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Abstract

This is the first of a two-part introduction to some interpretive questions that arise in connection
with quantum field theories (QFTs). Some of these questions are continuous with those familiar
from the discussion of ordinary non-relativistic quantum mechanics (QM). For example, questions
about locality can be rigorously posed and fruitfully pursued within the framework of QFT. A
stark disanalogy between QFTs and ordinary QM — the former, but not the latter, typically admit
infinitely many putatively physically inequivalent realizations — prompts relatively novel questions,
questions about how to understand and adjudicate different strategies for equipping quantum theo-
ries with content. Part I sketches the fate of locality and related notions in QFT, then documents
the non-uniqueness unprecedented in ordinary QM but rampant in QFT. Part II presents founda-
tions issues raised by non-uniqueness.

1. Introduction

Philosophical discussion of non-relativistic quantum mechanics largely centers on two
issues that can be motivated by appeal to systems possessing a very few degrees of free-
dom. The first issue, quantum non-locality, is exemplified by the distant correlations
imposed by the spin singlet state, a state of a pair of electrons, each modeled as bivalent
(spin up or down). The second, the measurement problem, is exemplified by Schrodinger’s
cat, a bivalent (alive or dead) system coupled to a similarly bivalent (undecayed or
decayed) atom. A Hilbert space of four dimensions (spanned, in the spin singlet case, by
the simultaneous spin eigenvectors |+)|—=),|+)|+),|=)|—),| =) | +)) suffices for the ortho-
dox quantum treatment of each of these exemplary settings.

By contrast, quantum field theory (QFT), and the thermodynamic limit of quantum
statistical mechanics (QSM), address systems of infinitely many degrees of freedom. QFTs
arise by quantizing classical field theories, which assign real or complex numbers (the field
amplitudes) to every point of spacetime; to take the thermodynamic limit of QSM is to
let the number of microsystems (constituting a macrosystem with interesting bulk ther-
modynamic behavior) and the volume they occupy go to infinity while their density
remains finite. Grouping these theories under the heading of QM.., I aim in this two-part
contribution to chronicle some of the ways their foundational investigation rewards atten-
tion, both for deepening and extending themes already familiar from the philosophy of
ordinary QM and for introducing new questions that dramatize themes applicable to all
physical theories. Section 2 discusses a theme extended from ordinary QM to QFT:
locality and entanglement. Section 3 offers one account of the project of interpreting
physical theories. Sections 4-5, and Part II, survey a set of questions, questions this
account would brand interpretive, which are largely unprecedented in the foundations of
ordinary QM. These questions pertain to theories of QM.. in virtue of their admitting
(by the lights of ordinary QM) infinitely many physically inequivalent realizations. Section
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4 explains why this non-uniqueness does not arise in ordinary QM; Section 5 illustrates
how it can arise in theories that aren’t field theories. Part II introduces properly field the-
oretic examples of non-uniqueness and the interpretive questions they prompt.

These essays will be mathematically informal — I will presuppose only some familiarity
with the rudiments of ordinary non-relativistic QM (see Redhead (1988) or Hughes
(1989) for introductions) — and limited in scope. Halvorson and Miiger (2007) (for QFT)
and Sewell (2002) (for QSM) correct both these failings. Discussions of the renormaliza-
tion of interacting QFTs, along with important interpretive approaches neglected here
due to constraints of space, can be found in Huggett (2000), Teller (1995), Sklar (2002),
and Auyang (1995).

2. Locality and Entanglement

QM., can supply a new vantage from which to consider interpretive problems familiar
from ordinary QM. This section surveys some of QML..’s contributions to the discussion
of quantum non-locality." Phenomena accurately described by ordinary QM violate the
Bell’s inequalities, signalling that one of the assumptions generating those inequalities
must be false. Some these assumptions can be cast in a form strongly reminiscent of the
special theory of relativity (STR)’s folkloric ban on superluminal causal influence. This
has lent the question of whether QM and the STR can ‘peacefully coexist’ (Redhead
1983) urgency.

As urgent as the question is, as stated it lacks precision. STR is not readily understood
as a theory about causes and their admissible configurations. STR rather requires of
spacetime theories formulated in Minkowski spacetime that they be Lorentz covariant.
Non-relativistic QM, which is not a spacetime theory, is not subject to STR’s require-
ments. So the question of whether STR and QM are capable of peaceful coexistence can
be posed only after extensive precarious and heroic interpretive work — work addressing
exceedingly non-trivial questions such as how to understand relativistic constraints on
causal action in a stochastic setting — has been completed.

Another question — can there be Lorentz-covariant quantum theories? — is much more
tractable. Axiomatic algebraic approaches to QFT set up an association between open
bounded regions of a spacetime and algebras of observables. Section 4 will make the
notion of algebra more precise. For now, think of the algebra 2(O) associated with a
spacetime region O as a collection of magnitudes measurable in that regions. Axiomatic
algebraic QFT subjects such associations to axioms expressing natural desiderata. For
instance, an Isofony axiom requires algebras associated with spacetime regions to redupli-
cate the inclusion relations between those regions. Haag and Kastler’s (1964) axioms were
formulated with Minkowski spacetime in mind; Dimock’s (1980) generalize these. The
Haag—Kastler axioms include an axiom of Lorentz covariance. The existence of QFTs sat-
istying the Haag—Kastler axioms (including models of inferacting quantum fields in two or
three spacetime dimensions (Glimm and Jafte 1972)) positively settles the tractable version
of the peaceful coexistence question.

It is significant that the axiom of Lorentz covariance is logically independent of Haag and
Kastler’s Microcausality axiom, which requires algebras associated with space-like separated
regions — that is, regions none of whose points are connectable by signals travelling at or
below the speed of light — to commute with one another. This axiom, not the one
demanding compliance with STR in the form of Lorentz covariance, is generally taken
to express, and be motivated by, a ban on superluminal signal propagation. The intuition
underlying the motivation is that operators associated with spacelike separated regions
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correspond to measurements whose temporal order is different for different inertial
observers. Lest the quantum probabilities assigned outcomes of those measurements also
vary from observer to observer, it must not matter what order those operators act in; that
is, they must commute. But not even the microcausality axiom succeeds in guarding
QFTs against provocative non-local entanglements. The Reeh—Schlieder theorem, a con-
sequence of the standard axioms, is a striking example of this. The theorem concerns an
algebra A(O) of observables associated with an open bounded region O of spacetime,
e.g. a physics laboratory over the course of a fall afternoon. The Minkowski vacuum state
|0) is a state on the algebra associated with the entirety of spacetime, a state axiomatically
characterized in terms of the symmetries of Minkowski spacetime. The theorem states
that the set of states obtained by acting on |0) with elements of 2(O) is dense in the set
of possible states for all of spacetime. In other words, any state of an axiom-satistying
QFT on Minkowski spacetime can be approximated arbitrarily closely by acting on the
vacuum state by polynomial combinations of observables in 2[(O). If it were appropriate
to model events in the region O as applications of elements of A(O) to the global vac-
uum state, this would mean that machinations in local regions, such as physics laborato-
ries on fall afternoons, could produce arbitrary approximations of arbitrary global states!

The Reeh—Schleider theorem also implies that |0) is an eigenstate of no observable
associated with a finite spacetime region: this makes vacuum correlations ubiquitous, in
the sense that there is no local region with which the vacuum state associates a pure state.
Redhead (1995) illuminates the Reeh—Schleider theorem by explicating analogies
between the Minkowski vacuum state and how the spin-singlet state stands to algebras of
spin observables pertaining to its component systems. Summers and Buchholz (2005) is a
more recent, and more technical, account of the state of play. Thus work on non-locality
and holism initiated in the context of ordinary QM continues, and continues with a ven-
geance, in the context of QFT.

3. The Content of Physical Theories

QM. prompts questions without notable counterpart in the foundations of ordinary QM.
Consider a system of finitely many particles. Standardly, to quantize such a system is to
find what T'll call a Hilbert space representation of its quantum physics. That physics is
encapsulated by a set of relation between physical magnitudes, aka observables, pertaining
to the system: canonical commutation relations (CCRs), interrelating the positions and
momenta of mechanical systems, or canonical anticommutation relations (CARS), interrelating
different components of spin for spin systems. A Hilbert space representation of the quan-
tum physics of a given system, then, is a set of operators acting on a Hilbert space and
obeying the relations characteristic of that system at hand.”> These operators correspond to
fundamental physical observables. Other observables pertaining to the system correspond
to polynomials of, and limits of sequences of polynomials of, the representation-bearing
operators. A state of the system is a well-behaved expectation value assignment to these
observables. In this way, a Hilbert space representation of the CCRs or CARs constitut-
ing a quantum theory supplies a kinematics — an account of the possible states and the
magnitudes in their scope — for that theory.

Most interpretations of ordinary QM take quantum kinematics, in the form determined
by a Hilbert space representation, as their point of departure. From there, in pursuit of a
solution to the measurement problem, they typically proceed in different directions.
Some supplement the basic quantum observables with hidden variables; others append
schizophrenic dynamics riddled by measurement collapse; still others maintain that a
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quantum system can exhibit a determinate observable value its state cannot predict with
certainty. But interpreters of ordinary QM generally don’t worry that the basic Hilbert
space kinematics framing their interpretive dispute is the wrong kinematics. They don’t
worry, that is, that the instruction, ‘quantize this system’, could be carried out in multi-
ple, incompatible ways. They don’t worry about this because the Stone—von Neumann
uniqueness theorem tells them not to. The theorem states that all Hilbert space representa-
tions of the CCRs for a particular classical Hamiltonian theory of finitely many particles
stand to one another in a mathematical relation called unitary equivalence (see Summers
2001). Because unitarily equivalent Hilbert space representations agree, and agree system-
atically, in what expectation values they assign, and because expectation value assignments
are supposed to be the vehicle of the empirical content of quantum theories, unitary
equivalence is widely accepted as a standard of physical equivalence for Hilbert space rep-
resentations. It follows that variant representations of the CCRs for a given classical
Hamiltonian theory are simply and unalarmingly different ways of expressing the same
quantum kinematics. For finitely many spin systems subject to CARs, the Jordan—Wigner
theorem likewise guarantees uniqueness (see Emch 1972, 269-75). For systems of finitely
many particles, there is essentially only one way to follow the instruction: ‘quantize!’.

This brings us to novel interpretive matters dramatized by QM... QFT and the ther-
modynamic limit of QSM fall outside the scope of these uniqueness theorems. According
to very same criterion of physical equivalence by whose lights Hilbert space representa-
tions for ordinary quantum theories are reassuringly unique, a QM.. theory can admit
infinitely many presumptively physically inequivalent Hilbert space representations. This
raises a host of interpretive questions, some of which are sketched in the following sec-
tions. Section 4 offers a brief account of quantization and its uniqueness for ordinary
QM. Section 5 develops simple but provocative examples of the non-uniqueness of Hil-
bert space representations. Part Il continues the discussion with examples of non-unique-
ness drawn from QFT and the philosophical responses they elicit.

4. Quantization and Uniqueness

4.1 REPRESENTING THE CCRS/CARS

In classical Hamiltonian mechanics, the state of a simple mechanical system is given by its
position and momentum. The position and momentum variables ¢; and p; therefore serve
as coordinates for the phase space M of possible states of the system. System observables
are functions from M to the real numbers R. The position and momentum observables are
examples: they map points in phase space to their ¢; and p; coordinate values, respectively.
All other observables can be expressed as functions of these observables. Foremost among
these is the Hamiltonian observable H, which usually coincides with the sum of the sys-
tem’s kinetic and potential energies. The Hamiltonian helps identify dynamically possible
trajectories q(f), p(f) through phase space as those obedient to Hamilton’s equations of
motion, which are equivalent to Newton’s second law.

To motivate the canonical Hamiltonian quantization recipe, remark that the collection
of classical observables exhibits an algebraic structure, where this is understood as follows: as
smooth functions on phase space, classical observables form a set that is also a vector space
over the real numbers. To first approximation, an algebra is a collection of elements
equipped with a way of forming linear combinations and products of those elements.
More formally, an algebra is a linear vector space 7 endowed with a (not necessarily asso-
ciative) multiplicative structure. The vector space of classical observables becomes a
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Lie algebra upon being equipped with a multiplicative structure supplied by the Poisson
bracket. The Poisson bracket {f, ¢} of classical observables f M — Rand ¢ M — R is

af ¢ 9Of Og
= A T A A 1
i} Z <8‘1i Op;  Op; Og; (1)
Notice that for observables p and ¢

{popi} = {20} =0, A{pq} = —9y (2)

The canonical Hamiltonian quantization recipe enjoins us to quantize a classical theory
cast in Hamiltonian form by promoting its canonical observables to symmetric operators
i, pi acting on a separable Hilbert space H and obeying commutation relations corre-
sponding to the Poisson brackets of the classical theory. In the case of a classical theory
with phase space [REZ” and canonical observables ¢, and p; these CCRs are (where
[A,B] := AB — BA, I is the identity operator, and 7 is set to one)

[5ix 5] = 1di» 4] = 0, B, §j] = —i0y1 (3)

The standard execution of the recipe is Schrodinger’s wave function representation, set in the
Hilbert space L*(R") of square integrable complex-valued functions of R". For n = 1,
Schrédinger’s wave function representation defines i/ (x) = x(x) and py(x) = —i dE:C).

To build a quantum theory for a single spin system, one finds symmetric operators
{6(x),0(y),6(2)} acting on a Hilbert space H to satisfy the Pauli Relations (CARs),

which include
[6(x),6(y)] = i6(2), [6(y),6(2)] = i6(x), [6(2),6(x)] = i6(y) (4)

Call these {6 (i)} the Pauli spin observables. The generalization to n spin systems is straight-
forward. To quantize such a system, one finds for each spin system k a Pauli spin
% = (6%(x),6"(y),6%(2)) satisfying the Pauli Relations, expanded to include the
requirement that spin observables for different systems commute.

Having crafted a Hilbert space representation of the CARs/CCRs, one prosecutes
QM as usual. One enriches ones set of physical magnitudes by taking polynomials, and
limits of sequences of polynomials, of the canonical magnitudes representing the CARs/
CCRs. Here an important subtlety arises: to what criterion of convergence ought we
appeal when deciding which sequence have limits? Adopting the criterion furnished by
the weak operator topology, the result is %('H) the set of bounded operators on H, the Hil-
bert space carrying the representation.” Observables of the quantum theory are identified
with the self-adjoint elements of B(H). The question before us is: can Erwin and Wer-
ner, diligently following the Hamiltonian recipe starting from the same classical theory,
cook up physically distinct quantizations?

4.2. UNIQUENESS THEOREMS

Think of a physical theory as sorting logically possible worlds into two piles. One pile
contains logically possible worlds that are also, according to the theory, physically possi-
ble; the other pile contains the worlds the theory deems physically impossible. And sup-
pose (along with philosophers as various as David Lewis and Ludwig Wittgenstein) that
the content of a theory, so understood, consists of the set of worlds possible according to
it. Then two theories are physically equivalent — that is, they have identical content — just
in case they put the same worlds into the ‘physically possible’ pile. This content
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coincidence criterion of physical equivalence is one component in the construction of
the Stone—von Neumann and Jordan—Wigner theorems as demonstrations of the physical
equivalence of quantizations in their scope.

Other components are substantive assumptions about the details of those quantizations,
the sets of physical magnitudes they deploy, and the sets of states they entertain. It is in terms
of these sets that the quantizations describe and individuate physical possibilities. In particu-
lar, it is assumed that a quantization identifies physical observables with the self adjoint ele-
ments of B(H) for some separable H. Supposing that states should be normalized, linear,
positive, and countably additive, it follows that a quantization identifies possible states with
the set W of density operators on H. Each W € 9B determines a state via the trace
prescription, which assigns each self-adjoint A € B(H) the expectation value Tr( WA)

The pair (B(H), W) encapsulates what worlds are possible according to a quantization
of the sort under discussion. We want a criterion of physical equivalence that requires the
sets of worlds possible according to equivalent quantizations (B(H),2) and
(B(H), W) to coincide. But we should demand more than a one-to-one correspon-
dence between those sets of possible worlds. Part of the content of a theory is the func-
tional relationships it posits between the physical magnitudes it recognizes. After all, these
functional relationships are entangled in its laws: H = p>/2m makes the energy of a free
system of mass m a function of its momentum; the Schrodinger equation uses the energy
of an isolated system to build a family U(r) = il of operators describing that system’s
time evolution, which implies (roughly speakmg) that the operator H is a limit of a
sequence of functions of the operators U(f). Confining attention to relations between
magnitudes that are uncontentiously kinematic, the algebraic structure of a collection of
magnitudes — which in some sense encapsulates the genealogy of their descent from a col-
lection of canonical magnitudes generating them — is part of the kinematic content of a
pair (B(H),W). So let us adopt the following account of physical equivalence for Hil-
bert space representations (cf. Clifton and Halvorson 2001):

(B(H), W) and (B(H'), W) are physically equivalent exactly when there are bijections iy
B(H) — B(H') and iyye: W — W such that i, preserves relevant algebraic structure and

Tr(imt(,(l/f/)io;,s(zzl)) = TI(W/]) (5)
forall W € Wand all A € B(H).

Equation (5) guarantees that each state W in one representation has a counterpart
iare(WV) in the other representation such that isare(W)’s assignment of expectation values
to observables iy(A) exactly duplicates W assignment of expectation values to observ-
ables A. It guarantees further a relevant isomorphism of algebraic structure between the
observables wielded by each quantization. With the tools at hand at present, the notion
of ‘relevant isomorphism’ must remain vague, but its core idea is that B(H) and B(H'),
considered as algebras generated by representations of the same CCRs, instantiate the same alge-
braic structure.

Now quantizations (B(H), W) and (B(H'), W) are physically equivalent (in the con-
tent coincidence sense), if and only if the collections of operators bearing their represen-
tations of the CCRs are unitarily equivalent, where this is understood as follows.

A Hilbert space H, and a collection of operators { O/} is unitarily equivalent to (H',{O/}) if and
only if there exists a one-to- one invertible, linear, norm-preserving transformation (‘unitary
map’) U: H — H' such that U~ O U = O forall i.
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Think of the sets of observables mapped to one another by a such a U as the observables
giving a primed and an unprimed representation of the CCRs, respectively. The U
effecting the unitary equivalence of the primed and the unprimed representation of the
CCRs furnishes both the bijection iy, from the first theory’s state space to the second’s
and the bijection i, from the first theory’s observable set to the second’s; it also ensures
the isomorphism of their observable sets considered as algebras generated by representa-
tions of the CCRs.

Having attributed quantum theories a Hilbert space structure, von Neumann demon-
strated in 1931 what had been conjectured the previous year by Stone: the unitary equiva-
lence (up to multiplicity) of any pair of Hilbert space quantizations of a classical system
with configuration space R".* Unitary equivalence is the relation, the Jordan—Wigner
theorem assures us, all representations of the CARs for n degrees of freedom (n finite)
enjoy with one another. According to the content coincidence criterion of physical
equivalence, unitarily equivalent quantizations are physically equivalent. Whatever else
interpreters of ordinary QM have to worry about, they can rest assured that the Hilbert
space representations constituting the quantizations they set out to interpret are essentially
unique.

5. Non-uniqueness in QM.

§.I. THE INFINITE SPIN CHAIN

Anyone even minimally acquainted with philosophical treatments of QM has on hand
the resources to describe a quantum system admitting unitarily inequivalent representa-
tions: a chain of infinitely many spin 5 systems > Let us work our way up to this system
starting with a finite number n of spm 5 systems, arranged in a one-dimensional lattice.
To construct a quantization for this system one equips each location k with a Pauli spin
¢* = (6%(x),6"(y), 6*(2)) satisfying the Pauli Relations.

Here’s one way to do this: use a vector space H spanned by a basis consisting of
sequences s, where each entry takes one of the values *1, and k ranges from 1 to n.
(NB there are finitely many distinct such sequences—finitely many ways to map a set of
finite cardinality into the set {+1,—1}.) Operators 67/(z),j = 1 to n are introduced in
such a way that sequences s, whose jth entry is £1 correspond to ¢/ (2) eigenvectors asso-
ciated with the eigenvalue *1. Operators 6/(y), 6/(x) conspiring with these to satisfy the
Pauli Relations can then be introduced.

There are many other ways to do this. But because we’re considering only finitely
many (indeed, n) spin systems, the Jordan—Wigner theorem guarantees that other ways
are only notational variants on our way. At the risk of pedantry, let’s spell out what that
means. Suppose Werner and Erwm each find a representation of the Pauli Relations for a
spin chain of length n. Let ¢*()™ be the operator on HW by which Werner represents
the ith component of spin for the kth particle; let ¢*()” be the operator on Hp by which
Werner represents the ith component of spin for the kth particle.” To say that Werner’s
representation and Erwin’s are unitarily equivalent is to say that there exists a unitary map
U: Hg — Hy such that

Ut() U™ = a*(i)" forall i € {x,y,2}, k€ {1,2,....n} (6)

Because unitary maps are linear and norm preserving, this unitary map, which establishes
a correspondence between the Pauli spin operators figuring in Erwin’s representation and
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the Pauli spin operators figuring in Werner’s representation, extends in a way that preserves
that correspondence to the full set of bounded operators on each quantizer’s Hilbert space.
Supposing that each is prosecuting an ordinary quantum theory, the ordinary quantum
theories they prosecute are (presumptively) physically equivalent.

The polarization of a system is described by a vector whose magnitude (€ [0,1]) gives
the strength and whose orientation gives the direction of the system’s magnetization. On
a single electron, it is represented by an observable m whose three components corre-
spond to three orthogonal components of quantum spin. For example, in the +1 eigen-
state |+) of 6(z) (understood as the z-component of spin), the polarization has an
expectation value of +1 along the z-axis. For the finite spin chain, the polarization obser-
vable has components m; that are just the average over the chain of the corresponding
component of spin: n; = 1Zk L 65(i). Let [se], € {£1} stand for the " entry of the
sequence s,. In the basis sequence sy, the z-component of polarization . takes an expec-
tation value of magnitude ,ZJ y[se);- This quantity attains extreme values (of *1) for
those sequences every term of which is the same.

Let W be a state in Werner’s representation assigning . the expectation value +1.
The Jordan—Wigner theorem ensures that any other representation of the Pauli Relations
will be unitarily equivalent to Werner’s. Any other representation of those relations is
thus guaranteed to contain a state W' (the image of W under the umtary map 1mple—
menting the equivalence of the representations) and an observable . (the image of i,
under that map) such that the expectation value of i, in the state W' is +1.

Now, consider a doubly infinite chain, labelled by the positive and negative integers
7 ={...,-2,-1,0,1,2,...}, of spin % systems. As before, to construct a quantum the-
ory of this system is to associate with each site k a Pauli spin satisfying the Pauli Rela-
tions. But if we follow the strategy adopted for the finite spin chain, and attempt to
construct our Hilbert space from a basis consisting all possible maps from Z to {1}, we
are foiled. The set of such maps is non-denumerable, thus the Hilbert space we’d con-
struct would be non-separable, breaking the tradition of using separable Hilbert spaces
(that is, those whose bases are countable) for physics.

Here’s one way to build a separable Hilbert space representation of the Pauli relations
for an infinite chain of spins. Start with the sequence [s¢]; = +1 for j € Z, and add all
sequences obtainable therefrom by finitely many local modifications. The resulting basis
consists of all sequences for which all but a finite number of sites take the value +1. Con-
tinue to follow the model of the finite spin chain to introduce operators 6°(i)" satisfying
the Pauli Relations (Sewell 2002, section 2.3 has details). I will call this the H" representa-
tion — but please keep in mind that it matters to the algebraic structure of this representa-
tion which elements of B(H™) play the role of which Pauli spins.

Notice how the polarization observable m™ behaves on the H™' representation. For
each state s;, in the basis, the polarization will be oriented along the z-axis and take the
value lim, oo 5 +1 > :_n[Sk] Because for each basis element, all but a finite number of

its entries take the value +1, this limit will be 1. Every ordinary quantum state on the
H™ representation will inherit this feature from the basis vectors in terms of which it is
expressed: every state in the representation will have unit polarization in the positive z
direction.

Because the chain is infinite, the Jordan—Wigner theorem does not imply that the rep-
resentation just constructed is unique up to unitary equivalence. And it is not. Consider,
for contrast, a representation set in a Hilbert space whose basis elements correspond to
the sequence [sp]; = —1 for j € Z, along with all sequences obtainable from this one by
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finitely many local modifications. The basis consists, then, of sequences for which all but
a finite number of sites take the value —1. Operators O'k( )~ satisfying the Pauli relations
are introduced in such a way that [s.];, the ™ entry in the basis sequence s, gives the
expectation value of ¢/(2)" (Sewell 2002, section 2.3 has details). Call this the H ™ repre-
sentation. By parity of reasoning, the polarization observable m™ in this quantization is
assigned the expectation value —1 by each of the representation’s states.

We can expose the H~ and H ' representations as unitarily in equivalent. The exposi-
tion will be informal. (Formalities may be found in Sewell (2002), section 2.3.3) Suppose,
for contradiction, that these representations of the CARs were unitarily equivalent. Then
there’d be a unitary map establishing a correspondence between the Pauli spins of the
H" representation and those of the 'H_ representation. That is, there’d be a U:
H™ — H such that Ué/(2)"U™! = 6/(2)” for all j. Where n%(z)i =
2J\+1Zk— NO' ¥(2)*, this implies that ri(z ) = Umi(2)U™". For |¢*) and [7), unit
vectors in Ht and H~ related by [Y7) = U |¢"), it follows that

W i) ) = (U (=)l ) (7)

But in the limit N — oo, Equation (7) breaks down: the RHS (which gives the expec-
tation value the state |Y7) assigns the polarization observable m(z)") and the LHS
(Wthh gives the expectation value the state |i") assigns the polarization observable
m(z)") go to +1 and —1, respectively. This establishes the failure of the HT and H~
representations of the 1nﬁn1te spin chain to be unitarily equivalent.

Unitarily inequivalent Hilbert space quantizations are supposed to rival physical theo-
ries. The rivalry of the quantizations under discussion consists in this: embracing the Hil-
bert space theory circumscribed by the H' representation, we deny that polarizations
different from +1 in the z direction are possible; embracing the Hilbert space theory cir-
cumscribed by the H ™, we assert that such polarizations are the only ones possible.

In the sections which follow, this toy example will illustrate the phenomena of phase
structure and broken symmetry, as well as the selection pressures those phenomena exert
on interpretations of QM...

§.2. THE POSITION AND MOMENTUM REPRESENTATIONS

This section presents an example of unitarily inequivalent representations lurking in what
seems like the most ordinary of quantum theories: a single system on the real line. The
aim is to illustrate how the apparatus of algebra and representation, essential to framing
and addressing questions about QM.., also fosters insight into provocative aspects of more
familiar quantum theories.

It 1s well known that in ordinary quantum mechanics, there are no exact position eigen-
states, that is, eigenstates of the position operator associated with punctual eigenvalues
/€ R. This is plain from the standard spectral measure for self adjoint Hilbert space
operators with continuous spectra (see Prugovecki 1971, 1I1.5.5) The spectral measure for
the operator A acting on ‘H is a map from measurable subsets A of R to projection opera-
tors on H. Let PA be the image of this map for the set A. PA serves as a device for
assigning probablhtles in a density operator state g, the probablhty that a measurement of
A vyields an outcome in the set A is given by Tr(pPA) The standard spectral measure for
the position operator maps degenerate intervals A = [a, a] to the zero operator 0. Thus
in any density operator state p, the probability that position assumes a value in [q, a] — a
point value — is Tr(p0) = 0. In other words, no density operator state is an exact
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position eigenstate. In ordinary QM, every state is a density operator state. Ergo in ordin-
ary QM, no state is an exact position eigenstate. The continuous momentum observable
likewise lacks exact eigenstates.

Ordinary QM is conducted in a separable Hilbert space. But a non-separable Hilbert
space is exactly what we need to sustain a full set of exact position eigenstates. For should
an eigenstate of position exist for every possible position 4 € R, there would be as many
pairwise orthogonal position eigenvectors in the Hilbert space as there are real numbers
(and mutatis mutandis for momentum). Lacking a countable basis, the Hilbert space
would fail to be separable.

The position representation,” for example, is set in the non-separable vector space £>(R)
of square summable functions ff R — C. These are functions supported on a countable
subset Sy of R and such that ersf [f(x)‘z < 00. The functions

p,(x)=1 if i=x¢;(x)=0 if A#x (8)

for /. € R furnish an (uncountable!) orthonormal basis for />(R).

The Weyl relations are obtained by ‘exponentiating’ the CCRs, a maneuver motivated
by mathematical niceties: the position and momentum operators ¢ and p are unbounded
and so not everywhere defined; the unitary operators U(a) = ¢ and V(b) = ™
involved in the Weyl relations are bounded and everywhere defined (see Summers 2001
for details). On £,(R), the Weyl relations are satisfied by operators U(a) and V(b)
defined by the following actions on basis elements ¢;:

Ua)g,(x) = e ;(x) ©)

V(0)@;(x) = ¢;(x) (10)

The family of unitaries U(a) is weakly continuous. Stone’s theorem tells us that a weakly
continuous_family of unitary operators U(f) has a self-adjoint generator A such that
U(t) = e™, Tt tells us, then, there is some self-adjoint Q on /£ (R) such that
U(a) = ¢“?. From Equation (9) and a Taylor series expansion of U(a) in terms of Q, it
follows that

Qp;(x) = 7, () (11)

In other words, @;(x) is an eigenvector of Q associated with eigenvalue A. Interpreting
Q as the position operator, (@;(x) is an exact position eigenstate. By contrast, the family
1/(b) lacks weak continuity, and has no a self-adjoint generator. Thus the position repre-
sentation lacks a presumptive momentum operator

There is a completely analogous non-regular representation, the momentum representa-
tion, with exact eigenstates of momentum. The uncountable orthonormal basis of the Hil-
bert space bearing the momentum representation is furnished by plane waves e,
eigenstates of the momentum operator for each real number k. Owing to the family
U(a)’s failure to be weakly continuous, the momentum representation lacks a position
operator — a fact for which Emch (1972, 231-2) offers the quasi-physical explanation that
it makes no sense to speak of the position of a plane wave.

The ofticial statement of the Stone—von Neumann theorem concerns representations of
the Weyl relations and requires the unitary operators conveying them to be weakly con-
tinuous. The position and momentum representations flout this requirement. With the
assumption of weak continuity suspended, the Stone—von Neumann theorem ceases to
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apply. The position and momentum representations have uncountable bases; the standard
Schrédinger wave function representation has a countable one. Each of the former is uni-
tarily inequivalent to the latter. Less obviously, each of the former is unitarily inequiva-
lent to the other (see Halvorson 2004, 51 (Theorem 1), for a simple argument).

The position and momentum representations are important not only for challenging
received notions of what physical possibilities can be entertained by quantum theories of
single non-relativistic particles, but also because of striking features of generic states in the-
ories of QM.., they illuminate. To put the analogy roughly, just as the ‘pure’ states of
exact position inhabiting the position representation are ‘orthogonal’ to every state of the
standard, separable, Schrodinger wave function representation, so too every pure state of
the observable algebras that typically crop up in QM. is ‘orthogonal’ to most physically
significant states on those algebras. Given the propensity of many interpretations of ordin-
ary QM to code the condition a quantum system is ‘really’ in with a pure state (consider,
for example, the value states of modal interpretations), this complicates the extension of
strategies for interpreting ordinary QM to QM... Clifton (2000) offers, on behalt of
modal interpretations, a way through the complication; Earman and Ruetsche (2005)
criticize the result for saying too little about too many systems of interest.

6. Conclusion and Preview

Without even venturing into QFT, we've seen how the uniqueness promised by the
Stone—von Neumann theorem breaks down outside the scope of its assumptions. The
non-uniqueness calls for interpretive work: if we retain unitary equivalence as a criterion
of physical equivalence, we face prima facie embarrassments of the following sort: infi-
nitely many physically inequivalent quantum theories vie for the title ‘quantum theory of
the infinite spin chain’. It seems we must either eliminate all but one unitary equivalence
class as viable contenders, or rethink what it is to be a physical theory in a way that rec-
onciles us to such flamboyant underdetermination. If we depose unitary equivalence as a
criterion of physical equivalence, we’re beholden to articulate — and motivate — an
account of physical equivalence for quantum theories to take its place.

Part II begins with a brief catalog of quantum field theoretic examples of non-unique-
ness. It then presents the basics of the algebraic approach to quantum theories, which dis-
closes a structure even unitarily inequivalent Hilbert space representations can share.
Finally, it introduces and evaluates a handful of strategies for interpreting QM., in the
face of the non-uniqueness of Hilbert space representations.
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Notes

* Correspondence: Department of Philosophy, University of Michigan, 2227 Angell Hall, Ann Arbor, MI 48109,
USA. Email: ruetsche@umich.edu.

' I should acknowledge, although I do not explicitly discuss, a problem. QM., inherits from ordinary QM: the

measurement problem.

2 ‘Representation’ has an official sense which Part II will explain. For now, we will understand a representation to
be a realization, by means of Hilbert space operators, of theoretically central relations between physical magnitudes.
® For an account of different topologies, consult Kadison and Ringrose 1983, Ch. 3.

? This needs to be qualified slightly. See Summers (2001) for details.

° Here I follow Sewell (2002, section 2.3), to which I refer the reader for details.

© For the duration of this explication, I'm dropping hats over operators to minimize notational clutter.

7 Halvorson (2004), which I follow here, gives a lucid exposition of position and momentum representations. Clif-
ton and Halvorson (2001) use them to formulate Bohrian complementarity.
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