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1. Introduction

[2] The gasdynamic (GD) approximation still remains
useful in studies of the planetary bow shocks and shock
related phenomena. This approach works quite well when
the MHD Mach numbers are high [Spreiter and Stahara,
1980; Slavin and Holzer, 1981; Slavin et al., 1983], but it
also provides a useful first approximation when the Alf-
venic, Ma, or fast magnetosonic Mach, Mms, numbers are
low and these Mach numbers are substituted for the gasdy-
namic Mach number Ms [Fairfield et al., 2001].
[3] Gasdynamic solutions can be used to set constraints

on the polytropic index g for different upstream conditions
[Farris et al., 1991] and in detailed analysis of the subsolar
magnetosheath flow [Song et al., 1999]. Furthermore, the
gasdynamic convected field (GDCF) approximation to the
full MHD treatment is also used widely [Spreiter et al.,
1966; Spreiter and Stahara, 1995].
[4] Though numerical GD codes [e.g., Lyubimov and

Rusanov, 1970; Spreiter and Stahara, 1980] answer, in
principle, all questions, these codes are quite complicated
in use and are slowly converging for low Mach numbers
(Ms < 1.25, Lyubimov et al. [1995]), while an exact

theoretical solution is still available in the Ms ! 1 limit
[e.g., Shugaev, 1965].
[5] On the other hand, theoretical considerations of the

bow shock position and shape are quite controversial in
modern space science literature (e.g., see GD theory review
by Fairfield et al. [2001] and section 3 of this paper). They
generally, for example, do not take into consideration the
shape of the obstacle with the exception of the nose
curvature radius, R0 [Farris and Russell, 1994].
[6] In the present paper we will reevaluate the available

theoretical GD expressions on the basis of a uniform
presentation tied to the obstacle shape. Taking into account
all basic approaches of theoretical GD analysis, new ana-
lytical expressions will be proposed for the standoff dis-
tance, nose curvature radius and shape of the GD shock as
functions of g, Ms, R0, and the obstacle bluntness b0.
[7] Our new expressions will be verified for differentMach

numbers 1 < Ms < 1, polytropic indexes 1.15 < g < 2, and
obstacle shapes ranging from disk, through blunt elliptic,
spherical, elongated elliptic, parabolic, to hyperbolic. The
possibility of scaling these expressions to describe the bow
shock upstream of nonaxial symmetric obstacle will also be
discussed.

2. Basic Relations

2.1. Obstacle Shape

[8] Throughout the paper we will use the following
equation to describe the geometric properties of the
obstacle:

y2 xð Þ ¼ 2R0 r0 � xð Þ þ b0 r0 � xð Þ2: ð1Þ

It is the general expression for a conic section symmetric
around the x axis. Conic sections can be expressed many
other ways; however, equation (1) has the advantage that all
its parameters r0, R0, and b0 have clear geometrical
interpretation: r0 is the position of the obstacle nose, R0 is
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its radius of curvature, and b0 stands for the ‘‘bluntness’’ of
the obstacle (Figure 1) with the nose part of the obstacle
close to blunt elliptic for b0 < �1, spherical for b0 = �1,
elongated elliptic for �1 < b0 < 0, parabolic for b0 = 0, and
hyperbolic for b0 > 0.
[9] A parameterization similar to equation (1) of the

obstacle shape was used in accurate tables of gasdynamic
flows by Lyubimov and Rusanov [1970]. In Appendix A,
interrelations are presented between equation (1) and some
of the other obstacle shape representations used either for
empiric analysis of the observations or for setting up
boundary conditions in theoretical calculations.

2.2. Fundamental Equations

[10] The fundamental differential equations of steady
nondissipative perfect compressible gas flow [Landau and
Lifshitz, 1959] are as follows:

div rVð Þ ¼ 0 ð2aÞ

r Vrð ÞV ¼ �rp ð2bÞ

div
rV 2

2
þ gp

g � 1

� �
V

� �
¼ 0; ð2cÞ

where r, V, p are the flow mass density, velocity, and
pressure, respectively. The same equations are presented
below in the form of GD parameter variation along the flow
tube of cross section S:

rVSð Þ0¼ 0 ð3aÞ

rV 2S
� �0¼ �Sp0 ð3bÞ

VS
rV 2

2
þ gp

g � 1

� �� �0

¼ 0; ð3cÞ

where 0 marks differentiation along the tube. The condition
of adiabatic flow (equation (4a)) and the Bernoulli integral
(equation (4b)) are straightforward consequences of rela-
tions (3a)–(3c).

p

rg

� �0
¼ 0 ð4aÞ

V 2

2
þ g

g � 1

p

r

� �0

¼ 0 ð4bÞ

[11] Except for the Bernoulli integral, relations (2)–(4)
describe continuous flows only. In the supersonic regime
with Ms ¼ V=

ffiffiffiffiffiffiffiffiffiffi
gp=r

p
> 1 the bow shock discontinuity is

formed upstream of the obstacle (Figure 1). The following
Rankine-Hugoniot relations are valid across this disconti-
nuity [Landau and Lifshitz, 1959]:

rVn½ � ¼ 0 ð5Þ

rV 2
n þ p

� �
¼ 0 ð6Þ

V 2

2
þ g

g� 1

p

r

	 

¼ 0 ð7Þ

V t½ � ¼ 0; ð8Þ

where brackets define the difference between shock
upstream and shock downstream bracketed expressions
and where indexes n, t mark the normal and tangential
velocity components. Relations (5)–(7) correspond well to
equations (3a)–(3c), taking into account that [S] = 0 at the
shock. Relation (8) just expresses the absence of tangential
stresses at this discontinuity.
[12] It is convenient to express the solution of the

Rankine-Hugoniot relations via parameters:

e1 ¼ g� 1ð Þ
gþ 1ð Þ ; e ¼ e1 þ 2

gþ 1ð ÞM2
s

; en ¼ eþ 2 tan2 avn

gþ 1ð ÞM2
s

; ð9Þ

where avn is the angle between V and the shock normal n
(Figure 1). Then the GD variables behind the shock, marked
by subscript 1, can be expressed as

V1n ¼ enV cosavn;V1t ¼ V sinavn; r1 ¼ r=en

p1 ¼ p
gþ 1ð Þ � en g� 1ð Þ
gþ 1ð Þen � g� 1ð Þ :

ð10Þ

The third equation of relation (10) gives a physical sense to
parameter en: it is the reciprocal gas density compression
ratio (r1/r)

�1 across the shock. Then e becomes the
reciprocal of the largest compression ratio across the shock,
which is achieved at its nose point where avn = 0 (Figure 1),

Figure 1. Definition of space variables: r0 and rs are
distances to the obstacle and shock, respectively; R0 and Rs

are proper nose curvature radii; and b0 and bs stand for
obstacle and shock bluntness, while � is the bow shock
standoff distance.
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and e1 is the reciprocal of the maximal possible compres-
sion ratio, which is achieved when avn = 0 and Ms ! 1.
[13] Far downstream of the obstacle, the bow shock

becomes very weak and en ! 1. Then from equation (9)
it follows:

tan2 avn

��
en!1

¼ 1� eð Þ gþ 1ð ÞM2
s =2 ¼ M2

s � 1;

i:e:; cosavnjen!1¼ sina ¼ 1=Ms:
ð11Þ

The last equality in equation (11) is the well-known relation
for the asymptotic slope a (Figure 1) of the Mach cone
[e.g., see Spreiter and Stahara, 1985].

2.3. Curved Shock Boundary Condition

[14] The application of relations (10) to calculate the
velocity V1 at a small distance y from the x axis (see Figure 1)
leads to

V 1 ¼ V1x;V1y

� �
 V �e; y 1� eð Þ=Rsð Þ: ð12Þ

Only linear terms of y were kept in equation (12). During
time dt after passing of the shock, a parcel of gas will be
displaced by dx = V1xdt = �eVdt and dy = V1ydt = y(1 � e)
Vdt/Rs along and perpendicular to the x axis, respectively. It
means that the axial flow tube cross section S = py2 will be
increased by dS = 2pydy = 2py2(1 � e)Vdt/Rs. Hence the
relative rate of the flow tube expansion after the shock can
be expressed as [e.g., see Biermann et al., 1967; Wallis,
1973]:

1

S

dS

dx
¼ � 2

Rs

� 1� e
e

: ð13Þ

[15] Boundary condition (13) includes the nose radius of
curvature Rs and is applicable for curved shocks only. With
the aid of equation (3a) this boundary condition can be
rewritten as

rVð Þ0

rV
¼ 2

Rs

� 1� e
e

 V 0

V
 1

�
: ð14Þ

The second approximate equality in equation (14) was
written taking into account that the gas flow is subsonic
behind the shock nose and hence approximately incom-
pressible r  const. The third approximate equality is valid
only when the bow shock stand of distance � (Figure 1) is
small (e.g., in the hypersonic limit with Ms ! 1, g ! 1).
Then the �/Rs ratio becomes a function of only the
reciprocal relative compression ratio e*:

e* ¼ e
1� e

¼ g� 1ð ÞM2
s þ 2

2 M2
s � 1

� � ¼ r
r1 � r

����
avn¼0

: ð15Þ

3. Empiric GD Relations and Approaches
Used for Bow Shock Parameterization

3.1. Standoff Distance

[16] Almost all of the approximate relations for the stand-
off distance of the bow shock � (Figure 1) are based on the
empirical conclusion that both� and Rs are mainly functions

of e (equation (9)) or, equivalently, e* (equation (15)), at
least when Ms is sufficiently high. To some extent, this
conclusion is supported by GD experiments, observations of
flow about the planets [Slavin et al., 1983], and calcula-
tions. The first relations for � were generated by Serbin
[1958], Ambrosio and Wortman [1962], and Seiff [1962] for
the flow around a sphere (b0 = �1, see equation (1)). These
are

� ¼ 2

3
R0e*;� ¼ 0:52R0e*; and � ¼ 0:78R0e; ð16Þ

respectively. Note that in the first two relations � ! 1
when Ms ! 1 according to equation (15). This behavior is
qualitatively reasonable, though the correct rate of �
approaching to infinity should be different as was deduced
by equation (17) [Hida, 1955; Shugaev, 1964]:

� � Ms � 1ð Þ�2=3� e*2=3: ð17Þ

[17] In space science papers the empiric relation by
Spreiter et al. [1966] is used most frequently, which is
based on the approach of Seiff [1962] but which is appli-
cable for flows around a body with bluntness b0 = �(19 +ffiffiffiffiffi
21

p
Þ=30  �0:786 (see line 7 in Table A1 of Appendix

A). Taking into account that in the GD calculations of
Spreiter et al. [1966] the obstacle nose radius of curvature
was not equal to one (line 7 in Table A1), their relation can
be rewritten as

� ¼ 1:1

ffiffiffiffiffi
21

p
� 3

2
R0e ¼ 0:87R0e; 5 < Ms < 1: ð18Þ

The greater distance between the obstacle and the shock in
relation (18), compared with those in the last of relation (16),
is the result of the greater bluntness of Spreiter et al.’s [1966]
obstacle compared with the bluntness of a sphere.
[18] Farris and Russell [1994] noted that in relation (18)

of Spreiter et al. [1966] � is not approaching infinity when
Ms ! 1, and intuitively modified the formula:

� ¼ 0:87R0

eM2
s

M2
s � 1

: ð19Þ

However, the rate of � approaching infinity when Ms ! 1
remained incorrect (cf. relation (17)). Farris and Russell
[1994] also assumed that Spreiter’s obstacle had a nose
radius of curvature R0 = 1.35 r0, while, in fact, it was
R0 ¼ r0 3þ

ffiffiffiffiffi
21

p� �
=6 (line 7 in Table A1). It was corrected

in expression (19).
[19] The correct power of � approaching infinity when

Ms ! 1 was implemented in an empiric relation by Verigin
et al. [1997a, 1999]:

� ¼ R0 e*= 1:87þ 0:86=e*3=5
� � 2=3

: ð20Þ

This expression approximated well the standoff distance of
the bow shock calculated by Spreiter and Stahara [1995]
with the use of GD codes for Ms > 1.15 (b0  0.786), while
relations (18), (19) underestimated or overestimated � for
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small Mach numbers, respectively [Verigin et al., 1997a,
1999].
[20] Minailos [1973] proposed some other empiric rela-

tions for �. Specific to his parameterization is the use of

_

e ¼ eþ 0:07

M2
s

¼ eþ 0:07
gþ 1

2
e� e1ð Þ ð21Þ

instead of e in the approximating relations. For a flow
around a sphere Minailos [1973] arrived at

� ¼ R0

_

e 0:76þ 1:05
_

e
2

� �
: ð22Þ

Relation (22) approximates well the bow shock standoff
distance for

_e < 0:4 orMs
2 > (2 + 0.07(g + 1))/(1.4 � 0.6g),

taking into account equation (21). For a flow around an
ellipsoid (�1 < b0 < �0.25) Minailos [1973] introduced a
relation that can be rewritten in our notations as

� ¼ R0ffiffiffiffiffiffiffiffiffi
�b0

p
_

e 1:584� 0:982ffiffiffiffiffiffiffiffiffi
�b0

p � 0:18

b0
þ 1:05

_

e
2

� �
þ R0ffiffiffiffiffiffiffiffiffi

�b0
p

� 0:17� 0:38=
ffiffiffiffiffiffiffiffiffi
�b0

p
� 0:29=b0; �1 < b0 < �2:78;

0; �2:78 < b0 < �0:25:

�
ð23Þ

Probably only this relation reproduces analytically the
standoff distance for flows around bodies of different
shape. Unfortunately, it may contain misprints: the round
bracketed expression in equation (23) for flows around a
sphere (b0 = �1) is slightly different from the similar
expression in equation (22); the upper level relation after
the figure bracket in equation (23) would better correspond to
the curve plotted in Minailos’s [1973] Figure 1 for b0 = �4
(ratio of flow parallel to the perpendicular ellipsoid axes is
equal to 0.5) whether it is multiplied by

_e .
[21] Empirical relations for the bow shock standoff dis-

tance �, relevant to the flow around a ‘‘dipole’’ pressure
balanced boundary (Table A1 of Appendix A, line 7), are
compared in Figure 2. Solid squares in Figure 2 are the
results of the GD calculations of Spreiter and Stahara [1995]
extended toMs values smaller than in the original Spreiter et
al. [1966] paper. Empirical relation (18) [Spreiter et al.,
1966] underestimates �, while relation (19) [Farris and
Russell, 1994] overestimates � for small Ms. Relation (23)
by Minailos [1973] has a longer range of approximate
applicability, but it still incorrectly restricts the standoff
distance when Ms ! 1.

3.2. Nose Radius of Curvature

[22] On the basis of the constant density approximation
Hayes and Probstein [1966] derived a relation between the
bow shock nose radius of curvature Rs and the standoff
distance:

Rs ¼
�

e
1þ

ffiffiffiffiffi
8e
3

r !
; ð24Þ

which turned out to be ‘‘empirically valid over a wide range
of e.’’ Stulov [1969] assumed that equation (24) should be a
universal function of e for all bodies and compared this

expression with the results of GD experiments with
ellipsoids (�9 < b0 < �0.25), finding that at small Mach
numbers (Ms � 3) the �/Rs ratio becomes dependent on the
body bluntness too.
[23] A deficiency of relation (24) for small Mach num-

bers is also revealed from theoretical consideration by
Shugaev [1965]. According to his analytical solution the
bow shock shape in the vicinity of the x axis can be
expressed as

xjMs!1¼
1:229c

2

rcVc

rV
� 1

� ��1=3

� 4

3c

ffiffiffiffiffiffiffiffiffiffiffi
gþ 1

2

r
rcVc

rV
� 1

� �5=6

y2þ:::;

ð25Þ

where c = const, rc and Vc are, respectively, the flow density
and velocity at the critical point where Vc

2 = gpc/rc.
Substitution of the last relation into the Bernoulli integral
(equation (4b)) provides the possibility to evaluate
Vc ¼

ffiffiffi
e

p
V and gpc/rc = eV2. The latter relation, together

with the adiabatic flow relation (equation (4a)) pc/rc
g = p1/r1

g

and Rankine-Hugoniot conditions (equation (10)), provides
the possibility to evaluate rc and, finally,

rcVc ¼
rVffiffi
e

p 2

gþ 1� e g� 1ð Þ

� �1= g�1ð Þ

and

rcVc

rV
� 1

� �����
Ms!1

! gþ 1

8
1� eð Þ2

����
e!1

! gþ 1

8e*2

����
e*!1

: ð26Þ

Relation (26) together with expression (25) leads to the
correct asymptotic relations for the standoff distance and
nose radius of curvature of a GD bow shock:

�je*!1¼ 1:229c

gþ 1ð Þ1=3
e*2=3 ð27Þ

Rsje*!1¼ 3c

gþ 1ð Þ4=3
e*5=3: ð28Þ

Figure 2. Comparison of the GD simulation results (filled
squares) with empirical relations (18), long, thin dashes; (19),
short, thin dashes; and (23), long, thick dashes, calculated for,
R0 = r0(3 +

ffiffiffiffiffi
21

p
Þ=6; b0 ¼ � 19þ

ffiffiffiffiffi
21

p� �
=30, and g = 5/3.

Smooth line is the empirical relation (35) suggested in
section 4.2.
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From relations (27), (28) it follows that radius of curvature of
the nose of the bow shock increases much faster than the
standoff distance whenMs ! 1 (e! 1, e*!1), that is, Rs/
� ! 1 and does not remain constant as follows from
relation (24).
[24] The correct power of Rs approaching infinity when

Ms ! 1 is in the empiric relation given by Verigin et al.
[1997a, 1999]:

Rs ¼ R0 1:058þ e*ð Þ=1:067½ �5=3; ð29Þ

which also agrees with expression (24) when Ms ! 1
[Verigin et al., 1999].

3.3. Shape of the Shock

[25] It is generally recognized [e.g., see Van Dyke, 1958]
that the nose part of the bow shock formed by a wide class
of obstacles can be approximated by a conic section:

y2 xð Þ ¼ 2Rs rs � xð Þ þ bs rs � xð Þ2; ð30Þ

where rs = r0 + � (Figure 1). Properties of the parameters �
and Rs were discussed in sections 3.1 and 3.2.
[26] In order to analyze the behavior of the shock blunt-

ness bs, Maslennikov [1967] transformed the x, y coordi-
nates of the bow shock cross section observed in his

experiment into the y2

2 rs�xð Þ ; rs � xð Þ
� 

plane. In this coor-

dinate system all shocks (1.4 < Ms < 11.5), formed around a
hemispherical obstacle in Argon (g = 5/3), air (g = 7/5), and
Freon 14 (g  1.15), become straight lines and thus are in
agreement that their nose parts are really conic sections
(equation (30)). Twice the tangent of the slope of these
straight lines provides the possibility to determine the
bluntness of individual shocks.
[27] It turns out that the bluntness of the shock, bs, is a

function of Ms mainly [Maslennikov, 1967], but not of e, as
in the cases of � and Rs. In all gases, bs changed its sign
from positive to negative around Ms = 2–2.5, that is, the
nose part of the bow shock changed its shape from hyper-
bolic, through parabolic, into elliptic with increasing Ms. On
the other hand, all studied cases were supersonic with the
asymptotic slope of Mach cones expected to be sin a = 1/Ms

(equation (11)). These are the only hyperbolic curves among
conic sections that can have such properties. The conclusion
from this apparent contradiction is that bow shocks cannot
be approximated by a simple conic section from its nose to
far downstream, and a more sophisticated approach is
required.
[28] To solve the above controversy, Verigin et al. [1999]

proposed to describe the bow shock shape with the follow-
ing expression:

x ¼ r0 þ�þ cRs M2
s � 1

� �
� 1

2
1� cð Þy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s � 1
� �q

� cRs M2
s � 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� cð Þy

cRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s � 1
p þ 1þ cð Þ2y2

4c2R2
s M2

s � 1
� �

s
:

ð31Þ

This curve has a theoretically justified asymptotic down-
stream slope (equation (11)), the same standoff distance and
nose radius of curvature as the conic section (equation (30)),
but still has the possibility to adjust the bluntness of GD

shocks by fitting a ‘‘shape parameter’’ c. With the use of
c = 0.38R0/r0 � 0.47 + 3.63/g2 � 0.35/e* [Verigin et al.,
1999] or, later, c = 3.2/(Ms + 1) [Verigin et al., 2001a,
2001b], a reasonable correspondence of shocks calculated
by GD codes [Spreiter et al., 1970; Spreiter and Stahara,
1995] and approximated by equation (31) was achieved
[e.g., see Verigin et al., 1999, Figure 3]. This correspon-
dence was approximately valid for Ms = 2, 4, 8, g = 5/3, 2,
and 0.01 < H/r0 < 1 (�0.98 < b0 < �0.4 in accordance with
line 8 of Table A1 of Appendix A) though the b0 parameter
was not used then.
[29] Summarizing section 3, we may conclude that the

available analytic approaches to describe GD bow shock
properties do not provide the possibility of rapid prediction
of its position and shape for a wide range of upstream g and
Mach numbers for obstacles of different bluntness b0. An
attempt to provide a consistent analytic description of GD
bow shock shape and position upstream of different
obstacles will be the topic of section 4.

4. Bow Shock Modeling Approach

4.1. Shock Shape and Main Arguments
of its Parameters

[30] Instead of the quite complicated relation (31) for the
bow shock shape, we will use the following rational
function of (r0 + � � x):

y2 xð Þ ¼ 2Rs r0 þ�� xð Þ þ r0 þ�� xð Þ2

M2
s � 1

� 1þ
bs M2

s � 1
� �

� 1

1þ ds r0 þ�� xð Þ=Rs

� �
:

ð32Þ

Relation (32) corresponds exactly to conic section
(equation (30)) for ds = 0 and provides the correct asymptotic
downstream slope (equation 11) for any ds > 0, while
the experimentally justified shape (equation (30)) is still
valid in the vicinity of bow shock nose point x = r0 +�. Next,
the additional inequality

bs >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ds M2

s � 1
� �

þ 1
q

M2
s � 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ds M2

s � 1
� �

þ 1

q� �
ð33Þ

leaves only convex surfaces among those described by
relation (32).
[31] The quality of shock description by expression (32)

with constraint (equation (33)) was checked by individual
fitting ofRs, bs, and ds (�was fixed by the position of the nose
point) to each of the 35 shocks tabulated by Lyubimov and
Rusanov [1970] (Table 1). The specific standard deviation of
the tabulated shock points from surfaces (equation (32)) is
as small as �6 � 10�4R0. It is the accuracy of the shock
tables by Lyubimov and Rusanov [1970] (three valid digits
to the right of the decimal point) that allows the possibility
of a reasonably accurate determination of the three above
parameters of the smooth curve (equation (32)). Thus we
used these tables for acquiring the basic dependencies of �,
Rs, bs, ds on Ms and b0 for g = 7/5, while other entries of the
Table 1 were used for the expansion of the basic depen-
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dencies into 1.15 < g < 2 region and for the verification of
the obtained results.
[32] Parameters of equation (32) are listed in order of

their influence on the shape of the bow shock starting from
the nose, and are defined as follows: (1) �, standoff
distance, determines the nose position itself; (2) Rs, radius
of curvature, determines the shock shape close to the nose;
(3) bs, bluntness, determines the shock shape further from
the nose than Rs; (4) ds provides the transition from the
bluntness influenced region to the asymptotic regime; and
(5) Ms determines the asymptotic bow shock slope.
[33] In accordance with the review in sections 3.1 and

3.2, parameters � and Rs should be functions of e, e*
mainly. Taking into account Minailos’s [1973] approach
(equation (21)) and the asymptotic relations (equations (27)
and (28)), we will search for expressions of these parame-
ters as functions of

_

e * ¼ e*þ const gþ 1ð Þ e*� e1*ð Þ; ð34Þ

where e*1 = (g � 1)/2 is the value of the reciprocal relative
compression ratio e* (equation (15)) when Ms ! 1, and
const = 1/50 according to the results of the following
section. Next in the list of parameters, bs will be
investigated as a function of Ms only (see Maslennikov
[1967] and section 3.3). We would expect a similar behavior
from ds parameter, which controls the shock shape between
the zone of bs influence and asymptotic region.

4.2. Functional Presentation of the Bow
Shock Parameters

[34] Expressions (35)–(37) are the resulting dependen-
cies of � and Rs on

_e, and bs on Ms, respectively:

�
_

e*;R0

� �
¼

1:229c b0ð Þ
_e*2=3R0

gþ 1ð Þ1=3 1þ gþ 1ð Þ=50ð Þ2=3
1� b b0;gð Þ

_e *1=6

0
@

1
A;

ð35Þ

Rs

_

e*;R0

� �
¼3c b0ð Þ

_

e*5=3R0

� 1

gþ 1ð Þ4=3 1þ gþ 1ð Þ=50ð Þ5=3

 
� a b0; gð Þ

_e*d b0ð Þ

1
A;

ð36Þ

bs Msð Þ ¼ 1

M2
s � 1

þ e b0;gð Þ

þ 21e2 b0; gð Þ=17� 14e b0;gð Þ=9þ 7=4

1� 23e b0;gð Þ=30 �M
2
s þ 1

M4
s

;

ð37Þ

ds b0ð Þ ¼ exp

 
107

29
� 371

68

 
8 b0 � 4=21ð Þ

13

þ 1þ 8 b0 � 4=21ð Þ
13

����
����11=7

 !7=11!!
: ð38Þ

Despite the high accuracy of the Lyubimov and Rusanov
[1970] tables, it turns out to be impossible to obtain a stable
evaluation of ds dependence on Ms perhaps because of
insufficient inclusion in the tables of the downstream part of
the shocks. So, expression (38) presents the dependence
of ds parameter just on the obstacle bluntness b0. For the other
shock parameters dependencies on b0 are contained in the a,
b, c, d, and e coefficients described by relations (39)–(43),
respectively:

a b0; gð Þ ¼ 1

2

52

25
þ 97

84
� 33

10

1

gþ 1ð Þ13=4
� 1

12=5ð Þ13=4

 ! !

� 1� 7b0=16

1þ j7b0=16j8=33
� 33=8

0
B@

1
CA

þ 33

10

1

gþ 1ð Þ13=4

 
� 1

12=5ð Þ13=4

!
� 97

84
; ð39Þ

b b0;gð Þ ¼ 1

2
� 23

35
þ 43

3

1

gþ 1ð Þ68=13
� 1

12=5ð Þ68=13

 ! 

� 24

13
þ 13

18

1

g57=13
� 1

7=5ð Þ57=13

 !!

� 1� b0 � 3=10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
119=20

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0 � 3=10j

p� 2
0
B@

1
CA

þ 24

13
� 13

18

1

g57=13
� 1

7=5ð Þ57=13

 !
; ð40Þ

c b0ð Þ ¼ 6

5
17b0=20þ 1þ j17b0=20j5=3

� 3=5� �

þ 41=52

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26=9ð Þ2þb20

q ; ð41Þ

Table 1. List of Polytropic Indexes, Obstacle Bluntnesses, and

Sonic Mach Numbers Used for the Bow Shock Modeling

Reference g b0 Ms

Lyubimov and
Rusanov [1970]

7/5 �1 1.5, 2, 3, 4, 5, 6,
7, 8, 10, 20, 1

�0.25 2, 4, 6, 20, 1
0 2, 4, 6, 8, 10, 20, 1
0.031 2, 4, 6, 20, 1
0.217 2, 4, 6, 20, 1
0.490 4, 6

Spreiter and
Stahara [1995]

5/3 �0.786 2, 4, 8
2 2, 4, 8

Spreiter et al. [1970] 5/3 �0.981, �0.878, 8
�0.777, �0.644,
�0.520, �0.400

Stahara et al. [1989] 2 �0.51 10, 12
Maslennikov [1967] 1.15 �1 1.67, 2.3, 3.24, 3.8,

6.14,7.43, 9.17
7/5 1.84, 2.03, 2.91, 3.98,

4.35,5.92
5/3 1.54, 1.95, 2.47, 2.78,

3.63,5.1, 5.65
1.15 �1 2.03, 3.06, 3.43, 4.0,

5.1, 8.9,11.8
7/5 1.5, 2.09, 3.28, 4.2, 6.15
5/3 1.4, 2.12, 2.84, 4.1, 6.0
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d b0ð Þ ¼ 1

2

85

47
� 15

29

� �
� 1� 19 b0 � 39=70ð Þ=33

1þ j19 b0 � 39=70ð Þ=33j5=6
� 6=5

0
B@

1
CA

þ 15

29
; ð42Þ

e b0;gð Þ

¼ 1�
b0 þ 841=61þ 160 g�16=5 � 7=5ð Þ�16=5

� 
=11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

809=18ð Þ2þ b0 þ 841=61þ 160 g�16=5 � 7=5ð Þ�16=5
� 

=11
� 2r

0
BB@

1
CCA

� 1
2

� 1042

17
� 40

1

g15=4
� 1

7=5ð Þ15=4

 !
� 1318

39

 !
þ 1318

39
:

[35] The explicit inclusion of power functions of g into
relations (35) and (36) provides the correct asymptotic
behavior (equations (27) and (28)) for � and Rs when
e* ! 1 (Ms ! 1). The second term in equation (41)
provides correct asymptotic behavior (equation (23)) of �
when b0 ! �1 (with R0=

ffiffiffiffiffiffiffiffiffi
�b0

p
¼ const) and the obstacle

is degraded to a disk of R0=
ffiffiffiffiffiffiffiffiffi
�b0

p
radius. All expressions

(35)–(43) are monotonically increasing/decreasing, while
expressions (38)–(40), (42), and (43) are also limited. All
brackets containing g become zero for g = 7/5. In this case,
the standard deviation of the shock points tabulated by
Lyubimov and Rusanov [1970] from the bow shock model
(equations (32) and (35)–(43)) is �8 � 10�3R0. The
specific standard deviation of our bow shock model from
the shock points scanned from figures of other authors
given in Table 1 is �2 � 10�2R0.
[36] In Figure 2 we added the bow shock standoff distance

(smooth line) calculated by our suggested relation (35) for a
pressure-balanced case with a ‘‘dipole’’ magnetic field
obstacle (Table A1, line7). Comparison of this curve with
GD simulation results by Spreiter and Stahara [1995]
demonstrates reasonably good mutual consistency over a
wide range of Ms. It is worth noting again that our empiric
relation has the correct asymptotic behavior whenMs! 1, in
contrast to the others shown in Figure 2.

4.3. Comparison With Results of GD Numerical
Simulations and Experiments

[37] Figure 3 presents a comparison of the bow shock
shapes from Lyubimov and Rusanov [1970] tables (points,
g = 7/5) with those calculated by relations (32) and (35)–
(43) suggested in the present paper for flows around a
sphere (a, b0 = �1), ellipsoid (b, b0 = �0.25), paraboloid
(c, b0 = 0), and hyperboloid (d, b0 = 0.217). All points from
the original tables were scaled and shifted along the x axis to
achieve equal r0 = R0 = 1 for all obstacles, similar to the
normalization proposed by Verigin et al. [2001a, 2001b] for
the studies of planetary bow shocks. One additional shock
with Ms = 1.25 was added to Figure 3a from the table by
Lyubimov et al. [1995].
[38] The good agreement between our empiric relations

and Lyubimov and Rusanov’s [1970] GD calculations is
obvious. Taking into account that the correct asymptotic
behavior (equations (27) and (28)) is implemented in our
relations, we cannot be certain whether or not some of the
difference between the modeled Rs and those corresponding
to Lyubimov et al.’s [1995] table (Figure 3a, Ms = 1.25) is

due to some insufficiency of our model. Another possible
reason for some difference may be connected to the still
incomplete convergence of GD numerical solutions for low
Mach numbers, though Lyubimov et al. [1995] are certain of
their solution for Ms = 1.25, but not for Ms = 1.1.
[39] Figure 4 displays the shock front formed by an

end-on cylinder (top row) or hemisphere (bottom row)
moving in Freon 14 (left column), air (middle column),
and Ar (right column) scanned from the proper figures
plotted by Maslennikov [1967] after his experiments.
Smooth curves in the same figure are the shock surfaces
according to relations (32) and (35)–(43) applied for flows
around a disk (top row, b0 ! �1 with R0=

ffiffiffiffiffiffiffiffiffi
�b0

p
¼ 1

being the disk radius) and a sphere (bottom row, b0 = �1).
A reasonable correspondence of the experimental and
modeled shocks in the range of 1.15 < g < 5/3 is obvious,
though some disagreement observed in some case (e.g., for
b0 = �1,Ms = 2.84) is still present and is difficult to explain.
[40] Verification of our bow shock model by GD calcu-

lations for bigger values of g = 2 is presented in the top row
of Figure 5, while results for g = 5/3 and obstacles of
different shapes are displayed in the bottom row of Figure 5.

Figure 3. Comparison of the bow shocks calculated by
GD code by Lyubimov and Rusanov [1970] (points) with
those evaluated by relations (32) and (35)–(43) suggested
in the present paper for flows around sphere (Figure 3a),
ellipsoid (Figure 3b), paraboloid (Figure 3c), and hyperbo-
loid (Figure 3d).

(43)
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The bow shock curve points in the left column of Figure 5
were scanned from the original Figure 12 by Stahara et al.
[1989], where a flow around a ‘‘dipole’’ pressure balanced
obstacle was considered (Table A1, line 7), that is, for
obstacles specified by bluntness b0  �0.786. Bow shocks,
formed by highly supersonic (Ms = 10, 12) flows around a
blunter body with b0  �0.51 (see section 5 for more
details) are scanned from the original Figures 9 and 10 by
Stahara et al. [1989], and are given in the top right plot of
Figure 5. Points in the bottom right corner of Figure 5 are
taken from the original Figure 4 of Spreiter et al. [1970],
where flows around bodies of different shapes formed by
‘‘ionospheric’’ pressure balanced obstacle were considered
(Table A1, line 8). Variation of the H/r0 parameter within
the range 0.01 < H/r0 < 1 corresponds to obstacle bluntness
variation within the range �0.981 < b0 < �0.4. All points
plotted in Figure 5 show reasonably good agreement with
the smooth curves calculated by equations (32) and (35)–
(43), thus confirming the applicability of our model. An
opportunity to generalize the present bow shock model for
the case of GD flows around a nonaxially symmetric
obstacle will be considered in section 5.

5. Bow Shock Upstream of a Nonaxially
Symmetric Body

5.1. Obstacle Shape and Standoff Distance Scaling

[41] Our approach to generalize for the case of a flow
around nonaxially symmetric obstacles is based on the

three-dimensional GD model by Stahara et al. [1989]
developed for the analysis of the Jovian and Saturnian
bow shocks. These planetary magnetospheres were shown
by the Pioneer and Voyager observations to exhibit strong
polar flattening and greatly reduced magnetosheath thick-
nesses [Slavin et al., 1985]. Instead of an axially symmetric
obstacle (equation (1)), Stahara et al. [1989] used a flat-
tened obstacle, which can be well approximated by the
following equation:

y2 þ R0y

R0z

z2 ¼ 2R0y r0 � xð Þ þ b0 r0 � xð Þ2; ð44Þ

with b0  0.51 and the two principal nose radii of curvature
in the ‘‘equatorial’’ R0y and ‘‘polar’’ R0z planes. The cross
section of an ellipsoid (equation (44)) by a plane x = const is
an ellipse with an equatorial to polar axis ratio of
a=b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0y=R0z

p
. The equatorial magnetopause nose radii

of curvature were fixed to R0y  1.44 r0 and R0y  1.96 r0
for Jupiter and Saturn, respectively. The polar magneto-
pause nose radii of curvature were variable and could be
determined via the a/b flatness ratio that runs through a/b = 1,
1.5, 1.75, 2 for Jupiter and through a/b = 1, 1.15, 1.25, 1.35,
1,45 for Saturn with a/b = 1.75 (1.25) considered to be
specific to Jupiter (Saturn).
[42] The R0y and b0 parameters of equation (44) were

determined by fitting the surface (equation (44)) to the
points scanned from the original Figures 6 and 8 of Stahara
et al. [1989] at 10 cross sections of the obstacle by planes

Figure 4. Comparison of the model bow shocks (smooth curves) by relations (32) and (35)–(43) with
results of GD experiments (dots) by Maslennikov [1967].
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with different clock angles j = arctan(z/y) equidistantly
spaced from 0� to 90�. The quality of the resultant obstacle
fitting is shown in Figure 6 with the standard deviation of
the obstacle surface from the scanned points of �2.5 �
10�3R0y. A specific feature of the obstacle (equation (44)) is
that both the nose radius of curvature R0j and the bluntness
b0j of its cross section by a plane j = const are similar
functions of j:

R0j ¼ R0y

cos2 jþ R0y sin
2 j=R0z

ð45Þ

b0j ¼ b0

cos2 jþ R0y sin
2 j=R0z

: ð46Þ

It is natural and follows from the GD calculations by
Stahara et al. [1989] that the standoff distance of the bow
shock upstream of a nonaxially symmetric obstacle
�ð_e*;R0y;R0zÞ should monotonically decrease with R0z

decreasing. Figure 7a presents the dependence on
a=b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0y=R0z

p
of the bow shock standoff distances

scanned from the original Figure 9 (points, Ms = 10) and
Figure 10 (circles, Ms = 12) of Stahara et al. [1989] and
normalized by the equatorial obstacle nose radius of

curvature R0y. The same points normalized by bow shock
standoff distances in the case of a flow around an axially
symmetric obstacle (R0z = R0y) are aligned along a simple
proportional straight line with unit slope that independent of
Ms (Figure 7b) when they are plotted as a function of the
reciprocal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0z=R0y

p
ratio. Thus we can assume that

�
_

e *;R0y;R0z

� �
¼ �

_

e *;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0zR0y

p� �
; ð47Þ

with � _e*;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0zR0y

p� 
defined earlier by relation (35).

According to relation (47) the standoff distance of the bow
shock upstream of a nonaxially symmetric obstacle
approaches, as expected, to that one for an axially
symmetric obstacle when R0z ! R0y and approaches to
zero when R0z ! 0 and the ellipsoid (equation (44))
degenerates to a zero thickness ellipse.

5.2. Radii of Curvature Scaling and Bow Shock Shape

[43] For the scaling of the bow shock nose radii of
curvature it is reasonable to assume that the equatorial
Rsyð_e*;R0y;R0zÞ and polar Rszð_e*;R0y;R0zÞ bow shock nose
radii of curvature coincide with those for an axially sym-
metric obstacle (equation (36)) when R0z = R0y. In the
degenerate case, when R0z ! 0, the equatorial shock radius
should Rsy(

_e*, R0y, R0z) approach R0y. A more definite

Figure 5. Comparison of the bow shocks calculated by GD codes (points) by Spreiter et al. [1970],
Stahara et al. [1989], Spreiter and Stahara [1992] for obstacles of different shapes and g = 5/3, 2 with
model bow shocks (smooth curves) by relations (32) and (35)–(43).
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statement can be made of the behavior in the degenerate
case of the polar shock nose radius of curvature , taking into
account the nonaxially symmetric curved shock boundary
condition deduced in Appendix B.
[44] From the boundary condition (B8), in a way used to

deduce relation (14), we can conclude that

1

�

����
�!0

 1

e*
1

Rsy

þ 1

Rsz

� �
: ð48Þ

With the assumptions of the previous paragraph, relation (48)
can be rewritten as

Rszj�!0
�

e*��=R0y

 �

e*
; ð49Þ

which defines the rate at which Rsz approaches zero as
R0z! 0.
[45] All the limiting cases mentioned above are included

in the following scaling relations:

Rsy
_e*;R0y;R0z

� �
¼ Rs

_e*;R0y

� � ffiffiffiffiffiffiffi
R0z

R0y

s
þ R0y 1�

ffiffiffiffiffiffiffi
R0z

R0y

s !19=18

ð50Þ

Rsz
_e*;R0y;R0z

� �
¼
� _e*;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0yR0z

p� �
e*

1�
ffiffiffiffiffiffiffi
R0z

R0y

s !2

þ Rs
_e*;R0y

� � R0z

R0y

� �11=18

; ð51Þ

with � _e*;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0zR0y

p
Þ and Rsð_e*;R0yÞ defined by relations

(35) and (36), respectively; the powers of the both terms of
both equations were selected on the basis of the best fit of
the final bow shock model surface model to GD calculations

by Stahara et al. [1989]. The final relation for the distance
from the x axis to the bow shock upstream of a nonaxially
symmetric body in the plane j = const is quite similar to
equation (32):

y2 þ z2 ¼ 2Rsj r0 þ�� xð Þ þ r0 þ�� xð Þ2

M2
s � 1

� 1þ
bsj M2

s � 1
� �

� 1

1þ ds r0 þ�� xð Þ=Rsj

� �
; ð52Þ

but now with

Rsj ¼
Rsy

_e*;R0y;R0z

� �
cos2 jþ sin2 jRsy

_e*;R0y;R0z

� �
=Rsz

_e*;R0y;R0z

� � ; ð53Þ

bsj ¼ bs Msð Þ
cos2 jþ sin2 jRsy

_e*;R0y;R0z

� �
=Rsz

_e*;R0y;R0z

� � ; ð54Þ

Figure 7. Dependence of the bow shock standoff distance
in different normalizations (Figures 7a and 7b) on the ratio
of the principal curvature radii of the obstacle nose.
Proportional dependence with unit slope in Figure 7b
implies simple generalization (equation (47)) of earlier
deduced relation (35).

Figure 6. Comparison of the obstacles calculated by equation (44) for Jupiter (Figure 6a) withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0y=R0z

p
¼ 1:75 and for Saturn (Figure 6b) with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0y=R0z

p
¼ 1:25, and of the bow shocks calculated for

these obstacles by relation (52) with obstacles used by Stahara et al. [1989] in their GD calculations and
resultant shocks (points).
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a n d �
�

_e*;R0 y;R0z

�
;Rs y

�
_e*;R0 y;R0 z

�
;Rs z

�
_e*;R0 y;R0 z

�
;

bs Msð Þ; ds b0ð Þ defined by relations (47), (50), (51), (37),
and (38), respectively.
[46] Figure 8 presents the cross section by the equatorial

plane (z = 0, j = 0) of the 3-D bow shock surface (smooth
lines) determined by relation (52) for different flatness ratios
of the obstacle. Cross sections of the bow shock surface at
two fixed R0y/R0z ratios by planes with different clock angles
0� � j � 90� were presented in Figure 6. Reasonable
correspondence of our model to the results of the GD
calculations is evident in both figures. The standard deviation
of the bow shock surface determined by relation (52) from the
points scanned from the original figures is �7.5 � 10�3R0y.

6. Conclusions

[47] The analytical GD bow shock model described in the
present paper provides the possibility of fast and reasonably
accurate prediction of the position this boundary in front of
obstacles of arbitrary bluntness b0. For axially symmetric
obstacles this model was verified by comparison with experi-
ments and the results of GD numerical calculations over a
wide range of upstream polytropic indices 1.15 < g < 2 and
Mach numbers 1 < Ms < 1.
[48] The physical basis for the model parameters were

discussed in detail and they offer the possibility that the
model’s validity is not limited to the nodes of the 3-D
configuration space (Ms, g, b0), for which it was verified in
the section 4.3, but also in the space between and outside of
the range of these nodes. Moreover, this supposition is
sustained by the theoretically correct asymptotic downstream
slope of the modeled bow shock surface and by its correct
asymptotic dependence on Ms and g in the Ms ! 1 limit.
[49] Of course, many aspects of our model are empirically,

experimentally, and computationally based. From the formal
point of view it means that some caution should be exercised
in the application of this model beyond the verified cases.
Special precautions should be exercised while using the
results of section 5 because they are based on the results
of GD modeling with Ms = 10, 12 and b0 = �0.51 only and

for obstacles with fixed relation between its nose radius of
curvature and bluntness (equations (45) and (46)) at different
clock angles. Fortunately, large Mach numbers are common
for the solar wind at large heliocentric distances where
Jupiter’s and Saturn’s obstacles have specific flattened
shape.
[50] Since our bow shock model relied only on simple,

geometrical characteristics of the obstacle, that is, position,
radius of curvature (principal radii), and bluntness of its
nose, it provides possibility of bow shock model utilization
for a wide class of available magnetopause models (e.g., see
Table A1) as well as for optional new, yet to be developed
magnetopause models.

Appendix A: Obstacle Shape Parameterization

[51] Table A1 presents the summary of expressions usually
used for the description of the nose part of the magnetopause
during empirical analysis of observations. Interrelations
between the first five expressions and relation (1) are quite
straightforward because they are all conic sections. Interre-
lation between the expression by Shue et al. [2000] and
relation (1) was obtained by their expansion into series in the
vicinity of point x = r0.
[52] For theoretical calculations of a flow around space

obstacles, boundary conditions were frequently set up at the
border of the obstacle shape of which was determined from
the pressure balance equation [see, e.g., Spreiter and Stahara,
1992]:

krV 2 cos2 yþ 0; or p0; or p0 sin
2 y

� �
¼ p rð Þ; ðA1Þ

where y is the angle between V and normal to the obstacle
boundary, p0 stands for the thermal pressure in the upstream
flow, p(r) is the radial profile of the pressure inside the
obstacle, and

k ¼ 1

g

gþ 1

2

� � gþ1ð Þ= g�1ð Þ
g� g� 1

2M2
s

� �1= 1�gð Þ
: ðA2Þ

Figure 8. Comparison of the shocks evaluated by relation (52) with g = 2 for obstacles with R0y = 1.44 r0,
Ms = 10 (Figure 8a) and R0y = 1.96 r0, Ms = 12 (Figure 8b), and different R0y/R0z ratios with results of
Stahara et al. [1989] GD simulations for similar obstacles (points).
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Taking into account that cos2 y = 1/(1 + (dx/dy)2), sin2 y =
(dx/dy)2/(1 + (dx/dy)2), all three equation (A1) can be
rewritten as

dx

dy
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p r0ð Þ � p0

p rð Þ � p0
� 1

s
: ðA3Þ

Solution of the differential equation (A3) in the vicinity of
x = r0 is

x yð Þ  r0 �
y2

2R0

þ b0
y4

8R3
0

� . . . ; ðA4Þ

where

R0 ¼
r0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8 p r0ð Þ � p0ð Þ

r0p0 r0ð Þ

s !
; ðA5Þ

b0 ¼ �1þ

2 p r0ð Þ � p0ð Þ
p0 r0ð Þ

p00 r0ð Þ
p0 r0ð Þ �

1

r0

� �
� 1

4� p0 r0ð ÞR0

2 p r0ð Þ � p0ð Þ

: ðA6Þ

The general relations (A5) and (A6) provide the possibility
to determine the nose radius of curvature R0 and bluntness
b0 for the obstacles with spherically symmetric internal
pressure profile p(r). Specific cases of ‘‘dipole,’’ ‘‘iono-
spheric,’’ and ‘‘combined’’ obstacles are shown as lines 7–9
in Table A1, respectively.

Appendix B: Nonaxially Symmetric Curved
Shock Boundary Condition

[53] In place of relation (31) the nonaxially symmetric
shock surface equation F in the vicinity of its nose rs can be
expressed via its principal radii of curvature Rsy, Rsz as

F x; y; zð Þ ¼ y2

2Rsy

þ z2

2Rsz

� rs � xð Þ ¼ 0

or

F x;s;jð Þ ¼ s2

2Rsj
� rs � xð Þ ¼ 0; ðB1Þ

where

1

Rsj
¼ cos2 j

Rsy

þ sin2 j
Rsz

ðB2Þ

is the reciprocal radius of curvature of the shock nose in the
plane j = const. Figure B1a defines the Cartesian and
cylindrical reference frames used in the above relations. The
cross section of the bow shock by a plane x = const is an
ellipsoid with square S(x) (Figure B1b):

S ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
RsyRsz

p
rs � xð Þ: ðB3Þ

The inner normal vector n to the shock surface at the border
of this ellipsoid can be expressed as

n ¼ � rF

rFj j ¼ nx; ns; nj
� �

 �1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 rs � xð Þ

Rsj

s
;

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rsj rs � xð Þ

q
sinjcosj

1

Rsy

� 1

Rsz

� ��
:

ðB4Þ

The application of the Rankine-Hugoniot relations (equa-
tion (10)) to the normal and tangential components of the
upstream velocity vector V = (�V, 0, 0) provides the
possibility to evaluate the postshock velocity V1 as

V 1 ¼ V1x;V1s;V1j
� �

 V � e; 1� eð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 rs � xð Þ
Rsj

s
;

� 1� eð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rsj rs � xð Þ

q
sinj cosj

1

Rsy

� 1

Rsz

� ��
: ðB5Þ

Table A1. Expressions Used in Space Science Papers for Magnetopause Shapes and Proper Nose Curvature Radii and Bluntnesses

Reference Nose Part Equation Interrelation With Equation (1)

Holzer and Slavin [1978] r = l/(1 + ecosJ) r0 = l/(1 + e), R0 = l, b0 = e2�1
Roelof and Sibeck [1993] y2 + ax2 + bx + c = 0 ar0

2 + br0 + c = 0, R0 = ar0 + b/2, b0 = �a
Petrinec and Russell [1996] r = r0(1 + e)/(1 + ecosJ) R0 = r0(1 + e), b0 = e2�1
Kawano et al. [1999], Parametric, J - Parameter x = (r0 � x0)(1 + e)cosJ/(1 + ecosJ) + x0 R0 = (r0 � x0)(1 + e), b0 = e2�1

y = (r0 � x0)(1 + e)sinJ/(1 + ecosJ)
Kuznetsov and Yushkov [2000] x = r0 � gy2 R0 = 1/(2g), b0 = 0
Shue et al. [2000] r = r0(2/(1 + cosJ))a R0 = 2r0/(2-a), b0 = (6a-8)(a-1)/(a-2)3

Spreiter et al. [1966] equation (A1), p0 = 0, R0 ¼ r0 3þ
ffiffiffiffiffi
21

p� �
=6;

p(r) = p(r0) � (r0/r)6 b0 ¼ � 19þ
ffiffiffiffiffi
21

p� �
=30

Spreiter et al. [1970] equation (A1), p0 = 0, R0 ¼ r0
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8H=r0

p �
=2;

p(r) = p(r0)exp((r0 � r)/H ) b0 = �1 + 2 (1 + 2H/r0)/(8 + R0/H )
Verigin et al. [1997] equation (A1), p0 6¼ 0, R0 ¼ r0

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8 1�p0=p r0ð Þð Þ

6 1�xð Þþxr0=H

q �
;

p(r) = p(r0) � [(1 � x) (r0/r)
6 + x � exp((r0 � r)/H )] b0 ¼ �1þ

2 1�p0=p r0ð Þð Þ
6 1�xð ÞH=r0þx

42 1�xð ÞH2=r2
0
þx

6 1�xð ÞH=r0þx þ H
r0

� 
� 1

4þ 6 1�xð ÞH=r0þx
2 1�p0=p r0ð Þð Þ �

R0

H

Figure B1. (a) Definition of the used reference frames and
(b) main geometric relations relevant to calculation of the
rate of increase of the flow tube cross section S(x).
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All terms of the order of (rs � x) or less were omitted in
equations (B4) and (B5). During time dt after passing of the
shock at the border of ellipsoid S(x) at clock angle j � dj
(Figure B1b), a parcel of gas will be displaced from rs � x
by dx = V1xdt = �eVdt along the x axis, from s(j � dj) by
ds = V1sdt = V1s/V1xdx along the s axis, and from j � dj
by dj = V1j/sdt = V1j/V1xdx/s along the j axis. So, the new
radial distance at j clock angle will be (s + ds)jj = s(j �
dj) + V1s/V1xdx = s(j) � _sdj + V1s/V1xdx = s(j) � _s/s
V1j/V1xdx + V1s/V1xdx = s(j)+(V1s � _Rsj

/RsjV1j/2) /V1xdx,
where � marks differentiation over j. That is, the rate
of expansion of the radial distance of the original flow
tube S(x) at clock angle j can be expressed as

ds
dx

¼ 1

V1x

V1s �
_Rsj

2Rsj
V1j

� �

¼ � 1� e
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 rs � xð Þ

Rsj

s
1þ R2

sj sin
2 j

�
cos2 j

1

Rsy

� 1

Rsz

� �2
!
:

ðB6Þ

The last equality in equation (B6) is the result of the
substitutions of relations (B2) and (B5).
[54] Taking into account relations (B1), (B2), and (B6),

the relative rate of the flow tube expansion after the curved
shock can be written as

1

S

dS

dx
¼ 1

S

Z2p
0

s
ds
dx

dj ¼ � 1� e
e

2ffiffiffiffiffiffiffiffiffiffiffiffi
RsyRsz

p

� 1þ
Rsy � Rsz

� �2
2p

Z2p
0

0
@ sin2 j cos2 jdj

Rsy sin
2 jþ Rsz cos2 j

� �2
!
: ðB7Þ

Completing the integration in equation (B7) leads to the
final shape of the nonaxially symmetric curved shock
boundary condition:

1

S

dS

dx
¼ � 2

Rsh i �
1� e
e

: ðB8Þ

Boundary condition (B8) looks similar to that of equation (13)
for axially symmetric shocks, but the average radius of
curvature hRsi replaces Rswith

1

Rsh i ¼
1

2

1

Rsy

þ 1

Rsz

� �
: ðB9Þ
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