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[1] Plate tectonics constitutes our primary framework for
understanding how the Earth works over geological
timescales. High-resolution mapping of relative plate
motions based on marine geophysical data has followed
the discovery of geomagnetic reversals, mid-ocean ridges,
transform faults, and seafloor spreading, cementing the plate
tectonic paradigm. However, so-called ‘‘absolute plate
motions,’’ describing how the fragments of the outer shell
of the Earth have moved relative to a reference system such
as the Earth’s mantle, are still poorly understood. Accurate
absolute plate motion models are essential surface boundary
conditions for mantle convection models as well as for
understanding past ocean circulation and climate as
continent-ocean distributions change with time. A
fundamental problem with deciphering absolute plate
motions is that the Earth’s rotation axis and the averaged
magnetic dipole axis are not necessarily fixed to the mantle
reference system. Absolute plate motion models based on
volcanic hot spot tracks are largely confined to the last
130 Ma and ideally would require knowledge about the

motions within the convecting mantle. In contrast, models
based on paleomagnetic data reflect plate motion relative to
the magnetic dipole axis for most of Earth’s history but
cannot provide paleolongitudes because of the axial
symmetry of the Earth’s magnetic dipole field. We
analyze four different reference frames (paleomagnetic,
African fixed hot spot, African moving hot spot, and global
moving hot spot), discuss their uncertainties, and develop a
unifying approach for connecting a hot spot track system
and a paleomagnetic absolute plate reference system into a
‘‘hybrid’’ model for the time period from the assembly of
Pangea (�320 Ma) to the present. For the last 100 Ma we
use a moving hot spot reference frame that takes mantle
convection into account, and we connect this to a pre–
100 Ma global paleomagnetic frame adjusted 5� in longitude
to smooth the reference frame transition. Using plate driving
force arguments and the mapping of reconstructed large
igneous provinces to core–mantle boundary topography, we
argue that continental paleolongitudes can be constrainedwith
reasonable confidence.
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1. INTRODUCTION

[2] Plates form the outer shell of the Earth, and their past

movements may be traced using geological data. Plate

tectonics is a paradigm that attempts to describe the com-

plex dynamic evolution of the Earth in terms of rigid

lithospheric plates. A simplified form of the theory invokes

the Earth’s heat engine to drive plate motions: mantle

material heated by isotopic decay rises at spreading ridges

where plates diverge and cool during seafloor spreading.

The mantle is cooled by subduction of old, cold lithosphere

and is then isotopically heated to rise once again ad

infinitum. The theory of plate tectonics has proved success-

ful both theoretically and practically, providing a scientific

framework for diverse geological disciplines. It is now an

important challenge to integrate plate tectonics into mantle

dynamics in order to allow a full dynamic treatment of Earth

motion and deformation on all scales. Much progress has

been made in understanding the dynamics of mantle con-

vection, plate tectonics, and plumes, but a fully integrated

model incorporating both plate motions and mantle dynam-

ics has yet to be realized. Even though links between mantle

activity and plate tectonics are becoming more evident,

notably through subsurface tomographic images and

advancements in mineral physics, there is still no generally

accepted mechanism that consistently explains plate tecton-

ics in the framework of mantle convection.
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[3] The development of a unifying geodynamic model

requires the establishment of a global plate motion model.

However, the relative motion between tectonic plates must

first be determined from fracture zones and ocean floor

magnetic anomalies, the oldest of which are only Jurassic in

age (�175 Ma) (section 2). Only then can plates be restored

to their paleopositions on the globe using paleomagnetic

data (section 3), ‘‘absolute’’ plate rotations from hot spot

tracks (if one considers hot spots fixed), or, alternatively,

using tracks of hot spots that move because of plume

advection in the mantle (sections 4 and 5). (Italicized terms

are defined in the glossary, after the main text.) However,

the hot spot track method cannot be used prior to �130 Ma,

which is the age at the end of the oldest known track in the

South Atlantic. That leaves paleomagnetism, with its known

limitation that it cannot determine motions in longitude, as

the only quantitative way of positioning objects on the

globe during older times.

[4] Multiple paleomagnetic and hot spot–mantle refer-

ence frames have been published and compared over the

past decades, but many were constructed without appropri-

ate consideration of results based on different data sets and

methods. In this paper we combine interdisciplinary know-

how in developing paleomagnetic and hot spot reference

frames, and most importantly, we compare reference frames

(section 6) that are generated with the same timescales and

plate circuit closure. Ultimately, we combine hot spot and

paleomagnetic frames in order to develop a hybrid global

reference frame for plate motions back to the time when

Pangea assembled (section 7). We illustrate how this hybrid

frame can be used to explore links between surface phe-

nomena and deep mantle heterogeneities and briefly discuss

the possible causes of kinks, cusps, and longer-duration

small circle segments in the global apparent polar wander

(APW) path for the Pangea supercontinent (section 8).

2. RELATIVE PLATE MOTIONS AND PLATE
MOTION CHAINS

[5] The relative motions between tectonic plates can be

determined from marine geophysical data by the matching

of fracture zones and magnetic anomalies of the same age,

corresponding to patterns of paleoridge and paleotransform

segments at a given reconstruction time. Usually, the

geophysical data quality varies substantially, and identifica-

tion errors can occur; therefore, the quality of the computed

rotations needs to be assessed against the quality of input

data. Since Bullard et al. [1965] published the first set of

computer-generated reconstructions and defined the uncer-

tainties attached to the inferred rotations, several other

methods have been proposed to account for uncertainties

in plate rotations [Hellinger, 1981; Stock and Molnar,

1983]. Many of the rotations included in our study were

calculated using Hellinger’s [1981] criteria for goodness of

fit, associated with uncertainties based on the statistical

approach developed by Chang [1988] (see Table 1 for

references to quantitative reconstructions). This method

requires that isochrons (i.e., magnetic and fracture zone

data of the same age) are divided into great circle segments

(Figure 1a). Even though fracture zones are expected to

follow small circles in plate tectonic theory, Hellinger

[1981] chose to fit both paleo-mid-ocean ridge and fracture

zone segments to great circles because this greatly simpli-

fies the least squares fitting routine. The length of fracture

segments used in this approach is so short that the difference

between a small circle versus a great circle segment is

negligible in this context. The sum of squares of the

weighted distances of fixed data points (from one plate)

and rotated data points (from the other plate) to the great

circle segments is minimized in order to derive the rotation

parameters and their uncertainties [Hellinger, 1981]. The

uncertainty in a rotation is described by a covariance matrix,

which depends on plate boundary geometry, the number of

data points, and data uncertainties [Chang et al., 1992]. This

method allows one to combine independently calculated

rotations and their uncertainties and to compute the result-

ing rotation with an uncertainty region that reflects the

errors in the input rotations.

[6] The Hellinger [1981] criteria for goodness of fit have

been used mainly for deriving best fit rotations from

conjugate magnetic anomalies and fracture zone data. For

matching boundary between continental and oceanic crust

segments a visual fit is usually preferred because the

geometry of a continent-ocean boundary (COB) can be

very sinuous and difficult to break into great circle seg-

ments, as required by Hellinger’s [1981] methodology.

Therefore, predrift rotations mostly do not have uncertain-

ties attached to them. However, plate circuits can be used to

derive the amount of prebreakup displacement (and uncer-

tainties). As an example we used the rotations between

North America and Greenland and between North America

and Eurasia to determine the relative motion and its uncer-

tainties between Greenland and Eurasia before breakup

(Figure 1b). According to our kinematic model the position

of the COBs should be found within an area that is 45 to

77 km wide (from south to north); the uncertainty of

reconstructed points is given by the stage pole uncertainty

ellipse calculated for stage pole 31 to 25 (67 to 55 Ma). A

rotated Eurasian COB at 55 and 57 Ma (white lines in

Figure 1b) fits the end limits of the oldest uncertainty

ellipse. Because the ellipse shows the uncertainty of the

location of the Eurasian COB at 55.9 Ma, this might

indicate that the time of breakup occurred between 55 and

57 Ma.

[7] Most Euler rotations include insignificant predrift

extension prior to initiation of seafloor spreading; as a result

the majority of Pangea reconstructions essentially use

Jurassic Euler rotations with minor post-Permian intraplate

deformation. The paleomagnetic coverage from two adja-

cent plates is usually not precise enough to determine this

deformation, but in a few rare cases it has been possible to

construct predrift relative motion models by fitting portions

of APW paths (Figure 2). In this example, late Paleozoic

APW segments from North America and Europe match

each other well in the Bullard et al. [1965] reconstruction
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TABLE 1. Euler Plate Rotations Used in This Paper

Age
(Ma) Latitude Longitude

Angle
(deg) Referencea

Europe Versus North America
0 0 0 0
10.95 66.44 132.98 �2.57 1 (Q)
20.13 68.91 132.51 �5.09 1 (Q)
33.058 68.22 131.53 �7.65 1 (Q)
47.906 65.38 138.44 �10.96 1 (Q)
53.347 63.07 144.26 �12.82 1 (Q)
55.904 56.17 145.06 �13.24 1 (Q)
68.737 54.45 147.06 �15.86 1 (Q)
79.075 63.4 147.75 �18.48 1 (Q)
83.5 66.54 148.91 �19.7 2
92 66.67 150.26 �20.37 2
105 66.85 152.34 �21.49 2
118 68.99 154.75 �23.05 2
145 68.99 154.75 �23.05 2
200 68.99 154.75 �23.64 3 (Q)
240 88 27 �38 4 (Q)
425 88 27 �38 4 (Q)

Greenland Versus North America
0 0 0 0
33.058 0 0 0 5 (Q)
47.906 62.8 260.9 �2.8 5 (Q)
53.347 40.64 243.07 �3.615 5 (Q)
55.904 20.3 221.8 �3 5 (Q)
68.737 52.86 223.6 �6.28 5 (Q)
83.5 65.3 �122.45 �11 6
92 66.6 �119.48 �12.2 6
105 67.08 �118.96 �12.99 6
118 67.5 �118.48 �13.78 6
245 67.5 �118.48 �13.78 6

North America Versus Northwest Africa
0 0 0 0
9.7 80.89 22.82 2.478 8 (Q)
19 80.89 23.28 5.244 8 (Q)
25.8 79.34 28.56 7.042 8 (Q)
33.1 75.99 5.98 9.767 8 (Q)
38.4 74.54 0.19 11.918 8 (Q)
42.5 74.38 �2.8 13.56 9
46.3 74.23 �5.01 15.106 8 (Q)
49 75.29 �4.26 15.95 9
52.4 77.34 �1.61 16.963 8 (Q)
55.9 80.64 6.57 17.895 8 (Q)
65.6 82.74 2.93 20.84 8 (Q)
71.1 81.35 �8.32 22.753 8 (Q)
73.6 81.11 �10.64 23.74 9
79.1 78.64 �18.16 26.99 9
83.5 76.81 �20.59 29.51 9
89.9 74.33 �22.65 33.86 10
94.1 72 �24.39 36.49 10
100 69.42 �23.52 40.46 10
106.9 68.08 �22.66 45.36 10
118.1 66.21 �21 53.19 10
119.7 66.09 �20.17 54.45 11
125.8 65.97 �19.43 56.63 11
133.1 66.14 �18.72 58.03 11
139.2 66.24 �18.33 59.71 11
148.5 66.24 �18.33 62.14 11
154.2 66.7 �15.85 64.9 11
170 67.02 �13.17 72.1 12
175 66.95 �12.02 75.55 12
215 67 348 79 13
320 67 348 79 13

Northwest Africa Versus South Africa
0 0 0 0
83.5 0 0 0 14
120.4 16.5 6.7 �1.15 14
600 16.5 6.7 �1.15 14

TABLE 1. (continued)

Age
(Ma) Latitude Longitude

Angle
(deg) Referencea

Northeast Africa Versus South Africa
0 0 0 0
83.5 0 0 0 15
120.4 40.5 298.6 �0.7 15
600 40.4 298.6 �0.7 15

South American Craton (SAC) Versus South Africa
0 0 0 0
2.7 62.2 �39.4 0.83 8
9.7 62.05 �40.59 3.18 8
19 58.77 �37.32 7.049 8
25.8 57.59 �36.27 9.962 8
33.1 56.17 �33.64 13.41 8
38.4 57.1 �33 15.912 8
46.3 56.95 �31.15 19.107 8
52.4 58.89 �31.18 21.38 8
55.9 61.35 �32.21 22.273 8
65.6 63.88 �33.61 24.755 8
71.6 63.41 �33.38 26.573 8
79.1 62.92 �34.36 30.992 8
83.5 61.88 �34.26 33.512 8
113 52.4 325 51.3 15
120.4 51.6 �35 52.92 14
126.7 50.4 �33.5 54.42 14
131.7 50 �32.5 55.08 14
320 50 �32.5 55.08 14

Parana Versus South Africa (as SAC for �125.7)
126.7 50.4 326.5 54.42 15
131.7 47.5 326.7 56 15
150 47.5 326.7 56.2 15
200 47.5 326.7 56.2 15
600 47.6 326.7 56.2 14

Colorado Versus South Africa (as SAC for �125.7)
126.7 50.4 326.5 54.42 15
131.7 47.5 326.7 57 15
150 47.5 326.7 57.3 15
200 47.5 326.7 58.2 15
600 47.5 326.7 58.2 15

Madagascar Versus South Africa
0 0 0 0
120.4 90 0 0
124.1 2.57 �63.33 1.5 20
126.7 2.57 �63.33 2.43 20
128.2 2.57 �63.33 3.17 20
130.2 2.57 �63.33 3.94 20
132.1 2.57 �63.33 4.68 20
145.1 �0.6 �61.8 8.9 20b

160.0 �14.8 �42.5 15.4 20b

600.0 �14.8 �42.5 15.4 20b

India Versus Madagascar
0 0 0 0
9.9 23.8 33.1 �4.6 20b

20.2 29.6 23.9 �7.5 20b

83.5 22.8 19.1 �51.28 20
88 19.8 27.2 �59.16 20
120.4 24.02 32.04 �53.01 20
124 23.14 33.1 �54.51 20
132.1 18.45 31 �61.52 20
600 18.45 31 �61.52 20

Australia Versus East Antarctica
0 0 0 0
2.6 �11.6 �139.7 1.65 25 (Q)
5.9 �11.59 �139.23 3.83 25 (Q)
11.1 �11.90 �142.06 6.79 25 (Q)
20.1 �13.39 �145.63 12.05 25 (Q)
26.0 �13.80 �146.44 15.92 25 (Q)
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for the interval from 310 to 240 Ma. However, no single fit

accommodates the early Mesozoic APW segments for North

America and Europe. The fit for 240–210 Ma in Figure 2b

was obtained with a gradually changing set of reconstruc-

tions using interpolated Euler poles (Table 1). Employing

published Jurassic stage poles [e.g., Royer et al., 1992] for

pre-Jurassic times results in APW paths that are markedly

divergent (Figure 2a); this must clearly be in error given the

fact that Laurentia had already collided with Baltica-

Avalonia in the middle-to-late Silurian [Torsvik et al.,

1996] and remained attached to it during Pangea times.

[8] On the basis of the data listed in Table 1 we have

calculated Euler rotations relative to a fixed southern Africa;

interpolated rotations (5 Ma intervals) are listed in Table 2.

As an example we include a reconstruction for 200 Ma that

also shows our plate motion chains with respect to a fixed

southern Africa (Figure 3a). We have also calculated rela-

tive velocities of a few selected plates in our analyses. As

examples we show in Figure 3b calculated plate velocities

between North America and NWAfrica (histogram), Europe

(squares), and Greenland (circles). Our model (Table 1)

includes predrift extension of 1.75 cm/a between Europe

and North America during most of the Triassic and the

Early Jurassic. The bulk of predrift extension occurs in the

Cretaceous (red squares in Figure 3b) followed by an

increase in relative velocities (3.5 cm/a) between 50 and

60 Ma, which coincides with the initial opening (rift to drift)

of the northeast Atlantic (�55 Ma). Note that North

Age
(Ma) Latitude Longitude

Angle
(deg) Referencea

28.5 �13.58 �146.02 17.32 25 (Q)
31.0 �13.40 �145.62 18.89 25 (Q)
33.5 �13.45 �145.62 20.49 25 (Q)
37.5 �14.65 �146.52 22.88 25 (Q)
53.3 12.65 32.76 �25.24 17
65.6 11.79 32.96 �26.05 17
73.6 11.27 33.08 �26.59 17
83.5 10.67 33.22 �27.22 17
96 8.14 33.34 �27.83 17
120.4 11.1 �137.17 29.65 3
320 11.1 �137.17 29.65 3

East Antarctica Versus South Africa
0 0 0 0
9.9 8.2 �49.4 1.53 16 (Q)
20.2 10.7 �47.9 2.78 16 (Q)
33.2 12 �48.4 5.46 16 (Q)
40.1 13.6 �41.4 7.47 18 (Q)
51.7 8.5 �40.8 10.01 18 (Q)
63.1c 11.3 �49.6 11.1 18 (Q)
71.1 �1.2 �42.4 12.38 18 (Q)
75.5 �4 �40.9 14.03 18 (Q)
76.3 �4.6 �40.6 14.39 18 (Q)
83.5 �1.3 �34.7 17.78 18 (Q)
96 3.1 �38.5 26.5 18 (Q)
99 �2.5 �34.03 26.12 19
120.4 10.36 153.67 �41.56 20 (Q)
124.7 9.45 152.5 �42.91 20 (Q)
126.7 9.3 152 �43.71 20 (Q)
132.1 8.9 151.2 �46.29 20 (Q)
134 8.72 151.1 �47.27 20 (Q)
136.7 8.39 150.64 �48.16 20 (Q)
137.9 8.25 150.44 �48.55 20 (Q)
140.4 7.96 150.04 �49.38 20 (Q)
148.1 6.79 146.8 �51.55 20 (Q)
160 10.45 148.76 �58.19 20 (Q)
360 10.45 148.76 �58.19 20 (Q)

West Antarctica Versus East Antarctica
0 0 0 0
26.55 �18.15 �17.85 0 21
33.55 �18.15 �17.85 0.7 22 (Q)
43.8 �18.15 �17.85 1.7 21
52.2 18.2 162.1 �1.7 3
61.1 47.225 146.194 �2.967 3
600 47.225 146.194 �2.967 3

Lord Howe Rise Versus Australia
0 0 0 0
52.2 0 0 0 23 (Q)
53.3c �14.19 130.41 �0.72 23 (Q)
55.8c �15.93 133.47 �2.11 23 (Q)
57.9c �16.93 136.23 �3.79 23 (Q)
61.2 �4.65 131.51 �4.43 23 (Q)
62.5c �4.71 132.68 �5.17 23 (Q)
64c �0.19 130.37 �5.46 23 (Q)
65.6 �3.99 131.8 �6.73 23 (Q)
67.7c �9.04 134.46 �8.83 23 (Q)
71.1c �14.72 139.04 �13.08 23 (Q)
73.6c �9.53 137.2 �12.94 23 (Q)
79 0.37 133.82 �13 23 (Q)
83.5 2.70 �43.60 14.60 23 (Q)
86 4.06 �42.35 15.51 23 (Q)
90 3.27 �42.59 18.34 3
600 3.27 �42.59 18.34 3

South Campbell Plateau Versus Lord Howe Rise
46.3 �49.8 178.4 �49 24
83.5 �49.8 178.4 �49 24

TABLE 1. (continued) TABLE 1. (continued)

Age
(Ma) Latitude Longitude

Angle
(deg) Referencea

Pacific Versus West Antarctica
0 0 0 0
0.78 64.25 �79.06 0.68 7 (Q)
2.58 67.03 �73.72 2.42 7 (Q)
5.89 67.91 �77.93 5.42 7 (Q)
8.86 69.68 �77.06 7.95 7 (Q)
10.9 70.86 �75.96 9.71 7 (Q)
12.29 71.75 �73.77 10.92 7 (Q)
17.47 73.68 �69.85 15.17 7 (Q)
20.1 74.15 �68.7 16.9 7 (Q)
24.06 74.72 �67.28 19.55 7 (Q)
28.28 74.55 �67.38 22.95 7 (Q)
33.54 74.38 �64.74 27.34 7 (Q)
42.54 74.9 �51.31 34.54 7 (Q)
47.91 74.52 �50.19 37.64 7 (Q)
53.35 73.62 �52.5 40.03 7 (Q)
61.1 71.38 �55.57 44.9 7 (Q)
67.7 68.94 �55.52 49.6 26
73.6 66.72 �55.04 53.74 27 (Q)
83.5 65.58 �52.38 63.07 27 (Q)

aReferences are 1, Gaina et al. [2002]; 2, Srivastava and Roest [1989]; 3,
this study; 4, Bullard et al. [1965]; 5, C. Gaina et al. (manuscript in
preparation, 2008); 6, Roest and Srivastava [1989]; 7, Cande et al. [1995];
8,Müller et al. [1997]; 9,Müller et al. [1993]; 10,Müller and Roest [1992];
11, Roest et al. [1992]; 12, Klitgord and Schouten [1986]; 13, Torsvik et al.
[2002]; 14, Nürnberg and Müller [1991]; 15, Torsvik et al. [2004]; 16,
Royer and Chang [1991]; 17, Royer and Rollet [1997]; 18, Bernard et al.
[2005]; 19, Marks and Tikku [2001]; 20, R. D. Müller and C. Gaina
(manuscript in preparation, 2008); 21, S. C. Cande (personal communica-
tion, 2002); 22, Cande et al. [2000]; 23, Gaina et al. [1998]; 24, Sutherland
[1995]; 25, Cande and Stock [2004]; 26, J. M. Stock (unpublished data,
2002); and 27, Larter et al. [2002]. Q indicates qualitative reconstruction.

bValue is recalculated from other plate rotations and plate circuit closure.
cValue is not used in smoothed global moving hot spot frame.
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America–NWAfrica predrift extension from 220 to 180 Ma

(orange part of the histogram, 0.7 cm/a) was recorded by the

formation of complex rift systems (e.g., Newark, Connect-

icut, and Fundy basins) and was contemporaneous with the

Central Atlantic Magmatic Province (�200 Ma) that affect-

ed vast areas in North America, NW Africa, SW Europe,

and South America.

3. GLOBAL PALEOMAGNETIC FRAME

3.1. Plate of Choice Anchoring the Global Reference
Framework

[9] Paleomagnetic reconstructions derived from paleo-

poles or APW path segments constrain the paleolatitude

and the angular orientation of a continent, but its paleo-

longitude remains unconstrained. However, this degree of

freedom can be minimized by selecting an appropriate

reference plate; in other words, if one can determine which

plate (or continent) has moved longitudinally the least since

the time represented by a reconstruction, then that plate

should be used as the reference plate [Burke and Torsvik,

2004]. Africa was surrounded on nearly all sides by mid-

ocean ridges after the breakup of Pangea: hence, the ridge

push forces should roughly cancel (see also section 9).

3.2. Paleomagnetic Data Selection

[10] Paleomagnetic data were compiled from original

sources and graded according to Van der Voo’s classifica-

Figure 1. (a) Example of marine magnetic anomaly interpretations (700 data points of chron 6 at
20.1 Ma) and resulting Euler pole (EP) (black star) and uncertainty ellipse (red contour around EP) for
relative motion between North America (NAM) and Eurasia (EUR) (note that the ellipse was enlarged
3 times in order to be visible on the map). Detailed image shows a subset of the chron 6 interpretation in
the North Atlantic and illustrates Hellinger’s [1981] criterion of fit. Fixed data points are represented by
inverted triangles; rotated data points are red triangles. The background shows the vertical gradients of
free air gravity that allow identification of fracture zones (FZ) and offsets between spreading segments.
Great circles were fitted for data points in each individual spreading segment. For a given rotation the
measure of fit represents the sum of squares of the weighted distances (blue segments perpendicular to the
great circle segment shown as an example on the NAM isochron). The thick, gray line shows the present-
day mid-ocean ridge (MOR); the arrows indicate the direction of spreading on NAM and EUR plates.
(b) Magnetic anomaly grid of the NE Atlantic [Verhoef et al., 1996] south of Iceland. Vectors and their
uncertainties show relative motion between Eurasia and Greenland for stage poles 67.7–55.9, 55.9–53.3,
53.3–49.7, 49.7–47.9, 47.9–43.7, 43.7–40.1, 40.1–33.1, 33.1–20.1, 20.1–10.9, and 10.9–0.0 Ma. The
prebreakup motion has been calculated by combining North America–Greenland and North America–
Eurasia rotations. The thick black lines are continent-ocean boundaries (COBs); the white lines indicate
the reconstructed positions of the Eurasian margin relative to Greenland at 55 and 57 Ma. Note that these
white lines outline an area that illustrates the uncertainties in the position of the breakup as suggested by
the 95% confidence errors. Light red transparent areas show the mapped seaward dipping reflectors
(SDR): Greenland margin, modified after Hopper et al. [2003], and Eurasian margin from L. Gernigon
(personal communication, 2006).
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tion system [Van der Voo, 1988, 1993]. In brief, this

classification system includes seven reliability criteria:

(1) well-determined age and the assumption that the mag-

netization age equals the actual rock age, (2) sufficient

number of samples and adequate statistics, (3) proper

demagnetization techniques and documentation, (4) field

tests to constrain the age of the magnetization, (5) structural

control and tectonic coherence with the involved craton or

block, (6) presence of reversals, and (7) no resemblance to

paleopoles of younger age. For example, a quality factor Q

� 3 (7 is best) means that at least three of these quality

criteria are satisfied. Some criteria are obviously more

important than others when constructing APW paths, and

no paleomagnetic poles that knowingly fail criterion 1 are

included in our analysis.

[11] The data compilation for Laurussia (North America,

Greenland, and stable Europe) and Gondwana follows Van

der Voo [1993], Torsvik et al. [2001b], Si and Van der Voo

[2001], Torsvik and Van der Voo [2002], and Van der Voo

and Torsvik [2004] with the additional inclusion of a few

new data entries and revised ages for certain poles (notably

from Europe [Van der Voo and Torsvik, 2004]). Only poles

with Q � 3 are included, and several paleopoles have been

updated with new isotopic age information whenever avail-

able. We did not include late Paleozoic–early Mesozoic

paleomagnetic data from Siberia because we are as yet

uncertain whether Siberia was fully and tightly joined with

Laurussia and the rest of Pangea at the dawn of the

Mesozoic [Torsvik and Andersen, 2002; Van der Voo and

Torsvik, 2004; Cocks and Torsvik, 2007]. Inclusion of

Siberian Trap poles (�251 Ma) [Bowring et al., 1998]

based on the assumption of coherence between Siberia

and the rest of Pangea, however, would not critically affect

our global analysis.

[12] Our paleopole compilation is listed in Table 3. Each

paleopole was rotated to southern African coordinates

(Figure 3a), using the parameters of Tables 1 and 2 while

interpolating to the same age as the paleopole. The global

compilation, comprising 419 paleomagnetic poles with Late

Carboniferous and younger ages, is shown as south poles in

Figure 4. The scatter of poles can be considerable; note that

the Late Permian–Early Triassic poles from Gondwana

generally show more easterly pole longitudes than do poles

rotated from Laurentia (Figure 4b). Possible explanations

for this are discussed in section 3.4.

3.3. APW Paths

[13] APW paths are expected to average out random

noise and to determine basic patterns of APW. The two

most common methods for generating such paths are the

running mean (moving window) and the spherical spline

method. In the running mean method, paleomagnetic poles

from a continent are assigned absolute ages, a time window

is selected, and then all paleomagnetic poles with ages

falling within the time window are averaged (Figure 5a).

Using Fisher [1953] statistics, 95% confidence ellipses

(known as A95) can then be calculated for each mean pole.

[14] A spherical spline on the surface of a sphere can be

fitted to paleomagnetic poles [Jupp and Kent, 1987] and

weighted according to the precision of the paleopole entries.

The precision of the path [Silverman and Waters, 1984] can

be estimated when angular errors are used for weighting.

Figure 2. Comparison of NAM and EUR apparent polar wander paths (shown in South African
coordinates) using different predrift fits for the North Atlantic. (a) ‘‘Traditional’’ mid-Jurassic Euler pole
is used from Royer et al. [1992] (this 170 Ma stage pole is located at latitude 69.1�N, longitude 156.7�E,
and angle �23.64�). (b) Minimization of the differences between the two paths by using a Bullard et al.
[1965] fit from 310 to 240 Ma (latitude 88�N, longitude 27�E, and angle �38�) and then a gradual,
interpolated change to a new fit at 200 Ma (see Table 1) (latitude 69�N, longitude 155.8�E, and angle
�23.6�). A similar approach was devised by Torsvik et al. [2001b], but their Euler pole changeover was
somewhat different.
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However, the real uncertainty surrounding individual

paleopole positions is a combination of angular errors, age

uncertainties (set at zero for this paper), and uncertainties

surrounding the geomagnetic field recording of complex-

ities such as the averaging of secular variation. Torsvik et al.

[1996], for example, developed a routine to give weight to

the data according to their Q factor (section 3.2) so that the

APW path is firmly anchored to the most reliable data.

[15] Our global APW path (in southern African coordi-

nates, Figure 5a and Table 4) extends back to 320 Ma when

the Pangea supercontinent was initially being assembled. A

global APW path was first constructed using the running

mean method since this is the simplest method and can

easily be reproduced by others. We used a window length of

20 Ma and employed 10 Ma increments, causing only

moderate smoothing. Increased window length leads to a

higher degree of smoothing.

[16] We compare our path of Figure 5a to the APW paths

of Besse and Courtillot [2002] and Schettino and Scotese

[2005] and calculate the great circle distance (shortest

distance on a sphere) between mean poles of the same

age (Figure 5b). The mean great circle distance for the entire

200 Ma interval is 3.9� ± 3.3� with respect to Besse and

Courtillot [2002], with a peak of 11.1� at 200 Ma

(Figure 5b). The mean great circle distance is 4.2� ± 3.3�
for our comparison with Schettino and Scotese [2005], with

a peak of 12.8� at 150 Ma. Most of the differences are likely

to be statistically insignificant, but the open loop between

110 and 170 Ma observed in our running mean APW path

(Figure 5a) appears as a hairpin with a sharp cusp in the

other two paths (Figures 5c and 5d). The reasons for this can

be found in a combination of different data selection, degree

of smoothing, and different Euler rotation parameters.

[17] With global data sets that have considerable spread

and ‘‘unclear’’ age progressions, spherical splines (e.g.,

weighted purely by angular errors) produce sinuous APW

paths unless they are severely smoothed. Conversely, a

spherical spline weighted by the Q factor [Torsvik et al.,

1996] will produce APW paths that are anchored to the

most reliable data, and this procedure ‘‘reproduces’’ the

Late Jurassic–Early Cretaceous loop using moderate-to-

high smoothing parameters (red line in Figure 5a). However,

a shortcoming of this procedure is that the assignment of

weights to Q factors does not produce output angular

uncertainties along the path that have a physical meaning.

We therefore opted to first calculate a running mean path

(10 Ma window, with increments of 10 Ma, so that there is

no window overlap in order to avoid presmoothing) and

found that this leads to a better age progression. Only then

we applied the spherical spline algorithm to this running

mean path weighted by the mean angular errors (A95). This

results in angular output uncertainties that have physical

meaning. The outcome of this procedure is shown in

Figure 5c as the red path with yellow cones of confidence

every 10 Ma. Using a moderate-to-high smoothing param-

eter, we generated a path similar to that of Schettino and

Scotese [2005]. However, smoothing can lead to removal of

real, short-duration features in the path. In order to exploreT
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Figure 3. (a) Preferred relative reconstruction at 200 Ma (with southern Africa held fixed) showing the
(continental) plates for which paleomagnetic data have been compiled (Table 3). The determinations of
relative plate motions (section 2) incorporate a wide variety of data, with the southern African continental
element serving as the reference continent relative to which the motion of all other plates are determined.
In this paper, motion of the African plate is determined in global reference frames using paleomagnetic
(section 3), fixed hot spot (section 4), and moving hot spot (section 5) reference frames. Plate chains
linking the Pacific (PAC) and southern Africa (SAFR) follow two different models discussed in the text
and illustrated in the inset. Abbreviations are EUR, stable Europe; GRE, Greenland (only Cretaceous-
Tertiary poles have been included in the analysis); NAM, North America; NWAFR, northwest Africa;
NEAFR, northeast Africa; SAC, main South American craton; PAR_SAL, Parana-Salado subplate; COL,
Colorado subplate; IND, India; MAD, Madagascar; EANT, East Antarctica; AUS, Australia; LHR, Lord
Howe Rise; WANT, West Antarctica; and CAM, southern Campbell Plateau. The intraplate deformation
zones in South America and Africa are taken from Torsvik et al. [2004]. (b) Relative plate velocities of
North America versus NWAFR (in histogram style), EUR (squares), and GRE (circles). These velocities
are mean plate velocities calculated for elements in a 10� � 10� grid. The blue histogram and symbols are
derived from seafloor spreading models. Black annotated arrows indicate major kinks or cusps in the
global apparent polar wander path when viewed in North American coordinates (see Figure 8).
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TABLE 3. Selected Paleomagnetic Poles

Qa a95
b Formation and Country Plat

c Plon
c Age (Ma) GPDBd

North America
6 4.9 Katherine Creek sediments �78 304 1.5 3060
6 7 Banks Island deposits �86 120 1.5 3206
3 9.7 Tschicoma Formation �76 174 5.5 1275, SV
3 12.9 Hepburn’s Mesa Formation �81 225 15.5 2288, SV
4 6.7 Younger plutons �87 189 22.5 1402, SV
3 8.4 Lake City caldera �76 30 23 1300, SV
4 5.2 Latir volcanics �81 331 23.5 1299, SV
4 6.8 Conejos and Hinsdale Formation �80 343 26 3130, SV
4 5.4 Latir extrusives, sediments �80 315 27 1299, SV
4 4.4 Mongollon-Datil volcanics �82 323 30 1315, SV
3 5 Mongollon-Datil volcanics �83 316 30 2631, SV
4 4.3 Mariscal Mountain gabbro �80 5 37 2943, SV
3 2.4 Mistastin Lake impact �86 298 40 562, T
5 7.7 East Fork Washakia Basin �84 324 44 1632, T
4 10.1 Virginia intrusions �86 64 44.5 1865
5 8 Absaroka flows �83 334 46 1117, T
4 9.6 Rattlesnake Hills volcanics �79 326 46 1712, T
6 5.6 Bitterroot Dome dike swarm �72 342 47 2560, T
4 10.1 Monterey intrusives �86 64 47 1865, T
6 4.9 Wasatch and Green River Formation �78 308 51 3150, T
5 4 Robinson Anticline intrusives �77 326 51 1348, T
6 2.6 Combined Eocene intrusives �82 350 51 1270, T
5 14 Rhyolite intrusion and contact �68 9 57 504, T
6 3 Nacimiento Formation �76 328 61 1033, T
6 3.7 Combined Paleocene intrusives �82 1 63 1270, T
4 1.1 Gringo Gulch volcanics �77 21 63 1710, T
4 6.6 Edmonton Group, Alberta �72 3 63 1914, T
5 3.9 Alkalic intrusives �81 5.1 64 1711, T
5 5.8 Tombstonee �70 37 71 2806, T
5 6.2 Roskruge volcanicse �70 357 72 1240, T
6 4.6 Adel Mountain volcanics �83 21 76 2370, T
6 6.2 Maudlow Formation welded tuffs �70 28 80 2397, T
7 6.6 Elkhorn Mountains �80 10 81 2382, T
5 4.4 Magnet Cove and other intrusives �74 13 100 1322, T
5 8.3 Cuttingsville �72 17 100 3087, T
5 4 Randall Mountain �77 320 103 3087, T
5 4.4 Little Rattlesnake Complex �72 3 111 3087, T
5 6.5 Pleasant Mountain �77 5 112 3087, T
5 5.6 Burnt Meadow Mountains �76 29 113 3087, T
5 3.6 Alfred Complex �74 30 120 3036, T
5 5.3 Cape Neddick �75 355 121 3036, T
6 2.4 Monteregian Hills intrusives �72 11 122 1853, T
5 6.9 White Mountains igneous complex �71 8 122 2644, T
5 4.6 Tatnic Complex �66 28 122 3036, T
5 7.5 Lebanon diorite �70 15 125 3036, T
5 3.6 Notre Dame Bay dikes �67 32 128 1854, T
7 2.6 Kimberlite dikes �58 23 144 2717, T
5 3.6 Upper Morrison Formatione �64 346 147 787, T
6 4.1 Morrison Formation, Brushy Basin Membere �64 341 148 2870, T
5 5.3 Lower Morrison Formatione �57 328 149 787, T
6 7 Canelo Hills volcanicse �59 319 151 1256, T
6 7.4 Summerville Formatione �52 318 159 2419, T
5 4.3 Summerville Sandstonee �64 301 159 1121, T
5 7.8 Corral Canyon rockse �59 305 172 1294, T
4 1.4 Newark volcanics II �65 283 175 1702, T
3 1 Diabase dikes, Anitcosti, Quebec �76 265 183 139, T
5 3.1 Combined dikes �73 269 190 1932, T
6 3.3 Kayenta Formatione �59 258 192 2380, T
3 7.2 Sil Nakya Formatione �73 278 193 T
5 8.9 Piedmont dikes �66 276 194 1796, T
4 2.3 Newark volcanics I �63 263 195 1702, T
4 11.1 Connecticut Valley volcanics �65 267 198 477, T
6 6 Moenave Formatione �60 242 199 3058, T
5 7.9 Piedmont dikes �62 235 199 1809, T
6 4.7 Passaic Formation, baked sediments �60 249 200 2791, T
6 10.7 North Mountain Basalt �67 249 200 1932, T
5 4.0 Hartford, Newark basalts and volcanics �68 269 201 2278, T
5 6.2 Watchung basalts �63 270 201 1339, T
5 6 Hettangian Newark red beds �55 275 204 2312, T
5 2.4 Newark Martinsville coref �59 278 206 2967, T
5 8 Chinle Group, Redonda Formationf �59 257 209 2979, T
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4 9.8 Kayenta Formatione �60 274 210 143, T
5 7 Kayenta Formatione �62 266 210 153, T
6 2.5 Newark Weston core �58 272 210 2967, T
5 3 Newark Basin both polar �58 270 211 1339, T
6 4.2 Chinle Formation, Redonda Member �58 259 212 152, T
7 5.6 Passaic Formation, C complex, Newark Group �56 275 212 2312, T
6 2.8 Newark Somerset core �57 277 213 2967, T
6 10.7 Chinle Formatione �59 253 215 2800, T
6 3.1 Newark Rutgers core �56 278 215 2967, T
6 3.4 Chinle Formatione �58 256 218 2380, T
6 3.2 Newark Titusville cores �56 280 218 2967, T
6 5 Newark Basin, Lower red beds �54 282 219 2331, T
6 7.7 Dockum Group, Trujillo and Tecovas formations �56 276 220 2944, T
6 5.1 Chinle, Sangre de Cristoe �53 282 220 2979, T
6 2.5 Dan River-Danville Basin �55 280 221 3171, T
4 3.9 Abbott pluton �48 272 221 1831, T
6 5.6 Chinle Formation, Bull Canyon Member �57 268 221 2380, T
5 2.6 Newark Nursery coref �54 283 221 2967, T
6 2.6 Newark Princeton coref �52 285 224 2967, T
6 3.2 Agamenticus pluton �48 279 225 1831, T
7 5 Shinarump Member, Chinle Formatione �60 279 226 2489, T
3 14 Popo Agie Formation, Chugwater �56 276 230 1134, T
4 7 Manicouagan structure, Quebec �60 271 230 434, T
3 10 Manicouagan structure, Quebec �57 269 230 443, T
4 4.3 Ankareh Formation �51 285 233 735, T
6 5 Upper Red Peak Formation �49 285 235 1134, T
6 4.9 Moenkopi Formation, Anton Chico Membere �45 301 238 2979, T
7 3.4 Moenkopi Formatione �56 289 238 2489, T
5 4.9 Moenkopi Formatione �56 279 240 571, T
6 4.5 Moenkopi Formation (upper)e �56 285 241 2808, T
4 5.3 Moenkopi Formatione �40 307 241 2632, T
5 7 Lower Red Peak Formation �46 301 241 1134, T
5 2.5 Upper Moenkopi drill coree �55 289 243 160, T
7 5 Moenkopi Formation (Gray Mountain)e �55 286 243 1221, T
7 7.2 Lower Fundy Group, Nova Scotia �45 277 243 2266, T
6 4 Chugwater Formation �45 295 243 1266, T
6 3.3 Chugwater Formation �47 294 243 1271, T
5 3.1 Upper Moenkopi Formatione �53 291 243 159, T
4 12.8 Upper Maroon Formatione �58 292 248 504, T
4 15 Ochoan red beds �55 299 252 688, T
4 8 Bernal Formatione �50 300 252 2489, T
3 5 Basic sill, Prince Edward Island �52 293 252 431, T
6 5 Dewey Lake Formation �51 306 254 2303, T
5 5 Guadalupian red beds �51 305 260 688, T
7 3.6 Artinskian Pictou red beds �42 306 264 2281, T
3 10 Toroweap Formatione �52 305 275 688, T
5 16.3 Churchland pluton �34 306 282 1264, T
4 5 Elephant Canyon Formatione �42 302 283 671, T
4 2 Cutler Formatione �41 302 283 671, T
4 13.1 Fountain and Lykins formationse �45 306 283 504, T
4 2.8 Minturn and Maroon formationse �40 301 283 1685, T
5 7.1 Cutler Formation, Lisbon Valleye �41 308 283 1341, T
4 12.3 Cutler Formatione �40 308 283 675, T
5 2 Ingelside Formatione �43 308 283 1142, T
5 1.5 Upper Casper Formation �51 303 283 1455, T
3 5 Leonardian subset �52 299 283 688, T
5 2.1 Abo Formatione �47 305 283 1311, T
4 6 Prince Edward Island red beds �42 313 288 336, T
4 5.8 Prince Edward Island red beds �41 306 288 276, T
5 2.1 Laborcita Formation �42 312 290 1311, T
3 10 Piedmont mafic intrusions �39 301 292 1527, T
5 3.4 Wescogame Formation (Supai)e �44 305 296 1311, T
3 10 Hurley Creek Formation �39 305 296 445, T
3 4 Tormentine Formation, Prince Edward

Island
�41 312 296 336, T

4 4.2 Brush Creek Limestone �36 304 296 1523, T
5 1.8 Lower Casper Formation �46 309 297 1455, T
5 3.9 Dunkard Formation �44 303 300 302, T
5 6 Riversdale Group �36 302 310f 1110
6 7 Barachois Group �34 323 320f 1534
7 4.6 Shepody Formation �36 304 320 2484
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b Formation and Country Plat

c Plon
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7 4 Maringouin Formation, Nova Scotia �32 301 323f 2484
7 9 Deer Lake Formation, West

Newfoundland
�22 302 330f 1482

6 8 Jeffreys Village Member, West
Newfoundland

�27 311 333f 1534

Europe
4 3.6 West Eifel volcanics �80.6 267.5 0.5 1513
4 4.4 East Eifel volcanics �86.4 296.1 0.5 1505
3 12.9 Volcanics NW Germany �84.3 357.7 8 56, SV
5 6.9 Velay Oriental volcanics �84.1 251.2 11.5 3324
4 4.4 Volcanics Germany �77.8 310.8 24 3282, SV
3 3.4 Hocheifel Tertiary volcanics �80.8 2 34 1506, SV
5 1.5 Lundy Island dikes, Wales �83 335 49.5 755, T
4 2 Sleat dikes, Scotland �82 338 51 1174, T
5 10 Fishnish dikes, Scotland �74 319 52 1040, T
7 2.7 Mull dikes, Scotland �78 7 53.5 83, T
5 3.5 Vaternish dike swarm, Scotland �76 340 55 85, T
5 1.2 Arran dikes, Scotland �82 0 55 1041, T
5 2.7 Muck and Eigg igneous, Scotland �74 351 58 1204, T
6 2.4 Rhum and Canna igneous, Scotland �81 359 59 1169, T
4 2.7 Ardnamurchan Complex, Scotland �77 355 59.5 1377, T
4 5 Antrim basalts, Ireland �70 343 59.5 654, T
6 4.5 Faeroe flood volcanics �71.4 334.7 59.5 3494
5 2.8 Mull lavas, Scotland �72 348 59.5 1055, T
3 2.5 Skye Lavas, Scotland �72 345 59.5 86, T
7 8 Aix-en-Provence sediments, France �73 336 74 2393, T
5 3 Dagestan limestones, northern Caucasus �74 341 86 3037, T
5 3 Dagestan limestones, northern Caucasus �74 328 86 3037, T
4 5 Munsterland Turonian, Germany �68 329 89.5 1507, T
5 4 Munster Basin Limestone, Germany �76 1 93 1495, T
6 2.9 Berriasian limestones �74 3 140 1397, T
5 6 Jura Blue Limestone, Switzerland �78 328 156.5 1337, T
3 3.9 Oxfordian sediments �70 327 157 616, T
5 7 Terres Noires, France �78 310 158 3156, T
4 4 Subtatric nappe sediments �72 312 159 1948, T
6 7.3 Limestones, Krakow-Czestochowa

Upland
�72 330 159 1948, T

4 7 Krakow Upland sediments, Poland �72 330 162.5 1948, T
7 6.3 Jurassic sediments �63 300 168 1514, T
7 6 Alsace Bajocian sediments, France �63 300 178 1514, T
6 6.8 Scania basalts, Sweden �69 283 179 2720, T
6 12 Thouars and Airvault sections �71 276 184 1427, T
4 3 Liassic sediments �77 315 192 1467, T
4 7 Liassic volcanics, France �65 324 198 481, T
5 7.5 Kerforne dikes, Brittany, France �61 259 198 2743, T
7 3 Paris Basin sediments, France �51 285 201 3029, T
6 9 Hettangian-Sinemurian Limestone

France
�55 280 201 3141, T

6 8 Rhaetian sediments, Germany, France �50 292 208 3141, VT
5 5.1 Merci mudstone, Somerset, United

Kingdom
�50 308 215 3311, VT

5 4.6 Sunnhordland dikes, Norway �50 305 221 VT
6 6 Gipskeuper sediments, Germany �49 311 226 3141, VT
6 12 Musschelkalk carbonates, Poland �53 303 234 3253, VT
6 3 Heming Limestone, Paris Basin, France �54 321 234 2411, VT
5 15 Bunter and Musschelkalk, Germany �49 326 239 158, VT
4 7 Kingscourt red beds, Ireland �59 326 242 VT
6 5 Upper Buntsandstein, France �43 326 243 1028, VT
5 5.9 Lunner dikes, Oslo, Norway �53 344 243 3188, VT
6 3.8 Volpriehausen Formation, basal mid-

Buntstein, Germany,
�49 348.2 246 S2004

7 3.3 Germanic Trias, Lower Buntstein, Germany �50.6 345.6 249 S2003
6 5 Sudetes sediments, Poland �50 343 251 3161, VT
6 4 Massif des Maures, France �51 341 255 1408, VT
5 2.7 Dome de Barrot red beds, France �46 327 255 652, VT
5 5 Esterel sediments, France �47 331 261 165, VT
6 4 Brive Basin sediments, France �49 343 261 3144, VT
5 4 Saxonian Red Sandstone, France �51 324 264 2361, VT
3 4.6 Upper Lodeve Sandstone, France �47 336 264 168, VT
5 6.1 Esterel extrusives, France �51.5 322 264 165, VT
5 1.5 Lodeve Basin, France �49 334 264 1813, VT
4 0 Permian red beds, Lodeve Basin, France �53 331 264 1207, VT

RG3004 Torsvik et al.: PLATE MOTION FRAMES

12 of 44

RG3004



Qa a95
b Formation and Country Plat

c Plon
c Age (Ma) GPDBd

4 8.6 Bohuslan dikes combined, Sweden �51 345 275 1155, VT
4 11 Scania melaphyre dikes, Sweden �54 352 279 2222, VT
3 0 Brumunddal lavas, Norway �47.8 317.7 279 169, VT
4 6.7 Moissey volcanics, Jura, France �41 352 279 1205, VT
3 14 Mauchline lavas, Scotland �47 337 280 3093, VT
5 10 Bohemian Massif igneous, Germany �42 346 280 2356, VT
4 7 Bohemian quartz porphyry, Germany �37 341 280 3145, VT
4 6.9 Sarna alkaline intrusion, Sweden �38 346 281 1735, VT
4 13.4 Ringerike lavas, Norway �44.6 337.4 281 VT
5 1 Oslo volcanics, Norway �47 337 281 915, VT
5 4 Bohemian red beds, Czech Republic �41 345 285 167, VT
5 6.3 Mount Hunneberg Sill, Sweden �38 346 285 2211, VT
5 2 Lodeve Basin, France �42 349 285 1813, VT
5 2 Krkonose Basin oil shales, Czech Republic �40 346 285 2444, VT
5 3.2 Intrasudetic Basin volcanics, Poland �43 352 285 3161, VT
3 7.7 Lower Lodeve Sandstone, France �44 350 285 168, VT
4 6.8 Intrasudetic basin sediments, Poland �37 340 285 3161, VT
4 8.1 North Sudetic basin volcanics, Poland �42 354 285 3161, VT
4 17 Lodeve B Complex, France �49 342 285 2454, VT
3 13.2 Lower Silesia, Poland �40 352 285 465, VT
5 5.1 North Sudetic basin sediments, Poland �44 4 285 3161, VT
4 7.9 Krakow volcanics, Poland �43 345 285 275, VT
4 10 Exeter lavas, United Kingdom �48 343 286 411, VT
5 4 Exeter lavas, United Kingdom �50 330 286 165, VT
3 1 Black Forest rhyolites, Germany �42 353 286 2941, VT
4 5.9 Black Forest volcanics, Germany �49 356 286 170, VT
4 5.8 Thuringer forest sediments, Germany �41.5 340 287 1792, VT
3 13 Nahe volcanics, Germany �46 347 291 940, VT
3 15.9 Saar-Nahe volcanics, Germany �41 349 291 712, VT
4 2.4 Stabben Sill, Norway �32 354 291 1540, VT
6 13 Sudetic Mountain granitoids, Poland �42 346 293 2446, VT
5 6.5 Scania dolerites, Sweden �38 348 294 2222, VT
3 19 Lower Nideck volcanics, France �42 348 294 174, VT
4 4 Nideck-Donon volcanics., France �47 348 294 1010, VT
5 11 Scania dolerite dikes, Sweden �37 354 294 2211, VT
4 4.8 Great Whin Sill, United Kingdom �44 339 294 585, VT
5 6.3 Holy Island Sill and dike (Whin Sill) �35.4 346.8 294 L2004
5 8.1 Alnwick Sill-High Green-Oswalds Chapel

dike (Whin Sill)
�47.1 337.1 294 L2004

5 3.5 Hadrian’s Wall-Pennines Sill and Hett
dike (Whin Sill)

�32.9 347.1 294 L2004

4 7.1 Thuringer Forest volcanics, Germany �37.1 350 295 1792, VT
4 13.6 Lower Silesia volcanics, Poland �43 354 296 465, VT
5 1.3 Peterhead dike, Scotland �41 342 297 1535, VT
4 2.9 Ny-Hellesund sills, Norway �39 341 297 626, VT
3 7.1 Arendal diabase dikes, Norway �42.5 339.6 297 175, VT
5 4 Mount Billingen Sill, Sweden �31 354 299 2211, VT
3 3 Wackerfield dike, United Kingdom �49 349 303 180, VT
5 9 Westphalian-Stephanien red beds, Czech Republic �38 343 305 167, VT
5 5.2 Queensferry Sill, Scotland �38.3 354 305 2447, VT
6 8.2 Derbyshire lavas, England �14.3 335.9 335 2440
5 1.9 Magerøy dikes, Norway �14.4 318.1 337 3527

Greenland
6 7.4 Talerua lavas �76.3 21.5 39 S2005
6 6.2 West Greenland combined �73.6 340.5 58 R2003
6 4.5 coast-parallel dike swarm combined �73.4 358.2 135 T

Northwest Africa
4 6.7 Famara volcanics �87.5 358.2 7.5 2938
3 5.2 Basalts Series II �77.8 326.2 8 1493
4 4.1 Miocene volcanics �81.9 294.4 13 25
3 2.3 Massif de Cavallo �86.8 202.9 13 555
5 8 Basalt series I, Gran Canaria, Spain �72 71.2 81 1493, TV
4 14 Intrusives, Beni Mellal, Morocco �46 78 120 1859, TV
6 6.3 Upper Jurassic sediments, Tunisia �65.2 20.3 152.5 1167, TV
3 19.2 Intrusive rocks, Nigeria �62.5 61.6 160 1081, TV
4 11 Beni Mellal basalts, Morocco �45 68 173.5 1859, TV
6 9 Beni Mellal volcanics, Morocco �44 71 173.5 148, TV
5 7.4 Diabase dikes and sills, Liberia �68.5 62.4 185.5 140, TV
4 4.1 Hank volcanics, North Mauritania �69.4 52 187 3259, TV
4 6.1 Hodh volcanics, South Mauritania �71.4 60.2 187 3260, TV
4 6.2 Freetown Complex, Sierra Leone �82.9 32.7 193 3287, TV
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3 0 Moroccan intrusives, Morocco �71 36 200f 148, TV
5 18.5 Central Atlantic Magmatic Province, Morocco �73 61.3 200 K2004
3 12 Argana red beds, Morocco �50.6 71.4 200f 1080, TV
6 2.6 Zarzaitine Formation, Algeria �70.9 55.1 206.5 2932, TV
3 11.5 Upper Triassic sediments, southern Tunisia �54.9 43.3 221.5 3020, TV
3 7.8 Djebel Tarhat red beds, Morocco �24 63.8 273 1080, TV
5 4.7 Chougrane red beds, Morocco �32.2 64.1 273 723, TV
5 6 Serie d’Abadla, Upper Unit, Morocco �29 60 273 1459, TV
3 4.6 Taztot Trachyandesite, Morocco �38.7 56.8 273 723, TV
5 3.6 Abadla Formation, Lower Unit, Algeria �29.1 57.8 275 3275, TV
3 20.9 Volcanics, Mechra Abou-Chougrane,

Morocco
�36 58 280.5 1859, TV

5 2.8 Upper El Adeb Larache Formation, Algeria �38.5 57.5 286.5 2540, TV
4 4.1 Lower Tiguentourine Formation, Algeria �33.8 61.4 290 2728, TV
5 3.5 Lower El Adeb Larache Formation, Algeria �28.7 55.8 307 2540, TV
6 4.6 Illizi Basin, Algeria �28.3 58.9 309 3484
4 4.1 Ain Ech Chebbi and Hassi Bachir

formations, Algeria
�25.4 54.8 316 1629, TV

4 4.5 Oubarakat and El Adeb Larache formations,
Algeria

�28.2 55.5 317 3481

7 5.3 Reggane Basin, Algeria �26.6 44.7 320 3402, TV

Northeast Africa
5 4.1 Afar stratoid series, Ethiopia �87.5 359.3 1 3336g

5 5.7 Stratoid basalts, Ethiopian Afar, Ethiopia �87.2 37.1 2 3559g

5 4.1 Gamarri section lavas, Afar depression, Ethiopia, �79.7 350.2 2.5 3234g

5 8.3 Volcanics, Jebel Soda, Libya �78.4 16.1 11.5 50
5 11.2 Volcanics, Jebel Soda, Libya �69 4 11.5 60
4 12.7 Ethiopian flood basalts, Abbay and Kessen

gorges, Ethiopia
�83 13.3 26.5 3496

6 6 Qatrani Formation, Egypt �79.6 332.2 29 3280
5 5.4 Ethiopian Traps, Ethiopia �77.9 32.8 30 3209
4 8.4 Southern Plateau volcanics, Ethiopia �75.1 350.3 34 2764
5 6.4 Iron ores combined, Baharia Oasis, Egypt �83.5 318.6 37 1500
6 4.2 Mokattam Limestone, Egypt �78.1 342.8 42.5 3280
3 5.8 Basalts, Wadi Abu Tereifiya, Egypt �69.4 9.4 44.5 1141
5 8.5 Wadi Natash volcanics, Egypt �69.3 78.1 93 1500, TV
3 18.1 Wadi Natash volcanics, Egypt �75.7 48.3 94.5 3260, TV
4 5.5 Al Azizia Formation, NW Libya, Libya �54.5 45.8 231 3408
5 3.8 Al Azizia Formation, NW Libya, Libya �59.3 34.1 231 3408
4 6 Jebel Nehoud Ring Complex, Kordofan,

Sudan
�40.8 71.3 280 3504

3 7.2 Abu Durba sediments, SW Sinai, Egypt �25.6 64 306.5 2784, TV

Australia
4 4.4 Werriko Limestone, newer volcanics,

Victoria
�83.2 103.6 3 1201

5 1.9 Hematized Hawkesbury Sandstone, New
South Wales

�82.9 114.4 15.5 1646

East Antarctica
5 6.3 McMurdo volcanics combined �87.3 137.3 2 1319
5 4.4 Lavas and dikes, Vestfjella �51.4 203.4 164 1548, TV
4 3.4 Ferrar dolerites, northern Prince Albert

Mountains
�47.8 225.5 176.5 2721, TV

3 3.3 Ferrar dolerite sill, Mount Cerberus, dry
valleys

�57.8 224.3 176.5 1838, TV

5 2.4 Ferrar dolerites, Wright Valley �45.3 208 176.5 1599, TV
5 10.2 Ferrar dolerite, McMurdo Sound �50.5 211.4 176.5 1657, TV
4 6.9 Storm peak lavas, Queen Alexandra Range �44.1 231.5 193 808, TV
5 3.8 Vestfjella lavas and dikes �41.8 226.5 195 1154, TV

Madagascar
5 4.4 Antanimena and Mailaka volcanics �74 43.7 86.5 3482
4 7.6 Volcanics, Massif d’Androy Andria �64 63 87 547, TV
4 4.9 Volcanics, Antanimena Andria �66.1 49.7 87 708, TV
4 4.4 Volcanics, southeast coast Andria �65.8 35.6 87 708, TV
4 8.9 Volcanics, Mangoky-Anilahy Andria �73.7 73.1 87 708, TV
5 4.3 Dolerites, east Madagascar �65.5 38 87 TV
4 6.9 Volcanics, Mailaka Andria �70.3 63.1 87 708, TV
5 2.4 Volcanics, southwest Madagascar �76.8 68.2 87 3210, TV
5 10.7 d’Analava Complex �66.7 43.5 91 M2006
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3 5.9 Isalo Group �74 97.1 206.5 147, TV
3 7.6 Combined Sakamena �76.7 110.8 250.5 TV
3 9.5 Combined Sakoa �51.3 72.6 305 TV

South America Craton
5 10 Lipiyoc Formation, Puna, Argentina �85.7 80.5 8.5 3027
5 10 El Loa Formation and associated

ignimbrites, Chile
�85.4 303.8 8.5 3323

5 11.4 Remedios, Sao Jose formations,
Fernando de Noronha, Brazil

�84.5 316 9.5 1404

5 5.9 Itatiaia and Passa Quatro complexes,
SE Brazil

�79.5 0 72 3261, TV

5 4.2 Sao Sabastiao Island intrusions, SE Brazil �79.4 331.9 80.5 3261, TV
6 2.6 Pocos de Caldas Alkaline Complex, SE Brazil �83.2 320.1 83 3261, TV
3 4.8 Intrusives, Cabo de Santo Agostinho, Brazil �87.6 315.1 92 1448, TV
4 2.8 East Maranhao intrusives, Maranhao

Basin, Brazil
�83.6 81 118 1431, TV

6 2.6 Florianopolis dike swarm, Santa Catarina
Island, Brazil

�89.1 3.3 123.5 3190, TV

6 2 Ponta Grossa dikes, Brazil �82.4 30.3 131 2958, TV
4 14.1 Dikes, Rio Grande do Norte, NE Brazil �80.6 275 146 1509, TV
3 9.3 West Maranhao basalts, Maranhao

Basin, Brazil
�85.3 262.5 175 1431, TV

5 3.8 Anari and Tapirapua formations,
western Brazil

�65.5 250.3 196.5 3316, TV

4 4.9 Bolivar dikes, Venezuela �66.9 245.6 202.5 150, TV
4 10 Dolerite dikes, Suriname �82 320 232 701, TV
6 6 Mitu Group red beds, Bagua Grande, Peru �71.4 303.6 248.5 3524
3 11.2 Itarare Subgroup, Tubarao Group, Brazil �57 357 306.5 798, TV

Parana-Salado
5 7.8 Andean foreland-basin sediments, Argentina �82.4 221.8 11.5 3347
3 6 Rio de Los Molinos dikes 1, Cordoba,

Argentina
�77 18 65.5 102, TV

4 8 Pirgua basalts and red beds, Argentina �85 222 95.5 1131, TV
4 3.7 Serra Geral basalts, Brazil �84.6 115.4 119 765, TV
3 10.4 Vulcanitas Cerro Colorado Formation,

Cordoba, Argentina
�81 14 121 123, TV

5 5.9 El Salto-Almafuerte lavas, Cordoba,
Argentina

�72 25 124 1087, TV

3 11 Rio de Los Molinos dikes 2, Cordoba,
Argentina

�79 8 139.5 102, TV

4 7 Amana Formation, Paganzo Group, Argentina �83 317 240 1132, TV
3 4 Mendoza lavas, south Nihuil, Argentina �81 282 243 560, TV
3 14 Sierra de la Ventana red beds, Argentina �78 219 250.5 560, TV
3 3.3 La Colina Formation, Paganzo Village,

Argentina
�81 327 267.5 166, TV

3 3.1 La Colina Formation, Los Colorados 1,
Argentina

�74 313 267.5 166, TV

4 4 Lowest middle Paganzo, Argentina �66 326 273 283, TV
3 2.5 Middle Paganzo II, Los Colorados lower

beds, Argentina
�59.5 357.5 273 620, TV

3 3 La Colina Formation, Paganzo Group,
Argentina

�78 249 278 1132, TV

4 5.7 La Tabla Formation, Chile �51 347 284 1420, TV
3 5 La Colina basalt, Argentina �66 348 300 178, TV
6 9.6 Pular and Cas formations, Chile �57 350 306.5 1420, TV
6 0 La Colina Formation, Argentina �49 343 306.5 1144, TV

Colorado
6 4.3 Patagonian Plateau basalts, Chile, Argentina �78.7 358.4 71.5 2374, TV
4 4.9 Chon Aike Formation, combined result,

Argentina
�85 197 170 133, TV

5 8.7 Marifil Formation, Patagonia, Argentina �83 138 177 3535
6 8.5 Tepuel Group, western Patagonia, Argentina �31.7 316.1 318 2805, TV

India-Pakistan
4 5.4 Mount Pavagarh Traps, Gujrat, India �39.2 105.6 64 94, TV
4 6.7 Deccan Traps, Mahabaleshwar, India �40 96 65.5 107, TV
6 5.9 Deccan Traps, Nagpur to Bombay traverse,

India
�38.4 102.4 65.5 393, TV

3 3.8 Deccan Traps, Western Ghats, India �34.5 103.6 65.5 705, TV

TABLE 3. (continued)
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this issue we attempted to ‘‘reproduce’’ the more smoothed

Schettino and Scotese [2005] APW path simply by increas-

ing the window length with the running mean method. We

found that our APW path can mimic their path if we use a

window length of at least 50 Ma (red line with blue cones of

confidence ovals in Figure 5d).

[18] We calculated the APW for 10 Ma bins since the

Carboniferous from the running mean path of Figure 5a.

This magnitude of APW is shown in Figure 5e as the

maroon histogram pattern, whereas the APW calculated from

the smoothed spherical spline path of Figure 5c is shown as

the black transparent histogram pattern in Figure 5e. The

latter removes practically all temporal variation in APW, and

notably, it eliminates the 110–100 Ma peak (�13 cm/a),

which is so visible in the running mean-based path.

A detailed examination of paleopoles between 90 and

Qa a95
b Formation and Country Plat

c Plon
c Age (Ma) GPDBd

5 9.4 Deccan dike swarms, western India �37.2 100.5 65.5 3094, TV
3 3.8 Deccan Traps, Jalna �39 99 65.5 686, TV
4 10.1 Central Kerala dikes, India �34.6 94 69 2754, TV
4 12 Central Kerala gabbro dike, India �21.6 119.4 88 2754, TV
5 7.5 St. Mary Island rhyolites �14.2 117.8 91.2 TV
3 4 Rajmahal Traps, West Bengal and Bihar, India �3 118 116 633, TV
6 3.5 Rajmahal Traps, Bihar, India �7 117 116 678, TV
6 8.3 Rajmahal Traps, West Bengal, India �9.3 124.8 116 2977, TV
4 5.5 Rajmahal Traps, North Rajmahal Hills, India �6.5 120.2 116 T2001
3 7 Sylhet Traps, Khasi Hills, India �16 121 116.5 985, TV
5 2.4 Rajmahal Traps, Bihar, India �9.4 116.6 117 3095, TV
5 4.6 Pachmarhi beds, central India �10.1 130.1 206.5 593, TV
4 4.6 Mangli beds, central India 7.3 124.3 243 593, TV
5 6 Panchet clays, Karanpura coalfields, India 7.5 120.5 248.5 162, TV
6 4.3 Wargal and Chhidru formations, Salt Range,

Pakistan
2.2 125.8 250.5 2467

6 6.5 Kamthi red beds, Wardha Valley, central India 4 129 250.5 163, TV
3 1.8 Kamthi beds, Tadoba, India 4.1 102.8 250.5 593, TV
3 12.1 Alozai Formation, Baluchistan, Pakistan 18.1 111 289.5 1236

South Africa
5 3.8 Ngorora Formation, Kenya �85.7 75.8 11.5 3111
4 8.8 East African volcanics, Kenya and Tanzania �86.5 6.6 12 774
3 10 Volcanics, Kenya �80.1 214.2 13.5 1517
5 3.1 Turkana lavas, Kenya �84.6 343.3 17 774
5 5.2 Cretaceous kimberlites 1, South Africa, Lesotho �64.1 46.1 90.5 2293, TV
4 3 Lupata series volcanics, Mozambique �61.8 79.5 111 992, TV
3 9.3 Mlanje Massif Syenite, Malawi �60 82 124.5 401, TV
6 9.7 Cretaceous kimberlites 2, South Africa �47.6 89.9 129 2293, TV
5 3.1 Kaoko lavas, Namibia �48.3 86.6 132 126, TV
3 15.8 Hoachanas lavas, Namibia �61.9 71.9 171 126, TV
5 3.2 Stormberg lavas (Lesotho basalts),

South Africa, Lesotho
�71.6 93.5 180 3090, TV

4 11 Stormberg lavas, Sani Pass and Maseru, Lesotho �70.5 88.7 180 984, TV
4 13.3 Batoka basalts, Zimbabwe �64 80.6 180f J2001
3 7 Karroo lavas, central Africa, Zimbabwe,

Mozambique,
�57 84 180f 635, TV

5 9.5 Karroo dolerites combined, South Africa,
Zimbabwe

�65.4 75.1 180f 317, TV

5 8.7 Marangudzi Ring Complex, Zimbabwe �70.7 106.7 186 470, TV
3 4.6 Red Sandstone Formation, Zambia �68 50.5 221.5 323, TV
3 6 Cassanje series, Angola �54 80 248.5 1960, TV
4 5.3 Permian red beds, Tanzania �26.9 85.1 254 2736, TV
3 12 K3 beds, Songwe-Ketewaka coalfields,

Tanzania
�27.6 89.8 257 324, TV

3 5 K3 beds, Galula coalfield, Tanzania �46 40 257 324, TV
6 5.6 K1 Dwyka varves, Zimbabwe, Zambia,

Tanzania
�26.5 26.5 281.5 435, TV

6 12 Dwyka Group combined �25 67 315 3489
aQ is the Van der Voo [1993] classification factor (7 is best score).
bHere a95 = 95% confidence circle (A95 indicated in bold).
cPlat and Plon are paleomagnetic pole latitude and longitude, respectively.
dAbbreviations are GPDB, Global Paleomagnetic Data Base Reference Number (REFNO of McElhinny and Lock [1996]).; T, listed by Torsvik et al.

[2001]; SV, listed by Si and Van der Voo [2001]; TV, listed by Torsvik and Van der Voo [2002] (some ages adjusted here); and VT, listed by Van der Voo and
Torsvik [2004] (major changes in age in this paper); L2004, Liss et al. [2004]; S2004, Szurlies [2004]; S2003, Szurlies et al. [2003]; S2005, Schmidt et al.
[2005]; M2006,Meert and Tamrat [2006]; T2001, Tarduno et al. [2001]; R2003, Riisager et al. [2003]; K2004, Knight et al. [2004]; and J2001, Jones et al.
[2001].

eValue is corrected for counterclockwise rotation of 5.4� [Bryan and Gordon, 1990].
fRevised age is given (note that many pole ages have been revised in earlier publications as listed above).
gSmall-scale rotation is possible.

TABLE 3. (continued)
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120 Ma (as used to calculate the running mean path and

shown in Figure 6a) clearly illustrates that this peak is real

(even when smoothed because of the 10 Ma moving

window overlap) because there is indeed a ‘‘systematic’’

progression of the Cretaceous poles for this interval. Hence

the spherical spline path has smoothed away this important

short-time APW feature.

3.4. Plate Motion Chains and the Pangea Enigma

[19] Different Euler rotations for relative plate motions

can produce significant differences between global APW

paths. Most of our Euler rotations (Tables 1 and 2) differ

from those of Besse and Courtillot [2002], where finite

(Euler) rotations were largely recomputed from the Müller

et al. [1993] model described in section 4. Conversely,

many Euler rotations of Schettino and Scotese [2005] were

calculated by inversion of the digital ocean seafloor grid of

Müller et al. [1997]. Different choices will naturally affect

the resultant global APW path. Moreover, we have extended

our APW path back to 320 Ma, which introduces some

additional enigmas.

[20] Paleomagnetic poles are calculated under the routine

assumption that the time-averaged geomagnetic field is that

of a geocentric axial dipole. However, Van der Voo and

Torsvik [2001] have suggested that nondipole field contri-

butions may have persisted through significant periods of

Earth history. Most Earth scientists agree that before the

onset of breakup, the Jurassic ‘‘Pangea A’’ reconstruction is

the correct one, in which NW Africa is located adjacent to

the Atlantic margin of North America (Figure 3a). For

Permian times, however, the paleomagnetic poles do not

agree with the Pangea A fit of Figure 3a, as can be seen by

examining the discrepancy between the poles from Gond-

wana and those for Laurussia in Figures 4b and 6b. To

reconcile the paleomagnetic misfit, one has the option of

(1) modifying the Pangea A reconstruction or (2) dismissing

much of the database as contaminated by later magnetic

overprints or (3) arguing that the mean pole positions are

imprecise because of rock magnetic recording problems,

such as those caused by sedimentary inclination shallowing

[e.g., Kodama, 1997; Rochette and Vandamme, 2001;

Torsvik and Van der Voo, 2002; Kent and Tauxe, 2005]. A

fourth solution is to hypothesize significant octupole field

contributions, in which case the Pangea misfit is caused by

inferring a too far northerly position of Gondwana from the

geocentric axial dipole hypothesis, as well as a too far south

position for Laurussia [Van der Voo and Torsvik, 2001,

2004; Torsvik and Van der Voo, 2002]. Latitudinal errors

caused by 5–10% octupole field contributions are compa-

rable to inclination shallowing effects in sediments. All four

of these explanations have been presented in previous

publications [see Van der Voo, 1993; Muttoni et al., 2003;

Irving, 2004; Van der Voo and Torsvik, 2004, and references

therein]. The largest misfit is seen at 250 Ma (Figure 6b),

likely because the data are indeed not very reliable for this

interval, as argued by Muttoni et al. [2003].

[21] In general, the number of poles from Laurussia is

larger (and, on average, of higher data quality) than simi-

larly aged poles from Gondwana, and they will therefore

bias the global path. Since the incorporation of nondipole

contributions is controversial, we opted in this paper to only

analyze geocentric axial dipole–based APW paths. How-

ever, we should mention that the debate about the various

Pangea reconstructions has not subsided [see Irving, 2004]

and that different Pangea fits labeled A2 and B (or less

commonly C or D) remain favored even in recent literature.

Since nondipole field contributions remain an open possi-

bility, we refer to Table 4 (see column labeled SAFR**) for

a comparison of our geocentric axial dipole–based APW

path with one that incorporates time-dependent nondipole

fields (0–17.5% octupole contributions) [Torsvik and Van

der Voo, 2002]. On average, however, this alternative path

differs by only 2.0� ± 1.3� (great circle distance between

poles of same mean age).

3.5. Paleomagnetic Euler Pole Analysis

[22] Movements of continents, APW paths (in the ab-

sence of true polar wander), tracks of hot spots (if fixed to

the mantle), and ocean fracture zones all should represent

Figure 4. The 419 paleomagnetic results selected for the
analysis of this paper (Table 3) and plotted as south poles in
South African coordinates, using the rotation parameters
listed in Tables 1 and 2. (a) Poles <200 Ma and (b) poles
>200 Ma and <320 Ma. Note that many ‘‘Gondwana’’ south
poles in Figure 4b plot at significantly more easterly
longitudes for Late Permian and Triassic times. The
numbers next to these Gondwana poles are their ages (Ma).
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Figure 5. (a) Global running mean (RM) apparent polar wander (APW) path (thick black line with blue
confidence circles, A95) in South African coordinates, with ages in million years. This path is generated
with a 20 Ma moving window, incremented at 10 Ma intervals. The red line is a spherical smoothed
spline path (smoothing parameter is 1000) [see Torsvik et al., 1996; Jupp and Kent, 1987]. The spline
path uses raw data (70–210 Ma), which are weighted by their Q factor; see text for details. (b) Great
circle distances (GCD) between the running mean path of Figure 5a and the APW paths of Schettino and
Scotese [2005] (SS2005) and Besse and Courtillot [2002] (BC2002). The SS2005 path comparison is
shown together with the errors in our RM path. (c) A spherical, smoothed spline path (smoothing
parameter is 700) based on a running mean path (without data overlap, just binned) and with weighting of
input poles according to A95. The A95 values for the output spline path will increase with increased
smoothing because the spline is farther and farther displaced from the real input poles. This heavily
smoothed spline path (red) is compared with the SS2005 APW path (blue). No errors were provided in the
SS2005 model. (d) A running mean APW path, which uses extreme smoothing (window length of 50 Ma),
shown together with the BC2002 path with light green–shaded A95 ovals. (e) Calculated APW rates (for
10 Ma intervals) using our global RM path of Figure 5a and the smoothed spline path of Figure 5c.
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segments of small circles if the Euler pole is kept constant at

the same location. This is portrayed for a sphere with only

two plates in Figure 7: Plate F is fixed, while Plate M moves

and rotates around a low-latitude Euler pole in the Southern

Hemisphere. Paleomagnetic poles determined from young

rocks on Plate M should plot near the Earth’s spin axis,

whereas paleopoles derived from older rocks are situated on

an APW path that represents a small circle around the Euler

pole. If the moving plate (Plate M) is underlain by a hot

spot, a chain of volcanic seamounts should also describe a

small circle centered on the same Euler pole [cf. Gordon et

al., 1984; Butler, 1992].

[23] It is reasonable to assume that continents may drift

around the pivotal axes of such unchanging Euler poles for,

say, some tens of millions of years, and one can therefore

attempt to construct APW paths by fitting small circles to

paleomagnetic pole sequences; abrupt changes in the bal-

ance of forces driving and resisting plate motions should

then be reflected in the APW paths as hairpins or cusps

[Irving and Park, 1972; Gordon et al., 1984]. Such analy-

ses, however, must be undertaken in the reference frame of

the plate in question, i.e., the plate (continent) on which the

changing forces are acting. The analysis, referred to as the

paleomagnetic Euler pole method, has commonly been

performed on individual paleopoles from a single plate;

however, below we test global running mean poles for small

circle segments.

[24] In southern African coordinates (Figure 5a) we find

seven small circle segments (300–250, 250–220, 220–190,

190–170, 170–130, 120–50, and 50–0 Ma) with root

mean square (RMS) differences less than 1� (0.68� >

RMS > 0.28�) for the last 300 Ma. Segment length varies

between 30 and 70 Ma in duration, and small circle

intersections coincide with segment boundaries except for

those at 120–130 Ma and 50 Ma.

[25] Gordon et al. [1984] originally applied the concept

of Euler pole rotations [McKenzie and Parker, 1967] to the

Mesozoic APW path of Laurentia, and we therefore show a

TABLE 4. Global Apparent Polar Wander Path in South African, North American, European, South American Craton, Indian,

and Australian Coordinatesa

Age (Ma) N A95

Coordinates

SAFR SAFR** NAM EUR SAC IND AUS

Lat Long Lat Long Lat Long Lat Long Lat Long Lat Long Lat Long

0 18 3.0 �87.8 326.0 �89.2 297.9 �87.6 322.4 �87.6 313.6 �87.7 307.3 �89.1 22.3 �89.2 120.0
10 30 2.5 �87.6 323.9 �88.8 86.3 �87.2 318.4 �87.2 305.0 �87.3 292.8 �88.7 71.9 �87.5 134.0
20 23 3.0 �85.3 345.5 �85.3 49.3 �84.6 331.2 �85.0 317.4 �84.9 292.3 �84.8 86.1 �82.3 123.0
30 18 2.8 �82.1 5.8 �83.2 26.4 �81.6 343.6 �82.7 332.5 �83.2 302.8 �79.4 91.0 �76.5 115.6
40 19 2.8 �80.8 17.5 �81.6 38.4 �80.9 345.2 �82.3 330.5 �82.8 299.6 �74.2 100.0 �72.2 118.4
50 27 2.6 �76.8 21.6 �78.8 41.1 �77.1 349.8 �79.1 334.2 �80.4 311.7 �63.9 95.3 �70.2 113.9
60 30 2.4 �74.3 33.5 �74.2 46.3 �75.1 4.1 �79.0 346.8 �80.9 331.7 �51.6 96.4 �66.3 112.3
70 20 2.7 �72.5 47.2 �69.5 51.8 �74.3 17.1 �80.3 1.8 �82.0 354.0 �39.0 99.6 �61.9 114.5
80 23 2.6 �70.8 48.1 �69.4 49.2 �75.4 5.7 �79.6 350.0 �82.5 330.3 �28.5 104.7 �64.0 121.0
90 27 2.6 �69.5 54.7 �68.4 55.1 �76.4 5.8 �80.3 349.1 �84.0 323.3 �23.5 108.9 �62.8 127.4
100 11 4.1 �67.7 60.8 �67.2 61.9 �77.3 6.2 �81.0 346.2 �85.5 312.7 �19.7 112.2 �60.9 133.3
110 16 3.6 �57.9 79.2 �57.1 81.2 �75.0 19.4 �80.7 11.4 �87.1 74.0 �11.5 116.3 �52.6 143.4
120 24 2.6 �53.8 81.3 �53.4 82.2 �72.6 18.6 �78.4 16.5 �85.0 67.6 �7.7 116.8 �50.1 144.7
130 18 2.9 �50.6 80.0 �50.6 81.0 �70.0 12.7 �75.2 13.6 �83.8 47.9 �3.4 116.1 �49.1 145.3
140 10 6.1 �49.2 73.1 �49.0 74.9 �67.4 355.1 �70.4 356.7 �82.7 2.0 �0.3 114.8 �50.9 149.5
150 16 5.9 �55.2 65.0 �56.8 68.3 �68.7 327.2 �67.7 328.2 �81.9 301.3 �10.5 118.5 �54.6 166.9
160 14 6.0 �59.3 67.0 �61.6 69.4 �70.9 315.6 �68.2 316.2 �82.4 270.5 �14.6 124.0 �52.0 177.4
170 23 3.8 �61.2 77.6 �60.5 75.3 �73.9 306.8 �69.9 306.1 �84.2 223.8 �14.1 130.3 �46.3 180.8
180 26 3.6 �64.1 77.4 �63.5 76.0 �74.2 294.2 �68.8 296.7 �81.3 221.2 �16.7 131.7 �46.1 185.0
190 31 3.5 �71.8 68.8 �71.8 71.0 �70.9 265.5 �63.4 278.4 �73.0 227.0 �24.8 133.6 �47.0 197.0
200 35 3.2 �70.8 54.4 �71.5 58.8 �65.9 266.8 �59.2 282.3 �71.3 241.2 �27.4 129.2 �51.4 199.5
210 32 2.7 �66.9 43.6 �67.8 47.5 �60.8 271.6 �55.7 290.7 �69.8 257.2 �28.3 123.1 �56.9 199.6
220 29 2.0 �62.8 37.2 �64.6 40.9 �56.1 275.1 �53.6 300.5 �67.6 269.5 �28.7 117.5 �61.9 199.0
230 28 2.6 �58.6 40.0 �61.0 43.8 �54.7 282.4 �54.3 313.2 �68.7 281.0 �25.3 114.2 �64.2 190.8
240 35 3.6 �53.5 47.4 �55.2 49.9 �54.6 293.7 �55.6 330.5 �71.6 298.4 �19.0 112.4 �63.9 175.8
250 38 4.4 �49.6 55.4 �48.8 54.2 �55.5 304.5 �56.7 343.4 �74.4 317.6 �12.8 112.9 �60.4 164.7
260 26 5.4 �48.1 54.8 �47.1 52.8 �54.2 305.9 �55.3 344.8 �73.3 321.4 �11.9 111.6 �61.0 161.8
270 28 4.1 �43.2 50.3 �44.4 49.0 �48.4 307.4 �49.6 346.1 �67.8 326.9 �10.8 105.7 �64.5 151.7
280 57 2.4 �38.4 48.6 �39.0 48.0 �43.8 310.2 �44.9 348.9 �63.3 332.6 �8.4 101.2 �65.7 140.0
290 70 1.8 �37.2 45.8 �37.8 45.8 �41.6 308.7 �42.7 347.3 �61.0 330.6 �9.3 98.9 �67.7 136.4
300 39 2.3 �34.6 46.9 �34.9 46.1 �40.0 311.7 �41.1 350.3 �59.6 335.3 �6.9 97.6 �66.2 130.4
310 20 4.9 �30.5 49.9 �29.4 46.0 �38.0 317.3 �39.0 355.9 �57.6 343.7 �2.2 96.3 �62.6 123.3
320 10 8.6 �28.5 42.5 �25.9 38.7 �32.8 311.7 �34.7 1.1 �50.9 353.4 �9.3 82.0 �64.2 88.3
aRunning mean path has a 20 Ma window length, with 10 Ma increments. N is number of input poles; A95 is 95% confidence circle. Abbreviations are

APW, apparent polar wander; SAFR, South African; SAFR**, global APW path recalculated with time-dependent nondipole field (octupole) contributions
[Torsvik and Van der Voo, 2002]; NAM, North American; EUR, European; SAC, South American Craton; IND, Indian; AUS, Australian; Lat, pole latitude;
and Long, pole longitude.
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detailed example of this method applied to North America.

Figure 8a shows our global paleomagnetic running mean

path in North American coordinates (Table 4). The three

segments from 300 to 190 Ma are found to be similar to

those of southern Africa and all other plates we have

analyzed. This is to be expected because the continents

moved together as parts of Pangea, with only minor predrift

extension invoked prior to 190 Ma (Figure 3b). The Jurassic

Figure 7. Apparent polar wander paths (in the absence of true polar wander) and hot spot tracks (if
fixed to the mantle) represent small circle segments if the Euler pole is kept at the same location. In this
example, Plate F is held fixed, and Plate M is moving around a constant Euler pole for 80 Ma. Compare
text and Gordon et al. [1984].

Figure 6. (a) Individual paleopoles with 95% confidence ovals, which were used to calculate the
running mean path in Figure 5a for the segment with ages between 90 and 120 Ma. Two mean poles, at
100 and 110 Ma, were calculated with the running-mean approach and are shown with their A95

confidence circles in pink. (b) Comparison of the mean global path (gray) (the same as the global RM
path in Figure 5a) and APW paths (in South African coordinates) derived from only Laurussian poles and
only Gondwana poles between 220 and 320 Ma (see text and also Figure 4b).

RG3004 Torsvik et al.: PLATE MOTION FRAMES

20 of 44

RG3004



section, however, differs substantially; the abrupt 170 Ma

cusp seen for southern Africa (Figure 5a) is not present.

Instead, there is a change in trajectory at 150 Ma where an

intersection occurs between the 190–150 and the 150–

130 Ma segments, but there is no trace of a distinct cusp.

Similarly for southern Africa, we can fit small circles to the

segments of 120–50 Ma (RMS = 0.81�) and 50–0 Ma

(RMS = 0.23�), but the magnitude of Laurentian APW

between 120 and 50 Ma (0.13�/Ma) is much less than that of

southern Africa (0.45�/Ma). Our analysis is very different

from any earlier paleomagnetic Euler pole analysis because

we use global running mean poles and not just North

American poles [see Beck and Housen, 2003], which show

lower pole latitudes during the Middle-Late Jurassic than

those predicted from a global model. We illustrate this in

Figure 8a where the red dashed line represents a running

Figure 8. (a) Global apparent polar wander (APW) path, the same as in Figure 5a for the last 300 Ma,
but shown in North American coordinates and fitted by seven small circle segments (black solid lines)
discussed in the text. The red dashed line represents a running mean path exclusively based on North
American poles. (b) Zoomed-in segment of the 50–120 Ma mean poles in order to examine poles during
the North American Cretaceous stillstand. (c) Global APW rate in North American coordinates. Notice
that the 110–100 Ma peak seen in southern African coordinates is not seen in North American
coordinates, as in the latter it represents what has been called the ‘‘Cretaceous stillstand.’’ Encircled
letters, T1, T2, J1, J2, C, and T, are kinks or cusp intersections seen in Figure 8a, where they are marked
by white arrows. Calculated (d) north–south drift and (e) angular rotation of North America based on the
global running mean path for a specific location (45�N, 260�E).
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mean APW path, calculated exclusively from North Amer-

ican poles (Table 3). In this purely North American running

mean path the global 250 Ma cusp has vanished (no longer

influenced by Gondwana poles, see Figure 6b); the 220 Ma

knickpoint is deteriorating (the segments being replaced by

a single small circle from 270 to 190 Ma, RMS = 0.58�),
whereas the 190, 120, and 50 Ma cusps are recognized, just

as they were in the global running mean path. However, the

Middle-Late Jurassic section differs markedly, with a knick-

point near 160 Ma, located at lower latitude. This is relevant

to the debate about the reliability of the Laurentian Jurassic

APW segment [e.g., Ekstrand and Butler, 1989; Witte and

Kent, 1990; Van Fossen and Kent, 1990; Van der Voo, 1992;

Courtillot et al., 1994].

[26] On the basis of North American data alone and

different pole selection criteria, Beck and Housen [2003]

identified three small circle tracks (245–200, 200–160, and

160–125 Ma) and their two intersections (or cusps, both are

pronounced), named J1 and J2 (following Gordon et al.

[1984]). Using this nomenclature but on the basis of our

global running mean path data, J1 (�190 Ma in our global

analysis) occurs shortly before seafloor spreading began in

the central Atlantic (rift to drift and the first real breakup

phase of Pangea) and �10 Ma after eruption of the Central

Atlantic Magmatic Province. This J1 cusp at 190 Ma is

associated with the second biggest burst in APW (Figure 8c),

linked to a peak in angular rotation that initiated a prolonged

period of clockwise rotation of �50 Ma duration. Con-

versely, J2 (�150 Ma) coincides with local high seafloor

spreading rates in the central Atlantic (Figure 3b) and

occurs shortly before a northward velocity increase that

coincides with the highest amount of APW for North

America during the entire Mesozoic (Figures 8c and 8d).

The Cretaceous is marked by decreasing APW, and the

Cretaceous cusp at �125 Ma (labeled C in Figures 8c–8e

and Figure 3b) marks the beginning of the so-called North

American Cretaceous stillstand that lasted until �70 Ma as

judged from our global running mean path (Figures 8b and

8c). This apparent stillstand ended when seafloor spreading

(rift to drift) occurred in the Labrador Sea between North

America and Greenland at�67Ma (see Table 1 and Figure 3b).

The C cusp is associated with the onset of the highest

seafloor spreading peak in the central Atlantic (Figure 3b).

In an ‘‘absolute’’ sense we argue that the North American

Cretaceous stillstand is only apparent and that it was caused

by a dominating component of paleo-east-to-west drift

(section 7). Finally, a Tertiary cusp (labeled T at 50 Ma in

Figures 3b and 8c–8e) at around 50 Ma is linked to seafloor

spreading in the North Atlantic and the accompanying

westward drift of the North American plate. The older

cusps (denoted T1 and T2 in Figures 8c–8e and 3b) will

be discussed in section 8.2.

4. AFRICAN FIXED HOT SPOT FRAME

[27] Wilson [1963] first suggested that linear chains of

seamounts and volcanoes, which display age progression,

are caused by focused spots of melting in the mantle, termed

‘‘hot spots.’’ Morgan [1971] proposed that hot spots may be

caused by mantle plumes upwelling from the lower mantle,

which in his model remain fixed relative to each other over

geologically long periods of time (‘‘fixed hot spot hypoth-

esis’’). During the past 40 years a multitude of marine

geophysical data and isotope ages of seamounts from

volcanic hot spot tracks have been collected, allowing

reconstructions of plate motions relative to hot spots since

the Cretaceous.

[28] Early attempts to reconstruct all major tectonic plates

with respect to one collective set of hot spots (presumed

fixed relative to each other) led to the realization that

models constructed for Pacific plate motions over hot spots

could not be reconciled with the motions over the hot spots

in the African–Indian Ocean domain for the last 80 Ma

[Duncan, 1981; Morgan, 1981]. Subsequently, evidence has

accumulated that hot spots underlying the Pacific cannot

have remained fixed relative to the Atlantic-Indian hot spots

[Molnar and Stock, 1987; Tarduno and Gee, 1995; Tarduno

and Cottrell, 1997; DiVenere and Kent, 1999; Torsvik et al.,

2002; Tarduno et al., 2003]. However, hot spots within the

Atlantic-Indian domain appear to have moved much less

dramatically relative to each other. On the basis of this

inference, Müller et al. [1993] used an interactive technique

to derive a ‘‘best fit’’ model in a qualitative sense for

motions of the major plates in the Atlantic-Indian domain

relative to hot spot tracks with a clear age progression.

[29] Even though this model is widely used, it has some

well-recognized shortcomings: the Late Tertiary portion of

this model was not well constrained by radiometric ages

because of the lack of published age dates for the post–

30 Ma portion of most hot spot tracks. For reconstruction

times predating 80Ma, the only available hot spot tracks with

a reasonably well known age progression in the Atlantic-

Indian oceans are those of the New England seamount chain

(linked to the Great Meteor hot spot) and the Walvis Ridge/

Rio Grande Rise (linked to the Tristan hot spot, Figure 9),

both in the Atlantic Ocean. Therefore, the absolute motion

of the Indian, Australian, and Antarctic plates relative to the

mantle has to be computed solely based on plate motion

chains for these times. However, when the Müller et al.

[1993] model was constructed, pre–80 Ma relative plate

motions in the Indian Ocean were poorly known because of

a lack of data in crucial areas, in particular offshore

Antarctica in the Enderby Basin and south of the Kerguelen

Plateau. This has recently improved as a sequence of

Mesozoic magnetic anomalies was mapped and modeled

in the Enderby Basin, starting at about 130 Ma [Gaina et

al., 2003, 2007]. The Müller et al. [1993] model was based

on the assumption of post–120 Ma breakup between India

and Madagascar, placing India too far north from 130 to

about 90 Ma. Disagreements between the hot spot and

paleomagnetic reference frames have been documented for

India [Müller et al., 1994; Torsvik et al., 1998] and for

Australia [Idnurm, 1985], suggesting either an incorrect

relative plate motion model, relative motion between hot

spots through time, or true polar wander or any combination

of these three issues. As an example, paleopoles for India
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from the Rajmahal Traps (Table 3) result in a paleolatitude

of the traps at their time of formation (�116 Ma) at 47�S,
whereas the Müller et al. [1993] model places them at about

40�S.
[30] A comparison of mid-Cretaceous (122–80 Ma)

paleolatitudes of North America and Africa from paleomag-

netic data with those from hot spot tracks [Van Fossen and

Kent, 1992] provided evidence for an 11�–13� discrepancy,
suggesting that Atlantic hot spots likely did not remain fixed

relative to the Earth’s spin axis before 80 Ma. With our

more recent analyses using a different time interval and

compared to the Müller et al. [1993] model, we find that the

hot spots moved southward as much as 18� between 100

and 130 Ma [Torsvik et al., 2002]. Others argue that this

apparent southward movement was caused by true polar

wander (TPW) [see Prévot et al., 2000; Camps et al., 2002;

Tarduno and Smirnov, 2002].

[31] The Müller et al. [1993] plate motion model results

in a relatively sharp turn in plate motion directions (e.g., of

Australia and Antarctica) relative to the mantle at about

80 Ma, which originates from the bend between the New

England seamount chain and the Corner seamounts at

roughly 80 Ma in the central Atlantic. An equivalent bend

in fracture zones is not found in either the Pacific or Indian

oceans. Bends in hot spot tracks, which are not seen in

relative motions of the plates involved, are likely because of

time-varying velocities of local mantle (hot spot) motion

relative to the mean mantle, as has been suggested as having

caused the bend in the Hawaiian-Emperor chain [Norton,

1995; Tarduno and Cottrell, 1997]. It follows that the

central Atlantic bend may be due to a slowdown in

southward motion of the mantle underlying at least the

Atlantic Ocean and its bordering continents at around 80 Ma

and that fixed hot spot models therefore need to be replaced

by models that take into account the motion of hot spots in a

convecting mantle.

[32] The plate motion model used by Müller et al. [1993]

was based on the timescales of Berggren et al. [1985] and

Kent and Gradstein [1985]. In order to compare Müller et

al. [1993] with more recent models for the purpose of this

paper, we first need to translate it to more recent timescales

[Cande and Kent, 1995; Gradstein et al., 1994]. This

Figure 9. Walvis Ridge (linked to the Tristan hot spot at 38�S, 11�W) analyzed in a comparison of the
African fixed hot spot model of Müller et al. [1993] (light blue circles) and the revised fixed hot spot
model of this study (red circles), at 10 Ma interpolated intervals, showing that the differences are
relatively small. The marine gravity data have been taken from Sandwell and Smith [1997].
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presents some difficulty, as Müller et al.’s [1993] model is

based on a combination of relative and radiometric age

dates, because samples from hot spot tracks are radiomet-

rically dated, whereas the ages of plate reconstructions used

in the model depended upon the ages of magnetic anomalies

in the ocean basins, which, in turn, were dated with an older

magnetic reversal timescale. For this paper we adjusted the

ages given by Müller et al. [1993] to the Cande and Kent

[1995] timescale for times back to chron 34 (83 Ma

according to Cande and Kent [1995] and 83.5 Ma according

to Gradstein et al. [1994]). Earlier ages were translated to

the Gradstein et al. [1994] timescale. We assigned the age

of 83.5 Ma to chron 34 because the Gradstein et al. [1994]

timescale takes both Mesozoic and Cenozoic ages into

account, thereby providing better constraints on chron 34

compared to the Cande and Kent [1995] timescale, which

does not take into account ages older than chron 34. The

difference between Müller et al. [1993] and our revised

model, however, is small, and the largest differences (at

�40 and �80 Ma) are less than 1� of arc when modeling the

Tristan track (Figure 9). Exact input ages and Euler poles

for the revised model are listed in Table 5, while interpo-

lated Euler poles are shown in Figure 10 (African fixed hot

spot) and listed in Table 6 (in the African fixed hot spot

column). The pre–80 Ma portion of the fixed hot spot

model, however, is notably weak, and our revised model

still places India too far north at �116 Ma. Therefore, we

will argue in section 5 that the African fixed hot spot frame

should be replaced by a moving hot spot frame.

5. MOVING HOT SPOT FRAMES

5.1. Introduction

[33] Testing models for motions between individual hot

spots, or between regional groups of them, requires mantle

convection models constrained by surface boundary con-

ditions based on known plate motions. Steinberger and

O’Connell [1997, 1998] pioneered the modeling of hot spot

motions and TPW based on mantle flow models. Their

technique to take differential motion of individual hot spots

into account essentially uses a two-step approach: In the

first step, large-scale mantle flow is computed based on

mantle density heterogeneities derived from seismic tomog-

raphy and viscosity structure as well as known plate

motions. These flow computations yield certain predictions,

e.g., geoid, and matching these with observations serves the

goal of making the flow models as realistic as possible.

Since the geoid is sensitive to relative viscosity variations

with depth and not absolute viscosity values, flow is better

constrained in direction than magnitude. The flow models

are also used to advect density heterogeneities and in this

manner extended backward in time. Since the rotation axis

will remain aligned with the axis of maximum nonhydro-

static moment of inertia, which, in turn, is inferred from the

predicted geoid, a prediction of TPW is a by-product of this

first step. In a second step the motion of plume conduits

embedded in large-scale flow, and thus the motion of hot

spots, the points where the plume conduits reach the

lithosphere, is computed. The conduit is assumed to be

initially vertical, and motion of each conduit element is a

superposition of advection and buoyant rising. Predicted hot

spot motion is often similar to mantle flow at some depth,

typically the upper part of the lower mantle. As for the flow

models, directions of hot spot motion can be inferred with

greater confidence than the amount of hot spot motion. In

fact, observational limits on the speed of relative hot spot

motion can help to constrain the speed of mantle flow.

Steinberger [2000] extended this type of modeling to a

larger number of hot spots and mantle flow schemes. This

approach is most reliable for the Tertiary and has provided

estimates for TPW and the motion of individual hot spots

relative to each other for the last 68 Ma.

[34] When these models are extended back to the Creta-

ceous, however, pure backward advection of mantle density

anomalies becomes increasingly unreliable [Conrad and

Gurnis, 2003], as more of the past mantle temperature

anomalies may have diffused away and therefore cannot

be reconstructed by extrapolation. Other methods, such as

variational data assimilation and adjoint methods [e.g.,

Bunge et al., 2003; Ismail-Zadeh et al., 2006], will be

needed to reconstruct mantle density and flow further back

in time. Nevertheless, hot spot motion can still be computed

prior to 68 Ma but with additional uncertainty. Test runs for

models from 120 Ma to the present, either including or

excluding the advection of mantle density anomalies, have

shown that there are many similarities between the two

types of models. This indicates that meaningful predictions

for relative hot spot motion can be made based on a simple

mantle convection model, constrained by time-dependent

plate motions and mantle density heterogeneities. This

strategy was used by O’Neill et al. [2005] to model the

motion of plumes relative to each other in a convecting

mantle in the context of an ‘‘interactive inversion’’ strategy.

O’Neill et al. [2005] explored the large parameter space

inherent in these models to search for those mantle convec-

TABLE 5. Euler Rotations for South Africa in the Revised

African Fixed Hot Spot Reference Frame Based onMüller et al.

[1993] But Recalculated With New Timescalesa

Age (Ma) Euler Latitude Euler Longitude Euler Angle (deg)

10.9 59.3 328.4 �1.89
20.1 50.9 315.5 �4.36
33.1 40.3 317 �7.91
40.1 37.7 318.8 �9.65
47.9 32.8 319.2 �12.09
55.9 30.1 318.3 �13.89
67.7 26.4 319.1 �16.23
73.0 22.3 320.4 �17.8
79.1 18 321.1 �19.99
83.5 19 319.1 �21.53
89.9 19.4 318.1 �23.31
100.5 18.9 318.6 �25.35
111.1 17.7 320.5 �26.71
120.4 18.7 320.3 �27.37
130.7 16.7 322.5 �28.52
aSee text. Note that the listed rotations here and in Tables 6–8 move the

plate (here Africa) back from its present position to the past position at the
given age not the other way round.
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tion models that provide the best fit to observed hot spot

tracks and their age progression, while minimizing the

disagreements between model-based hot spot paleolatitudes

and paleolatitudes from paleomagnetic data. Furthermore,

O’Neill et al. [2005] adopted the Hellinger [1981] criteria of

fit for deriving best fit absolute plate rotations based on

track geometries, radiometric ages, and the moving loca-

tions of plumes in a convecting mantle to derive covariance

matrices for absolute rotations of plates in the Indo-Atlantic

domain for the last 120 Ma. While the original Hellinger

[1981] method uses fracture zones and isochrons as two

orthogonal data sets to determine relative plate motions, in

the O’Neill et al. [2005] method, fracture zones are replaced

by hot spot tracks, and ‘‘isochrons’’ are constructed based

on age data along hot spot tracks. While fracture zones are

the flow lines of relative plate motion, the geometry of hot

spot tracks, corrected for computed hot spot motion, marks

the flow lines of absolute plate motion. And while in the

Figure 10. (a) Comparison of Euler poles for Africa (at 10 Ma intervals) (see Table 6) as derived for the
African fixed hot spot (AFHS), African moving hot spot (OMS2005), and the global moving hot spot
(GMHS) reference frames. The error ovals are derived using the OMS2005 approach [O’Neill et al.,
2005]. Considering errors in the other frames (not quantified here), most Euler poles do not statistically
differ at the 95% confidence level. (b) Mean plate velocity for southern Africa as computed for each of
the three different reference frames in Figure 10a as well as the global paleomagnetic running mean path
of Figure 5a. Notice that the GMHS model becomes identical to AFHS prior to 83.5 Ma.
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TABLE 6. Euler Rotation Parameters for South Africa for Different Framesa

Age (Ma)

African Fixed Hot Spot African Moving Hot Spot Global Moving Hot Spot
Paleomagnetic

Framea Global Hybrid

Lat Long Angle (deg) Lat Long Angle (deg) Lat Long Angle (deg) Long Angle (deg) Lat Long Angle (deg)

0 90.0 0.0 0.0 90 0 0.0 90 0.0 0.0 56.0 2.2 90 0 0.0
5 76.2 328.4 �0.9 30.3 326.0 �1.0 29.4 332.5 �1.1 57.6 2.5 30.3 326.0 �1.0
10 62.1 328.4 �1.7 46.2 272.1 �1.9 29.4 332.5 �2.3 53.9 2.5 46.2 272.1 �1.9
15 55.6 321.8 �3.0 45.8 276.8 �3.0 29.4 332.5 �3.4 66.5 3.0 45.8 276.8 �3.0
20 50.9 315.5 �4.4 45.2 281.5 �4.0 29.4 332.5 �4.5 75.5 4.7 45.2 281.5 �4.0
25 46.8 316.2 �5.7 44.4 286.0 �5.1 29.4 332.5 �5.6 84.1 6.8 44.4 286.0 �5.1
30 42.8 316.7 �7.1 43.5 290.3 �6.1 29.4 332.5 �6.8 95.8 7.9 43.5 290.3 �6.1
35 39.6 317.5 �8.4 44.3 297.9 �7.1 29.4 332.5 �7.9 98.8 8.7 44.3 297.9 �7.1
40 37.2 318.8 �9.9 44.6 305.7 �8.1 29.4 332.5 �9.0 107.5 9.2 44.6 305.7 �8.1
45 34.7 319.1 �11.2 40.8 303.3 �9.2 30.0 332.9 �10.0 110.9 10.3 40.8 303.3 �9.2
50 32.1 319.0 �12.5 37.0 301.1 �10.3 32.4 334.7 �10.6 111.6 13.2 37.0 301.1 �10.3
55 30.4 318.4 �13.7 30.6 310.1 �11.4 34.5 336.4 �11.3 115.7 13.9 30.6 310.1 �11.4
60 28.9 318.6 �14.6 23.7 317.9 �12.5 36.4 337.9 �11.9 123.5 15.7 23.7 317.9 �12.5
65 27.3 318.9 �15.6 22.2 319.4 �13.2 34.3 334.7 �12.9 127.8 17.5 22.2 319.4 �13.2
70 24.6 319.7 �16.9 20.7 320.9 �13.8 31.4 330.9 �14.1 137.2 17.5 20.7 320.9 �13.8
75 20.8 320.7 �18.6 19.2 322.4 �14.4 28.9 328.0 �15.4 140.3 19.2 19.2 322.4 �14.4
80 18.3 320.5 �20.5 17.7 323.9 �15.0 26.7 325.6 �16.7 138.1 19.3 17.7 323.9 �15.0
85 19.1 318.9 �21.9 16.2 325.3 �15.6 25.4 323.7 �18.1 142.9 19.6 16.2 325.3 �15.6
90 19.4 318.1 �23.4 14.6 326.7 �16.2 25.3 322.5 �19.4 144.7 20.5 14.6 326.7 �16.2
95 19.1 318.4 �24.4 14.5 328.6 �18.2 24.7 322.7 �20.4 144.3 20.8 14.5 328.6 �18.2
100 19.0 318.6 �25.2 14.4 330.4 �20.1 24.1 322.8 �21.3 150.8 22.3 14.4 330.4 �20.1
105 18.4 319.4 �25.9 15.1 331.1 �22.5 23.2 323.7 �22.0 160.2 26.9 10.3 337.7 �27.3
110 17.8 320.3 �26.6 15.7 331.7 �24.9 22.4 324.6 �22.6 169.2 32.1 8.6 346.7 �32.5
115 18.2 320.4 �27.0 16.4 332.4 �27.3 22.6 324.7 �23.1 170.3 35.6 7.7 347.8 �35.9
120 18.6 320.3 �27.3 17.0 333.0 �29.7 23.2 324.5 �23.4 171.3 36.2 7.6 348.8 �36.5
125 17.8 321.3 �27.9 17.5 333.5 �32.1 22.0 325.6 �24.0 172.1 37.5 7.3 349.6 �37.8
130 16.9 322.3 �28.4 18.0 334.0 �34.6 20.7 326.7 �24.5 170.0 39.4 6.9 347.5 �39.7
135 172.6 42.1 6.5 350.1 �42.4
140 163.1 40.8 6.7 340.6 �41.1
145 155.2 38.1 7.2 332.7 �38.5
150 155.0 34.8 7.9 332.5 �35.1
155 155.0 33.2 8.3 332.5 �33.6
160 157.0 30.7 9.0 334.5 �31.1
165 159.5 32.5 8.5 337.0 �32.8
170 167.6 28.8 9.6 345.1 �29.3
175 167.8 27.7 10.0 345.3 �28.1
180 167.4 25.9 10.7 344.9 �26.4
185 168.4 21.6 12.9 345.9 �22.2
190 158.8 18.2 15.2 336.3 �18.9
195 147.9 17.8 15.6 325.4 �18.5
200 144.4 19.2 14.4 321.9 �19.9
205 137.4 20.7 13.4 314.9 �21.3
210 133.6 23.1 12.0 311.1 �23.7
215 129.9 26.4 10.5 307.4 �26.9
220 127.2 27.2 10.2 304.7 �27.7
225 128.0 29.4 9.4 305.5 �29.8
230 130.0 31.4 8.8 307.5 �31.8
235 133.6 35.3 7.8 311.1 �35.6
240 137.4 36.5 7.5 314.9 �36.8
245 143.1 39.6 6.9 320.6 �39.9
250 145.4 40.4 6.8 322.9 �40.7
255 145.6 41.8 6.5 323.1 �42.1
260 144.8 41.9 6.5 322.3 �42.2
265 141.6 47.1 5.7 319.1 �47.4
270 140.3 46.8 5.8 317.8 �47.1
275 138.2 51.1 5.2 315.7 �51.4
280 138.6 51.6 5.2 316.1 �51.9
285 136.5 51.8 5.1 314.0 �52.0
290 135.8 52.8 5.0 313.3 �53.0
295 136.8 53.5 4.9 314.3 �53.7
300 136.9 55.4 4.8 314.4 �55.6
305 138.9 56.3 4.7 316.4 �56.5
310 139.9 59.5 4.4 317.4 �59.7
315 138.9 60.8 4.3 316.4 �61.0
320 132.5 61.6 4.2 310.0 �61.7
aLatitude is zero for all ages.
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Hellinger [1981] method isochrons on two plates are

matched, O’Neill et al. [2005] match instead their con-

structed isochrons with the modeled hot spot location at the

respective times. In practical terms, application of the

method is not straightforward; for example, age data along

hot spot tracks are often sparse and may not always

represent passing of the plate over the hot spot. Postero-

sional volcanism may still occur millions of years afterward;

furthermore, both age data and track geometry may be

influenced by plume-ridge interaction, i.e., flow of material

from a plume to a nearby spreading ridge. These and other

limitations and difficulties are discussed further by O’Neill

et al. [2005].

[35] While the two-step approach was motivated by

computational limitations, a fully dynamic computation of

hot spot motion in large-scale flow is now feasible where

not only the influence of the mantle on the plume is taken

into account but also the effect of the plume on its

surrounding medium [Tan et al., 2006]. Also, large-scale

mantle flow models are becoming more realistic because of

inclusion of temperature-dependent and strain rate–dependent

viscosities [e.g., Becker, 2006; Čadek and Fleitout, 2003]

and further constraints, in particular related to seismic an-

isotropy [e.g., Becker et al., 2006; Behn et al., 2004].

5.2. African Moving Hot Spot Frame

[36] In the method of O’Neill et al. [2005] each recon-

struction is statistically independent from reconstructions at

younger or older ages. This implies that smoothness is not

imposed on the set of absolute rotations derived for a given

plate. Therefore, a bias in the data used for a given

reconstruction may result in a best fit rotation that is

implausible in terms of plate kinematics. For instance, a

consecutive set of rotation poles may lie approximately on a

small circle, with one rotation being situated far off this

small circle path, indicating that it is an outlier if there are

no independent data supporting a plate kinematic event,

such as a change in plate motion direction, or rate, at this

time. The set of 12 Euler poles initially derived by O’Neill

et al. [2005] (OMS2005), from 10 to 120 Ma in 10 Ma

intervals (black circles in Figure 10a), includes four rota-

tions that are geologically or kinematically implausible, i.e.,

for 20, 70, 80, and 110 Ma (red circles in Figure 10a,

OMS2005 rejected). These rotations are removed from this

model and have been replaced by interpolated rotations

(gray open circles in Figure 10a, OMS2005 interpolated, see

Table 6), whereas the 130 Ma rotation pole has been

extrapolated. The resulting Euler pole path can be approx-

imated by three small circle segments from 0 to 40, 40–90,

and 90–120 Ma; however, considering how large the errors

are, none of these bends in the Euler pole path are

significant. The largest difference between the O’Neill et

al. [2005] and our revised African fixed hot spot Euler pole

paths is in the 0–60 Ma portions of the paths (Figure 10a,

green versus black symbols). However, different age pro-

gressions in the Euler angles (Table 6) lead to very different

mean plate velocities for southern Africa during the Creta-

ceous. The African fixed hot spot Euler rotations result in

increasing plate velocities in the Late Cretaceous (peaking

at �80 Ma), whereas O’Neill et al. [2005] predicts decreas-

ing velocities and shows a minimum where the African

fixed hot spot frame predicts the highest velocities. The

running mean paleomagnetic frame (thin dashed line in

Figure 10b) shows gross similarities with O’Neill et al.

[2005] (solid black line) for the interval �110–50 Ma, but

the two Tertiary peaks in the running mean path are not seen

in any of the other reference frames (Figure 10b).

5.3. Global Moving Hot Spot Frame

[37] The construction of the global reference frame of

Steinberger et al. [2004] was motivated by the long known

fact that when a plate motion chain through West Antarctica

is used (Figure 3a, model 1), the fixed hot spot African

reference frame does not agree with a fixed hot spot Pacific

reference frame. If African absolute plate motions are

chosen such that hot spot tracks in the African hemisphere

are fitted to observations, while hot spot tracks in the Pacific

hemisphere are predicted through the plate motion chain,

then the Pacific track predictions do not agree with the

observations there: in particular, the predicted Hawaiian

track is somewhat south of the observed track between

Hawaii and the Hawaiian-Emperor bend at �50 Ma [Sharp

and Clague, 2006]. Not only does the predicted track not

have as pronounced a bend, it is also substantially farther

southwest than the Emperor Chain for times prior to the

bend. Wessel et al. [2006] and Whittaker et al. [2007]

recognized that the recent redating of bend initiation to

�50 Ma correlates the bend with major tectonic events from

around the Pacific, such as South Pacific triple-junction

reorganization at chrons 22–21 (49.7–47.9 Ma), Farallon-

Pacific fracture zone bends at chrons 24–21 (53.3–47.9Ma),

and the direction change and proposed halt of Pacific-Kula

plate spreading at chrons 24–20/19 (53.3–43.8/41.5 Ma) as

well as a major reorganization of relative plate motions

between Australia and Antarctica. Nevertheless, some re-

gard the bend to be partly or fully caused by hot spot motion

[e.g., Molnar and Stock, 1987; Norton, 1995], whereas

Whittaker et al. [2007] argued subduction of the Pacific-

Izanagi spreading ridge and subsequent Marianas/Tonga-

Kermadec subduction initiation may have been the ultimate

causes of these events. If a Pacific absolute platemotionmodel

is chosen such that hot spot tracks in the Pacific hemisphere are

fitted and hot spot tracks in the African hemisphere are

predicted through the plate motion chain, the predicted tracks

do not agree with the observed tracks either.

[38] Steinberger et al. [2004] found that their geodynam-

ical model typically predicts a southward motion of the

Hawaiian hot spot with velocities up to a few centimeters

per year, contrasting with slower motion for other hot spots.

Thus, their model of hot spot motion, in combination with

the plate motion chain that connects Africa and the Pacific

via East Antarctica and Marie Byrd Land (West Antarctica),

allowed a fit of hot spot tracks globally for times after the

age of the Hawaiian-Emperor bend. In this model, no

motion occurs between East and West Antarctica prior to

43.8 Ma (model 1, Figure 3a). For times prior to 43.8 Ma an
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east-west misfit between predicted and observed Hawaiian

hot spot track remains. Consequently, Steinberger et al.

[2004] explored the use of an alternative plate motion chain

that connects Africa and the Pacific via East Antarctica,

Australia, and the Lord Howe Rise for times 46.3 Ma and

older (model 2, Figure 3a). Between the Lord Howe Rise

and the Pacific the 46.3 Ma rotation was adopted from

Sutherland [1995], and no motion was assumed prior to

46.3 Ma. For times 43.8 Ma and younger the plate motion

chain through East Antarctica and Marie Byrd Land is

maintained, and rotations are interpolated between 43.8

and 46.3 Ma. The two plate motion chains differ: for the

southwest Pacific plate motion chain, model 2 predicts

intra-Antarctic motion prior to 43.8 Ma, with extension in

the Ross Sea area, whereas model 1 does not involve move-

ments between East and West Antarctica before 43.8 Ma.

With the plate motion chain of model 2, Steinberger et al.

[2004] were able to achieve an acceptable fit to hot spot

tracks globally back to about 65 Ma. Prior to that a misfit

between predicted and observed Hawaiian track remains,

which can only be eliminated if further motions between the

Lord Howe Rise and the Pacific are introduced.

[39] With this plate motion chain an ‘‘absolute’’ African

plate motion is determined such that the fit to the Hawaiian,

Louisville, Reunion, and Tristan hot spot tracks is optimized

in a least squares sense: locations and ages of dated

samples, as compiled from various sources, are included

in this optimization. For the Reunion track, samples from

both the Indian and African plates were used, with sample

locations of the Reunion track on the Indian plate rotated

using India-Africa finite (Euler) rotations for their respec-

tive ages. For the Tristan track (Figure 11), only samples

from the African plate were used. For the Hawaiian and

Louisville tracks (Figures 11 and 12), sample locations were

rotated using Pacific-Africa finite (Euler) rotation parame-

ters for their respective ages. This means that, in essence,

the tracks are computed as if all four hot spots remained

located underneath the African plate all the time. For these

four tracks rotated onto the African plate, the best fitting

African plate motion is determined with a least squares

method as described by Steinberger [2000]. Parameters

used in the optimization include African plate rotation rates

and latitude-longitude pairs of stage rotation poles for three

time intervals (0–43.8, 43.8–61.2, and 61.2–83.5 Ma). For

each time interval a constant rotation rate is assumed. This

method requires that appropriate uncertainties in both space

and time are assigned to each data point. Uniform spatial

uncertainties of 50 km have been assigned to each data

point, whereas in terms of temporal uncertainty, published

age errors have been used for the Hawaii and Louisville

tracks. For the Tristan and Reunion tracks a uniform

temporal uncertainty of 0.5 Ma is assigned. Present hot

spot locations are entered assuming a 50 km spatial uncer-

tainty but zero time uncertainty. Each track is given equal

weight in the optimization. With these choices for the

uncertainties the resulting best fitting African plate motion

gives a better visual agreement between predicted and

observed tracks than when using published age errors.

[40] The African plate motion in the ‘‘global moving hot

spot’’ framework (Table 7), as determined here, differs from

that of Steinberger et al. [2004] because relative plate

motions are slightly different. Furthermore, optimized Af-

rican plate rotations are determined here for the three time

intervals mentioned above. These interval boundaries are

chosen to occur at those times when relative plate rotations

also change. The direction change at �60–62 Ma corre-

sponds to a change in the age progression along the Louis-

ville chain [Koppers et al., 2004]. The ‘‘fixed hot spot’’

tracks in Figure 12 show that without further smoothing the

inferred Pacific plate motions exhibit short-term fluctuations

that bear no apparent relation to actual plate motions,

because they do not correspond to features in the observed

hot spot tracks and would, at any rate, be difficult to explain

dynamically. We therefore introduce a few ‘‘ad hoc’’

changes in order to obtain a smoother, and hence likely

more realistic, Pacific plate motion history. First, we assign

the total rotation between Lord Howe Rise and Pacific plate

from Sutherland [1995] (latitude of 49.8�, longitude of

�1.6�, and angle of 49.0�) to 51.7 Ma instead of 46.3 Ma.

At 43.8 Ma the rotation (latitude of 50.1�, longitude of

�2.7�, and angle of 47.7�) is inferred through the South

Pacific plate motion chain, and for the interval between 43.8

and 51.7 Ma it is interpolated. We note that there is no

evidence for deformation between Lord Howe Rise and the

Pacific as early as 51.7 Ma; however, the required defor-

mation is quite small and presumably within error bounds

(R. Sutherland, personal communication, 2005) because the

two rotations above are quite similar. This change simplifies

Pacific plate motion around the time of the Hawaiian-

Emperor bend and removes a kink (shown in green in

Figure 12) in the Hawaiian track. Inferred Pacific plate

motion around the time of the bend (43.8–51.7 Ma) is quite

slow (�2.5–3 cm/a). (See Figure 11 (bottom); note that this

diagram shows mean plate speeds; the actual point speed

Figure 11. (top) Optimum match between predicted (blue, tic-marked lines) and observed hot spot tracks (seen as gravity
anomalies) allowing the establishment of a global moving hot spot reference frame. Tristan and Hawaii hot spot motion are
the same as given by Steinberger et al. [2004]. Tracks are computed with the ‘‘global hot spot’’ SAFR plate motions (Table 1)
and with smoothed PAC-SAFR relative plate motions as described in the text. Dated samples with ages (in Ma) are also
shown; data sources are given by Steinberger et al. [2004]. (bottom) Mean plate velocity for PAC (10 Ma bin histogram and
actual data, shown as a red curve, from Table 8) in the global moving hot spot frame after 83.5 Ma and the fixed hot spot
frame of Duncan and Clague [1985] before that. Plate speeds plotted upward/downward indicate northward/southward
plate motion, but total plate speed, not just north-south component, is shown. The actual plate kinematic model (APKIM) of
Drewes [1999] predicts a mean plate velocity of 6.9 ± 0.9 cm/a and compares well with estimated velocities for the Pacific
plate over the last 40 Ma.
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Figure 11
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around the bend is as low as 1.7 cm/a between 50 and

45 Ma.) Second, from among the Lord Howe Rise versus

Australian rotations for magnetic anomalies 24o (o indicates

older end of the anomaly, 53.3 Ma) through 33y (y indicates

younger end of the anomaly, 73.6 Ma) we only use anomaly

27o (61.2 Ma) and 30y (65.5 Ma). These rotation poles are

at intermediate locations and for times when the spreading

direction appears to have changed from rotating clockwise

to counterclockwise and back to clockwise. This change

leads to a considerably smoother and more realistic Hawai-

ian track in Figure 12 (violet versus red or white versus

orange). Short-term changes in Tasman Sea spreading may

hence be related to deformation within continental crust

bounding the Tasman Sea (especially in New Zealand) and

not to short-term changes of Australian or Pacific plate

motion. Third, we exclude the southern Africa versus East

Figure 12. Predicted tracks for the Hawaii and Louisville hot spots. In contrast to Figure 11, hot spots
are held fixed here in order to separate the effect of Pacific plate motion over time on computed tracks.
South Africa plate motions are the same as in Figure 11. Tic marks are placed every 1 Ma. White lines are
computed with the smoothed relative plate rotations as in Figure 11. For the green lines the transition
between two plate motion chains has not been smoothed. For the red lines the East Antarctica versus
South Africa and Australia versus Lord Howe Rise rotations have not been smoothed. For the orange
line, only the East Antarctica versus South Africa rotation has been smoothed. For the violet line, only the
Australia versus Lord Howe Rise rotation has been smoothed.

RG3004 Torsvik et al.: PLATE MOTION FRAMES

30 of 44

RG3004



Antarctica rotation at the time of anomaly 28 (63.1 Ma),

which was published by Bernard et al. [2005]. This rotation

is quite different from the rotations before and after and also

differs from that of Royer et al. [1988]. At the location of

Hawaii the omission of this 63.1 Ma rotation does not

change Pacific plate motion by much, but it removes a kink

(white versus violet track in Figure 12) in the Louisville

track. Figure 11 shows the ‘‘moving hot spot’’ Tristan and

Hawaiian tracks for the smoothed model (white tracks in

Figure 12). Back to about 75 Ma, the difference between

predicted and observed Hawaii-Emperor hot spot tracks is

now less than about 300 km (Figure 11) and thus is

probably less than uncertainties arising from the oceanic

part of the plate motion chain [e.g., Cande et al., 1995]. In

the model without smoothing, larger misfits occur before

�65 Ma. We also note that with southward motion of the

Hawaiian hot spot between about 75 and 50 Ma of a few

degrees more than modeled here, the entire Emperor chain

could be fit in terms of geometry, ages, and paleolatitudes

[Tarduno et al., 2003]. However, a more detailed analysis

and justification of the plate motion chain modifications will

be required before fully endorsing this smoothed model.

[41] Steinberger et al. [2004] were concerned with the

past 83.5 Ma, and they made no attempt to determine a

reference frame that considered hot spot motion before

chron 34, primarily because the Hawaii-Emperor track does

not extend further back in time but also because the

uncertainties are much larger for older times. Here, we

extend the reference frame to times before 83.5 Ma, using

rotation rates relative to hot spots that are assumed fixed. The

extension is done separately for the Pacific [Duncan and

Clague, 1985] and Africa (section 4). The predicted plate

velocity for southern Africa in this frame is quite similar to

that in the African moving hot spot framework [O’Neill et al.,

2005] until �40 Ma; for 60–83.5 Ma it is similar to the

velocity in the African fixed hot spot frame, and prior to

83.5 Ma it is by construction identical (Figure 10b).

6. COMPARISON OF RECONSTRUCTION FRAMES

[42] The largest differences between the revised African

fixed hot spot, the African moving hot spot, and the global

moving hot spot reference frames are seen in the Tertiary

portions of the Euler pole ‘‘paths’’ (Figure 10). However,

error ellipses calculated from the O’Neill et al. [2005] model

demonstrate that the majority of the computed Euler poles are

not statistically different at the 95% confidence level.

[43] In order to compare hot spot and paleomagnetic

frames the most common approach is to rotate the mean

paleomagnetic poles using the hot spot reconstruction

parameters. This is commonly referred to as plotting paleo-

magnetic poles in a hot spot frame [see Torsvik et al., 2002].

In the absence of errors in the rotation parameters, TPW, or

other complexities all paleomagnetic poles should plot at

90�N in the hot spot frame. Here, we use a novel approach

and compare uncertainty ellipses computed by Hellinger’s

method (centered at 90�N, with blue ovals in Figure 13) for

the African moving hot spot frame, with errors of the mean

paleomagnetic poles (A95, pink circles in Figure 13). Al-

though there are marked differences between the rotated

global mean paleomagnetic poles and the rotation axis for

the Early Cretaceous (>100 Ma), it is evident that for

Tertiary times (with only one exception at �50 Ma) one

cannot argue for systematic and statistically significant

differences; the average great circle distance is only 3.7� ±
1.6� (Figure 13b). At 100 Ma, great circle distance is still

only 3�, whereas the two data sets are significantly different

at 120 Ma (there are no Hellinger error ellipses for 110 and

130 Ma).

[44] Compared with the African fixed hot spot frame, the

African moving hot spot frame is an important improvement

because it significantly reduces the difference between the

global mean paleomagnetic poles and the rotation axis for the

Early Cretaceous (compare red and black lines in Figure 13b,

showing a reduction of the great circle distance at 120 Ma

from �17� to �10.5�), although this remains a statistically

significant difference at the 95% confidence level. We note,

though, that there are substantial uncertainties in modeled

mantle flow and hot spot motion this far back in time, and

these uncertainties are not included in the assessment of

significance. This is important and has implications for

some recent and passionate debates concerning Cretaceous

TPW [Prévot et al., 2000; Tarduno and Smirnov, 2001,

2002; Camps et al., 2002; Torsvik et al., 2002].

[45] Given plate rotations and boundaries, it is also

possible to compute mean lithospheric rotations in different

reference frames. For example, combining our global mov-

ing hot spot reference frame with NUVEL [DeMets et al.,

1990] plate boundaries, we find for the past 5 Ma an

average of 0.165�/Ma around an axis 40�S, 38�E. Such a

net rotation of the lithosphere relative to the deeper mantle

can result from lateral viscosity variations [Ricard et al.,

1991; O’Connell et al., 1991]. We regard this net rotation

mainly to be a consequence of the large size of the Pacific

plate. The Pacific plate is subducting in the west and north

and has ridges in the east and, as an entirely oceanic plate, is

presumably underlain by a low-viscosity asthenosphere.

This qualitatively explains its direction and relatively fast

speed of motion (Figure 12). Because of its large size the

Pacific plate dominates the mean lithospheric rotation.

Hence the axis of mean lithospheric rotation that we find

TABLE 7. Euler Rotations for South Africa in the Global

Moving Hot Spot Frame Using Plate Chain Model 2a

Age (Ma) Euler Latitude Euler Longitude Euler Angle (deg)

43.8 29.42 332.50 �9.87
61.2 36.80 338.26 �12.08
83.5 25.37 324.12 �17.66
89.9 25.28 322.53 �19.42
100.5 24.04 322.77 �21.43
111.1 22.18 324.78 �22.77
120.4 23.20 324.52 �23.47
130.7 20.51 326.82 �24.58
aSee Figure 2. Euler poles older than 83.5 Ma are simple added poles

using the African fixed hot spot frame (Table 5). Note that this global frame
is smoothed (see relative poles not used from Table 1).
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is similar to the axis of Pacific plate rotation (Table 8). More

quantitatively, Becker [2006] finds predicted mean litho-

spheric rotation for a number of geodynamic models to be

similar to our result both in direction and magnitude. Since

its rotation pole is in the Southern Hemisphere, this net

rotation contains a ‘‘westward drift’’ component. As this

westward drift is mainly caused by motion of the Pacific

plate, it does not imply westward motion of other plates,

such as the African plate. Other authors [e.g., Doglioni et

al., 2005] have proposed different reference frames and

obtain much higher values of westward drift.

7. TOWARD A HYBRID REFERENCE FRAME

[46] Hot spot frames are arguably not very robust prior to

100 Ma, but at 100 Ma the African moving hot spot frame

accommodates the global mean paleomagnetic pole location

Figure 13
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pretty well, so that the position of Africa in Figure 14 is

very similar in the moving hot spot frames and in the global

paleomagnetic frame; only the fixed hot spot frame produ-

ces a different position of Africa. Since it is permissible in

paleomagnetic reconstructions to adjust the longitude, we

correct for a 5� longitude offset observed at 100 Ma

between the African moving hot spot (blue in Figure 14a)

and the global paleomagnetic reference frames. In this way

we produce the first global hybrid reference frame where we

combine the paleomagnetic frame for 320–110 Ma with the

moving hot spot frame for �100 Ma (Table 6).

[47] Predicted mean plate speeds for southern Africa

based on this hybrid model average to 3.5 ± 1.5 cm/a

(Figure 15b), compatible with ‘‘normal’’ plate tectonic

speeds, but there is a velocity spike when the two reference

frames are merged (6.7 cm/a at 105 ± 5 Ma). This mid-

Cretaceous velocity peak is not an artifact of frame change

since the peak is seen independently in the paleomagnetic

frame (Figure 10b) and predicted by maximum APW at this

time (section 3 and Figure 5e). A change in velocity but

with different magnitude (�6–13 cm/a) is found for all

continental plates at this time. For Africa this event is

related to a strong counterclockwise rotation (Figure 15c)

with a rotation pole near the equator (Figure 16) that could

be interpreted as TPW at 100–110 Ma. This issue has been

addressed by Steinberger and Torsvik [2008] who further

developed the reference frames of this paper by considering

TPW.

[48] One other significant issue emerges from our con-

sideration of the paleomagnetic data rotated into the hybrid

moving hot spot framework: the well-known Cretaceous

stillstand in Laurentia’s APW path (Figure 8b). We argue

that this pattern represents pure east-to-west drift of the

continent. Note that the North American plate motion

history is very different in the hybrid model from the fixed

hot spot model. The latter predicts northward drift during

the Cretaceous, with a major bend at 80 Ma [see also

Torsvik et al., 2001a]. In contrast, the hybrid moving hot

spot model predicts a strong component of westward drift.

The sharp change in ‘‘absolute’’ motion at �50 Ma for both

North America and Europe (Figure 17) is linked to the

opening of the NE Atlantic.

8. HYBRID FRAME: EXAMPLES

8.1. Linking Plate Motions to the Deep Earth

[49] An ‘‘absolute’’ plate motion reference frame is

essential in order to explore potential links between plate

tectonics and processes operating in the deep Earth. Volca-

nism unrelated to plate boundaries or rifts has been widely

attributed to mantle plumes from the deep mantle. Torsvik et

al. [2006] explored the spatial relation between large

igneous provinces and the deep mantle by comparing large

igneous provinces (LIPs) at eruption time with shear wave

Figure 13. (a) Comparison of the African moving hot spot (with blue error ovals, centered on the rotation axis) and mean
paleomagnetic north poles (‘‘global PM’’ with pink A95) rotated using the Euler poles from the African moving hot spot
frame. Thus, deviation from +90� latitude (i.e., the rotation axis) can reflect errors in the hot spot frame and its rotation
parameters, erroneous paleomagnetic poles, or true polar wander. For the Tertiary and Late Cretaceous (�100 Ma), only the
50 Ma pole is significantly different from the moving hot spot frame at 95% confidence; for all other times the blue ovals
and pink error circles (A95) overlap. For the Early Cretaceous the 120 Ma pole and probably also the 110 and 130 Ma poles
(which have no error ovals in the moving hot spot frame) are significantly different. Black squares denote times where there
are corresponding errors in the hot spot frame; open squares denote where they are absent. (b) Differences (expressed as the
great circle distance (GCD) in degrees) between the rotated paleomagnetic poles (as in Figure 13a) and the different fixed or
moving hot spot frames. Shaded yellow outline represents the uncertainty in the paleomagnetic mean poles (A95) when
compared with the African moving hot spot framework. Grey circles are for interpolated or extrapolated Euler poles. The
global moving hotpot frame is only shown for times after 83.5 Ma because the older part is based on the African fixed hot
spot frame. For comparison we also show a previous African moving hot spot frame of Steinberger [2000] (mantle model 2,
dashed black line). The latter frame is applicable only after 68 Ma.

TABLE 8. Euler Rotations for the Pacific in the Global Moving

Hot Spot Framea

Age (Ma) Euler Latitude Euler Longitude Euler Angle (deg)

0.8 63.99 278.79 0.62
2.6 67.06 284.52 2.24
5.9 68.07 279.70 5.03
8.9 67.57 270.79 7.30
9.9 67.57 268.72 8.07
12.3 69.54 269.06 9.95
17.4 72.94 269.96 14.33
20.2 73.75 268.91 15.69
24.1 73.80 269.60 17.69
26.6 73.53 270.12 19.61
28.3 73.11 271.68 20.89
33.2 72.28 277.44 24.77
33.5 72.23 278.04 25.02
40.1 71.85 294.31 30.14
42.5 71.55 297.19 31.77
43.8 71.17 297.46 32.38
51.7 68.98 295.61 32.88
53.3 67.79 293.53 33.28
61.2 62.23 287.34 35.39
65.6 61.17 286.45 36.64
71.1 59.74 285.78 37.77
73.6 58.19 286.27 38.39
75.5 57.04 286.60 38.88
76.3 56.46 286.76 39.07
79.0 55.13 288.92 40.33
83.5 54.29 293.73 42.39
100.0 51.65 289.54 51.46
150.0 64.18 299.96 71.13
aWe use plate chain model 2; see text and Figure 3a. Euler poles older

than 83.5 Ma use pre–83.5 Ma stage rotations from the fixed hot spot
frame of Duncan and Clague [1985]. This frame is also smoothed (see
relative poles not used from Table 1). Note that Tables 7 and 8 are only
global up to 83.5 Ma; before that, Africa and the Pacific are treated
separately and not related through any of the relative rotations listed in
Tables 1 and 2.
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anomalies near the core-mantle boundary. Testing all refer-

ence frames developed in this study, Torsvik et al. [2006]

showed that practically all LIPs erupted at the Earth’s

surface for the past 200 Ma lay over the margins of the

African or the Pacific large low-shear-velocity provinces

[Garnero et al., 2007] at the core-mantle boundary. In

Figure 18 we reconstruct 17 LIPs in the Indo-Atlantic realm

using our new hybrid frame and extending the analysis to

the last 300 Ma. In situ locations of approximated LIP

centers (small annotated circles with gray or light blue

background colors) are scattered and show no obvious link

to the African large low-velocity provinces (LLSVPs).

Conversely, correcting for plate motion since eruption time

(large annotated circles with white or blue background

colors) demonstrates a strong spatial link between LIP

surface eruption locations and the deep mantle; that is, all

LIPs in the Indo-Atlantic realm (except the North Atlantic

Igneous Province, GI in Figure 18) project radially down-

ward onto or close to the margin of the African LLSVP.

[50] Eruption locations vertically above the edge of one

or other of the Earth’s two LLSVPs at the core-mantle

boundary characterize nearly all the LIPs erupted since 300

Ma [Burke and Torsvik, 2004; Torsvik et al., 2006, 2008],

and for that reason it can be argued that LIPs are derived

from deep mantle plumes. The hybrid plate reference frame

used to reconstruct LIPs in Figure 18 is based on the

African moving hot spot (0–100 Ma) and the paleomag-

netic (>100 Ma) frame. The paleomagnetic frame is based

on keeping the African plate fixed in longitude before 100Ma

but adjusted 5� in longitude. Despite the ‘‘zero’’ Africa

assumption (sections 3.1 and 9), paleomagnetically recon-

structed LIPs show a close correspondence with today’s

deep mantle shear wave tomography. However, longitude is

strictly not known, and all LIPs older than 100 Ma can

therefore theoretically be adjusted in an E–W sense and with

different magnitudes since LIPs have different ages.

8.2. Pangea

[51] An important growth phase occurred for Pangea

during the Late Carboniferous when Laurussia, Gondwana,

and intervening terranes collided. Although some continen-

tal elements were probably still adjusting their positions

along the Pangea perimeter, Pangea had essentially accom-

plished its ‘‘all-Earth’’ mission by Early Permian time.

However, the China blocks were still only loosely connected

with Pangea within the Paleo-Tethys Ocean [Torsvik, 2003;

Torsvik and Cocks, 2004]. Our 250 Ma Pangea reconstruc-

tion is shown overlaying the present-day shear wave veloc-

ity anomalies near the core-mantle boundary in Figure 19,

assuming that lower mantle heterogeneities have remained

stationary for hundreds of millions of years [Burke and

Torsvik, 2004; Torsvik et al., 2006] (see section 8.1). Our

global hybrid model predicts that the bulk of Pangea was

centered above the present-day African low-velocity region

and that the peri-Pangea subduction rim was essentially

located above high-velocity zones, feeding the subduction

graveyards in the deepest mantle [Richards and Engebretson,

1992].

[52] Africa was at the heart of Pangea, and two clear 90�
kinks (near cusps at 220 and 190 Ma) in the southern

African APW path (Figure 15a) may relate to changes in the

balance of plate motion forces that are representative of

Pangea breakup. A third cusp-like feature (at �250 Ma, see

Figure 15a (labeled T1 in Figure 15b)) should be considered

with some care since there is a major discordance between

Laurussian and Gondwana poles of this age (Figure 6b);

moreover, increased smoothing treatments of the APW path

diminish the impact of this feature (Figures 5c and 5d).

Figure 14. (a) Reconstruction of Africa at 100 Ma using
all four reference frames discussed in the text. The
continent’s positions show longitude offsets from the global
paleomagnetic framework, varying from 5� (African mov-
ing hot spot) to 9� (African fixed hot spot). African fixed
hot spot predicts significantly more southerly latitudes for
Africa than all other frames. (b) Cumulative eastward
component of motion for Africa since 100 Ma as predicted
from the African moving hot spot (black line), African fixed
hot spot (green line), and global moving hot spot (blue line)
reference frames. Mean motion is computed from a 1� � 1�
grid for the continental area of Africa.
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[53] Considerable counterclockwise rotation of Pangea

and terrane displacements in the Tethys occur during the

Permo-Triassic. An additional, unresolved question is

whether Siberia was fully joined to Pangea before the

eruption of the Siberian Traps (�251 Ma). The Neo-Tethys

probably began opening at �265 Ma [Stampfli and Borel,

2002] and was well developed as a young oceanic basin by

250 Ma (black area in Figure 19), while Paleo-Tethyan

oceanic crust was being subducted beneath Eurasia. All

other subduction zones inferred for the Permo-Triassic have

Panthalassa’s oceanic lithosphere plunging down under

Pangea’s perimeter. In other words, no subducting slabs

are known to have been attached to Pangea’s continental

lithosphere with outward directed plunges.

[54] It is possible and natural to link the 220 and 190

APW kinks (Figure 15a) to the destruction of much of the

Paleo-Tethys and the transition from rift to drift in the

central Atlantic (Pangea breakup). Paleo-Tethys had essen-

tially vanished by the Early Norian (�220 Ma) [Stampfli

and Borel, 2002] as a result of the collisions of many peri-

Gondwana terranes, collectively called Cimmeria [Şengör

and Natal’in, 1996], with Eurasia. The Early Jurassic

Figure 15. (a) Global paleomagnetic apparent polar wander path, calculated with the running mean
method, for southern Africa as in Figure 5a (last 300 Ma) but with fitted small circle segments. Note that
in our hybrid model the 100 Ma and younger segment of the running mean path (A95 shown in blue) has
been replaced with the African moving hot spot frame. (b) Mean plate velocity for southern Africa
(averaged over 10 Ma windows) separated into times of net northward and southward drift and based on
the hybrid model. However, total plate speed, not just north-south component, is shown. (c) Angular
rotation for a point location (10�S, 25�E) in southern Africa based on the hybrid frame. Note that the
velocity peak between 100 and 110 Ma is caused by a peak in the rotation history of southern Africa. In
Figures 15b and 15c, kink or cusp intersections are labeled T1, T2, J1, J2, C, and T, and these are shown
as white arrows in Figure 15a.
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witnessed the assembly of the Asian part of Pangea but

simultaneously saw the breakup of Pangea in the central

Atlantic; both of these events reflect changes in plate motion

forces that are likely candidates to explain the 190 Ma cusp.

[55] Cause and effect can be enigmatic, and APW tracks,

separated by cusps or kinks, can also be the result of TPW,

best represented by a rotation around an equatorial axis

close to a supercontinental center of mass [Steinberger and

Torsvik, 2008]. For the late Paleozoic–early Mesozoic

during which Pangea was a supercontinental entity drifting

as a whole with respect to the rotation axis, TPW has been

speculatively proposed by Marcano et al. [1999]. The white

arrows in Figure 19 illustrate the generalized velocity field

that remained in effect for much of the counterclockwise

rotation episode of about 0.4�/Ma that lasted until the latest

Triassic. In order to establish TPW with any certainty one

needs the velocity field for oceans as well as continents, and

in the Permo-Triassic this is obviously not possible because

the plate configurations inside the Panthalassa ocean clear-

ly remain unknown. However,Marcano et al. [1999] argued

that if the Panthalassa hemisphere participated in the same

rotation shown by the Pangea hemisphere, no evidence for

significant convergence between Panthalassa and Pangea at

the latter’s leading edge should exist. Examining the re-

gional geology along the Siberian-Baltic-Laurentian Arctic

margins, they found that evidence for convergence in the

295–205 Ma interval was rather scant and therefore con-

cluded that slow TPW (� 4 cm/a) for this interval could not

be ruled out.

9. CONCLUSIONS AND FUTURE CHALLENGES

[56] On the basis of revised plate motion chains we have

recomputed and compared four different plate reference

frames for Africa (paleomagnetic, African fixed hot spot,

African moving hot spot, and global moving hot spot). We

find that the African moving hot spot frame compares most

favorably with the global paleomagnetic frame; considering

the uncertainties in both reference frames, they are essen-

tially identical for the last 100 Ma. For older times the

moving hot spot frame is uncertain because simple back-

ward advection is increasingly inappropriate for reconstruct-

ing past mantle density anomalies. Given the magnitude of

the error limits in both mantle and paleomagnetic reference

frames, it is premature to conclude true polar wander from their

differences except for the Early Cretaceous (130–110 Ma).

With respect to the African moving hot spot frame the mean

paleomagnetic poles for 110–130 Ma show a discrepancy

of approximately 10�. Mantle models are arguably not very

robust before 100 Ma, but 10� is a considerable reduction

when compared to the use of the African fixed hot spot

frame where the discrepancy is �18�. The fixed hot spot

frame should no longer be used.

[57] The African moving hot spot frame is modeled back

to 130 Ma. The ‘‘global’’ moving hot spot frame (incorpo-

rating the Pacific realm) is valid only back to 83.5 Ma; prior

to this time it is extended by using rotation relative to

assumed fixed hot spots. Our smoothed global moving hot

spot frame produces a more realistic Pacific plate motion

history, in which the difference between predicted and

observed Hawaiian hot spot tracks is probably less than

uncertainties arising from the plate motion chain for the last

75 Ma. Since the African moving hot spot and global

paleomagnetic frames are exclusively based on data from

the Indo-Atlantic realm, we decided to merge these two

frames in our hybrid model.

Figure 16. ‘‘Absolute’’ reconstructions of Africa and
South America at 100 and 110 Ma with time-averaged
velocity fields 95–105 and 105–115 Ma, respectively, as
calculated from the hybrid model. Africa/South America are
rotating counterclockwise around a pole located near the
equator (at the intra-African triple junction), which could be
linked to a short period of TPW. The rotation is associated
with opening of the South Atlantic. Full oceanic separation
between South America and Africa was achieved at 100 Ma.
During this time interval (100–110 Ma), North America and
Europe had a strong component of westward drift, whereas,
for example, East Antarctica and Australia were dominated
by eastward drift. Abbreviations are as in Figure 3. Revised
South Atlantic continent-ocean boundaries (COBs) have
been taken from Torsvik et al. [2004]. Other features are
after Müller et al. [1997].
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[58] We have constructed the first hybrid ‘‘absolute’’

reference frame model for the last 320 Ma: we use the

African moving hot spot frame for the last 100 Ma and then

the global paleomagnetic frame adjusted 5� in longitude to

smooth the frame transition. All hot spot–based ‘‘absolute’’

plate motion models (Figure 14) result in minimal longitu-

dinal motion of Africa (compared to most other plates),

thus confirming the lack of significant longitudinal motion

inferred from consideration of plate driving forces

(section 3.1). It is less certain whether the ‘‘zero-longitudi-

nal motion’’ approximation for Africa, corrected for the

longitudinal motion of Africa during the past 100 Ma

(Figure 14), holds before Pangea broke up. On the one

hand, Forsyth and Uyeda [1975] showed that plates move

faster when there are subducted slabs attached and that the

larger the continental area on a plate is, the slower it tends to

move.With little or no subducting slabs attached (section 8.2)

and a very large continental area, Pangea is expected to have

moved slowly. On the other hand, average N–S velocities

derived from our global paleomagnetic path are as high as

3.6 ± 2.1 cm/a (320–180Ma) for a central Pangea location in

NW Africa. Nevertheless, in the absence of arguments for

better reference points, we regard zero longitudinal average

motion of Pangea as the best possible assumption.

[59] The hybrid model is a step forward to quantifying

plate kinematics and the time-dependent plate velocity field

and is essential for providing surface boundary constraints

for mantle convection models and testing the relationship

between surface magmatism and deep Earth processes, with

the caveat that motions based on the paleomagnetic frame

may also contain contributions due to TPW [Steinberger

and Torsvik, 2008]. Both the fact that plumes only seem to

arise from the edges of the large low-shear-velocity prov-

inces (LLSVPs) and that these LLSVPs appear not to have

moved by much over the past 300 Ma (section 8.1) provide

a challenge to be explained in future mantle dynamic

models. At face value the mantle flow models used to

compute advection of plumes would also predict changes

of LLSVPs with time. Just as the observational limits of

relative hot spot motion provide a constraint on the speed of

mantle flow and hence on mantle viscosity, the observa-

tional limits on LLSVP motion and deformation will also

allow us to gain information regarding their rheology.

[60] Our hybrid reference system is yet to be tested using

forward mantle convection models, which ‘‘stir’’ the mantle

Figure 17. Examples of the drift history for selected locations in North America (NAM) (50�N, 300�E)
and Europe (EUR) (60�N, 10�E) for the last 190 Ma. Our hybrid model (thick black lines with circles) is
in one case compared with the revised African fixed hot spot model for NAM (thin lines with squares).

Figure 18. In situ (small annotated circles with gray and
light blue background) and reconstructed Indo-Atlantic LIP
eruption sites (large annotated circles) draped on the
SMEAN shear wave velocity anomaly model for 2800 km
(red is slow; blue is fast) [Becker and Boschi, 2002].
Reconstructions are based on the hybrid reference frame
that is based on the African moving hot spot (large blue
circles) and the paleomagnetic reference frame adjusted 5�
in longitude (large white circles). LIP abbreviations (with
mean eruption ages in Ma) are AF, Afar flood basalt (31);
GI, Greenland/Iceland (54); DT, Deccan Traps (65); SL,
Sierra Leone Rise (73); MM, Madagascar/Marion (84); BR,
Broken Ridge (95); WA, Wallaby Plateau (96); CK, central
Kerguelen (100); SK, south Kerguelen (114); RT, Rajhmahal
Traps (118); MR, Maud Rise (125); PE, Parana-Etendeka
(132); BU, Bunbury Basalts (132); KR,KarrooBasalts (182);
CP, Central Atlantic Magmatic Province (200); and SC,
Skagerrak Centered LIP (297). See Torsvik et al. [2006,
2008] for details. There is a strong tendency for LIP eruption
sites to overlie the margin of the Africa low-velocity region
near the �1% slow contour (thick red line).
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by prescribing the global plate subduction history as a

surface boundary condition. An accurate absolute plate

motion model in a mantle reference system would result

in an accumulation of subducted slab material in the mantle

through geological time that is in agreement with global

seismic tomography images. An absolute reference frame in

agreement with subducted slabs may be termed a ‘‘subduc-

tion absolute reference frame.’’ Such a reference system,

based on using subducted slab locations from seismic

tomography as an additional plate kinematic model con-

straint, could be the next step toward developing a unified

plate motion/mantle convection model through time. A

unified geodynamic/plate tectonic modeling approach

would enable the mapping of mantle-driven surface topog-

raphy (dynamic topography) in space and time and ulti-

mately provide fundamental insights into the driving forces

of plate tectonics.

GLOSSARY

Apparent polar wander (APW): Apparent motion of the

Earth’s spin axis (pole) relative to a plate. It represents a

convenient way of summarizing paleomagnetic data for a

continent instead of producing paleogeographic maps at each

geological period. The three most common methods for

generating APW paths are running mean, spherical splines,

and the small circle method.

Avalonia: Paleozoic terrane that included the eastern

North America seaboard from Newfoundland to as far south

as Cape Cod, Massachusetts. In Europe it included southern

Ireland, Wales, England, Belgium, the Netherlands, and

parts of northern Germany. It rifted off the NW margin of

Figure 19. The 250 Ma reconstruction (hybrid model, Table 6) in which the continental outlines are
superposed on shear wave velocity anomalies (as in Figure 18) near the core-mantle boundary, assuming
that these heterogeneities have remained more or less in the same place for the last 300 Ma [Burke and
Torsvik, 2004; Torsvik et al., 2006, 2008]. Large white arrows show a generalized velocity vortex,
averaged between 245 and 255 Ma, in which Pangea is seen rotating counterclockwise around a pole near
the equator in NWAfrica. At this time the Neo-Tethys had opened (black areas), and many former peri-
Gondwana terranes had separated from the Gondwana margin (e.g., Apulia, the Taurides, the Middle
Eastern Terranes, and the Tibetan Qiangtang Terrane). Paleo-Tethyan oceanic lithosphere is being
subducted beneath Eurasia, whereas Mongol-Okhotsk oceanic lithosphere is subducting underneath
Siberia. We show the Kazakh (K) and Tarim (T) terranes as part of Pangea, whereas Indochina (A), north
China (NC) (mean pole 50.4�N, 358.1�E; N = 12 poles; and A95 = 5.4�), and south China (SC) (mean
pole 50.3�N, 226.7�E; N = 28 poles; and A95 = 4.8�) (calculated from data referenced by Torsvik and
Cocks [2004]) are located in subtropical to equatorial latitudes in the eastern Paleo-Tethys. The Siberian
Traps are labeled ST in Siberia, but at 250 Ma Siberia was probably not yet fully attached to Baltica and
Kazakhstan (see the gaps between Siberia and Kazakh).
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Gondwana in the Early Ordovician and collided with

Baltica in Late Ordovician times.

Baltica: Old cratonic terrane that occupied much of

northern Europe (including most of Scandinavia) eastward

to the Urals. It was an independent terrane in the early

Paleozoic and collided with Avalonia in the Late Ordovician

and subsequently with Laurentia during Silurian times (i.e.,

the Caledonian orogeny).

Breakup: Final separation along a preexistent line of

weakness between two (or three) tectonic plates due to

horizontal extensional forces and/or mantle vertical im-

pingement. If this process is successful, it will lead to sea

floor spreading.

Cenozoic: Most recent of the three classic Phanerozoic

geological eras (circa 65 Ma to recent) and divided into two

periods (Paleogene and Neogene). Most of the Cenozoic

(until �1.8 Ma) is also known as Tertiary.

Cimmeria: Continental elements found today in Turkey,

Iran, Afghanistan, Tibet, and Indochina, which drifted

northward from Gondwana’s northern margin toward

Eurasia in the early Mesozoic.

Continent-ocean boundary (COB): Boundary between

continental (often variably stretched) and oceanic crust and

most commonly established from gravity gradients, mag-

netic anomaly patterns, and seismic studies. In reality, the

boundary is better described as a continent-ocean transition

zone between true continental and true oceanic crust,

usually some tens of kilometers wide. Establishing the

location of the COB is critical to plate reconstruction–

derived estimates of predrift extension.

Core-mantle boundary: Boundary between the Earth’s

solid silicate mantle and liquid iron-nickel outer core at

approximately 2900 km depth. The boundary is observed as

a first-order discontinuity in seismic wave velocities.

Dynamic topography: Topography due to density

anomalies in the Earth mantle and the slow solid-state

convective flow driven by those density anomalies. On a

large scale (wavelengths longer than about 1000 km) it is

approximately equal to residual topography, defined as

actual topography minus isostatic topography (derived from

a model of crustal and lithospheric layer thicknesses and

densities) minus thermal topography (based on a model of

ocean floor ages and an age-depth relationship). Residual

topography is considerably uncertain because of errors in

both isostatic and thermal topography.

Euler pole: Point on a sphere (defined by geographical

coordinates, latitude, and longitude) that is associated (as

‘‘pivot’’) with the relative motion between two tectonic

plates or the absolute motion of a plate in a specified

reference frame. If an angle is also defined, then the Euler

pole is called Euler rotation and uniquely describes the

relative motion between two tectonic plates or the absolute

motion of a plate for a certain time period. If only one time

is specified, it means the rotation of the plate back from its

present position to the position at that time. For an interval

between two times (usually both in the past) the Euler pole/

rotation is also referred to as stage pole/rotation.

Eurasia: One of the Earth’s largest tectonic plates. It

includes Europe and most of Asia and was established as a

separate plate after the opening of the North Atlantic in the

early Cenozoic.

Fixed hot spot frame: Reference frame for absolute plate

motions. These are calculated based on geometry and ages

of hot spot tracks assuming hot spots are fixed.

Geocentric axial dipole (GAD):Magnetic (dipole) axis,

today inclined from the geographic (rotation) axis by

approximately 11.5�. The magnetic axis, however, is slowly

gyrating/wobbling around the geographic axis (known as

secular variation), and over a period of a few thousand years

it is hypothesized that the averaged magnetic poles

correspond reasonably with the geographic poles. This is

known as the GAD hypothesis, and we can therefore imagine

that a magnetic dipole is placed at the center of the Earth and

aligned with the Earth’s rotation axis. Nondipole (quadru-

pole, octupole, etc.) fields may exist at a given time as short-

lived higher-order complexities of the field but are assumed

to average to zero over the long term in the GAD hypothesis.

Global paleomagnetic path: Apparent polar wander

paths from many continents rotated through plate motion

chains to one common reference plate and combined into a

global paleomagnetic path.

Gondwana: Early Paleozoic vast superterrane that

formed at circa 550 Ma stretching from the South Pole to

the equator and beyond and including most of South

America, Africa, Madagascar, India, Arabia, East Antarc-

tica, and Australia. It collided with Laurussia to form

Pangea near the end of the Carboniferous (circa 320 Ma).

Hot spots: Volcanic provinces other than those of plate

boundary zones and those formed by pressure relief melting

in intracontinental rifts. They are widely believed to be

caused by mantle plumes.

Hot spot tracks: Chains of (largely extinct) volcanoes

related to hot spots, believed to be caused as a plate moves

over a mantle plume. Characteristic features include (1) age

of volcanic rocks increasing from one end to the other,

(2) active volcanism at a hot spot on the young end, (3) the

manifestation of a large igneous province at the old end, and

(4) topographic elevation. Not all these features may be

present or recognizable.

Hybrid reference frame: Reference frame for absolute

plate motions that is a combination of different reference

frames for different time periods. In particular, the hybrid

reference frame developed here is based on a moving hot

spot reference frame for the past 100 Ma, for which hot spot

tracks exist, and before that, a reference frame derived from

the African apparent polar wander path, making the

assumptions that the pole is fixed, and Africa has not

moved in longitude.

Isochrons: Lines of constant age on the ocean floor.

They are usually determined from oceanic magnetic

anomalies and fracture zones, which form from transform

faults connecting spreading segments on mid-oceanic

ridges.

Large igneous provinces (LIPs): Surface expressions of

catastrophically rapid dissipation of large quantities of
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internal heat. They are overwhelmingly of basaltic affinity

representing partial melting of the mantle at shallow depths,

but whether any of the heat or material involved in the

generation of LIP rocks comes from the deep mantle via

mantle plumes has remained controversial.

Large low-shear-velocity provinces (LLSVP): Two

large regions at the base of the deep mantle (approximately

2800 km) with shear wave velocities approximately 1% to

several percent lower than average. They are recognized as

the most prominent features of all global shear wave

tomographic models. The well-defined African and Pacific

LLSVPs are almost antipodal (180� apart) and are isolated

within the faster parts of the deep mantle (subduction

graveyards).

Laurentia: Terrane that included most of North America

and, in Europe, Greenland, Bear Island, parts of Svalbard,

northwestern Ireland, and Scotland. It was an independent

entity in the early Paleozoic and collided with Avalonia-

Baltica during the Caledonian orogeny to form the much

larger terrane of Laurussia.

Laurussia: Superterrane that formed by the Caledonian

(Silurian) collision of Laurentia, Baltica, Avalonia, and

intervening terranes. It subsequently collided with Gond-

wana to form Pangea at the end of the Carboniferous and

with Siberia and Kazakhstan blocks in the Permian.

Mantle plumes: Narrow upwellings that originate at the

core-mantle boundary. Many hot spots, e.g., Hawaii in the

Pacific, have long been suggested to overlie mantle plumes.

Some lie at the ends of hot spot tracks that are linked to

large igneous provinces.

Mesozoic: Geological time interval (era) from 250 to

65 Ma between the Paleozoic and Cenozoic. It is divided

into three periods (Triassic, Jurassic, and Cretaceous).

Moving hot spot or mantle reference frame: Another
reference frame for absolute plate motions. They are

calculated on the basis of geometry and ages of hot spot

tracks, but instead of assuming fixed hot spots, motion of

hot spots in the mantle, e.g., computed with a geodynamic

model, is taken into account.

Octupole: One of several possible contributions to the

total magnetic field. Other contributions may be quad-

rupolar (i.e., having four poles) or dipolar (with two poles),

which is the presumed dominant contribution and the only

one considered in the geocentric axial dipole hypothesis.

Magnetic monopoles do not exist. If a zonal octupole field

is present throughout the acquisition of a rock’s magnetiza-

tion, the inclination of that rock’s magnetic record deviates

from that acquired in a pure dipole field and may lead to

erroneous paleolatitude calculations.

Paleolatitude: Latitude where a rock formed, computed

from the inclination of its magnetization. According to the

geocentric axial dipole hypothesis it corresponds to the

geographic latitude of the site at the time the rock formed.

Paleomagnetic Euler pole method: Movements of

continents, APW paths, and hot spot tracks describing

small circle paths if the Euler pole is kept constant. It is a

reasonable assumption that continents may drift around

constant Euler poles for some tens of millions of years, and

one can therefore fit segments along an APW path with

small circles.

Paleomagnetic pole: Pole calculated from declination,

inclination, and the geographic site location of the rock

sample. A time average will correspond with the geographic

North or South poles according to the geocentric axial

dipole hypothesis.

Paleomagnetism: Study of the Earth’s magnetic field

preserved in rocks.

Paleozoic: First of the three classic Phanerozoic

geological eras (circa 545–250 Ma), which is divided into

six periods (Cambrian, Ordovician, Silurian, Devonian,

Carboniferous, and Permian).

Pangea: Supercontinent (‘‘all land’’) formed near the end

of the Paleozoic, from Late Carboniferous (320 Ma) times

onward, by merging of Laurussia and Gondwana, joined

subsequently by Kazakhstania and Siberia in turn.

Panthalassa: Ocean surrounding Pangea.

Plate motion chains: Global connection between

relative plate motions. Since each tectonic plate is moving

relative to its neighboring plates, vectors of motion can be

combined with and transferred to the adjacent plate along a

plate motion chain; the chain can be closed to become a

‘‘circuit.’’ Plate circuit closure is the requirement that the

combined relative motion around a circuit is zero.

Predrift extension: Extension of the continents prior to

the onset of sea floor spreading, i.e., the formation of ocean

floor, between them as they move apart.

Q factor: An (imperfect) measure of the reliability of a

paleomagnetic result, determined by the number (out of a

total of seven) of criteria that are met.

Relative and absolute plate motions: Movement of

tectonic plates on a sphere relative to each other and to the

mantle underneath. If a rotation is defined relative to

another tectonic plate (i.e., ‘‘keeping’’ one plate fixed), then

this motion/rotation is called relative to plate X. If the

rotation is calculated relative to the mantle (or hot spot) or

spin axis, then this is defined as an ‘‘absolute’’ motion.

Ridge push forces: Forces acting on a plate because of

its higher elevation along a spreading ridge, similar to the

downhill force acting on a body on an inclined plane.

Siberia: Terrane that occupied a very substantial area in

the center of today’s political Siberia and also adjacent areas

of Mongolia, eastern Kazakhstan, and northwestern China.

For all of the Paleozoic, Siberia was inverted relative to its

present-day orientation. Today’s northwestern margin of

Siberia collided with Kazakhstania and intervening island

arcs during the Permo-Carboniferous, but the terrane was

not finally accreted to Laurussia to become part of Pangea

until the early Mesozoic.

Slab/subducted slab/subducting slab: Part of a plate

that has sunk into the mantle beneath another plate because

of convergence.

Stage pole: Euler pole for a rotation in the interval

between two times A and B. If both A and B are in the past, it

can be computed from the Euler rotations for times A and B.
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Tethys: Concept composed of three different oceanic

domains, called Paleo-, Meso-, and Neo-Tethys. Paleo-

Tethys was located between East Gondwana to the south

and northern Eurasia (Baltica, Siberia, the Kazakhstan

block, and Tarim) to the north. Meso-Tethys opened up

between northern Tibet (Qiangtang block) and southern

Tibet (Lhasa block) in the middle Mesozoic, although the

need for this name is not recognized by everyone. Neo-

Tethys opened between the Cimmerian blocks (elements in

Turkey, Iran, Afghanistan, Tibet, and Indochina) and East

Gondwana, as an early Mesozoic ocean that widened at the

expense of the shrinking Paleo-Tethys Ocean.

True polar wander (TPW): Rotation of the entire Earth

with respect to the spin axis.

Westward drift: Average motion of all lithospheric

plates in a westward direction. The amount of westward

drift varies strongly, depending on which reference frame

for absolute plate motions is chosen, between about 1 cm/a

and several centimeters per year.

[61] ACKNOWLEDGMENTS. Analysis and diagrams were

created with GMAP [Torsvik and Smethurst, 1999], GMT [Wessel

and Smith, 1998], and a prototype of GPlates specifically devel-

oped for our industrial sponsor (StatoilHydro). We thank the

Norwegian Research Council and NGU for financial support

(176531 GPlates, A Novel Exploration Tool). We thank R. Suther-

land for discussions, M. Beck for paleomagnetic Euler pole

algorithms, M. A. Smethurst for valuable statistical discussions,

and S. Buiter, M. Manga, and three anonymous referees for

detailed comments and suggestions to improve the manuscript.

[62] The Editor responsible for this paper was Michael Manga.

He thanks Norm H. Sleep, two anonymous technical reviewers,

and one cross-disciplinary reviewer.

REFERENCES

Beck, M. E., Jr., and B. A. Housen (2003), Absolute velocity of
North America during the Mesozoic from paleomagnetic data,
Tectonophysics, 377, 33–54, doi:10.1016/j.tecto.2003.08.018.

Becker, T. W. (2006), On the effect of temperature and strain-rate
dependent viscosity on global mantle flow, net rotation, and
plate-driving forces, Geophys. J. Int., 167, 943 – 957,
doi:10.1111/j.1365-246X.2006.03172.x.

Becker, T. W., and L. Boschi (2002), A comparison of tomographic
and geodynamic mantle models, Geochem. Geophys. Geosyst.,
3(1), 1003, doi:10.1029/2001GC000168.

Becker, T. W., V. Schulte-Pelkum, D. K. Blackman, J. B. Kellogg,
and R. J. O’Connell (2006), Mantle flow under the western
United States from shear wave splitting, Earth Planet. Sci. Lett.,
247, 235–251, doi:10.1016/j.epsl.2006.05.010.

Behn, M. D., C. P. Conrad, and P. G. Silver (2004), Detection of
upper mantle flow associated with the African superplume, Earth
Planet. Sci. Lett., 224, 259–274, doi:10.1016/j.epsl.2004.05.026.

Berggren, W. A., D. V. Kent, J. J. Flynn, and J. A. van Couvering
(1985), Cenozoic geochronology, Geol. Soc. Am. Bull., 96,
1407 – 1418, doi:10.1130/0016-7606(1985)96<1407:CG>
2.0.CO;2.

Bernard, A., M. Munschy, Y. Rotstein, and D. Sauter (2005), Re-
fined spreading history at the southwest Indian Ridge for the last
96 Ma, with the aid of satellite gravity data, Geophys. J. Int., 162,
765–778, doi:10.1111/j.1365-246X.2005.02672.x.

Besse, J., and V. Courtillot (2002), Apparent and true polar wander
and the geometry of the geomagnetic field over the last 200 Myr,
J. Geophys. Res., 107(B11), 2300, doi:10.1029/2000JB000050.

Bowring, S. A., D. H. Erwin, Y. G. Jin, M. W. Martin, K. Davidek,
and W. Wang (1998), U/Pb zircon geochronology and tempo of
the end-Permian mass extinction, Science, 280, 1039–1045,
doi:10.1126/science.280.5366.1039.

Bryan, P., and R. G. Gordon (1990), Rotation of the Colorado
Plateau: An updated analysis of paleomagnetic data, Geophys.
Res. Lett., 17, 1501–1504, doi:10.1029/GL017i010p01501.

Bullard, E. C., J. E. Everett, and A. G. Smith (1965), The fit of the
continents around the Atlantic, Philos. Trans. R. Soc. London,
Ser. A, 258, 41–51, doi:10.1098/rsta.1965.0020.

Bunge, H.-P., C. R. Hagelberg, and B. J. Travis (2003), Mantle
circulation models with variational data assimilation: Inferring
past mantle flow and structure from plate motion histories and
seismic tomography, Geophys. J. Int., 152 , 280 – 301,
doi:10.1046/j.1365-246X.2003.01823.x.

Burke, K., and T. H. Torsvik (2004), Derivation of large igneous
provinces of the past 200 million years from long-term hetero-
geneities in the deep mantle, Earth Planet. Sci. Lett., 227, 531–
538, doi:10.1016/j.epsl.2004.09.015.

Butler, R. F. (1992), Paleomagnetism: Magnetic Domains to Geo-
logic Terranes, Blackwell Sci., Oxford, U. K.
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