), and sustained off-resonance irradiation collision-
induced dissociation (SORI-CID). Such approaches can work
to eliminate the need to separate proteins of interest from the
cross-linking reagents prior to MS analysis [101, 103].

Identifying cross-linked peptides within a complicated
mixture of incomplete or uninformative reaction products
presents significant challenges for modern bioinformatics
and software development. Multiple search algorithms and
new chemical linkers that yield distinct reporter ions upon
CID have streamlined the CXL-MS process, and increased its

sensitivity [15]. Further, validation of CXL interaction data
against available high-resolution structures can minimize
false-positives and allow for the discovery of novel interac-
tions often overlooked due to protein flexibility and dynamics
(Fig. 2E) [99].

Many recent studies have described CXL reagents aimed
at mitigating many of the informatics challenges inherent in
the analysis of CXL-MS data sets [16]. For example, it is well
known that CXL reactions can produce many potential prod-
ucts that encompass dead-end reactions and intra-molecular
cross-links in addition to the inter-molecular linking reac-
tions sought for protein quaternary structure analysis [100].
This situation creates an informatics bottleneck by generating
a mixture of peptides many times more complex than typical
“bottom-up” proteomics samples [104, 105]. Recent studies
have described CXL reagents that fragment to produce char-
acteristic reporter ions as well as separated peptide ions for
more detailed MS3 experiments [106–110]. Such an approach
both increases the confidence and the number of identified
protein interaction sites.

Cross-linking strategies combined with MS have been ap-
plied to a number of important multiprotein systems to de-
duce both structure and dynamics. Several recent studies
have focused on chaperone complexes, including those in-
volved in cellular stress response and client protein binding
in multiple systems. CXL-MS was critical in demonstrating
that N-terminal flexibility in heat shock protein (Hsp) chap-
erone complexes is important for client protein recognition
and binding [111]. Along with HDX-MS information, CXL-
MS was used to construct a topology diagram of complexes
between Hsp110 and Hsp70 [112]. Further, multiple CXL-MS
studies involving the protein interaction network associated
with the proteosome have helped to define the interaction
partners that shape the 26S protein degradation assembly,
and a detailed contact map of the 19S lid complex in com-
bination with MS measurements of the intact complex and
sub-assemblies [113].

While it is currently challenging to use CXL-MS data ac-
quired in a high-throughput mode for proteome-wide pro-
tein topology discovery, many targeted analyses of multi-
protein systems have met with a high level of success. For
example, a low-resolution model of the calmodulin-melittin
complex has been described using CXL-MS [114, 115]. Sim-
ilar data have also been used to assess the assembly of vi-
ral coat proteins [116]. Membrane-bound complexes present
distinct challenges for CXL-MS workflows, but work on
rhodopsin-transducin [117, 118] as well as yeast prohibitin
complexes [119] demonstrate CXL strategies capable of ad-
dressing such challenges. Perhaps the most ambitious use
of CXL has been in the construction of a model for the
50 MDa nuclear pore complex, where CXL-MS data was
combined with multiple other data sets to constrain a com-
plete topological model for the 456-member assembly [7].
All of these specific examples demonstrate both the signif-
icance and enormous potential for CXL-MS in structural
proteomics.
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4 MS of intact protein assemblies

As discussed briefly above, there are two main paradigms
by which MS may interrogate the quaternary structure of
multiprotein complexes: (i) by analyzing enzymatically pro-
duced peptide fragments derived from transiently modified
or copurified proteins so as to provide information on protein
network composition and topology or (ii) by determining the
noncovalent interaction networks of proteins intact within
the mass spectrometer. The above discussion primarily cen-
ters on those approaches that conform to paradigm 1, while
the following discussion is limited to those examples in the
literature where paradigm 2 is employed. Throughout this re-
view, it has been our primary purpose to highlight those data
sets where multiple types of MS measurements have been
integrated to solve long-standing problems within structural
proteomics (Fig. 1), and have chosen to highlight those re-
ports that utilize MS data of intact protein complexes as one
of the integrated data sets used.

MS technology for the analysis of intact protein com-
plexes is varied, but of most prevalent are quadrupole-time-
of-flight (Q-ToF) platforms, utilizing nano-electrospray ion-
ization (nESI) to generate ions. These systems are typically
modified through the addition of quadrupole mass filters op-
erating at reduced frequencies for an increased m/z range
and with ion sources having tunable pressure regions for
the increased collisional focusing of large ions [26,27]. Other
instrument platforms are popular, however, for the analysis
of multiprotein complex systems. FT-ICR systems, e.g. are
increasing in popularity due to their ability to access tan-
dem MS approaches that are currently more challenging to
implement on Q-ToF platforms (see Section 4.1), but suf-
fer from mass range and sensitivity issues typically absent
from Q-ToF instrumentation in the analysis of large protein
ions [120,121]. Additional peripheral analytical devices can be
incorporated into tandem with MS workflows aimed at the
analysis of intact multiprotein complexes including size ex-
clusion chromatography, both on-line and off-line, automated
sample handling, and ion mobility (IM) separation for protein
size measurements (see Section 4.4). These technologies, as
well as applications of the intact MS method for multiprotein
complexes are discussed in detail below.

4.1 Tandem MS measurements

An essential tool in the analysis of multiprotein complexes
by MS is tandem MS (MS/MS), where ions are interrogated
by ion selection, activation via energetic collisions with neu-
tral gas (e.g. Ar), and dissociation (CID) to generate product
ions that inform on the composition and stoichiometry of
the ionized intact protein complex. There are several crucial
mechanistic aspects of gas-phase protein complex dissocia-
tion that have been established [122, 123]. For example, the
predominant fragmentation pathway for most protein com-

plexes involves expulsion of a monomeric protein in a se-
quential fashion to give both highly charged subunits and
low charged, multiply ‘‘stripped’’ complex ions [120,124,125].
Also, experimental and theoretical data indicate that a degree
of protein unfolding precedes dissociation [120, 123, 126]. In
general, CID has been established as an indispensible analyt-
ical tool in assigning protein stoichiometry and composition
within heterogeneous samples [28].

Early experiments using blackbody infrared dissociation
(BIRD) measurements on pentameric protein complexes pro-
vided the first indirect evidence that protein unfolding was
intimately involved in the CID of protein complexes [120].
Following from these observations, elegant experiments uti-
lizing protein dimers composed of monomers having disul-
fide bonds, and thus incapable of unfolding, further showed
that protein unfolding influences the charge states acquired
by product ions [122]. More recently, IM has been used to
investigate the structural changes that occur to protein com-
plexes upon collisional activation in a controlled manner
[127, 128]. IM-MS experiments performed on ring-like pro-
tein complexes, and other cavity-bearing systems, indicate
collision-induced compaction of the complex precedes any
dramatic unfolding, through a currently unknown process
[128, 129]. Detailed unfolding for the homotetrameric pro-
tein transthyretin (TTR) has further illustrated the extent and
nature of unfolding of protein complexes [127]. Current un-
derstanding of the CID process for multiprotein systems is
summarized in Fig. 3, and most protein complex ions pro-
duced by conventional nESI or ESI methods follow the track
involving the dissociation of highly unfolded monomer ions.
The charge carried by the precursor largely determines access
to the other dissociation pathways shown, but the amount of
charge reduction or amplification required to access these
alternative pathways is not currently known universally for
multiprotein complex ions.

As mentioned above, the combination of charge manipu-
lation and CID of protein complexes has provided evidence
that the dissociation mechanism can be drastically influenced
by precursor charge state (Fig. 3), thus providing a way to sig-
nificantly alter the structural information content of standard
CID experiments. For example, charge amplification of the
HSP 16.5 24mer (396 kDa) followed by CID has shown both
increased sequential monomer losses (up to four) and frag-
mentation of monomers to form sequence-informative pep-
tide ions [130]. This last point constitutes the first evidence of
“top-down” type sequencing of a protein, i.e. itself stripped
from an intact multiprotein complex. In addition, charge re-
duced complexes have been shown to produce folded protein
fragment ions by IM-MS [131]. CID of further charge-reduced
complexes, exceeding more than 40% charge reduction, gen-
erates fragment ions in the form of surface peptides disso-
ciated from the intact complex [131]. Taken together, these
observations suggest that CID information content can be
dramatically altered to suit a wide range of experiments in
structural proteomics.
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Figure 3. Various observed products of gas-phase protein complex dissociation are shown. This figure is color coded to correspond with
techniques requiring either high (red) or low (blue) ion-activation energies to access the product ions depicted. Protein complex ions
activated using energetic collisions (CID, solid arrows) typically fragment via a pathway that leads to charge-reduced, monomer-stripped
complexes and unfolded monomer ions (A). In references [27] and [191], exceptions to these general observations were reported (B).
Electron capture dissociation (ECD, large dashed arrow) can result in the cleavage of peptide bonds within the complex and sequence-
informative fragment ions as observed in reference [192] (C). Surface-induced dissociation (SID, small dashed arrow) of protein complexes
at higher effective energies can lead to the ejection of subcomplexes from the assembly, as observed in reference [138] (D). Charge
manipulation is required to access other protein complex fragmentation pathways. Charge reduction of protein complex precursor ions,
followed by collisional activation, results in either the ejection of compact protein subunits (E) or covalent fragmentation of the peptide
backbone without the ejection of any protein subunits from the assembly, as observed in reference [131] (F). Charge amplification, followed
by high-energy CID can lead to the ejection of large subunits from the assembly as observed in reference [193] (G), or the dissociation of
protein subunits from the complex that then fragments into peptide ions as observed in reference [130] (H).

While CID methodologies are among the most pervasive
for the disruption and dissociation of multiprotein com-
plexes in the gas-phase, alternative techniques are emerg-
ing that promise to provide enhanced structural informa-
tion for such assemblies. ECD, while playing a central role
in “top-down” protein identification and posttranslational
modification assignment, is limited to only a few published
examples in the context of multiprotein complex dissocia-
tion [132, 133]. In these experiments, protein complex ions
are irradiated with low-energy electrons, typically on FT-
ICR platforms, to produce both charge-reduced intact com-
plexes and multiple peptide fragments resulting from back-
bone cleavage within the proteins that comprise the as-
sembly. As other intact protein and peptide work in this
area has shown, different bonds within the peptide back-
bone are preferentially broken in this experiment when com-
pared to the CID experiments discussed above. While the
ultimate analytical results of these experiments are similar
to high-energy CID data for complexes, it is expected that
ECD (or ETD) will be a more effective approach to generate
peptide-type fragmentation than equivalent CID experiments
(Fig. 3).

In addition to electron-mediated fragmentation, collisions
between ions and surfaces can be used to rapidly activate
protein assemblies, leading to product ions that are, in

many cases, substantially different from those generated by
CID. Such surface-induced dissociation (SID) experiments
often lead to large protein subcomplexes, presumably still
in a folded configuration, to be ejected from the assembly
(Fig. 3). Mechanistically, such product ions are thought to
arise through a shattering-type mechanism, where the large
amounts of activation energy input through the SID process
are not allowed to randomize throughout the complex, lead-
ing to fragments that do not inhabit the unfolded protein
intermediates common in CID experiments [134]. Multiple
examples of SID data for multiprotein complexes are available
in the literature, encompassing many large homo-oligomers
where vast numbers of subcomplexes are observed as frag-
ment ions [135–137]. Recently, SID data for heterocomplexes
have also been reported and further demonstrate the excit-
ing potential of this technology for quickly mapping protein
complex connectivity [138].

4.2 Protein contact map generation

The interactions between proteins within complexes can
be represented by a reduced map of protein–protein con-
tacts, consisting of nodes denoting individual protein sub-
units and connections between the nodes which indicate the
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noncovalent interface between a protein with another protein.
MS analysis on intact protein complexes can be used to con-
struct such contact maps allowing for inference of the topol-
ogy of protein complexes [30,48]. For example, MS data were
vital in defining the organization of proteins within macro-
molecular assemblies such as the yeast exosome [139], the
19S proteosome lid [113], and the eukaryotic initiation factor
3 (eIF3) [140], significantly in the absence of high-resolution
structures. Comprehensive descriptions of the experimen-
tal workflows for such experiments are covered elsewhere
[139, 141]. To summarize, protein assemblies are measured
intact by MS, and then the assembly is partially disrupted
to generate several subcomplexes. In order to reveal the en-
tire set of protein–protein interactions, a sufficient inventory
of subcomplexes is required, and accordingly both gas-phase
and solution approaches have been developed with this goal in
mind. Gas-phase methodologies used for the dissociation of
protein complexes involving energetic activation of proteins
(e.g. CID) are described in detail above (Section 4.1). Var-
ious factors contribute toward generation of subassemblies
in solution, including solution composition (e.g. organic con-
tent), ionic strength, pH, and temperature [139], although the
mechanistic details of the protein complex disruption process
under such conditions is still a subject of active research. Iden-
tifying the composition of subassemblies produced during
the course of disruption experiment can indicate the presence
and/or the absence of interactions between protein subunits.
Organizing such information into a protein contact diagram,
in combination with protein docking and homology model-
ing, can result in a pseudo three-dimensional map of protein
subunits [141]. These experiments are often performed in par-
allel with other MS experiments aimed at determining both
the identity and the extent of posttranslational modification
on interacting subunits.

MS data of intact complexes and subcomplexes have been
used to generate such contact diagrams for large hetero pro-
tein complexes. For example, intact MS data on the ribonu-
clear protein complex Cascade defined a contact map for the
assembly and, along with EM data sets was used to define the
overall topology of subunits within the complex, in this case
a unique “seahorse”-type structure [142]. MS data of intact
assemblies and subcomplexes was also used to define contact
maps for the Trax-translin endonuclease complex [143], RNA
polymerase complexes [144], and the DNA sliding clamp as-
sembly from Escherichia coli. [145] MS data contributed to
the interpretation of X-ray and EM data for the 1 MDa CCT
mammalian chaperone complex, leading to a comprehen-
sive structural assignment and functional details regarding
the mechanism of how the complex aides in the folding of
tubulin [146].

4.3 Protein-ligand, small molecule, and drug

interactions

The analysis of protein small molecule complexes by MS has
a long history, from the earliest demonstrations of protein-

ligand measurements by MS, in which the intensity of ions
was often used to correlate binding affinity [147–149], through
to more recent applications to multiprotein-ligand complexes
[150, 151]. In the case of an intact assembly composed of a
multiprotein complex and a small-molecule ligand, minimal
activation in the gas phase is often sufficient to dissociate
the ligand from the assembly. This dissociation is generally
favored in protein complexes where the subunits and lig-
ands are maintained by hydrophobic interactions [152, 153],
although data indicate that even this basic rule has excep-
tions [154]. The past several years, however, have seen such
intact protein-ligand measurements develop into a robust ap-
proach for the measurement of protein-ligand binding con-
stants [155–157]. Furthermore, the incorporation of IM infor-
mation (see Section 4.4) into such experiments has enabled
collision-induced unfolding (CIU) measurements as a means
of assessing protein-ligand stability in ways orthogonal to MS-
only probes [158].

Chemical labeling techniques utilizing HDX and OFP-MS
have also emerged as sensitive and universal approaches for
quantitatively characterizing protein-ligand complexes within
complex mixtures. Technologies such as SUPREX [159],
PLIMSTEX [160], and SPROX[161] can address a wide range
of protein–protein and protein–ligand complexes. Although
all workflows within this category differ slightly, the general
approach is that proteins, or protein mixtures, are exposed
to a chemical label (e.g. a deuterating agent) and the level
of labeling achieved is measured by MS to assess protein
stability. Upon the addition of ligands of interest, this ex-
periment is repeated, so the labeling patterns and extents of
label incorporation can be compared. These types of technolo-
gies have been utilized to assess protein–ligand interactions
on a proteome-wide scale [162]. Such data has direct rele-
vance to the goals of structural proteomics, and points to
promising future experiments where ligand binding, com-
plex stability, and structure may be assessed on a proteome
scale.

4.4 IM-MS of intact protein complexes

Recently, the utility of coupling MS to IM separation has
generated considerable excitement, because multiple sets of
preliminary data have indicated that the molecular architec-
ture of large protein complexes can be retained in the absence
of bulk solvent [128,163–165]. Originally applied to problems
in chemical physics [166–168], trace detection [169, 170], and
used for the analysis of small biomolecules for over a decade
[23, 24, 171–174], IM separates ions based on their ability to
traverse a chamber filled with inert neutrals under the influ-
ence of a relatively weak electric field. Ion size in the form
of an orientiationally-averaged collision cross-section (CCS)
is the primary information content of IM separation and es-
tablished computational approaches can be used in conjunc-
tion with this information to assign the structure of small
biomolecules to a high degree of precision [175].
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Figure 4. Adapted from data shown in reference [176], IM
and MS data are integrated to generate a topological model of
the DNA clamp loader pentamer (��’���). First MS data on in-
tact protein complexes and subcomplexes are recorded (blue
box, upper left) and computationally analyzed to produce
a contact diagram for the complex (green box, center left).
The dashed box surrounding the three equivalent � proteins
within the complex indicates that the detailed connectivity be-
tween these isomass proteins cannot be determined. IM-MS
data is acquired, in parallel with MS information, and size in-
formation on proteins and subcomplexes recorded (blue box,
upper right). Models of all protein subunits are constructed by
integrating partial X-ray data with IM distance constraints. For
the � protein, where 18% of the protein sequence is absent in
the X-ray crystal structure, models must be constructed of the
full length protein (shown here as a coarse-grained approxi-
mation) and the overall structure optimized to conform to IM
data for the intact protein, which indicates a compact topol-
ogy. Higher order and complete complexes are constructed,
at each point refining the complexes based on IM measure-
ments (green box, lower right). The resulting topology for the
complex is shown in the bottom left of the diagram in the red
box (right), and the X-ray structure for the intact complex is
also shown (left) for comparison. Agreement between the ex-
perimental and computational models is shown in each box
as a comparison between experimental (red) and theoretical
(black) collision cross-section values. (Unit = Å2)

The past several years have witnessed numerous applica-
tions of IM-MS to multiprotein complexes in an effort to de-
termine their structures. Early work on the Tryptophan RNA
binding attenuation protein (TRAP) [128] and Aβ amyloid ag-
gregates [165] illustrated the power of the IM-MS approach.
Stand-alone IM results, principally utilizing differential mo-
bility analyzer (DMA)-type technology were also used to an-
alyze multiprotein complexes and demonstrate the ability of
ion size measurements to inform on assembly topology and
structure [164]. For example, IM results for the 20S proteo-
some catalytic particle (28-mer), along with half-proteosome
measurements (14-mer) illustrate elegantly how size mea-
surements of such subcomplexes can be used to refine a
model of the intact assembly which they comprise. In all
of the examples above, pioneering measurements were fol-
lowed by a series of improvements in IM-MS technology and
data analysis capabilities that now frame a field where mul-
tiprotein complexes over a large mass and size range can be
routinely interrogated.

Recent examples of IM-MS technology used in the struc-
tural determination of multiprotein complex architecture typ-
ically fall into three main categories. First, IM-MS has been
used extensively to refine protein contact maps derived from
MS measurements. Recent experiments of the DNA clamp
loader assembly (Fig. 4) [176], the eukaryotic translation fac-
tor eIF3 [140], and RNA polymerase I and II complexes[144]
have all utilized topologically informative IM data in addition
to MS resulting in well-defined topological models. Secondly,
IM-MS has been used to monitor the assembly of viral capsid
proteins and assess the structure of assembly intermediates
[177]. A final area of much research centers on the analysis of

small oligomers involved in multiple amyloid-type diseases.
Several IM-MS studies have determined topologies and sto-
ichiometries for peptides and protein oligomer populations
involved in Alzheimer’s disease [178], Type II diabetes [179],
and dialysis-related amyloidosis [180]. Recently, this work has
been extended to cover several model systems for amyloid
formation, and revealed critical changes in the structures of
small oligomers that are potentially crucial for understanding
both fibril formation and mechanisms of cytotoxicity [181].

4.5 Combining MS with molecular modeling

Computational modeling is often coupled with MS data sets
as a means to predict or verify the three-dimensional structure
of biomolecules. This modeling procedure can exploit spatial
constraints derived from the multiple MS-based analytical
techniques described herein, although a lack of a universal
software solution for managing information from different
technology remains a critical bottleneck in structural pro-
teomics. Monomeric proteins are most readily amenable to
such a strategy, where distance constraints and solvent ac-
cessibility determined from CXL-MS and HDX-MS can be
utilized to deduce structure (see Sections 3.1 and 3.4 above).
The topology of protein complexes can be projected from
connectivity information derived from methods such as CXL-
MS and intact MS of protein complexes. For example, a com-
plete model of the human exosome (Fig. 2F) was constructed
using this approach in advance of X-ray data [182], and was
later verified by a crystallographic structure of the same com-
plex [183]. The construction is a combined effort of integrat-
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Figure 5. Three levels of computational
modeling are shown, detailing how mod-
eling might interface with various MS data
sets. The first level (blue) shows a number
of monomer or protein subunit models,
ranging from simple coarse-grained rep-
resentations of fixed protein density (left)
to complete atomic structures of the intact
protein (right). Higher-order protein mod-
els can be built using distance constraints
derived from chemical cross-linking or
IM data sets using coarse-grained, hy-
brid, or atomic models in conjunction with
protein–protein docking algorithms (pur-
ple). Complete models of the complex can
also take the form of coarse-grained, hy-
brid, or complete atomic models of the in-
tact complex.

ing intact MS data with homology modeling and sophisticated
protein–protein docking algorithms.

IM-MS experiments on protein complexes also make ex-
tensive use of computational modeling in order to develop re-
fined structures of multiprotein assemblies. Computational
analysis is required to both generate protein model struc-
tures and estimate the size of these models for comparison
with the IM experiment. While complete molecular dynam-
ics simulations, as are commonly incorporated into the anal-
ysis of IM data on smaller biomolecules, have yet to emerge
for the analysis of multiprotein complex systems, molecu-
lar modeling-based topology searching plays a large role in
assembling the structure of such complexes. Typically, struc-
tures of smaller units within the complex are refined against
both IM-MS and other available data (Fig. 5). Higher order as-
semblies are then built based on distance constraints derived
from IM data sets, the connectivity information obtained by
MS, and data from other sources available in the literature.
One active area of integrating IM-MS data with computational
modeling involves determining the overall topology of small
homo-oligomers important within the etiology of many neu-
rodegenerative and amyloid-related diseases. In these stud-
ies, a set of trends which describes a correlation between
the aggregate size and the number of aggregating units that
comprise each oligomer is developed for different archety-
pal models. Aligning the experimental data determined for a
range of protein aggregates with such trends for archetypal
structures allows estimation of the topology of aggregates ob-
served experimentally [178,180]. Recent work has shown that
IM can be an effective method when combined with partial
X-ray data derived for the constituent proteins that comprise a
complex (Fig. 4), and that homology models, protein domain

analysis, and elastic network modeling can be used to refine
subunit models prior to complex construction [176].

5 Emerging MS technologies for
structural proteomics

Several MS-based technologies currently under intense de-
velopment have the potential to be valuable tools in the deter-
mination of protein structure within the context of structural
proteomics. For example, ECD is used widely for obtaining
sequence and identity information on proteins and peptides,
but has also seen limited use as a tool to assess the struc-
ture of some monomeric proteins [184, 185]. In these experi-
ments, backbone cleavages are taken as evidence of the level
of intra-molecular interaction surrounding the cleaved region
of the sequence, and cleavage frequency can be used to map
relatively flexible regions of protein secondary and tertiary
structures. Similarly, gas-phase IR action spectroscopy has
been used extensively to assess the secondary structure of
small peptides [186]. Such data are derived from photo-
dissociation efficiencies observed for peptides and proteins
as a function of the wavelength used to excite the ions of in-
terest, and have recently been used to analyze structural fea-
tures of gas-phase protein ions [187]. Gas-phase fluorescence
measurements are also starting to provide increased num-
bers of data sets illuminating the structures of biomolecules
in the gas phase and relating those measurements to solution
[187, 188].

As evidenced by many studies covered in this review, the in-
tegration of information derived from the multiple MS-based
analytical tools available for protein structure is a hallmark of
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both the role of MS within structural biology and the future
of MS within structural proteomics. Future developments are
likely to find MS-based technologies integrated with many of
the established structural biology tools. For example, a recent
report has described preparative MS experiments used to pu-
rify protein prior to analysis by both atomic force microscopy
and electron microscopy [189]. Further, multiple reports have
indicated that X-ray diffraction of single protein ions will in-
volve significant MS and IM-based filters prior to analysis
to ensure protein composition and structural homogeneity
[190]. Finally, the sample handing and data acquisition meth-
ods devised to conquer many of the challenges presented
by protein identification experiments are readily applicable to
the MS-based approaches described herein, and will undoubt-
edly enable high-throughput analysis of protein structures in
the future. Overall, based on the breadth of literature cov-
ered here, it is easy to predict a bright future for MS-based
technologies within the field of structural proteomics.
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