
Mathematical Finance, Vol. 22, No. 4 (October 2012), 645–666

PERPETUAL CANCELLABLE AMERICAN CALL OPTION

THOMAS J. EMMERLING

University of Michigan

This paper examines the valuation of a generalized American-style option known as
a game-style call option in an infinite time horizon setting. The specifications of this
contract allow the writer to terminate the call option at any point in time for a fixed
penalty amount paid directly to the holder. Valuation of a perpetual game-style put
option was addressed by Kyprianou (2004) in a Black-Scholes setting on a nondividend
paying asset. Here, we undertake a similar analysis for the perpetual call option in the
presence of dividends and find qualitatively different explicit representations for the
value function depending on the relationship between the interest rate and dividend
yield. Specifically, we find that the value function is not convex when r > d. Numerical
results show the impact this phenomenon has upon the vega of the option.

KEY WORDS: game options, Israeli options, cancellable call option, perpetual call option, Dynkin
games, American-style derivatives.

1. INTRODUCTION

In current times, it is not hard to imagine a financial system burdened by illiquidity
over a large cross section of total market activity. Under such circumstances, trading
in the market might cease to be an option even for large financial firms interested in
hedging their short contracts. Indeed, cancelling or recalling such contracts might be one
of the few ways to effectively mitigate undesirable positions in turbulent times. As such,
derivative securities which include callback provisions or cancellable features represent
attractive instruments to writers of these contracts. The following discussion addresses
the valuation of a common American-style claim with the aforementioned termination
specification built into the contract.

Kifer (2000) was the first to broach the problem of valuation for American-style options
with a cancellation feature available to the short side of the contract. In that paper, Kifer
applied the continuous time game theoretic results of Lepeltier and Maingueneau (1984)
to these generalized American options and found the fair price was equal to the value of
a Dynkin game (see, e.g., Dynkin 1969; Neveu 1975) between the long and the short sides
of the contract. The close relationship between these options and Dynkin games fostered
a renewed interest in such games and subsequently brought forth general existence and
characterization results about the value of a Dynkin game (see, e.g., Alvarez 2008;
Ekström 2006; Ekström and Villeneuve 2006; Ekström and Peskir 2008; Peskir 2008).
With respect to game options, Kuhn, Kyprianou, and van Schaik (2007) recently extended
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valuation results in a complete market framework to include more general payoffs than
those considered in Kifer (2000). Recent results in an incomplete market setting include
Kuhn (2004) and Hamadène and Zhang (2009).

Since game-type derivatives are generalized American-style options, explicit solutions
are rare in many settings. However, Kyprianou (2004) explicitly solved, under the Black-
Scholes framework, the valuation problem associated to a particular game-type derivative
known as the perpetual Israeli δ-penalty put option. This analysis was limited to a put
option on a nondividend paying asset following geometric Brownian motion. Within
this framework, Kyprianou found that the strike price was the only asset value for which
optimal contract termination would occur. This result for the put option is intuitive and,
perhaps, suggests similar behavior for its call option counterpart. Following that paper,
Kuhn and Kyprianou (2007) addressed the finite expiry put option valuation problem
and found its explicit representation as a compound exotic option. In the following
discussion, we consider the valuation problem of a perpetual game call option on a
dividend paying asset. Recently, Kunita and Seko (2004) considered the finite expiry
version of this contract. Here, we utilize some of the same arguments while attempting
to explicitly solve the valuation problem. In doing so, we find significant qualitative
differences with Kunita and Seko’s finite expiry analysis and important distinctions
from the work done by Kyprianou (2004) on an infinite expiry game put option with a
nondividend paying asset. Most recently, Alvarez (2010) explicitly characterized both the
value and the optimal exercise policy of a minimum guaranteed payment game option
when the underlying asset price follows a general linear, time homogeneous diffusion.
The payoff structure Alvarez (2010) considered is, indeed, very similar to a game call
option since the payoff of the former upon exercise by the holder is max (X − K1, 0)
+ K2, where K1 = K2 > 0. Our analysis here is distinct from Alvarez (2010) since a
regular call option payoff assumes K1 ≥ 0 and K2 = 0. We find that this slight parameter
difference significantly changes the solution to the optimal stopping problem even in the
typical case when the underlying dynamics follow geometric Brownian motion.

The forthcoming discussion is organized as follows. Section 2 describes the economic
setting and presents a few foundational valuation results. Section 3 addresses the valua-
tion problem when r ≤ d. Section 4 examines valuation when r > d. Section 5 presents
results from a numerical approximation of the optimal exercise and cancellation bound-
aries. Section 6 concludes the valuation discussion. The Appendix elaborates on a few
claims from prior sections.

2. SETUP

The economic setting is the standard financial market with constant coefficients. We
assume the underlying asset process follows the geometric Brownian motion process
whose price satisfies

dXt = (r − d)Xtdt + σ XtdWt,(2.1)

where r is the risk-free rate of interest assumed to be strictly positive, d is the dividend rate
on the underlying asset assumed to be nonnegative, and σ is the volatility of the asset’s
return assumed to be strictly positive. The dynamics in (2.1) describe the risk-neutralized
evolution of the underlying asset process. The process W is a Brownian motion under
the risk-neutral measure P.
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Let V∗(Xt) denote the value at t of a perpetual call option with a cancellation feature
available to the short side of the contract with penalty δ. That is, the payoff to the holder
upon cancellation when Xt = x is (x − K)+ + δ. We will refer to this contract as a
perpetual δ-penalty call option or simply a δ-penalty call option. If the holder exercises
with strategy σ and the writer cancels with strategy τ , then payoff to the holder of the
contract is Zσ,τ where

Zs,t := (Xs − K)+1{s≤t} + ((Xt − K)+ + δ)1{t<s}.(2.2)

Please note that we denote both the volatility of the geometric Brownian motion and
the holder’s exercise stopping time by σ . In the sequel, it will be clear by the context as to
which quantity σ references. Standard results (see, e.g., Kyprianou 2004) can be invoked
to establish that the value of the δ-penalty call option is

V∗(x) = inf
τ∈S0,∞

sup
σ∈S0,∞

E[e−r (σ∧τ ){((xNτ − K)+ + δ)1{τ<σ } + (xNσ − K)+1{σ≤τ }}]

= sup
σ∈S0,∞

inf
τ∈S0,∞

E[e−r (σ∧τ ){((xNτ − K)+ + δ)1{τ<σ } + (xNσ − K)+1{σ≤τ }}],

(2.3)

where

Nt := exp
{(

r − d − σ 2

2

)
t + σ Wt

}
(2.4)

with optimal exercise strategies for the holder and writer respectively equal to

σ ∗ = inf {t ∈ [0, ∞) : V∗
t = (Xt − K)+}

τ ∗ = inf {t ∈ [0, ∞) : V∗
t = (Xt − K)+ + δ},

(2.5)

where inf {∅} = ∞, by convention. We shall adopt this convention throughout the entire
paper. Note S0,∞ denotes the set of all stopping times of the Brownian filtration, and
E is the expectation under the risk-neutral measure P. In addition, let Ex denote the
expectation under P such that X0 = x.

We begin our discussion with a regularity result for the value function of the δ-penalty
call option.

PROPOSITION 2.1. The value function is nondecreasing in x and is Lipschitz continuous
with Lipschitz constant 1.

Proof . Recall,

V∗(x) = inf
τ∈S0,∞

sup
σ∈S0,∞

E[e−r (σ∧τ ){((xNτ − K)+ + δ)1{τ<σ } + (xNσ − K)+1{σ≤τ }}].

Using the fact that (x − K)+ is a nondecreasing function of x and the definition

Jx(σ, τ ) := E[e−r (σ∧τ ){((xNτ − K)+ + δ)1{τ<σ } + (xNσ − K)+1{σ≤τ }}](2.6)

we have Jx(σ , τ ) ≤ Jy(σ , τ ) for any σ , τ ∈ S0,∞. This implies V∗(x) ≤ V∗(y) any x < y,
that is, V is nondecreasing in x. Now with the following definitions

σx := inf {t ≥ 0 : V∗(xNt) = (xNt − K)+}
τy := inf {t ≥ 0 : V∗(yNt) = (yNt − K)+ + δ}

(2.7)
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and using the standard convention that inf {∅} = ∞, we have for x < y

V∗(y) ≤ J y(σx, τy)

V∗(x) ≥ Jx(σx, τy).
(2.8)

The following sequence of relations hold.

V∗(y) − V∗(x) ≤ J y(σx, τy) − Jx(σx, τy)

= E[e−r (σx∧τy){((yNτy − K)+ + δ)1{τy<σx} + (yNσx − K)+1{σx≤τy}}]
− E[e−r (σx∧τy){((xNτy − K)+ + δ)1{τy<σx} + (xNσx − K)+1{σx≤τy}}]

= E[e−r (σx∧τy){(yNτy∧σx − K)+ − (xNτy∧σx − K)+}]
≤ E[e−r (σx∧τy){((y − x)(Nτy∧σx)}]
= (y − x)E[e−r (σx∧τy){(Nτy∧σx)}]
≤ y − x.

(2.9)

Note the final inequality holds since the discounted price of the dividend paying asset is
a P-supermartingale. Thus, V∗ is Lipschitz continuous with Lipschitz constant 1. Note
we have shown, 0 ≤ V∗

x ≤ 1. �
The following notation will be utilized throughout the rest of the paper. Let

λ :=

√√√√2r +
(

r − d − σ 2

2

σ

)2

κ :=
r − d − σ 2

2
σ 2

.

(2.10)

Our first valuation result identifies an upper bound on the penalty for early cancellation.
More precisely, penalty values chosen above this upper bound yield a δ-penalty call
option value exactly equal to a perpetual call option since cancellation is not optimal.

PROPOSITION 2.2. Let vc(x) denote the value of the perpetual call option on a dividend
paying asset at current level x (see section 2.6, Karatzas and Shreve 1998). Further, let

δ∗ := vc(K) = (b − K)
(

K
b

) λ
σ
−κ

, where b :=
λ
σ

− κ

λ
σ

− κ − 1
K .(2.11)

If δ > δ∗, then the perpetual Israeli δ-penalty call option is precisely an American call
option. In other words, it is never optimal for the writer to cancel the contract.

Proof . Suppose δ > δ∗. Since vc(x) is an increasing function of x with derivative
satisfying 0 ≤ vc

x ≤ 1, it follows that

(x − K)+ ≤ vc(x) ≤ (x − K)+ + δ.(2.12)
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The following sequence of relations establishes the fact that the δ-penalty call option is
simply an American call option. Note b denotes the optimal exercise boundary value for
the American call option and σx := inf {t ≥ 0 : Xt = x}.

vc(x) = inf
τ∈S0,∞

Ex[e−r (τ∧σb)vc(Xτ∧σb )]

≤ inf
τ∈S0,∞

Ex[e−r (τ∧σb)((Xσb − K)+1{σb≤τ } + ((Xτ − K)+ + δ)1{τ<σb})]

≤ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex[e−r (τ∧σ )((Xσ − K)+1{σ≤τ } + ((Xτ − K)+ + δ)1{τ<σ })]

≤ sup
σ∈S0,∞

Ex[e−rσ (Xσ − K)+]

= vc(x).

(2.13)

The first equality follows since vc(x) is r-harmonic on (0, b). The first inequality follows
since (s − K)+ ≤ vc(s) ≤ (s − K)+ + δ holds for all s ∈ (0, ∞). The second inequality
follows by definition of the supremum. The third inequality holds by definition of the
infimum and setting τ = ∞. Note the order of the supremum and the infimum in the
second inequality can be reversed by starting from the right-hand side and reasoning
towards the left-hand side. Thus, a saddle point occurs at σ ∗ = σ b and τ ∗ = ∞. �

3. VALUATION WHEN r ≤ d

In this section, we wish to identify the value function of the δ-penalty call option when the
nonnegative interest rate is bounded above by the dividend rate. The following theorem
represents the main result of this section.

THEOREM 3.1. Suppose r ≤ d. For 0 < δ ≤ δ∗, the perpetual δ-penalty call option has
value process V (Xt)where

V(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − K if x ∈ [k∗, ∞)

(k∗ − K)
(

k∗

x

)κ

(
K
x

)− λ
σ

−
(

K
x

) λ
σ

(
k∗

K

) λ
σ

−
(

k∗

K

)− λ
σ

+ δ

(
K
x

)κ

(
k∗

x

) λ
σ

−
(

k∗

x

)− λ
σ

(
k∗

K

) λ
σ

−
(

k∗

K

)− λ
σ

if x ∈ (K, k∗)

δ
( x

K

) λ
σ
−κ

if x ∈ (0, K ]

(3.1)

and the optimal exercise and cancellation strategies are σ ∗ := inf {t ≥ 0 : Xt ≥ k∗} and
τ ∗ := inf {t ≥ 0 : Xt = K} where k∗ satisfies the equation
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FIGURE 3.1. Value function of the perpetual δ-penalty call option for r ≤ d along with
the immediate exercise and cancellation values. The penalty is such that value function
has increasing derivative at K . Parameter values are r = 0.01, d = 0.09, σ = 0.20, K =
100, k

∗ = 111.7641, and δ = 2.25.

(
k∗

K

) 2λ
σ

(
−2

(
K
k∗

)κ+ λ
σ

δλ + (k∗ − K)

(
λ − κσ +

(
K
k∗

) 2λ
σ

(λ + κσ )

))

= k∗
(

−1 +
(

k∗

K

) 2λ
σ

)
σ.

(3.2)

The proof of this theorem follows a path similar to the proof of the value function
for the perpetual δ-penalty put option by Kyprianou (2004). In that paper, Kyprianou
showed that the value function for the put option is a convex function on (0, ∞) when the
penalty satisfies δ < vp(K), where vp(K) is the value function of a perpetual American put
option on a nondividend paying asset when the asset price is equal to the strike K. When
considering a call option on a dividend paying asset with r ≤ d, we find that the value
function V is also a convex function on (0, ∞) when the penalty satisfies 0 < δ < vc(K)
(see Figure 3.1 ).

Proof . Suppose 0 < δ < δ∗. We propose that the value function is r-harmonic on the
set (0, K)∪(K, k∗), satisfies the smooth fit condition at k∗, and takes the value δ at the
strike price K. Specifically, consider the boundary value problem

Lv(x) = rv(x); v(K) = δ, lim
x↓0

v(x) = 0, x ∈ (0, K)(3.3)

where L := (r − d)x d
dx + 1

2σ 2x2 d2

dx2 . Let vy denote the derivative with respect to the pa-
rameter y. Solving this problem yields,

v(x) = δ
( x

K

) λ
σ
−κ

for x ∈ (0, K).(3.4)
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Now consider the problem

Lv(x) = rv(x); v(K) = δ, v(k∗) = (k∗ − K)+, vx(k∗) = 1, x ∈ (K, k∗).(3.5)

The solution to this problem is

v(x) = (k∗ − K)
(

k∗

x

)κ

(
K
x

)− λ
σ

−
(

K
x

) λ
σ

(
k∗

K

) λ
σ

−
(

k∗

K

)− λ
σ

+ δ

(
K
x

)κ

(
k∗

x

) λ
σ

−
(

k∗

x

)− λ
σ

(
k∗

K

) λ
σ

−
(

k∗

K

)− λ
σ

for x ∈ (K, k∗),

(3.6)

where k∗ satisfies the following equation

(
k∗

K

) 2λ
σ

(
−2

(
K
k∗

)κ+ λ
σ

δλ + (k∗ − K)

(
λ − κσ +

(
K
k∗

) 2λ
σ

(λ + κσ )

))

= k∗
(

−1 +
(

k∗

K

) 2λ
σ

)
σ.

(3.7)

Simple calculations, using the fact that r ≤ d, show that v(x) is an increasing, convex
function on (0, K). Before establishing that v(x) is an increasing, convex function on (K,
k∗), we first analyze its behavior at the strike price K. The solution v(x) of the boundary
value problem is continuous but is not necessarily differentiable at K. The following
estimates show that the left-hand derivative is no larger than the right-hand derivative at
K. A nondecreasing derivative at K requires

2(k∗ − K)
(

k∗

K

)κ+
λ

σ
λ − 2

(
k∗

K

) 2λ
σ

δ λ(
−1 +

(
k∗

K

) 2λ
σ

)
K σ

≥ 0.(3.8)

Note the denominator is positive since k∗ ≥ K and 2λ
σ

≥ 0. Hence, the derivative will
be increasing at K if the following holds

(k∗ − K)
(

k∗

K

)κ+ λ
σ

−
(

k∗

K

) 2λ
σ

δ ≥ 0

⇔ (k∗ − K)
(

k∗

K

)κ

−
(

k∗

K

) λ
σ

δ ≥ 0.

(3.9)

The left side of this inequality is a decreasing, linear function of δ. Thus, the condition
on δ which guarantees the left-hand derivative is no larger than the right-hand derivative
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at K is

δ ≤ (k∗ − K)
(

K
k∗

) λ
σ
−κ

.(3.10)

Interestingly, the assumption 0 < δ < δ∗ guarantees (3.10) holds. One way in which to
see this is to view δ as a function of k∗ in (3.7). Indeed, the function δ(k∗) is a continuous,
increasing1 function such that δ(K) = 0 and δ(b) = vc(K). From this viewpoint and using
this information, (3.10) will hold if

f (x) := (x − K)
(

K
x

) λ
σ
−κ

+

(
K
x

)− λ+κσ
σ

(
x

(
1 −

( x
K

) −2λ
σ

)
σ − (s − K)

(
λ − κσ +

(
K
x

) 2λ
σ

(λ + κσ )

))

2λ

≥ 0, x ∈ [K, b].

(3.11)

The function f (x) is obtained by substituting the representation for δ in terms of k∗

into (3.10) and then subtracting this term from each side of the inequality. Details of the
proof that f (x) ≥ 0 for x ∈ [K, b] are included in the Appendix.

Continuing with the analysis of v(x), its derivative on (K, k∗) (see formula (3.6)) is

⎛
⎜⎜⎜⎜⎝

1(
−1 +

(
k∗

K

) 2λ
σ

)
xσ

⎞
⎟⎟⎟⎟⎠ ×

( (
k∗

K

) λ
σ

(
k∗

x

)− λ
σ

(
K
x

)− λ
σ

(
−

(
K
x

)κ+ λ
σ

δ

(
λ − κσ +

(
k∗

x

) 2λ
σ

(λ + κσ )

)

+ (k∗ − K)
(

k∗

x

)κ+ λ
σ

(
λ − κσ +

(
K
x

) 2λ
σ

(λ + κσ )

) ))
.

(3.12)

Note the first line in (3.12) above has four factors that are all positive. Since δ ≤ (k∗ −
K)

( K
k∗

) λ
σ
−κ

, the expression in the remaining two lines of the above derivative is greater
than or equal to

(k∗ − K)
(

−
(

K
k∗

)−κ+ λ
σ

(
K
x

)κ+ λ
σ

(
λ − κσ +

(
k∗

x

) 2λ
σ

(λ + κσ )

)

+
(

k∗

x

)κ+ λ
σ

(
λ − κσ +

(
K
x

) 2λ
σ

(λ + κσ )

) )
.

(3.13)

1 See the Appendix for a justification of this claim.
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Since k∗ ≥ K, consider only the second factor in the above representation. Now taking a
derivative yields

2k∗
(

K
k∗

) 2λ
σ

(
k∗

x

)−1+ 2λ
σ

λ(λ + κσ )

x2σ
−

2K
(

K
x

)−1+ 2λ
σ

λ(λ + κσ )

x2σ
= 0.(3.14)

Thus, the second factor is a constant function of x. Substituting the value at x = k∗ into
the second factor produces

−
(

−1 +
(

K
k∗

) 2λ
σ

(λ − κσ )

)
≥ 0.(3.15)

We conclude that v(x) is increasing on (K, k∗). In addition, using the fact that v(x) is
r-harmonic on (K, k∗), r ≤ d, vx(x) ≥ 0, and v(x) > 0, we have

vxx = 2
σ 2x2

[(d − r )xvx(x) + rv(x)] > 0.(3.16)

Thus, v(x) is convex on (K, k∗). At this point, we conclude v(x) is a convex func-
tion on (0, ∞). Summing up, v(x) ∈ C2(0, K) ∪ C1(K, ∞) ∪ C2[(K, ∞) \ {k∗}], v(x) is
r-harmonic on (0, K)∪(K, k∗), and v(x) is r-superharmonic on (k∗, ∞). Using these
results, the following argument by Kyprianou (2004) proves that the solution to the
boundary value problem is, indeed, the value function. Let σk∗ := inf {t ≥ 0 : Xt ≥ k∗}
and τK := inf {t ≥ 0 : Xt = K}.

v(x) ≤ inf
τ∈S0,∞

Ex[e−r (τ∧σk∗ )v(Xτ∧σk∗ )]

≤ inf
τ∈S0,∞

Ex[e−r (τ∧σk∗ )((Xσk∗ − K)+1{σk∗ ≤τ } + ((Xτ − K)+ + δ)1{τ<σk∗ })]

≤ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex[e−r (τ∧σ )((Xσ − K)+1{σ≤τ } + ((Xτ − K)+ + δ)1{τ<σ })]

≤ sup
σ∈S0,∞

Ex[e−r (τK ∧σ )((Xσ − K)+1{σ≤τK } + ((XτK − K)+ + δ)1{τK <σ })]

≤ sup
σ∈S0,∞

Ex[e−r (τK ∧σ )v(XτK ∧σ )]

≤ v(x).

(3.17)

The first inequality follows since v(x) is r-harmonic on (0, K) ∪ (K, k∗). The second
inequality follows since v(x) satisfies (x − K)+ ≤ v(x) ≤ (x − K)+ + δ. The third and
fourth inequalities follow using the definition of the supremum and infimum, respectively.
The fifth inequality holds using the same bound as in the second inequality. The final
inequality follows since v(x) is r-superharmonic on (k∗, ∞). Note, the order of the
supremum and infimum can be switched by establishing the above inequalities in reverse.
This completes the proof. �

4. VALUATION WHEN r > d

Here, we assume the interest rate r is strictly larger than the constant dividend yield d of
the underlying asset. It seems reasonable to conjecture that the value function is identical
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FIGURE 4.1. δ-penalty call option: The proposed value function (blue line) violates the
upper bound on the value (green line) on the interval (K , k

∗
). Parameter values are r

= 0.06, d = 0.03, σ = 0.20, K = 100, k
∗ = 272.4404, and δ = 10.

to the solution found in the prior parameter case. However, Figure 4.1 disproves this
hypothesis since the proposed value function defined in Proposition 3.1 does not satisfy
the basic inequality,

(x − K)+ ≤ V(x) ≤ (x − K)+ + δ.(4.1)

With this information, it seems likely that the cancellation region is of the form [K,
h], h 
= K. The following argument suggests why the closed region should be connected.
Suppose that for x < y, V (x) = (x − K)+ + δ and V (y) = (y − K)+ + δ and that for some
z where x < z < y, V (z) < (z − K)+ + δ. Since V is a continuous function with derivative
satisfying 0 ≤ Vx ≤ 1 (see Proposition 2.1), we have an immediate contradiction.

It is well known that the fundamental solutions of the ordinary second order differen-
tial equation Lv − rv = 0 are ψ(x) = xη and ϕ(x) = xν , where

η = 1
2

− r − d
σ 2

+
√(

1
2

− r − d
σ 2

)2

+ 2r
σ 2

> 0

ν = 1
2

− r − d
σ 2

−
√(

1
2

− r − d
σ 2

)2

+ 2r
σ 2

< 0

(4.2)

are the roots of the equation σ 2(y − 1)y + 2(r − d) = 2r. In addition, ψ ′(x) − ϕ(x) −
ϕ′(x)ψ(x) = BS′(x). Here, B > 0 denotes the Wronskian of the fundamental solutions
(ψ(x), ϕ(x)), and S′(x) is the density of the scale function S, where

S(x) :=
∫ x

c
exp

(
−2

∫ y

c

(r − d)z
σ 2z2

dz
)

dy, for x ∈ (0, ∞),(4.3)
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where c is an arbitrary fixed element of (0, ∞). The functions

ψ̂h(x) := ψ(x) − ψ(h)
ϕ(h)

ϕ(x)

ϕ̂k(x) := ϕ(x) − ϕ(k)
ψ(k)

ψ(x)

(4.4)

are the fundamental solutions of Lv − rv = 0 defined on the domain of the differential
operator of the killed diffusion {Xt: t ∈ [0, λh∧λk)}; λa := inf{t ≥ 0 : Xt = a}. Finally,
the density of the speed measure of Xt is m′(y) = 2

σ 2 y2 S′(y) (see Borodin and Salminen
2002, chapter 2 for details).

Using the above information, we now present the main result of this section. Let
σk∗ := inf {t ≥ 0 : Xt ≥ k∗}, and τ[K,h∗] := inf {t ≥ 0 : K ≤ Xt ≤ h∗}, where k∗ and h∗ are
defined below.

THEOREM 4.1. Suppose r ≥ d. For 0 < δ ≤ δ∗, the perpetual δ-penalty call option has
value process V (Xt) with

V(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x − K if x ∈ [k∗, ∞)

(k∗ − K)+Ex[e−rσk∗ 1{σk∗ ≤τ[K,h∗ ]}]

+((h∗ − K)+ + δ)Ex[e−rτ[K,h∗ ] 1{τ[K,h∗ ]<σk∗ }] if x ∈ (h∗, k∗)

(x − K) + δ if x ∈ [K, h∗]

δ Ex[e−rτ[K,h∗ ] ] if x ∈ (0, K)

(4.5)

where the pair (h∗, k∗) both satisfies the equations

1
S′(h∗)

ϕ̂k∗ (h∗) − ϕ̂′
k∗ (h∗)

S′(h∗)
((h∗ − K)+ + δ) = B

(k∗ − K)+

ψ(k∗)

1
S′(k∗)

ψ̂h∗ (k∗) − ψ̂ ′
h∗ (k∗)

S′(k∗)
(k∗ − K)+ = −B

(h∗ − K)+ + δ

ϕ(h∗)

(4.6)

and the inequalities K < h∗ < k∗. Thus, the value function V is continuous for all x > 0
and is differentiable at h∗ and k∗ (by (4.6)).

The distinctive feature of this valuation formula is that the writer’s termination region
is the interval [K, h∗] for h∗ > K rather than simply the singleton {K}. Intuition for
this result arises by examining the instantaneous gain to the writer for terminating the
contract at time t. A positive value for rK − dXt − δ provides an incentive for the writer
to terminate the call option. This may occur when the interest rate r is larger than the
dividend rate d. If such a situation develops, then immediate termination by the writer
might be preferable for some asset values strictly greater than the strike price (e.g. see
Figure 4.2). Before proving Theorem 4.1, we state a useful lemma concerning the pair
(h∗, k∗) whose proof appears in the Appendix.

LEMMA 4.2. A pair (h∗, k∗) solving the equations (4.6) with K < h∗ < k∗ satisfies
h∗ <

r (K−δ)
d and k∗ > r

d K .

We now prove the main result.
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FIGURE 4.2. Value function for the δ-penalty call option and the immediate exercise
value functions on the interval [50, 175]. Parameter values are: r = 0.02, d = 0.01, δ =
10, σ = 0.2, h

∗ = 107.50, and k
∗ = 329.90.

Proof of Theorem 4.1. Recall, V∗(x) denotes the value function from (2.3). Here, we
intend to show V∗(x) = V (x) for x > 0 by establishing the following sequence of relations:

V(x) ≥ sup
σ∈S0,∞

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}]

≥ inf
τ∈S0,∞

sup
σ∈S0,∞

Ex[e−r (σ∧τ ){((Xτ − K)+ + δ)1{τ<σ } + (Xσ − K)+1{σ≤τ }}]

≥ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex[e−r (σ∧τ ){((Xτ − K)+ + δ)1{τ<σ } + (Xσ − K)+1{σ≤τ }}]

≥ V(x).

(4.7)

Notice that justification of the first and last relations will complete the proof. We begin
by establishing the first inequality. By (4.5) and (4.6), V is continuously differentiable
everywhere except at K, and twice continuously differentiable everywhere except at K,
h∗, and k∗. Using the change-of-variable formula with local time on curves (Peskir 2005,
remark 2.3) applied to e−rtV (Xt), we obtain

e−rtV(Xt) = V(x) +
∫ t

0
(LV − r V)(s, Xs)1{Xs 
=k∗}∩{Xs 
=h∗}∩{Xs 
=K}ds

+
∫ t

0
e−rsσ Xs Vx(Xs)1{Xs 
=k∗}∩{Xs 
=h∗}∩{Xs 
=K}dWs

+ 1
2

∫ t

0
e−rs(Vx(Xs+) − Vx(Xs−))1{Xs=K}d�K

s (X),

(4.8)

where �c
s (X) is the local time of X at the curve c given by

�c
s (X) = lim

ε↓0

1
2ε

∫ s

0
1{c(v)−ε<Xv <c(v)+ε}d[X]v .(4.9)
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In the following, let (τn)∞n=1 be a localizing sequence for the continuous local martingale,∫ t

0
e−rsσ Xs Vx(Xs)1{Xs 
=k∗}∩{Xs 
=h∗}∩{Xs 
=K}dWs.(4.10)

Let x ∈ (h∗, k∗). Using the fact that LV = r V in (h∗, k∗) and the optional sampling
theorem, we know for each n ≥ 1,

Ex[e−r (τ[K,h∗ ]∧σk∗ ∧τn )V(Xτ[K,h∗ ]∧σk∗ ∧τn )] = V(x).(4.11)

Letting n → ∞, we have by the bounded convergence theorem and the continuity of V ,

Ex[e−r (τ[K,h∗ ]∧σk∗ )V(Xτ[K,h∗ ]∧σk∗ )] = V(x).(4.12)

This same argument also shows that (4.12) holds for x ∈ (0, K) since LV = r V there.
Since (4.12) clearly holds when x ∈ [K, h∗] and when x ∈ [k∗, ∞), we conclude (4.12)
holds for all x > 0. Using Lemma 4.2, we know for any x ∈ [k∗, ∞),

(Lg1 − rg1)(x) = (r − d)x − r (x − K) = r K − dx < 0,(4.13)

where g1(x) := (x − K)+. Therefore, for x ∈ (h∗, k∗) and any n ≥ 1,

Ex[e−r (σ∧τ[K,h∗ ]∧τn )V(Xσ∧τ[K,h∗ ]∧τn )] ≤ V(x).(4.14)

Thus, by Fatou’s lemma

Ex[e−r (σ∧τ[K,h∗ ])V(Xσ∧τ[K,h∗ ] )] ≤ V(x).(4.15)

Using Lemma A.4, we find

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}]
≤ Ex[e−r (σ∧τ[K,h∗ ])V(Xσ∧τ[K,h∗ ] )]

≤ V(x).

(4.16)

Taking the supremum over all stopping times σ yields

sup
σ∈S0,∞

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}]

≤ V(x).

(4.17)

Thus, the first inequality of (4.7) holds when x ∈ (h∗, k∗). Continuing when x ∈ (h∗, k∗),
recall

Ex[e−r (τ[K,h∗ ]∧σk∗ )V(Xτ[K,h∗ ]∧σk∗ )]

= Ex[e−r (σk∗ ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ[K,h∗ ]}}]
= V(x).

(4.18)

Thus,

V(x) ≥ inf
τ∈S0,∞

Ex[e−r (σk∗ ∧τ ){((Xτ − K)+ + δ)1{τ<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ }}].(4.19)
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We now establish the opposite inequality. Using Lemma 4.2, for any x ∈ (K,
r (K−δ)

d ),

(Lg2 − rg2)(x) = (r − d)x − r ((x − K) + δ) = r K − dx − rδ > 0,(4.20)

where g2(x) := (x − K)+ + δ. Therefore, for x ∈ (h∗, k∗) and n ≥ 1 the optional sampling
theorem yields for any τ ∈ S0,∞,

Ex[e−r (τ∧σk∗ ∧τn )V(Xτ∧σk∗ ∧τn )] ≥ V(x).(4.21)

By Lemma A.4 we know,

Ex[e−r (τ∧σk∗ ∧τn )V(Xτ∧σk∗ ∧τn )] ≤ Ex[e−r (τ∧σk∗ ∧τn )[((Xτ∧τn − K)+ + δ)1{τ∧τn<σk∗ }

+ (Xσk∗ − K)+1{σk∗ ≤τ∧τn}]].

(4.22)

Then, two applications of the bounded convergence theorem (while recalling the conti-
nuity of V ) yields

V(x) ≤ Ex[e−r (τ∧σk∗ )V(Xτ∧σk∗ )]

≤ Ex[e−r (τ∧σk∗ )[((Xτ − K)+ + δ)1{τ<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ }]].

(4.23)

Hence,

V(x) ≤ inf
τ∈S0,∞

Ex[e−r (τ∧σk∗ )[((Xτ − K)+ + δ)1{τ<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ }]].(4.24)

Thus, the opposite equality has been established and the following relations hold.

V(x) = inf
τ∈S0,∞

Ex[e−r (τ∧σk∗ )[((Xτ − K)+ + δ)1{τ<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ }]]

≤ sup
σ∈S0,∞

inf
τ∈S0,∞

Ex[e−r (τ∧σ )[((Xτ − K)+ + δ)1{τ<σ } + (Xσ − K)+1{σ≤τ }]]

(4.25)

This completes the justification and V (x) = V∗(x) when x ∈ (h∗, k∗) as desired.
Suppose x ∈ (0, K). Using the fact that LV − r V in (0, K) and the optional sampling

theorem, we know for each n ≥ 1 and any σ ∈ S0,∞,

Ex[e−r (τ[K,h∗ ]∧σ∧τn )V(Xτ[K,h∗ ]∧σ∧τn )] = V(x).(4.26)

An application of the bounded convergence theorem (while recalling the continuity V )
followed by Lemma A.4 produces

V(x) ≥ sup
σ∈S0,∞

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}].
(4.27)

Thus, the first inequality in (4.7) holds. In addition, since τ[K,h∗] < σk∗ , we have

V(x) = Ex[e−r (τ[K,h∗ ]∧σk∗ )V(Xτ[K,h∗ ]∧σk∗ )]

= Ex[e−r (σk∗ ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ[K,h∗ ]}}]

(4.28)

which implies

V(x) ≥ inf
τ∈S0,∞

Ex[e−r (σk∗ ∧τ ){((Xτ − K)+ + δ)1{τ<σk∗ } + (Xσk∗ − K)+1{σk∗ ≤τ }}].(4.29)
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The same argument used when x ∈ (h∗, k∗) applies here to show that the opposite
inequality in (4.29) holds. Therefore, V∗(x) = V (x) when x ∈ (0, K).

Suppose x ∈ [K, h∗]. Using (4.12) and the fact that τ[K,h∗] = 0, for any stopping time
σ ∈ S0,∞,

V(x) ≥ Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}].(4.30)

Note that equality in (4.30) actually holds. Now, taking the supremum over all stopping
times in (4.30) yields the first inequality in (4.7). Again using (4.12) and τ[K,h∗] = 0 yields,

V(x) ≥ inf
τ∈S0,∞

Ex[e−r (σk∗ ∧τ ){((Xτ − K)+ + δ)1{τ<σk∗ } + ((Xσk∗ − K)+)1{σk∗ ≤τ }}].(4.31)

The same argument used when x ∈ (h∗, k∗) applies here to show the opposite inequality
in (4.31). Thus, V (x) = V∗(x).

Finally, suppose x ∈ [k∗, ∞). By Lemma A.4, we know

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}]
≤ Ex[e−r (σ∧τ[K,h∗ ] V(Xσ∧τ[K,h∗ ] )].

(4.32)

Using Lemma 4.2 and the optional sampling theorem for any σ ∈ S0,∞ and n ≥ 1, we
have

Ex[e−r (σ∧τ[K,h∗ ]∧τn )V(Xσ∧τ[K,h∗ ]∧τn )] ≤ V(x).(4.33)

By Fatou’s Lemma and the continuity of V , we conclude

Ex[e−r (σ∧τ[K,h∗ ]){((Xτ[K,h∗ ] − K)+ + δ)1{τ[K,h∗ ]<σ } + (Xσ − K)+1{σ≤τ[K,h∗ ]}}]
≤ V(x).

(4.34)

Taking the supremum over all stopping times σ yields the first inequality in (4.7). Since
σk∗ = 0, for any stopping time τ ∈ S0,∞,

V(x) = Ex[e−r (σk∗ ∧τ ){((Xτ − K)+ + δ)1{τ<σk∗ } + ((Xσk∗ − K)+)1{σk∗ ≤τ }}].(4.35)

Thus, we have

V(x) = inf
τ∈S0,∞

Ex[e−r (σk∗ ∧τ ){((Xτ − K)+ + δ)1{τ<σk∗ } + ((Xσk∗ − K)+)1{σk∗ ≤τ }}].(4.36)

Thus, V (x) = V∗(x). This completes the proof. �

5. NUMERICAL RESULTS

This section presents numerical results pertaining to the δ-penalty call option when r > d.
Recall, when the interest rate exceeds the dividend yield, the price function is not always
a convex function for all values of the underlying asset.

Figure 4.2 displays the value function for the δ-penalty call option and the immediate
exercise value functions on [50, 175] with parameter values: r = 0.02, d = 0.01, σ = 0.2,
K = 100, and δ = 10. We see that the value function smoothly joins the upper immediate
exercise value function at h∗ = 107.50. Thus, the immediate cancellation region is the
interval [100, 107.50]. In addition, Figure 5.1 shows that the value function smoothly
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FIGURE 5.1. Value function for the δ-penalty call option and the immediate exercise
value functions on the interval [50, 330]. Parameter values are: r = 0.02, d = 0.01, δ =
10, σ = 0.2, h

∗ = 107.50, and k
∗ = 329.90.

joins the lower immediate exercise value function at k∗ = 329.90. Hence, the immediate
exercise region consists of the interval [329.90, ∞].

Our analysis in the previous section and the value function featured in Figure 4.2 high-
light the fact that the price of the δ-penalty call option need not be a convex function of
the underlying asset even though the payoff is convex. This result, though striking, is not
unexpected from previous analysis done on game-style options (see e.g., Ekström 2006).
Moreover, our results show that the δ-penalty call option is not necessarily nondecreasing
in the volatility parameter. Indeed, Table 5.1 shows that for asset values of X = 120, 130,
140, 150, the δ-penalty call option is decreasing in volatility for model parameters r =
0.02, d = 0.01, δ = 10, K = 100. Note this phenomenon occurs near non-convex pieces
of the value function. Not surprisingly, this quality of the price disappears as asset values
approach k∗ and the value function switches to being convex. Indeed, Table 5.1 indicates
that prices are increasing in volatility when X = 280 and X = 290. This numerical exam-
ple highlights the close relationship between the convexity of the price function and its
monotonicity with respect to the volatility parameter.

The price savings over a perpetual American call option can be substantial. Since
optimal cancellation occurs in an interval with the strike as the left endpoint, we would
expect the greatest savings to occur close to this interval. Indeed, we see from Table 5.1
that the cost savings to the investor of a δ-penalty call option is greatest at X = 120
for any fixed σ value. In fact, for X = 120 and σ = 0.15, the cost savings of 26.5132
represents nearly 89% of the option value and nearly 47% of the regular American call
option value.

6. CONCLUSION

The above discussion presents the valuation of the perpetual δ-penalty call option. This
analysis follows the work done in Kyprianou (2004) with respect to the perpetual δ-
penalty put option. We find that the solution to the problem differs considerably depend-
ing on the relative values of the interest rate and dividend yield for the underlying asset.
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TABLE 5.1
Perpetual Cancellable Call Option, Perpetual Call Option, Savings Premia

Asset Volatility Canc. Call Amer. Call Savings Premia

120 0.15 29.9499 56.4631 26.5132
0.20 29.7883 64.3987 34.6104
0.25 29.6394 71.4192 41.7798

130 0.15 39.5982 63.1082 23.5100
0.20 39.3874 71.3509 31.9635
0.25 39.2417 78.6776 39.4359

140 0.15 49.0096 69.9558 20.9462
0.20 48.8518 78.4550 29.6032
0.25 48.7566 86.0539 37.2973

150 0.15 58.2716 76.9971 18.7255
0.20 58.2283 85.7032 27.4749
0.25 58.2134 93.5413 35.3279

280 0.15 180.1030 183.3450 3.2420
0.20 180.7380 190.6220 9.8840
0.25 181.4580 198.9720 17.5140

290 0.15 190.0100 192.5100 2.5000
0.20 190.4730 199.3850 8.9120
0.25 191.1390 207.5970 16.4580

Notes: Columns 1 and 2 give the underlying asset price X and its return volatility σ .
Columns 3 and 4 provide the δ-penalty call option price and the perpetual American
call option price. Column 5 is the savings from purchasing a δ-penalty call over a
perpetual American call. Parameter values are r = 0.02, d = 0.01, δ = 10, K = 100.
σ = 0.15 ⇒ h

∗ = 115.0460, k
∗ = 294.5790. σ = 0.20 ⇒ h

∗ = 107.4860, k
∗ = 329.8960.

σ = 0.25 ⇒ h
∗ = 101.0210, k

∗ = 365.7920.

Specifically, when r ≤ d, analogous arguments to Kyprianou (2004) identify the explicit
solution to the valuation problem. Namely, the value of the claim corresponds to its price
under the policy of exercising at the first time the underlying asset reaches an optimally
chosen value k∗ and under the policy of terminating the contract when the asset value
first reaches the strike price K. In addition, the value function is a convex function of
the underlying asset price. When r > d, the optimal cancellation region no longer is the
singleton {K} in general. Instead, it consists of an interval of the form [K, h∗], where h∗

must be determined as part of the solution. We show that h∗ and k∗ respects two natural
bounds. Namely, the optimal termination point satisfies h∗ ≤ r (K−δ)

d and the optimal
exercise point satisfies k∗ ≥ r

d K . In addition, smooth-pasting holds both at the holder’s
optimal exercise boundary value k∗ and the writer’s cancellation value h∗. This striking
result implies that the price is not a convex function for all values of the underlying asset.
Further, numerical solutions for the valuation problem show that the value function
is not necessarily nondecreasing in the volatility parameter. This phenomenon directly
relates to the existence of nonconvex pieces of the value function. Finally, we observe
significant price savings over the perpetual call option. This savings might be especially
appealing to purchasers seeking a call option position who are willing to assume the risk
of cancellation.
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APPENDIX

A.1. Appendix for Section 3

PROPOSITION A.1. δ(k) is an increasing function.

Proof . Solving equation (3.7) for δ, we find

δ(k) = −

(
K
k

)− λ+κσ
σ

(
k(1 −

(
k
K

)− 2λ
σ

)
σ − (k − K)

(
λ − κσ +

(
K
k

) 2λ
σ

(λ + κσ )

)

2λ
.

(A.1)

Taking a derivative and simplifying yields

δ′(k) = 1
2kλσ

(
k
K

)− 2λ
σ

(
K
k

)− λ+κσ
σ

×
((

k
K

) 2λ
σ

K

(
−1 +

(
K
k

) 2λ
σ

)
(λ2 − κ2σ 2)

− k(λ − (1 + κ)σ )

(
σ +

(
k
K

) 2λ
σ

(
−λ − (1 + κ)σ +

(
K
k

) 2λ
σ

(λ + κσ )

)))
.

(A.2)

We now show that the derivative is nonnegative. We can neglect the first three factors
of the above derivative since they are all positive. From this point, we will utilize the
substitution y := k

K to ease notation. At this point, we want to show

(
−1 +

(
1
y

) 2λ
σ

)
y

2λ
σ (λ2 − κ2σ 2) − y(λ − (1 + κ)σ )

×
(

σ + y
2λ
σ

(
−λ − (1 + κ)σ +

(
1
y

) 2λ
σ

(λ + κσ )

))
≥ 0.

(A.3)

This is equivalent to showing

(
−1 +

(
1
y

) 2λ
σ

)
y−1+ 2λ

σ (λ2 − κ2σ 2)

(λ − (1 + κ)σ ) ×
(

σ + y
2λ
σ

(
−λ − (1 + κ)σ +

(
1
y

) 2λ
σ

(λ + κσ )

)) ≤ 1.(A.4)

Since y ≥ 1, it suffices to show

(
−1 +

(
1
y

) 2λ
σ

)
y

2λ
σ (λ2 − κ2σ 2)

(λ − (1 + κ)σ ) ×
(

σ + y
2λ
σ

(
−λ − (1 + κ)σ +

(
1
y

) 2λ
σ

(λ + κσ )

)) ≤ 1.(A.5)
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Or equivalently show, (
1 −

(
1
y

) 2λ
σ

)
y

2λ
σ (λ2 − κ2σ 2)

(λ − (1 + κ)σ ) ×
(

−σ + y
2λ
σ

(
λ + (1 + κ)σ −

(
1
y

) 2λ
σ

(λ + κσ )

)) ≤ 1.(A.6)

Algebraic manipulations of the left-hand side produce

(y
2λ
σ − 1)(λ2 − κ2σ 2)

(λ − (1 + κ)σ ) × (λ + κσ + σ ) × (y
2λ
σ − 1)

⇔ λ2 − κ2σ 2

(λ − (1 + κ)σ ) × (λ + κσ + σ )

⇔ λ2 − κ2σ 2

λ2 − κ2σ 2 − σ 2(1 + 2κ)
.

(A.7)

Since κ := r−d− σ2
2

σ 2 and r ≤ d, it follows that −σ (1 + 2κ) ≥ 0. Thus, the left-hand side
is less than or equal to 1 and the proof is complete. �

PROPOSITION A.2. The function f (x) satisfies

f (x) ≥ 0, x ∈ [K, b](A.8)

Proof . Algebraic simplification yields

f (x) = 1
2

( x
K

) λ
σ
+κ

⎛
⎜⎜⎜⎜⎝2

( x
K

)− 2λ
σ

(x − K) +
x

⎛
⎜⎝1−

( x
K

)− 2λ
σ

⎞
⎟⎠σ−(x−K)

⎛
⎜⎝λ−κσ+

( x
K

)− 2λ
σ

(λ+κσ )

⎞
⎟⎠

λ

⎞
⎟⎟⎟⎟⎠ .

(A.9)

Since the first factor in the above expression is positive we can discard this from our
analysis. Now, multiplying throughout by λ leads us to showing the following condition
holds for x ∈ [K, b].

2
( x

K

)− 2λ
σ

(x − K)λ + x
(

1 −
( x

K

)− 2λ
σ

)
σ ≥ (x − K)

(
λ − κσ +

( x
K

)− 2λ
σ

(λ + κσ )
)

.

(A.10)

In order to further simplify this inequality, we make the substitution y := x
K . This yields

the following inequality

2y− 2λ
σ (y − 1)Kλ + y(1 − y− 2λ

σ )Kσ ≥ (y − 1)K(λ − κσ + y− 2λ
σ (λ + κσ )).(A.11)
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for 1 ≤ y ≤ b
K . Recall, y = 1 and y = b

K both satisfy this inequality. As a result, let us
consider 1 < y < b

K = λ−κσ
λ−κσ−σ

. The condition now can be reduced to showing

2y− 2λ
σ λ + y

y − 1
(1 − y− 2λ

σ )σ ≥ λ − κσ + y− 2λ
σ (λ + κσ )(A.12)

for 1 < y < λ−κσ
λ−κσ−σ

. Straightforward algebra shows the following sequence of relations
can all be deduced from each other.

y− 2λ
σ (2λ − λ − κσ ) +

(
y

y − 1

)
(1 − y− 2λ

σ )σ ≥ λ − κσ

y− 2λ
σ (λ − κσ ) +

(
y

y − 1

)
(1 − y− 2λ

σ )σ ≥ λ − κσ

(
y

y − 1

)
(1 − y− 2λ

σ )σ ≥ (λ − κσ )(1 − y− 2λ
σ )

y
y−1σ ≥ λ − κσ

yσ ≥ λy − κσ y − λ + κσ

λ − κσ ≥ y(λ − κσ − σ )

y ≤ λ − κσ

λ − κσ − σ
.

(A.13)

Notice the last inequality is precisely the case under consideration. Thus, all of the above
inequalities are true and we have shown f (x) ≥ 0 for x ∈ [K, b]. �

A.2. Appendix for Section 4

LEMMA A.3. A pair (h∗, k∗) solving the equations (4.6) with K < h∗ < k∗ satisfy
h∗ <

r (K−δ)
d and k∗ > r

d K .

Proof . The following argument is inspired by the proof of Theorem 4.3 in Al-
varez (2008). Let g1(x) := (x − K)+ and g2(x) := (x − K)+ + δ. First, note that
for K < x < r

d K , (Lg1 − rg1)(x) > 0; for x = r
d K , (Lg1 − rg1)(x) = 0; for x > r

d K ,
(Lg1 − rg1)(x) < 0. Second, note that for K < x <

r (K−δ)
d , (Lg2 − rg2)(x) > 0; for x =

r (K−δ)
d , (Lg2 − rg2)(x) = 0; for x >

r (K−δ)
d , (Lg2 − rg2)(x) < 0. Third, notice

d
dx

(
g′

2(x)
S′(x)

ϕ̂k(x) − ϕ̂′
k(x)

S′(x)
g2(x)

)
= (Lg2 − rg2)(x)ϕ̂k(x)m′(x)

d
dx

(
g′

1(x)
S′(x)

ψ̂h(x) − ψ̂ ′
h(x)

S′(x)
g1(x)

)
= (Lg1 − rg1)(x)ψ̂h(x)m′(x).

(A.14)

Thus, equations (4.6) can be re-expressed as

B−1
∫ k∗

h∗
(Lg2 − rg2)(x)ψ(k∗)ϕ̂k∗ (x)m′(x) dx = g2(k∗) − g1(k∗)

B−1
∫ k∗

h∗
(Lg1 − rg1)(x)ϕ(h∗)ψ̂h∗ (x)m′(x) dx = g1(h∗) − g2(h∗).

(A.15)
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Now consider, for any fixed k > K, the function

L1(h) := B
ψ(k)

(g2(k) − g1(k)) −
∫ k

h
(Lg2 − rg2)(x)ϕ̂k(x)m′(x)dx.(A.16)

Notice L1(k) > 0 and L1(h) is increasing on (K,
r (K−δ)

d ), and decreasing on (
r (K − δ)

d
, ∞).

Thus, if a root h∗
k ∈ (K, k) satisfying L1(h∗

k) = 0 exists, it must be on the set (K,
r (K−δ)

d ).
Similarly, consider for any fixed h > K, the function

L2(k) := B
ϕ(h)

(g1(h) − g2(h)) −
∫ k

h
(Lg1 − rg1)(x)ψ̂h(x)m′(x)dx.(A.17)

Notice L2(h) < 0 and L2(k) is decreasing on (K, r
d K), and increasing on ( r

d K, ∞). Hence,
if a root k∗

h ∈ (h, ∞) satisfying the condition L2(k∗
h ) = 0 exists, then it has to be on the

set ( r
d K, ∞). �

LEMMA A.4. The value function V (x) as defined in Theorem 4.1 satisfies

(x − K)+ ≤ V(x) ≤ (x − K)+ + δ

Proof . In order to complete the proof, we only need to consider the case when x ∈
(h∗, k∗). Indeed, notice 0 ≤ V (x) ≤ δ when x ∈ (0, K). The following argument is inspired
by the proof of Theorem 4.3 in Alvarez (2008). Define for g1 := (x − K)+ and g2 := (x
− K)+ + δ the following functions,

�1 := V(x) − g1(x) = g2(h∗)
ϕ̂k∗ (x)
ϕ̂k∗ (h∗)

+ g1(k∗)
ψ̂h∗ (x)

ψ̂h∗ (k∗)
− g1(x)

�2 := V(x) − g2(x) = g2(h∗)
ϕ̂k∗ (x)
ϕ̂k∗ (h∗)

+ g1(k∗)
ψ̂h∗ (x)

ψ̂h∗ (k∗)
− g2(x).

(A.18)

Now, by our construction, continuity and smooth-pasting hold at h∗, k∗. Thus,
�1(k∗) = �′

1(k∗) = 0 and �2(h∗) = �′
2(h∗) = 0. Standard differentiation yields

d
dx

( �1(x)
ϕ̂k∗ (x)

)
= S′(x)

ϕ̂2
k∗ (x)

(
Bg1(k∗)
ψ(k∗)

− g′
2(x)

S′(x)
ϕ̂k∗ (x) + ϕ̂′

k∗ (x)
S′(x)

g2(x)
)

d
dx

( �2(x)

ψ̂h∗ (x)

)
= S′(x)

ψ̂2
h∗ (x)

(
−Bg2(h∗)

ϕ(h∗)
− g′

1(x)
S′(x)

ψ̂h∗ (x) + ψ̂ ′
h∗ (x)

S′(x)
g1(x)

)
.

(A.19)

Invoking equations (4.6) and using the observations (A.14), we have

d
dx

( �1(x)
ϕ̂k∗ (x)

)
= − S′(x)

ϕ̂2
k∗ (x)

∫ x

h∗
ϕ̂k∗ (t)(Lg2 − rg2)(t)m′(t) dt < 0

d
dx

( �2(x)

ψ̂h∗ (x)

)
= S′(x)

ψ̂2
h∗ (x)

∫ k∗

x
ψ̂h∗ (t)(Lg1 − rg1)(t)m′(t) dt < 0

(A.20)

since x ∈ (h∗, k∗) and h∗ <
r (K−δ)

d and k∗ > r
d K . Thus, have that �1(x) ≥ �1(k∗) = 0 and

�2(x) ≤ �2(h∗) = 0 for all x ∈ (h∗, k∗). Hence, g1(x) ≤ V (x) ≤ g2(x) for x ∈ (h∗, k∗). �
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