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ON-OFF ITERATIVE ADAPTIVE CONTROLLER FOR LOW-POWER

MICRO-ROBOTIC STEP REGULATION

Bongsu Hahn and Kenn Oldham

ABSTRACT

A novel model-free iterative adaptive controller is presented for low-
power control of piezoelectric actuators. The controller uses simple adaptation
rules based on known general behavior of piezoelectric actuators to adjust on-
off switching times to drive piezoelectric actuators through a desired transient
step motion. Adaptation rules are based on small numbers of measurements
taken during each iteration of the actuator movement. Combined with the
use of only on-off control inputs, controller implementation can be possible
at much lower overall power levels than would be needed to implement a
conventional control strategy such as through pulse-width-modulation (PWM)
with real-time feedback. Such power savings are particularly important for
the intended controller application to piezoelectric microactuators driving
autonomous terrestrial micro-robots. A method for predicting convergence
of systems with nominally linear dynamics and unknown, bounded nonlin-
earities is described, and applied to a sample target piezoelectric actuator.
The controller is tested in simulation and experimentally on a piezoelectric
cantilever actuator, and shows predicted convergence to the desired response.

Key Words: Adaptive control, iterative learning control, MEMS.

I. INTRODUCTION

In this paper, we present a model-free, iteratively-
adaptive, on-off controller for regulating the motion of
piezoelectric actuators intended for terrestrial micro-
robotic locomotion. A critical challenge for servo-
control of autonomous micro-systems is to minimize
power consumption, due to the extremely small mass
or size permitted for the power system. These power
constraints will be especially strict for autonomous
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terrestrial micro-robots, such as that shown in the
concept drawing in Fig. 1(a).

Such robots would have dimensions on the order
of a few millimeters to a centimeter, and payload capac-
ities of a few to a few hundred milligrams, based on
structural analysis of microelectromechanical system
(MEMS) actuator capabilities and structural properties
ofMEMS flexural joints [2]. Such a small payload trans-
lates into only about 100�Wto 1mWof power available
to control motion of a given leg, requiring control strate-
gies that aggressively limit power to actuators, interface
circuitry, and sensors.

The first novel element of our strategy for
performing extremely low-power control of micro-
robotic actuators is to rely on on-off switching control.
On-off controllers are often used by engineering
systems with only basic actuator capabilities, limited
computation resources, and/or tight energy constraints.
In the case of autonomous micro-robotics, thin-
film piezoelectric micro-actuators are a particularly
promising actuator type, with potential to provide much
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Fig. 1. (a) Concept drawing of a millimeter-scale miro-robot
driven by piezoelectric microactuators; b) Prototype
thin film piezoelectric leg joint; and (c) Lumped
parameter model (Courtesy U.S. Army Research Lab.
[1]).

larger micro-robotic ranges of motion and locomotion
speeds than those of previous micro-robots based
on electrostatic or thermal microactuators. A sample
prototype micro-robotic leg joint based on thin-film
piezoelectric actuation is shown in Fig. 1(b) (courtesy
U.S. Army Research Laboratory). In terms of power
consumption, piezoelectric actuators appear as capaci-
tive loads, but require relatively high voltages to operate
(20 to 30V). This results in both conventional analog
and pulse-width modulation (PWM) controllers being
inefficient. Under analog control, for example, typically
95% of all servo system power usage for piezoelectric
actuators is wasted in amplifiers [3]. While this usually
drives system designers to PWM techniques, even these
approaches may require excessive power, due to the
repeated charging and discharging of the capacitive
load necessary at high-frequency.

On-off control, in which only a few switching
transitions between ‘on’ and ‘off’ states are used to
guide actuator motion, can dramatically reduce power
consumption of piezoelectric actuators by reducing
the number of times that the actuator is charged. In
return, on-off control entails a degradation of system
performance, due to oscillations between switches,
excitation of high-frequency dynamics, and dependence
of response time on open-loop properties. Nonetheless,
under extreme power constraints, such as those on an
autonomous micro-robot, this trade-off may be accept-
able. However, an additional obstacle to on-off control
implementation is that most existing on-off control
algorithms rely on accurate knowledge of system
dynamics [4–6], for open-loop situations, or compar-
atively high-frequency sensing in order to implement
decision rules on feedback measurements [7]. Thin-
film piezoelectric actuators, while having smaller

hysteresis than most piezoelectric actuators, display
both hysteresis and nonlinear gains that are difficult to
predict or model, as is micro-scale damping behavior.

The second innovation presented here is to utilize
step-to-step, or iterative, adaptations of the on-off
switching sequence to adjust for unknown dynamics
with relatively low sensor sampling rates. Power
consumption of sensing transducers and circuitry used
in MEMS devices, such as capacitive position sensors,
increases greatly with sampling rate. This makes it
very difficult to implement real-time feedback control
or model adaptation within strict power budgets.
Fortunately, in the case of terrestrial micro-robotics,
actuator motions are expected to repeat many times,
as in walking or running gaits. This allows for lower
sampling frequency measurements, compared over
several iterations of a given movement, to guide on-off
switching sequences producing a desired displacement
or trajectory. For certain classes of system, this can
be performed without any model of the system in the
controller itself, which further simplifies computational
requirements on a micro-robot.

The on-off iterative adaptive scheme to be
described here is targeted for control of micro-robotic
steps, by directly adapting specific time periods
within an on-off sequence using measurements taken
over successive steps, without any model of system
dynamics. This requires limiting the desired motion to
specific profiles (in this case, smooth steps to various
reference levels) and only transient performance may
be predicted reliably, but the benefit is an extremely
simple control law to implement, with guarantees
on convergence for systems with bounded nonlin-
earity. Our approach differs from previous adaptive
on-off controllers, which use model-based adaptation
schemes, where the form of the system dynamics is
known but not all of the parameters [8, 9]. Alternate,
related adaptive controllers have utilized fuzzy logic
or sliding mode control, but to date have only been
used to adapt a single control parameter [10–12]. In
contrast, there has been significant work on model-free
control of unknown, nonlinear systems, but this has not
been applied to on-off control [13, 14].

To summarize the contribution of this paper,
then, we present a novel on-off, model-free adaptive
controller for low-power control of micro-robotic leg
joints. This provides a unique perspective on managing
energy losses in feedback control of microactuators,
and some basic analyitical techniques for examining
behavior of the resulting system. Following this intro-
duction, we describe the system to be controlled and
the procedure for use of our model-free adaptive on-off
controller algorithm. We then describe a method of
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convergence analysis, and examine a specific controller
for repeated stepping motions of a 2nd-order system,
proving convergence of that controller to desired
motions under certain conditions. We present simula-
tion and preliminary experimental results, and conclude
with a discussion of the benefits of our analysis and
implications for more general problems.

II. SYSTEM DEFINITION

2.1 System dynamics, input, and conditions

The micro-robotic appendages to be controlled
are taken have nonlinear, time-invariant dynamics, with
unknown nonlinearities bounded in magnitude from a
known, linear, and stable nominal system. We describe
the nominal system with an n-th order state vector, x=
[x1x2 · · ·xn]T, and its dynamics using the state equations

ẋ(t)=Ax(t)+Bu(t) (1)

where A is an n×n state matrix, B is an n×1 input
matrix, and u(t) is the controlled input to the system.

The real, unknown system is denoted by sepa-
rate state vector, y=[y1 y2 · · · yn]T, taken to have
dynamics of the form

ẏ(t)=[Ay(t)+ f y(y(t))]+[B+ fu(y(t))]u(t) (2)

where fy(.) and fu(.) are unknown, Lipchitz contin-
uous, and potentially nonlinear functions of the states.
Both x and y are assumed to be asymptotically stable
systems.

The system has two possible input values, other-
wise described as ‘off’, u=0, and ‘on’, u=umax, volt-
ages to the actuator, such that

u(t)∈{0,umax}∀t (3)

In theory, with sufficient sampling speed on the
output displacement, system identification techniques
may be used to identify the system model. From there,
optimal on-off switching times may be computed to
produce desired motions using integer programming or
other optimization techniques. However, this optimiza-
tion is computationally intensive, and the sampling
rate needed for effective system identification is high,
requiring large sensor power consumption. Thus, a
model-free approach to guide motion while using a
limited number of sensor measurements is advan-
tageous for micro-robotic servo control. Instead of
real-time system identification, the control inputs will
be adjusted over multiple iterations of a desired motion.

The first state of the system, y1, is measured at a
finite number, Q, of time points, t1, t2, . . ., tQ , with tQ

Fig. 2. General definition of switching times and sampling
times (in scenario with equal number of switching and
sampling instants).

being both the final measurement time and the end of
the duration of a single movement by the plant, begin-
ning from initial states y(0). A target output for the
systemmay be prescribed at each measurement time, by
references r1 to rQ , although for the bulk of this paper
we will focus on a step-and-hold motion to a single
reference level, r . The on-off control input, meanwhile,
switches at P switching times �1 to �P ≤ tQ recorded in
vector s

s=[�1 �2 · · · �p]
o≤�1

�i−1≤�i , i =2, . . ., p

(4)

which, as illustrated in Fig. 2, results in the input to the
system being described over time by

u(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

umax, 0<t≤�1

0, �2i−1<t≤�2i , i =1,2, . . .,
P

2

umax, �2i<t≤�2i+1, i =1,2, . . .,
P

2

(5)

The differential equation (2) is taken to have a
real, though unknown, solution, wy , that may be written
as functions of the states at a given starting time, t0,
the current time, and the input, which may be further
simplified to solutions w0 and w1 over periods in which
the system is subject solely to an ‘off’ or ‘on’ input,
respectively:

yk(t) =wy(t− t0,y
k(t0),u

k(t))

=
{
w0(t− t0,yk(t0)), u(t)=0 ∀t>t0

w1(t− t1,y
k(t0)), u(t)=umax ∀t>t0

(6)
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While in general it is difficult to make statements
about the response of an unknown, nonlinear system to
a switching input, with certain assumptions about the
size of the unknown nonlinearity relative to a nominal
system, a number of facts may be concluded about the
system response. In contrast, the nominal linear system
evolves according to a known state transition matrix, �.
We combine this with forcing effects to denote the total
responses �0 and �1 as a function of time and initial
conditions when the system is purely in an ‘off’ or ‘on’
state for a specific period, respectively, as in

x(t) = �(t−t0)x(t0)+
∫ t

t0
eA(t−s)Bu(t)ds

=
{
�(t−t0)x(t0), u=0 ∀t>t0

�(t−t0)x(t0)+�(t−t0), u=umax ∀t>t0
(7)

The nonlinear portions of the system are assumed
to be bounded as a function of both absolute and relative
magnitudes of the states, according to

|fy(y′(t))−fy(y(t))| ≤ C′
y |y′(t)−y(t)|

|fu(y′(t))−fu(y(t))| ≤ C′
u |y′(t)−y(t)|

(8)

|fy(y(t))| ≤ Cy|y(t)|
|fu(y(t))| ≤ Cu |y(t)|

(9)

where Cy , Cu , C′
y , and C′

u are matrices with real,
non-negative entries, fy =[ f y1, fy2, . . ., f yn]T, fu =
[ fu1, fu2, . . ., fun]T, y=[y1, y2, . . ., yn]T, and y′ =
[y′

1, y
′
2, . . ., y

′
n]T.

The nonlinear system, like the nominal linear
system, is assumed to be asymptotically stable. When
the input is ‘off’, the equilibrium position is assumed
to be y=0, while the equilibrium position for an ‘on’
input is not necessarily known.

Finally, we assume that an upper bound, xmax, on
the maximum values of the states is known, or

|x|<xmax (10)

This bound does not need to be known very accu-
rately, and is used only to provide a starting point for a
numerical integration during convergence analysis.

III. CONTROLER DESIGN

Conceptually, the goal of the iterative controller
for a micro-robotic leg joint is to drive the joint to a

desired output angle or displacement, r , with little over-
shoot or oscillation, despite the availability of only two
input levels (‘on’ and ‘off’) and relatively sparse posi-
tion sensor measurements. The controller should use
measurements from a previous step or steps to adjust
the on-off switching times in the next iteration, and
converge over several iterations to a smooth stepping
motion. The system is assumed to start each in the equi-
librium position, with initial conditions

yk(0)=0, ẏk(0)=0, . . .,
dn(yk)
dtn

∣∣∣∣
t=0

=0 (11)

Each iteration of actuator motion under the iter-
ative adaptive controller has duration tQ , with suffi-
cient time before the next iteration to return to the
system’s equilibrium position in the ‘off’ state. While
the exact model of the system, may be unknown, the
known information about the system in (1)–(3) and (7)–
(9) guides the on-off switching rule formulation for the
desired task. During analysis of this adaptation rule, the
response of the system in the K th iteration is denoted
with a superscript K above the variables of interest,
such that the actual response, nominal response, input,
and switching time vector, respectively, are denoted by
yK (t), xK (t), uK (t), and �K . Time t is reset to zero at
the beginning of each iteration, so all switching times
andmeasurement times are measured relative to the start
of the iteration marked.

For specifically controlling a smooth stepping
motion of the system, we will adapt only three inde-
pendent switching times. First, there will be an initial
pulse length, �p =�1, that is intended to drive the value
of y to a target output value r at the first measure-
ment time t1, roughly corresponding to the peak level
of the response. The second switching time, �s =�2,
regulates the standby time of the first ‘off’ period,
attempting to keep the output at the second measure-
ment equal to that of the first, before entering a periodic
on-off switching pattern initiated and regulated by
the third independent switching time, �d . Beginning
in this third time period, the input to the system is
switched ‘on’ at a constant frequency and duty cycle
determined by �d , as illustrated in Fig. 3. After a
period tQ , the input to the system is turned ‘off’ and
the system is then assumed to be allowed sufficient
time to return to the equilibrium position with zero
(‘off’) input, and the next iteration begins. This generic
approach to on-off control provides a simple method
for guiding micro-robotic leg joints to a desired motion,
while reducing the number of independent switching
times to be adapted to three specific time intervals
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Fig. 3. Definition of switching times and sample times for a
specific step controller.

between transitions, each reflecting a phase of step
motion.

3.1 Measurement data

Since only limited sensor measurements are
desired to maintain a relatively slow sampling rate,
the target outputs for the resulting motion are limited
to certain functions of these few measurements. To
perform the stepping motion described above, relevant
output measurements are selected to represent common
phenomena in dynamic system step responses:

yKp : The first measurement taken, such that yKp =
yK1 (t1), corresponding to the approximate peak value of
the output in a single iteration of the stepping motion.

yKs : The next sampled value after the apparent
peak, yKs = yK1 (t2), when approximately the steady-
state ‘hold’ behavior of the controller will have
begun.

yKd : The average value of the remaining measure-
ments before some final end time tQ . During this period,
an approximately steady state response should occur
maintaining the output of the controller near the refer-
ence level.

3.2 Adaptation law

Given the control parameters to be adjusted, �p , �s ,
and �d , and measurements, yp , ys , and yd , a very simple
adaptation law can be implemented to adjust micro-
robotic leg motion. In this law, the next set of control
parameters for each adaptation cycle can be estimated

by current control parameters and current performance
measurements as follows:

�K+1
p = �Kp +�p(r− yKp )

�K+1
s = �Ks +�s(y

K
s − yKp )

�K+1
d = �Kd +�d(r− yKd )

(12)

where �p , �s , and �d are adaptive control constants
and obtained by convergence analysis for the proposed
controller, which is described in the next section.
This adaptation law was selected to imitate propor-
tional control of the measurements of interest, which
allows both extremely simple implementation and
tractable, though much more complex, convergence
analysis. Other adaptation laws could be tested using
more complex functions of the measurements, but
the adaptation rule in (12) has proven to provide
sufficient performance for the target micro-robotic
application.

The control law is implemented using the on-off
decision rule shown in equation (13).

u=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if

⎧⎪⎨
⎪⎩

�p<t≤�s

�s+
(
k

f
+�d

)
<t≤�s+

(
k+1

f

)
⎫⎪⎬
⎪⎭

umax if

⎧⎪⎨
⎪⎩

0<t≤�p

�s+
(
k

f

)
<t≤�s+

(
k

f
+�d

)
⎫⎪⎬
⎪⎭ (13)

where f is a desired switching frequency in the steady-
state phase, selected by the designer, and k is a counting
variable for the number of steady-state switches, k=
0,1,2, . . .,kmax, occurring before the end time for the
iteration, tQ .

IV. CONVERGENCE ANALYSIS
APPROACH

4.1 Requirement for convergence

The behavior of a system of the type described in
(1)–(3) under the adaptation law (12) may be viewed
as a discrete time dynamic system, with equilibrium
points from (12) of yp =r , ys = yp, and yd =r . It may
be possible for the system to converge to these equilib-
rium points as K →∞ under the given adaptation law
if there are some ranges of switching times, s∗p , s∗s and
s∗d and maximum allowable changes in switching times,
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��p,max>0, ��s,max>0, and ��d,max>0, such that⎧⎪⎪⎨
⎪⎪⎩

�Kp ∈�∗
p, 0<(�K+1

p −�Kp =��K+1
p )<��p,max

�Ks ∈�∗
s , 0<(�K+1

s −�Ks =��K+1
s )<��s,max

�Kd ∈�∗
d , 0<(�K+1

d −�Kd =��K+1
d )<��d,max

⇒

⎧⎪⎪⎨
⎪⎪⎩
yK+1
p > yKp

yK+1
s < yKs

yK+1
d > yKd

or

⎧⎪⎪⎨
⎪⎪⎩

�Kp ∈�∗
p, −��p,max<(�K+1

p −�Kp =��K+1
p )<0

�Ks ∈�∗
s , −��s,max<(�K+1

s −�Ks =��K+1
s )<0

�Kd ∈�∗
d , −��d,max<(�K+1

d −�Kd =��K+1
d )<0

⇒

⎧⎪⎪⎨
⎪⎪⎩
yK+1
p < yKp

yK+1
s > yKs

yK+1
d < yKd

(14)

If this is the case, then there will also exist some
�p , �s , and �d small enough to ensure that

|yK+1
p −r |<|yKp −r |

|yK+1
s − yK+1

p |<|yKs − yKp |
|yK+1

d −r |<|yKd −r |
(15)

for �Kp ∈s∗p , �Ks ∈s∗s and �Kd ∈s∗d . Switching times within
these ranges are then guaranteed to move the measured
outputs closer to their targets in the next time step.

To ensure convergence to the targets themselves, a
closed subset of switching time ranges, s∗cp ,s∗cs and s∗cd ,

must be identified such that �K+1
p ∈s∗cp , sK+1

s ∈s∗cs , and

�K+1
d ∈s∗cd if �Kp ∈s∗cp , �Ks ∈s∗cs , and sKd ∈s∗cd . In addi-
tion, for a given r, yp =r , ys = yp, and yd =r must be
known to exist for some set of switching times among
s∗cp , s∗cs , and s∗cd . The convergence criteria above are
ensuring that a function J (K) defined by the measure-
ment errors, ep , es , and ed , as

J (e(K )) = |ep(K )|+|es(K )|+|ed(K )|
= |yKp −r |+|yKs − yKp |+|yKd −r | (16)

is being reduced from step K to K +1 due to (15) if
�Kp ∈s∗p , sKs ∈s∗s and �Kd ∈s∗d , and that this must further
be true in ensuing steps if both the switching time set is
closed for a given set of adaptation gains and r may be
reached for some set of switching times within the set.
In other words, with e(K )=0 the equilibrium point for
(12), D a closed set of switching times satisfying (14),
D=[s∗cp s∗cs s∗cdc], that contains some set of switching
times corresponding to e(K )=0 in Rn , and J :D→R a
continuously differentiable function with respect to K ,
then we can select �p , �s , and �d small enough that

J (0)=0 and J (e(K )) > 0 in D−{0}
J (e(K +1))− J (e(K )) < 0

(17)

is true throughout D, with the second statement in (17)
being true due to (15). Then, (16) can be a Lyapunov
function and the convergence criteria (14) are ensuring

asymptotically stable convergence in a Lyapunov sense
within the closed set of switching times.

4.2 Effects of changes to switching times

In order to identify regions s∗cp , s∗cs and s∗cd for
various potential references, r , the known, nominal
effects of incremental changes in switching times must
be compared to uncertainties in these effects due to
the unknown nonlinearities in the system model. To do
this, the deviation in possible outputs from the nominal
response of the system must first be found. Given the
nominal system described by states x, and the real, but
unknown system described by states y, define the error
between the systems, z, having dynamics

ż(t) = ẏ(t)− ẋ(t)

=Ay(t)+ f y(y(t))+Bu(t)+ fu(y(t))u(t)

−Ax(t)−Bu(t)

=Az(t)+ f y(y(t))+ fu(y(t))u(t) (18)

having time response

z(t) = eA(t−t0)z(t0)

+
∫ t

t0
eA(t−s)[ fy(y(s))

+ fu(y(s))u(s)]ds (19)

where t0 is an arbitrary starting point from which
error z(t) is to be calculated. Because the precise error
is unknown, the magnitude of error may merely be
bounded, with the bound defined as a function of time
by �(t),

|z(t)| ≤ �(t)=|eA(t−t0)|�(t0)

+
∫ t

t0
|eA(t−s)|[Cy(|x(s)|

+�(s))+Cy(|x(s)|+�(s))u(s)]ds (20)
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Given an upper bound on error at time t0, �(t)
may be calculated numerically, as by iterating from a
loose initial guess for |z(t)|, such as 2xmax. This typi-
cally results in a bounded �(t) reflecting a growing
uncertainty in the true system response compared to the
nominal system.

To examine the change in system outputs from
one time step to the next, we illustrate our procedure
by first considering the change in system response at
the 2nd switching time, �2, which concludes an ‘off’
period. First, using (6), we may separate the change in
response according to

yK+1(�K+1
2 )−yK (�K2 )

=�0(�
K+1
2 −�K+1

1 ,yK+1(�K+1
1 ))

−�0(�
K
2 −�K1 ,yK (�K1 ))

=
∫ �K+1

2 −�K+1
1

�K2 −�K1

�̇0(t,y
K+1(�K+1

1 ))dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 )) (21)

where the component under the integral reflects the
change in the response due to the change in the dura-
tion of the ‘off’ period, and the remaining terms reflect
the influence of the change in initial conditions for
the ‘off’ period due to changes in previous time steps
(in this case, �1). At times, it is more convenient to
express this shift using the general solution to dynamics
from (6) as

yK+1(�K+1
2 )−yK (�K2 )

=
∫ �K+1

2

�K2 +�K+1
1 −�K1

�̇0(t−�K+1
1 ,yK+1(�K+1

1 ))dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 ))

=
∫ �K+1

2

�K2 +��K+1
1

�̇y(t−�K+1
1 ,yK+1(�K+1

1 ),uk+1(t))dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 )) (22)

Inserting dynamics from (2) into the integral portion of
(22) and separating it) into nominal and error compo-

nents and using (6) and (7) gives

yK+1(�K+1
2 )−yK (�K2 )

=
∫ �K+1

2

�K2 +��K+1
1

ẏK+1(t)|t0=�K+1
1

dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 ))

=
∫ �K+1

2

�K2 +��K+1
1

ẋK+1(t)|t0=�K+1
1

dt

+
∫ �K+1

2

�K2 +��K+1
1

[A(yK+1(t)−xK+1(t))

+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=�K+1

1
dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 )) (23)

from which nominal dynamics under the integral may
be used to create nominal and error components for the
remainder of the expression,

yK+1(�K+1
2 )−yK (�K2 )

=xK+1(�K+1
2 )|t0=�K+1

1

−xK+1(�K+1
2 +��K+1

1 )|t0=�K+1
1

+
∫ �K+1

2

�K2 +��K+1
1

[A(yK+1(t)−xK+1(t))

+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=�K+1

1
dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�0(�
K
2 −�K1 ,yK (�K1 ))

=�(�K+1
2 −�K+1

1 )xK+1(�K+1
1 )

−�(�K2 −�K1 )xK (�K1 )

+
∫ �K+1

2

�K2 +��K+1
1

[A(yK+1(t)−xK+1(t))

+fy(y
K+1(t))
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+fu(y
K+1(t))uK+1(t)]|t0=�K+1

1
dt

+�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�(�K2 −�K1 )xK+1(�K+1
1 )

−�0(�
K
2 −�K1 ,yK (�K1 ))

+�(�K2 −�K1 )xK (�K1 )

=xK+1(�K+1
2 )−xK (�K2 )

+
∫ �K+1

2

�K2 +��K+1
1

[A(yK+1(t)−xK+1(t))

+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=�K+1

1
dt

+[�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))

−�(�K2 −�K1 )xK+1(�K+1
1 )

−�0(�
K
2 −�K1 ,yK (�K1 ))

+�(�K2 −�K1 )xK (�K1 )] (24)

In the above equation, the change in nominal
response, xK+1(sK+1

2 )−xK (sK2 ) is easily calculated,
while the remaining terms may be bounded. First,

∫ �K+1
2

�K2 +��K+1
1

[A(yK+1(t)−xK+1(t))+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=�K+1

1
dt

≤ max
(�K2 +��K+1

1 ,�K+1
2 )

[|A|�K+1(t)

+Cy(|xK+1(t)|+�K+1(t))

+Cu(|xK+1(t)|+�K+1(t))uK+1(t)]
·|��K+1

2 −��K+1
1 |≡�K+1

DT (�K+1
2 ) (25)

with the right-side portion of (25) in brackets acting as
an upper bound on the rate of change of error between
the nominal and true response over the change in ‘off’
duration, and the quantity �DT (t) denoting an upper
bound on error in the estimated change in response due
to change in duration of the current ‘on’ or ‘off’ period
at time t .

The influence of changing initial conditions for the
‘off’ period is more complicated to bound, following a

procedure similar to that for bounding z(t). A second
set of error states, zIC , is defined as

zK+1
IC = � j (t− t0,y

K+1(t0))−�(t− t0)x
K+1(t0)

−� j (t− t0,yK (t0))+�(t− t0)xK (t0) (26)

to evaluate the difference in two responses begin-
ning from different initial conditions, with j= 0 or 1
depending on whether the system is in the ‘on’ or ‘off’
case over the current time period. This error evolves
according to dynamics (18)

żK+1
IC (t) =A� j (t− t0,yK+1(t0))

+ fy(� j (t− t0,yK+1(t0)))+BuK+1(t)

+ fu(� j (t− t0,yK+1(t0)))u
K+1(t)

−A�(t− t0)xK+1(t0)−BuK+1(t)

−A� j (t− t0,yK (t0))

+ fy(� j (t− t0,yK (t0)))+BuK (t)

+ fu(� j (t− t0,y
K (t0)))u

K (t)

−A�(t− t0)xK (t0)−BuK (t)

=AzK+1
IC (t)+ f y(� j (t− t0,yK+1(t0)))

− fy(� j (t− t0,yK (t0)))

+ fu(� j (t− t0,yK+1(t0)))u
K+1(t)

− fu(� j (t− t0,yK (t0)))u
K (t) (27)

and it may be noted that within a given ‘on’ or ‘off’
period in the sequence of inputs, uK (t) and uK+1(t)
will have the same value. An upper bound on error due
to a change in initial conditions for the current ‘on’ or
‘off’ period, �IC (t), may be applied that is obtained
numerically from

|zK+1
IC (t)| ≤ �K+1

IC (t)=|eA(t−t0)|�K+1
IC (t0)

+
∫ t

t0
|eA(t−s)|[Cy(|xK+1(s)−xK (s)|

+�K+1
IC (s))+Cu(|xK+1(s)−xK (s)|

+�K+1
IC (s))u(s)]ds. (28)

Applying (26)–(28) to remaining term of (24),

|�0(�
K
2 −�K1 ,yK+1(�K+1

1 ))−�(�K2 −�K1 )xK+1(�K+1
1 )

−�0(�
K
2 −�K1 ,yK (�K1 ))−�(�K2 −�K1 )xK (�K1 )|

≤|eA(�K2 −�K1 )|�K+1
IC (�K+1

1 )
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+
∫ �K2

�K1

⎛
⎜⎜⎝

|eA(t−s)|[Cy(|xK+1(s)−xK (s)|
+�K+1

IC (s))+Cu(|xK+1(s)

−xK (s)|+�K+1
IC (s))u(s)]

⎞
⎟⎟⎠ ds

=�K+1
IC (�K2 ) (29)

where the initial error for this period, �K+1
IC (�K+1

1 ), is
any error due to change in the previous switching times,
which in this case is only the effect of the change in
‘on’ time, �K+1

1 versus �K1 . The bound here, �K+1
IC (�K2 )

is the maximum effect of changes in initial conditions
for the current ‘on’ or ‘off’ phase of motion, assuming
the previous switching time were used during this
phase (while effects of the change in duration of this
‘on’ or ‘off’ phase on overall behavior is captured in
(25)). Therefore, using same procedure of (23)–(25)
and assumption (11), we can obtain a relation,

�K+1
IC (�K+1

1 )

=|yK+1(�K+1
1 )−yK (�K1 )|max

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xK+1(�K+1
1 )−xK (�K1 )+

∫ �K+1
1

�K1 +��K+1
0

[A(yK+1(t)

−xK+1(t))+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=0 dt

+[�1(�
K
1 −0,yK+1(�K+1

0 ))

−�(�K1 −0)xK+1(�K+1
0 )

−�1(�
K
1 −0,yK (�K0 ))+�(�K1 −0)xK (�K0 )]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
max

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xK+1(�K+1
2 )−xK (�K2 )+

∫ �K+1
1

�K1

[A(yK+1(t)

−xK+1(t))+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=0 dt

+[�1(�
K
1 ,yK+1(0))

−�(�K1 )xK+1(0)−�1(�
K
1 ,yK (0))

+�(�K1 )xK (0)]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
max

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xK+1(�K+1
2 )−xK (�K2 )

+
∫ �K+1

1

�K1

[A(yK+1(t)−xK+1(t))

+fy(y
K+1(t))

+fu(y
K+1(t))uK+1(t)]|t0=0 dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
max

= max
(�K1 ,�K+1

1 )

[|A|�K+1(t)+Cy(|xK+1(t)|

+�K+1(t))+Cu(|xK+1(t)|
+�K+1(t))uK+1(t)]·|��K+1

1 |
≡�K+1

DT (�K+1
1 ) (30)

that reflects the fact that the initical conditions for
the first ‘on’ step are constant, but in later time steps
becomes the cumulative effect of switching time
changes at previous transitions, or in other words, for
the Q-th switching time,

�K+1
DT (�K+1

Q )

≤ max
(�KQ+��K+1

Q−1,�
K
Q)

⎡
⎢⎢⎣

|A|�K+1(t)+Cy(|xK+1(t)|
+�K+1(t))+Cu(|xK+1(t)|
+�K+1(t))u(t)

⎤
⎥⎥⎦

×|��K+1
Q −��K+1

Q−1|
�K+1
IC (�KQ)

≤
[
Q−1∑
q=1

|eA(�KQ−�Kq )|(�K+1
DT (�K+1

q )+�K+1
IC (�Kq ))

]

+
∫ �KQ

�KQ−1

|eA(t−s)|

×

⎡
⎢⎢⎣
Cy(|xK+1(s)−xk(s)|

+�K+1
IC (s))+Cu(|xK+1(s)

−xk(s)|+�K+1
IC (s))u(s)

⎤
⎥⎥⎦ ds (31)

4.3 Application to convergence analysis

At a measurement point, which occurs at the
same time in each iteration, the most recent switching
time must be identified, denoted by index Qp , in order
to find uncertainty in the effects of the changes in
switching times from iteration K to iteration K +1,
becoming

Qp =max(q|�q<tp)

�K+1
DT (tp)≤ max

(tp+��K+1
Qp

,tp)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|A|�K+1(t)

+Cy(|xK+1(t)|
+�K+1(t))

+Cu(|xK+1(t)|
+�K+1(t))u(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

|��K+1
Qp

|

�K+1
IC (tp) ≤

[
Qp∑
q=1

|eA(tp−�Kq )|(�K+1
DT (�K+1

q )

+�K+1
IC (�Kq ))

]

+
∫ tp

�KQp

|eA(t−s)|

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cy(|xK+1(s)−xk(s)|
+�K+1

IC (s))

+Cu(|xK+1(s)−xk(s)|
+�K+1

IC (s))u(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
ds (32)

Thus, (32) gives the uncertainty in the change in
output at the measurement points from one iteration
to the next, which may be compared with the nominal
change in output to determine whether yp , ys , and yd
are certain to move in the desired directions. In other
words, combinations of �p , �s , �d , are evaluated as to
whether⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xK+1
p > xKp & |xK+1

p −xKp |>�K+1
DT (t1)

xK+1
s < xKs & |xK+1

s −xKs |>�K+1
DT (t2)

+�K+1
IC (t2)

xK+1
d > xKd & |xK+1

d −xKd |> 1

Q+1

×
Q∑

q=2
(�K+1

DT (tq)+�K+1
IC (tq))

(33)

for some ��p>0, ��s>0, ��d>0, where xp , xs , and xd
are defined in the same manner as yp , ys , and yd , but
for the nominal states, x. If (33) is satisfied for some
candidate switching times, then the behavior of the true
response is will satisfy (14) for at least these switching
times and shifts in switching times.

To create a closed set of �p , �s and �d in which
the measured outputs to move towards their targets, a

second criterion must be applied, based on a specific
reference r and set of adaptation gains, that requires

�Kp +�p(r−xKp +�K (t1))∈�∗c
p

&�Kp +�p(r−xKp −�K (t1))∈�∗c
p

�Ks +�s(x
K
s −xKp +�K (t2)+�K (t1))∈�∗c

s

&�Ks +�s(x
K
s −xKp −�K (t2)−�K (t1))∈�∗c

s

�Kd +�d

(
r−xKd + 1

Q−1

Q∑
q=1

�K (tq)

)
∈�∗c

d

&�Kd +�d

(
r−xKd − 1

Q−1

Q∑
q=1

�K (tq)

)
∈�∗c

d

(34)

Ranges of switching times s∗cp , s∗cs and s∗d
whose content satisfy both (33) and (34) for a given
reference, r , define a region in which the measured
outputs will converge to their target values. One
necessary condition (though not sufficient, alone)
for a region satisfying (34) to exist is that within a
continuous subset of s∗p , s∗s and s∗d there exists a �p ,
�s and �d resulting in xp+�(t1)<r , xs+�(t2)<r ,

and xd + 1
Q−1

∑Q
q=1�(tq)<r , and some other �p , �s

and �d resulting in xp−�(t1)>r , xs−�(t2)>r , and

xd − 1
Q−1

∑Q
q=1�(tq)>r . In other words, it is not

possible to guarantee that switching times will remain
within a closed region if it is not guaranteed to contain
switching time selections resulting in outputs below
and above the final reference value. While this fact
alone may not guarantee convergence, it can be useful
for initial evaluation of reference values that may work,
by choosing

r< max
�p,�s ,�d∈�∗

p,�∗
s ,�

∗
d

(
min

(
xp−�(t1), xs−�(t2),

xd − 1

Q−1

Q∑
q=1

�(tq)

))

r> min
�p,�s ,�d∈�∗

p,�∗
s ,�

∗
d

(
max

(
xp+�(t1), xs+�(t2),

xd + 1

Q−1

Q∑
q=1

�(tq)

))

(35)
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V. CONVERGENCE ANALYSIS FOR A
SECOND-ORDER MICROACTUTOR

To illustrate the use of the convergence analysis in
Section IV, and to prove convergence to certain values
of r for the experimental system used in system vali-
dation, convergence analysis is performed for a 2nd-
order piezoelectric microactuator. The nominal actuator
model is[

ẋ1(t)

ẋ2(t)

]
=

[
0 1

−38590 −12.1

][
x1(t)

x2(t)

]

+
[

0

32300

]
u(t) (36)

and the nonlinear model has the form[
ẏ1(t)

ẏ2(t)

]
=

[
0 1

−38590 −12.1

][
y1(t)

y2(t)

]

+
[

0 0

fy1(y1(t)) f y2(y2(t))

]

+
[

0

4476+ fu2(y2(t))

]
u(t) (37)

The unknown functions fy1(y1) and fu2(y1) are
used to encompass nonlinearities due to piezoelectric
hysteresis and nonlinear actuator gain as reflected
in system gain and natural frequency behavior, and
unknown function fy2(y2) accounts for uncertainty
about the damping coefficient of the system. These
nonlinear functions are estimated to have bounds of

| fy1(y1(t))|≤1839|y1(t)|,
| fy2(y2(t))|≤2.4|y2(t)|,
| fu2(y2(t))|≤223|y2(t)|
| fy1(y′

1(t))− f y1(y1(t))|≤7718|y′
1(t)− y1(t)|

| fy2(y′
2(t))− f y2(y2(t))|≤9.6|y′

2(t)− y2(t)|
| fu2(y′

2(t))− fu2(y2(t))|≤446|y′
2(t)− y2(t)|

(38)

based on prior experimentation with thin-film piezo-
electric actuators. These bounds reflect approximately
5% uncertainty in spring stiffness and gain and 20%
uncertainty in damping ratio. These levels are actu-
ally much larger than uncertainty about the meso-scale
piezoelectric actuator used for experimental testing [1]
but consistent with model uncertainty for micro-scale
piezoelectric actuators [15] for which the control algo-
rithm is ultimately targeted (micro-scale actuators are
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Fig. 4. Sample Nominal ResPonse to a Switching Input and
bounds on uncertainty in output relative to response
due to Bounded, Unknown nonlinearities.

not yet used for experimental testing as current proto-
types lack integrated sensing, although such sensors
have been demonstrated on vertical piezoelectric actu-
ators created by the same microfabrication process).

Under the uncertainty listed, matrices Cy , Cu , C′
y ,

C′
u become

Cy =
[

0 0

1839 2.4

]
, Cu =

[
0 0

223 0

]
,

C′
y =

[
0 0

7718 9.6

]
, C′

u =
[

0 0

446 0

] (39)

The ‘on’ input for the system tested is taken to be umax=
15V, and samples are taken every 0.083 s.

Using the systemmodel above, xK and�K are first
calculated numerically for ranges of potential switching
times, 0<�p<0.0083s, 0.0083s<�s<0.0166s, and
0<�d<0.0083s. For an illustration of the uncertainty
margins in comparison to the nominal response,
Fig. 4 shows a sample response when �p =0.001s,
�s =0.009s, and �d =0.003s surrounded by the associ-
ated error bounds, with sensor updates to the estimated
output at the sampling points. As can be seen, error
bounds grow over time, such that there use to draw
conclusions about the system is limited to transient
responses, with typical duration on the order just a few
times the period of an underdamped system such as
that in this example.

Next, the nominal response in the next iteration,
xK+1, uncertainty in the full response, DK+1, and
uncertainty in the change in response with respect
to switching times, �K+1

DT and �K+1
IC are calculated

numerically for hypothetical changes in switching
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times ��K+1
p , ��K+1

s , and ��K+1
d . As an illustra-

tion of the behavior observed, Fig. 5(a) shows the
change in nominal response at the first measurement
point, xK+1

p −xKp as a function of �Kp and ��K+1
p ,

while Fig. 5(b) shows the total uncertainty at time t1,
�K+1
DT (t1)+�K+1

IC (t1). For this first output, we observe
that the effect of a change in switching time �p has
a much larger effect on the output than uncertainty at
time t1, so that increasing �p can be reliably expected
to increase yp for this systems. The latter outputs, ys ,
and yd , face much greater uncertainty in the response,
due to the growing error bounds, and more complicated
dependence on switching times, with limits on �Ks
and ��K+1

s being especially strict. Fig. 6 shows the
maximum change, ��K+1

s , for various values of �Ks and
�Kd that satisfies the desired properties for xs and xd
from (33), for a sample value of �p , �p =0.003s.

Tabulating all �Kp , �Ks , and �Kd for which (14)
is satisfied for ��K+1

p <100�s, ��K+1
s <10�s, and

��K+1
d <100�s produces ranges s∗p , s∗s and s∗d as shown

in Fig. 7(a). To convert these bounds on changes in
switching times to adaptation law gains, the maximum
and minimum possible values for each output are
calculated, to produce

�p <
��p,max

max
�p ,�s ,�d∈�∗p ,�∗s ,�∗d

��p<��p,max

(|xk+1
p −xkp|+�k+1(t1))

�s <
��s,max

max
�p ,�s ,�d∈�∗p ,�∗s ,�∗d

��s<��s,max

(|xk+1
s −xk+1

p −xks −xkp|+�k+1(t2)+�k+1(t1))
(40)

�d <
��d,max

max
�p ,�s ,�d∈�∗p ,�∗s ,�∗d

��d<��d,max

(|xk+1
d −xkd |+ 1

Q−1

∑Q
q=1�k+1(tq))

giving feasible �p<0.011, �s<0.0091, and �d<0.0085
for this specific system (note that K and K +1 do not
correspond to a specific time step above, but are retained
in (40) to signify the change in response for each candi-
date switching time and increment in switching time
evaluated). In addition, candidate reference values, r ,
for convergence analysis are selected using (35), with
0.16<r<0.65 guaranteed for some values of �Kp , �Ks ,
and �Kd in s∗p , s∗s , and s∗d . The closed set of switching
times satisfying (34) as well as (14) for a sample target
of r=0.5 and ��K+1

p <100ms, ��K+1
s <10ms, and

��K+1
d <100ms is indicated by darker dots in Fig. 7,

with candidate switching times from the margins of the
tested region and those that could, given uncertainty,

respond to a perturbation in switching by pushing the
response out of the set discarded. The outcome of the
analysis, then, is that for various references, r , a set
of s∗cp , s∗cs and s∗cd may potentially be found that can
be used to select an initial switching time guess, from
which the adaptation algorithm will converge to the
corresponding target values.

VI. SIMULATION AND EXPERIMENTAL
RESULTS

Controller performance was first tested in simu-
lation on a variety of linear and nonlinear systems. A
sample response is shown in Fig. 8, for the following
nonlinear system having the same nominal linear
dynamics as the actuator used for experimental testing,

ẏ1(t) = y2(t)

ẏ2(t) = −38400y1(t)−1920y1(t) sin(10y1(t))

−12y2(t)−2.4y2(t)+32300u(t) (41)

Convergence was evaluated for a step duration
of 0.025 s as above, using �p =0.01, �s =0.002, and
�d =0.008 for the adaptation parameters and umax=
15. We observe generally fast adaptation of the simu-
lated systems to which the controller is applied, with
convergence typically occurring in fewer than 30 time
steps. Experience with simulations indicated, as would
be expected, that the convergence analysis is conserva-
tive, as systems are frequently observed to converge to
target outputs when given initial switching time guesses
or adaptation gains outside the guaranteed ranges for
convergence. On the other hand, pure guessing of adap-
tation gain values rarely results in effective convergence,
such that the convergence analysis was quite useful in
controller testing on simulated systems.
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Fig. 5. (a) Nominal Change In Output at First Measurement
Point (xp) As a function of First switching time in
current iteration (�p) and change in First switching
time Next Iteration (��p) and (b) Magnitude of
possible error in estimate of Change in output at first
measurement oint(|yK+1

p −xK+1
p − yKp −xKp |).
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Fig. 6. Maximum change in second switching time (��s )
satisfying convergence Criteria As a function of
switching times �s and �d for �p =0.003s.

To evaluate the performance of the proposed iter-
ative on-off controller experimentally, the controller is
applied to a piezoelectric actuator test bed shown in
Fig. 9. The actuator tested was a 40mm long, 10mm
wide Ceratec bimorph actuator with a natural frequency
of approximately 100Hz. A strain gage was attached to
the actuator to measure deflection, with output of the
system being output voltage of the strain gage sensing
circuit normalized to an output of 1 when the actuator
is at its maximum steady-state displacement. Mass was
added to the tip of the actuator to reduce the natural
frequency of the experimental apparatus to 31.26Hz
and the damping ratio of the experimental system was
0.0307, to resemble the properties of a projected micro-
robotic leg carrying a payload.

The control signal is generated on a TMS320F28
335 digital signal processor, with an H-bridge circuit

Fig. 7. Region of switching times for which some incremental
change in switching time satisfies convergence
criterion for at least one iteration (dotted points);
closed region of switching times satisfying
convergence conditions when R=0.5 (circled points).
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Fig. 8. Simulation response of an arbitrary nonlinear function
satisfying nonlinearity bounds.

acting as the on-off interface between the low-voltage
DSP and a 15V supply for the actuator. For testing
a converging case, the controller used �p =0.009,
�s =0.009, �d =0.0002, f =150Hz, and measurements
taken every 0.0083 s, or at a 120Hz sampling rate.
For testing a non-converging case, the controller used
�p =0.024, �s =0.009, �d =0.0002, f =150Hz, and
ts =0.0083sec. As during the convergence analysis
process of the simulated system (37), these control
constants, driving frequency, and sample time are
chosen to converge or to non-converge to a target
reference level at a final adaptation cycle.

Sample responses for two scenarios are shown
in Fig. 10(a) and (b). The experimental result with
converging parameters show a successful convergence
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Fig. 9. A piezoelectric actuator testbed.

Fig. 10. Sample experimental response: (a) converging case
and (b) non-converging case.

to the target reference level and has similar convergence
trend to the simulation result. In the final adaptation
cycle, system output rises successfully to the target
reference level with minimal overshoot, and holds the
system at the reference level using a limited number of
on-off switching transitions. In addition, these results
satisfy well the convergence criteria (14) and (15) as
shown in Table I. Once converged, the systemmaintains
its behavior over many additional iterations, with up to
several minutes repeated, with testing limited by data
collection limits. However, there exists higher-order
mode oscillation visible during the transient phase,
possibly due weakness of the connection with the added
mass. On the contrary, the experimental result with
non-converging parameters does not show a successful
convergence to the target reference level even if the
adaptation cycle is increased.

Table I. Measurement errors as K goes to infinity at
Figure 10(a).

|yKp −r | |yKs − yKp | |yKd −r |
K =1 0.268 0.088 0.468
K =3 0.052 0.064 0.012
K =5 0.012 0.008 0.008

VII. DISCUSSION

The primary benefit to implementing a servo
controller in this manner is that it requires much less
power than PWM or analog controllers implemented on
piezoelectric actuators. This will be extremely useful
for autonomous micro-robots based on thin-film lead-
zirconate-titanate (PZT) microactuators. For a typical
microactuator capacitance of 1 nF at 20V, energy
consumption to charge the actuator with a transistor
switching circuit is approximately 0.6�J per switch,
when both capacitive loads and leakage currents are
taken into effect, as measured on the prototype leg
joint. Total power consumption in actuation and drive
circuitry of the proposed control system, as well as
PWM control schemes, then depends on the switching
frequency utilized. Meanwhile, power consumption
for position sensing likewise increases with frequency.
As an illustration, current trends in low-power sensing
circuitry for capacitive sensors, a sensing modality
commonly utilized in MEMS, reflect an approximate
exponential relationship between power and sampling
frequency, in �W, of 1.6 f 0.65, derived by compiling
power consumption data from recent low-power capac-
itive sensing circuits [16, 17].

Given the state-of-the art circuit capabilities
above, it is possible to illustrate power consumption
versus the effective driving frequency and sampling
frequency of piezoelectric actuator control, as shown
in Fig. 11. Total power consumed is taken to be power
required to charge a sample piezoelectric actuator at
various driving frequencies plus the power consump-
tion of capacitive sensor operating at various sampling
frequencies. The regions showing at least local conver-
gence for the prototype micro-robot leg examined in
this paper using on-off control and a common PWM
algorithm are marked. The PWM algorithm shown for
comparison is a feedback PID controller designed to
bring the nominal linear system to the reference target
with zero overshoot and comparable rise time to the
on-off controller; the analog output of the PID controller
is applied to the piezoelectric actuation via pulse-width
modulation at the driving frequency. As can be seen,
limiting the number of switching transitions per leg
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Fig. 11. Power Consumption versus sampling time and
driving frequency for a 1nF Capacitive microactuator
with nominal natural frequency of 43 Hz, Damping
Ratio of 4%, and ‘On’ voltage of 20V.

movement (effectively drive frequency) and number of
measurements needed per motion (effectively sensing
frequency) can have a major effect on total system
power consumption.

The controller proposed here does face significant
limitations, however, due to its specialization for simple
implementation and power savings. While convergence
analysis can be applied to an arbitrary system, it is
complicated, and the numerical integrations involved
require significant calculation time. The corresponding
benefit of the approach is that convergence analysis
may be performed entirely off-line, providing guaran-
tees on convergence when only running the very simple
adaptation algorithm within an autonomous system.
In all cases, some bounds on nonlinearities of the
system must be known, and convergence analysis will
not generally work for long time durations of motion,
due to growing uncertainty about the response. The
controller as utilized on piezoelectric actuators here is
thus specifically intended to adapt transient motions.
Furthermore, convergence guarantees are only local and
are conservative, with a definite region of convergence
obtained but unlikely to show all initial conditions and
target motions that in reality would converge. And,
fundamentally, the control approach is only applicable
to systems where the same motion is to be repeated
many times, with approximately 10 iterations typically
needed, and as many as 40 required in some cases, to
converge to the desired step motion in simulation and
experimental testing. As a practical matter, implemen-
tation by the controller designer requires selection of a
desired driving frequency for the steady-state portion

of motion that balances power usage and oscillation
between switching instants for a given system.

Nonetheless, for autonomous micro-robotics this
controller has the potential to be a powerful tool in
regulation of walking gaits. Changing environments
and terrains can cause significant changes in dynamics,
yet model-based identification is comparatively power
and computation intensive. On the other hand, the
small size of micro-robots would typically correspond
to hundreds of repeated steps in any given condi-
tion, while the proposed algorithm utilizes relatively
simple calculations and low sampling within the robot
processor to bring about efficient motion. The smooth
step output, for the desired output measurements
selected, is useful for quasi-static walking, in which
a partial set of legs drive the robot forward and hold
it in place while lowering the remaining legs, which
then begin another step. Finally, our experiments in
simulation and on macro-scale piezoelectric actuator
testbeds indicate that while the range of error in
initial switching time estimates may not be determined
from our existing convergence test, the controller
tolerates large amounts of error in initial guesses, so
long as the other convergence checks on the nominal
system (such as adaptation parameters and driving
and switching frequencies) are satisfied. In addition,
optimization algorithms for nominal system models,
while overly complex for on-board processing, are
available, and may be used to assure that initial esti-
mates for on-off switching times are near their desired
targets [18].

While the specific controller explored in the bulk
of the paper relies on three specific switching time
parameters and three specific functions of the measure-
ments, the iterative adaptation of switching times can
be generalized to follow other transient responses using
the switching time definitions in (4) and the compar-
ison of nominal responses and their uncertainty from
Section 4.2. For the general case, convergence is most
easily analyzed when adapting a single switching time
between each measurement. In this scenario, conver-
gence can be analyzed sequentially, working forward
from the target output at the first measurement. If so,
the challenge becomes identifying target points that
are guaranteed to be reachable for each measurement
time.While growing uncertainty eventually will prevent
conclusions from being drawn about whether conver-
gence in the next measurement point can be guaranteed,
a novelty of this approach is that sensor measurements
can be planned for any point in time, and not at a fixed
rate, unlike most control systems. In addition, it should
be noted that full state feedback at any point in time
allows uncertainty in the ensuing response to be ‘reset’
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such that convergence analysis can be continued further
along the transient response.

VIII. CONCLUSION AND
FUTURE WORK

A model-free, iterative adaptive controller for
on-off control of dynamic systems, is proposed and
associated behavior with respect to control of piezo-
electric microactuators for autonomous micro-robots
is explored. The controller enables very low-power
control of such actuators when many stepping motions
are to be regulated. With careful selection of objec-
tives by the designer, convergence can be obtained
with relatively few output measurements, and on-off
control lends itself to implementation with very little
power and simple sensors and actuators. Simulation
studies indicate a wide range of controller applica-
bility for individual selections of controller parameters,
particularly in the range needed for control of proto-
type micro-robot leg joints. In experimental testing
on a macro-scale testbed, we have observed good
convergence in the presence of modest nonlinearities
and noise. Future work will seek more general state-
ments on rate of convergence, as well as means of
extending the duration of transient motions that can be
accommodated by the controller.
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