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[1] As the incidence of groundwater contamination continues to grow, a number of
inverse modeling methods have been developed to address forensic groundwater
problems. In this work the geostatistical approach to inverse modeling is extended to allow
for the recovery of the antecedent distribution of a contaminant at a given point back in
time, which is critical to the assessment of historical exposure to contamination. Such
problems are typically strongly underdetermined, with a large number of points at which
the distribution is to be estimated. To address this challenge, the computational efficiency
of the new method is increased through the application of the adjoint state method. In
addition, the adjoint problem is presented in a format that allows for the reuse of existing
groundwater flow and transport codes as modules in the inverse modeling algorithm.
As demonstrated in the presented applications, the geostatistical approach combined with
the adjoint state method allow for a historical multidimensional contaminant distribution
to be recovered even in heterogeneous media, where a numerical solution is required
for the forward problem. INDEX TERMS: 1832 Hydrology: Groundwater transport; 1829 Hydrology:

Groundwater hydrology; 1869 Hydrology: Stochastic processes; 3260 Mathematical Geophysics: Inverse

theory; KEYWORDS: adjoint state method, Bayesian inference, geostatistics, groundwater contaminant

distribution, stochastic inverse modeling
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1. Introduction

[2] When determining the effect of historical groundwa-
ter contamination, the distribution of a plume at a given
point back in time is often required to establish exposure
of wells or individuals to the contaminant. For example, in
the case of Woodrow Sterling et al. versus Velsicol
Chemical Corporation [1986], a class of people who
owned property in the vicinity of a chemical waste burial
site sought damages for personal injury and damages to
their property suffered when water in their home wells
became contaminated by hazardous chemicals escaping
from Velsicol’s site. Velsicol admitted that some of the
wells were contaminated with chemicals from its waste
burial site, but disputed that all members of the class had
been exposed and did not agree with the plaintiffs as to the
intensity and duration of exposure. Therefore the case
centered on estimating the past distribution and concen-
tration of the chemical plume, in order to determine
concentrations in the plaintiffs’ wells at given times

[Michalak, 2001]. Emerging inverse modeling methods
can be applied to solve such problems.
[3] One set of inverse methods is based on geostatistical

principles and allows for the estimation of unknown
functions based on the dual criterion of reproducing
available observations while maintaining an assumed cor-
relation structure. Methods falling under this category have
been used for some time for estimating subsurface
hydraulic conductivity or transmissivity distributions based
on hydraulic head and other data [e.g., Kitanidis and
Vomvoris, 1983; Kitanidis, 1995; Zimmerman et al.,
1998]. More recently, these types of methods have also
been applied to contaminant release history identification
in groundwater systems [Snodgrass and Kitanidis, 1997;
Michalak and Kitanidis, 2002, 2003, 2004]. In this paper
the geostatistical method is extended to the estimation of
the antecedent distribution of a contaminant at a given
point back in time, making it applicable to cases such as
the one described.
[4] In the geostatistical approach to inverse modeling,

the solution involves the calculation of a sensitivity
matrix relating each point in the discretized unknown
function to each observation, which typically requires
one forward run for each point in the discretized
unknown function. Because inverse problems associated
with groundwater systems are typically strongly under-
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determined, in the sense that the number of points in the
discretized unknown function m is greater than the
number of available measurements n, the computational
cost of calculating the sensitivity matrix can be prohibi-
tive. This is especially true when the function to be
estimated is itself multidimensional. In this work the
adjoint state method is used to efficiently populate the
full sensitivity matrix by solving a series of adjoint
problems instead of the traditional approach of solving
a series of forward problems. The combination of the
adjoint and geostatistical methodologies makes the iden-
tification of a multidimensional contaminant distribution
in a heterogeneous domain feasible.
[5] Note that throughout this paper, we will use the term

‘‘historical contaminant distribution’’ to describe the plume
at a single, given point in the past. We avoid using the term
prior distribution so as to prevent confusion with the terms
‘‘prior’’ and ‘‘posterior,’’ which have a different, very
specific definition in the context of Bayesian inverse mod-
eling. Also, although in the presented applications the
historical distribution will be recovered for a single point
in time, the presented algorithm could directly be applied
for a series of times, yielding a time-dependent description
of the history of a plume.

2. Background

[6] Section 2.1 discusses methods used for the solution of
inverse problems aimed at identifying the history of con-
tamination in groundwater systems. These methods include
algorithms for estimating the release history of a known
source, identifying the location of sources, and recovering
the historical distribution of a contaminant. Section 2.2
presents a brief review of past applications of the adjoint
state method to groundwater systems.

2.1. Inverse Modeling Methods for Identifying
History of Contamination

[7] Inverse methods are one set of tools that can be used
to investigate the history of groundwater contamination.
Such methods use modeling and statistical tools to deter-
mine the historical distribution of observed contamination,
the location of contaminant sources, or the release history
from a known source.
[8] A first subset of inverse methods focuses on deter-

mining the values of a small number of parameters
describing the source of a contaminant such as, for
example, the location and magnitude of a steady state
point source [Gorelick et al., 1983; Kauffmann and
Kinzelbach, 1989; Butcher and Gauthier, 1994; Ala and
Domenico, 1992; Dimov et al., 1996; Sonnenborg et al.,
1996; Sidauruk et al., 1997]. Other works allow for
describing the source using more parameters, such as
additional variables for the times at which the release
began and ended [Wagner, 1992; Ball et al.,1997; Mahar
and Datta, 1997; Sciortino et al., 2000]. A third subset
deals with the identification of the location or release
time of instantaneous point sources, but offers a probabi-
listic solution to the problem. These methods include
backward tracking [Bagtzoglou et al., 1991; Bagtzoglou
and Dougherty, 1992] and adjoint-derived source distribu-
tion probabilities [Neupauer and Wilson, 1999, 2001,
2002]. A final subset of work uses a function estimate

to characterize the historical contaminant distribution,
source location, or release history. In this case, the
contaminant distribution or source description is not lim-
ited to a small set number of fixed parameters but can
instead vary in space and/or in time.
[9] This last category includes methods that use a

deterministic approach and others that offer a stochastic
approach to the problem. The method developed in this
work, for example, offers a stochastic function estimate
of the historical distribution of a contaminant. In stochas-
tic approaches, parameters are viewed as jointly distrib-
uted random fields that can be described by their
statistical properties. In this framework, estimation uncer-
tainty is recognized and its importance can sometimes be
determined. Deterministic approaches include Tikhonov
regularization [Skaggs and Kabala, 1994, 1998; Liu and
Ball, 1999; Neupauer et al., 2000], quasi-reversibility
[Skaggs and Kabala, 1995; Bagtzoglou and Atmadja,
2003], Fourier series analysis [Birchwood, 1999], non-
regularized nonlinear least squares [Alapati and Kabala,
2000], the progressive genetic algorithm method [Aral et
al., 2001], and the marching-jury backward beam equation
method [Atmadja and Bagtzoglou, 2001; Bagtzoglou and
Atmadja, 2003]. Stochastic approaches include geostatistical
techniques [Snodgrass and Kitanidis, 1997; Michalak and
Kitanidis, 2002, 2003, 2004] and the minimum relative
entropy method [Woodbury and Ulrych, 1996; Woodbury
et al., 1998; Neupauer et al., 2000].
[10] The methods presented in the previous paragraph

have been applied to a range of problems, summarized in
Table 1. The majority of applications are related to the
estimation of the release history or contamination history in
homogeneous one-dimensional domains. A few authors
have tackled nonuniform domains with a small number of
zones with deterministically varying properties [Liu and
Ball, 1999; Atmadja and Bagtzoglou, 2001; Michalak and
Kitanidis, 2003, 2004]. A smaller number have dealt with
fully heterogeneous one-dimensional [Bagtzoglou and
Atmadja, 2003] and multidimensional [Aral et al., 2001]
domains. These heterogeneous applications, however, have
been limited to deterministic approaches. Also, the number
of stochastic applications in multidimensional domains
is still very small [Woodbury et al., 1998; Michalak
and Kitanidis, 2002] and all these applications have been
for homogeneous cases. Furthermore, all the work pub-
lished thus far has dealt with what were essentially one-
dimensional sources or distributions, estimating the past
distribution of a contaminant in a one-dimensional medium,
or the release history of a point source, a uniform patch
source, or an interfacial source (see Table 1). None of the
methods has been used to estimate a multidimensional past
distribution of a contaminant.
[11] The relatively limited application of methods that

provide a function estimate of contaminant sources or
distributions to more complex problems is likely due to
two factors. First, some of the methods derived for specific
applications are not easily extendable to multiple dimensions
or to heterogeneous media. Several methods are also only
applicable to the identification of release histories at a point
but not historical distributions or vice versa. The second
factor is the computational cost associated with solving more
complex problems, as many of the listed methods require a
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large number of numerical runs for each solution of an
inverse problem.
[12] The current work will for the first time allow for the

recovery of the historical multidimensional spatial distribu-
tion of a contaminant. Furthermore, this will be done in a
heterogeneous domain.

2.2. Application of Adjoint State

[13] The most common application of the adjoint state
method in environmental applications is in improving the
computational efficiency of sensitivity analyses. This sen-
sitivity information can then be used for a variety of other
purposes, as will be discussed later. Properly formulated,
the adjoint state method allows for the sensitivity to a
total of m parameters (or, alternately, m points in a
discretized unknown function) to be determined through
the solution of n flow or transport problems, where n is the
number of available observations. Without the use of the
adjoint state method, the number of required problem
solutions is of the order of m. Clearly, the relative
efficiency of the method increases as m becomes signifi-
cantly greater than n.
[14] Examples of applications of the adjoint state method

to sensitivity analyses in groundwater hydrology abound
in the literature. The adjoint state method has been used
with the groundwater flow equation for sensitivity analysis
for parameter estimation [Sykes et al., 1985; Townley and
Wilson, 1985; Wilson and Metcalfe, 1985; Lu et al.,
1988; Yeh and Sun, 1990], for inverse modeling to obtain
an estimate of the hydraulic conductivity distribution
[Vemuri and Karplus, 1969; Neuman, 1980; Neuman et
al., 1980; Sun and Yeh, 1990a, 1990b; Sun, 1994;
McLaughlin and Townley, 1996; Cirpka and Kitanidis,

2000], for groundwater remediation design [Ahlfeld et
al., 1988], and for pumping test design [Yeh and Sun,
1990]. Although most of the work has concentrated on the
groundwater flow equation, the adjoint state method has
also been applied in conjunction with the advection
dispersion equation for solute transport in groundwater.
Tracer or solute information was used by Ahlfeld et al.
[1988] in the design of groundwater remediation. Cirpka
and Kitanidis [2000] used temporal moments of tracer data
to aid in inverse modeling to estimate the hydraulic
conductivity distribution.
[15] The adjoint state method has also been applied in

the solution of forensic groundwater problems in a few
instances. Dimov et al. [1996] derived the adjoint state
equation for the nonreactive advection-dispersion equation
with a source term in one dimension. Their method uses a
numerical integration technique to evaluate a linear func-
tional arising from the solution of the adjoint problem. The
authors applied the method to the solution of two specific
source identification problems: (1) the identification of the
set of locations where a point source can be located such
that the concentration at a given downstream point at a
given time does not exceed a given maximum concentra-
tion, and (2) the identification of the location and strength
(in terms of contaminant flux) of a constant point source
based on two downstream measurements. Neupauer and
Wilson [1999] also derived the one-dimensional adjoint
state formulation for the advection-dispersion equation
with sources and sinks. The authors applied the solution
to the derivation of backward-in-time location and travel-
time probabilities of a contaminant plume emanating from a
single instantaneous point source. Neupauer and Wilson
[2001] extended the method to three dimensions and

Table 1. Applications of Inverse Modeling Methods That Provide a Function Estimate of the History of Contamination

Method Reference Estimated Function Source Type Domain Dimensions Site

Deterministic Approaches
Tikhonov regularization Skaggs and Kabala [1994] release history point homogeneous 1-D hypothetical

Skaggs and Kabala [1998] release history point homogeneous 1-D hypothetical
Liu and Ball [1999] concentration history interface nonuniform 1-D DAFBa

Neupauer et al. [2000] release history point homogeneous 1-D hypothetical
Quasi-reversibility Skaggs and Kabala [1995] release history point homogeneous 1-D hypothetical

Bagtzoglou and Atmadja [2003] historical distribution point heterogeneous 1-D hypothetical
Spectral analysis Birchwood [1999] location and time

of rectangular pulse
point homogeneous 1-D hypothetical

Nonregularized nonlinear
least squares

Alapati and Kabala [2000] release history point homogeneous 1-D hypothetical

Progressive genetic
algorithm methods

Aral et al. [2001] release history and
source location

point heterogeneous 3-D hypothetical

Marching-jury backward
beam equation method

Atmadja and Bagtzoglou [2001] release history point nonuniform 1-D hypothetical
Bagtzoglou and Atmadja [2003] historical distribution point heterogeneous 1-D hypothetical

Stochastic Approaches
Minimum relative entropy Woodbury and Ulrych [1996] release history point homogeneous 1-D hypothetical

Woodbury et al. [1998] release history patch or point homogeneous 3-D GLb and
hypothetical

Neupauer et al. [2000] release history point homogeneous 1-D hypothetical
Geostatistically based
methods

Snodgrass and Kitanidis [1997] release history point homogeneous 1-D hypothetical
Michalak and Kitanidis [2004] concentration history interface nonuniform 1-D DAFBa

Michalak and Kitanidis [2002] release history patch homogeneous 3-D GLb

Michalak and Kitanidis [2003] concentration history interface nonuniform 1-D DAFBa

present work historical distribution any heterogeneous 3-D hypothetical

aDover Air Force Base, Delaware.
bGloucester Landfill, Ottawa, Ontario, Canada.
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applied it to a synthetic two-dimensional, homogeneous test
case. The inverse methods of Dimov et al. [1996] and
Neupauer and Wilson [1999, 2001], however, are only
directly applicable to the identification of a single point
source.

3. Objectives

[16] The work presented in this paper has several
objectives. First, this work extends the geostatistically
based contaminant source release history identification
methods developed by Snodgrass and Kitanidis [1997]
and Michalak and Kitanidis [2002, 2003, 2004] to the
identification of the historical multidimensional spatial
distribution of a contaminant, and demonstrates the new
method’s applicability in a fully heterogeneous medium.
Second, the adjoint formulation of the advection-
dispersion equation is applied to improve the computa-
tional efficiency of solving underdetermined inverse
problems, thereby allowing for more complex problems
to be examined. Third, the adjoint formulation is imple-
mented in a manner that allows for encapsulation
of groundwater flow and contaminant transport codes.
Existing models are thereby reused as modules without
requiring modification to the models themselves. Fourth,
the developed methods are tested using three hypothetical,
two-dimensional case studies involving the recovery of the
historical distribution of a groundwater contaminant. The
first is an idealized case in a homogeneous domain, with a
fine sampling array and small measurement error. The
second and third examples involve a homogeneous and a
deterministically heterogeneous aquifer, respectively, with
more realistic sampling configurations and introduced
errors. The third example also represents the first applica-
tion of a stochastic inverse modeling method in a fully
heterogeneous domain. The heterogeneous application
uses MODFLOW [McDonald and Harbaugh, 1988;
Harbaugh and McDonald, 1996] for the solution of
the flow problem and MT3DMS [Zheng, 1990; Zheng
and Wang, 1999] for the solution of the transport problem.
These codes were used as external modules by the adjoint
and inverse methods.

4. Geostatistical Approach to Estimating the
Historical Distribution of a Contaminant

[17] Geostatistical inverse modeling follows a Bayesian
approach. Bayes’ theorem states that the posterior probabil-
ity density function (pdf ) of a state vector s given an
observation vector z is proportional to the likelihood of
the state given the data, times the prior pdf of the state.
Symbolically,

p00 sð Þ ¼ p zjsð Þp0 sð ÞZ
p zjsð Þp0 sð Þds

; ð1Þ

where the vertical bar means ‘‘given.’’ In this context, prior
and posterior probability density functions are with respect
to using the data z. In the geostatistical approach the prior
represents the assumed spatial or temporal correlation
structure of the unknown function, as described by a
covariance function. The likelihood of the data represents

the degree to which an estimate of the unknown function s
reproduces the available data z.
[18] Overall, the objective is to estimate the unknown

function s. The standard estimation problem may be
expressed in the form

z ¼ h s; rð Þ þ E; ð2Þ

where z is an n � 1 vector of observations and s is an
m � 1 state vector obtained from the discretization of the
unknown function. Whereas in past applications of the
geostatistical approach to inverse modeling s represented
the release history from a known source [Snodgrass and
Kitanidis, 1997; Michalak and Kitanidis, 2002, 2003,
2004], in the case examined here s is the spatial distri-
bution of a contaminant at a previous time Ta. The
vector z contains the available groundwater concentration
measurements. The vector r contains other parameters
needed by the model function h(s, r). The measurement
error is represented by the vector E. This error encom-
passes both the actual measurement error associated with
collecting the data and any random numerical or concep-
tual inaccuracies associated with the evaluation of the
function h(s, r).
[19] When the function h(s, r) is linear in the unknown s,

as will be the case in the applications presented in this work,
the function h(s, r) can be written as

h s; rð Þ ¼ Hs; ð3Þ

where H is a known n � m matrix, the Jacobian
representing the sensitivity of the observations to the
function s (i.e., Hi,j = @(zi � ei)/@sj). In the case of the
identification of the historical distribution of a contami-
nant, H represents the sensitivity of available observations
to the concentration of the contaminant at given spatial
locations and single previous time. The components of H
could be obtained numerically by performing one run of a
groundwater transport model for each component of s.
When s is discretized finely or when it varies in multiple
dimensions, the computational cost quickly becomes pro-
hibitive. This is the issue that will be addressed by the
implementation of the adjoint state method in the next
section.
[20] Following geostatistical methodology and returning

to equation (2), s and E are represented as random vectors.
We assume that E has zero mean and known covariance
matrix R. The covariance of the measurement errors that
will be used is

R ¼ s2RI; ð4Þ

where sR
2 is the variance of the measurement error and I is

an n � n identity matrix. We model s, the unknown
function, as a random vector with expected value

E s½ 
 ¼ YB; ð5Þ

where Y is a known m � p matrix and B are p unknown drift
coefficients that can represent the mean of the process as
well as linear and/or nonlinear dependence on auxiliary
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variables. For example, for a linear drift in two dimensions,
p = 3,

Y ¼

1 x1;1 x2;1

..

. ..
. ..

.

1 x1;m x2;m

266664
377775 ð6Þ

and B represents the mean and trend of the unknown
function, such that at a point (x1,i, x2,i) the a priori expected
value of the function s is

E si½ 
 ¼ Yi;1b1 þ Yi;2b2 þ Yi;3b3
¼ b1 þ x1;ib2 þ x2;ib3: ð7Þ

The prior covariance function of s is

Q Qð Þ ¼ E s� YBð Þ s� YBð ÞT
h i

; ð8Þ

where Q(Q) is a known function of unknown parameters Q.
This function represents the correlation between the histor-
ical contaminant concentration at various points, which, for
most models, decays as the separation distance between the
points increases. In the case of a cubic generalized covari-
ance function (GCF) in two spatial dimensions, which is the
function that will be used in the presented applications, the
covariance matrix can be written as

Q x1;i; x2;i

 �

; x1;j; x2;j

 �

jq

 �

¼ qh3

¼ q x1;i � x1;j

 �2 þ x2;i � x2;j


 �2h i3=2
;

ð9Þ

where (x1,i, x2,i) and (x1,j, x2,j) are the x1 and x2 coordinates
of the ith and jth locations at which the contaminant
distribution is to be estimated and h is the separation
distance between these locations.
[21] The method used to obtain the structural parameters,

in our case q and sR
2 , follows a restricted maximum

likelihood approach, as detailed by Kitanidis [1995]. In
short, the parameters are estimated by maximizing the
probability of the measurements

p zjq; s2R

 �

/ 2j j�1=2
YTHT2�1HY
�� ���1=2

exp � 1

2
zT7z


 �
; ð10Þ

where k denote matrix determinant and

2 ¼ HQHT þ R ð11Þ

7 ¼ 2�1 �2�1HY YTHT2�1HY

 ��1

YTHT2�1: ð12Þ

[22] Once these parameters have been estimated, and
returning to the Bayesian notation outlined in equation (1),
the posterior probability density of the unknown vector s is
Gaussian:

p00 sð Þ

/ exp � 1

2
z�Hsð ÞTR�1 z�Hsð Þ þ s� YBð ÞTQ�1 s� YBð Þ

� �
 �
;

ð13Þ

where the first term represents the likelihood and the second
term represents the prior probability density function of s.

The system of equations that allows us to obtain the best
estimate and posterior covariance of s is [e.g., Michalak and
Kitanidis, 2003]

2 HY

HYð ÞT 0

24 35 +T

M

24 35 ¼
HQ

YT

24 35; ð14Þ

where + is a m � n matrix of coefficients and M is a p � m
matrix of multipliers. The best estimate of the function is

bs ¼ +z ð15Þ

and its posterior covariance is

Vbs ¼ �YMþQ�QHT+T : ð16Þ

The diagonal elements of Vbs represent the posterior
variance of individual elements of bs.
[23] In short, once the form of the prior covariance model

has been selected, the values of the required structural
parameters as well as the measurement error variance can
be optimized using a restricted maximum likelihood
approach. The inverse problem can then be solved by
formulating a set of n + p algebraic equations to obtain a
best estimate for the contaminant distribution, bs, as well as
an estimate of its posterior covariance, Vbs . Conditional
realizations, which are equally likely realizations of the
historical contaminant distribution s, can also be generated
[e.g., Michalak and Kitanidis, 2003].

5. Adjoint State Formulation and
Implementation

[24] In the solution of inverse problems, the number of
observations is often significantly lower than the number of
estimate locations (i.e., n 
 m). In such cases, the applica-
tion of the adjoint state method can significantly reduce the
cost of computing the Jacobian H. Note that adjoint
methods have traditionally been used primarily for nonlin-
ear sensitivity analyses to a small number of parameters. We
are instead interested in deriving the sensitivity to a spatially
variable function s in a linear system.
[25] Note that in the remainder of this paper, x denotes the

spatial coordinate, whereas X denotes locations at which
measurements are taken. Furthermore, t denotes the tempo-
ral coordinate, t = Tb is the time at which measurements are
taken, and t = Ta is the time for which the contaminant
distribution is to be estimated.

5.1. Multidimensional Advection Dispersion Equation

[26] A generic form of the advection-dispersion equation
for solute transport is

h
@C

@t
¼ @

@xi
hDij

@C

@xj

� �
� @

@xi
hviCð Þ þ qsCs � q0C; ð17Þ

where repeated index notation is used, t is time, xi are the
spatial directions (i = 1, 2, 3), x = (x1, x2, x3), C is resident
concentration, h is porosity for porous media and unity for
other cases, Dij is the i, jth entry of the dispersion tensor, vi
is the fluid velocity in the direction of xi, qs is the source
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flow rate per unit volume, Cs is the source strength in mass
per unit volume, and qo is the sink flow rate per unit
volume. The initial conditions are

C x; Tað Þ ¼ Ca xð Þ; ð18Þ

where Ta is the time at which the initial condition is
specified and Ca is the concentration distribution at that
time. The possible boundary conditions are listed in Table 2,
where G1, G2, G3 are subsets of the domain boundaries, ni is
the outward unit normal vector in the xi direction, qD is a
dispersive mass flux per unit volume, and eC is a specified
concentration. The first two terms on the right-hand side
of equation (17) represent the divergence of the dispersive
and advective mass fluxes, respectively. The advection-
dispersion operator is

L½ 
 ¼ �h
@½ 

@t

þ @

@xi
hDij

@½ 

@xj

� �
� @

@xi
hvi½ 
ð Þ � q0½ 


¼ �qsCs ð19Þ

In our application, the initial condition in equation (18)
represents the time for which the contaminant distribution is
to be estimated, regardless of when the contaminant was
originally released. As such, the initial condition does not
necessarily represent the time at which the contaminant was
introduced into the aquifer. We will be defining simulations
that will allow us to compute the sensitivity of the available
observations z to the unknown distribution of the
contaminant in a given area, at a given time in the past Ta.

5.2. Adjoint State Formulation

[27] A sensitivity analysis approach [e.g., Sykes et al.,
1985] can be used to derive the adjoint of the advection-
dispersion equation presented in equation (17). Neupauer
and Wilson [2001] presented such a derivation, and their
steps are summarized here, modified as needed for the
current application.
[28] A performance measure P that quantifies some state

of the system is defined as

P ¼
Z Z

W;t
z s;Cð ÞdWdt; ð20Þ

where z(s, C ) is a functional of the state of the system, s is a
parameter or set of parameters that we are interested in
estimating, C is resident concentration for solute transport,
W is the spatial domain, and integration is over the entire
space-time domain. In the derivation of Neupauer and
Wilson [2001], s was the strength of an instantaneous point
source. In our case, s is the solute concentration distribution
in a region of interest Wa at some point in the past, Ta. The
performance measure P is the predicted concentration
C(X,T ) at an observation location, and the function z(s,C)
is defined accordingly.

[29] The marginal sensitivity of this performance measure
with respect to a parameter s is obtained by differentiating
equation (20):

dP

ds
¼

Z Z
W;t

@z s;Cð Þ
@s

þ @z s;Cð Þ
@C

y

 �

dWdt; ð21Þ

where dP/ds is the marginal sensitivity that we are interested
in and y is the state sensitivity, y = @C/@s. Because the state
sensitivity y is unknown, adjoint theory is used to eliminate
it from equation (21), and the marginal sensitivity is
obtained in terms of the adjoint state.
[30] Differentiating the governing equation (17) with

respect to a distributed parameter s to obtain the governing
equation in terms of the state sensitivity, y, and assuming
that the boundary conditions, porosity, dispersion tensor,
fluid velocity, and source and sink flow rates do not depend
on the solute distribution at the time of interest, we obtain

�h
@y
@t

þ @

@xi
hDij

@y
@xj

� �
� @

@xi
hviyð Þ � dy ¼ 0; ð22Þ

where y has homogeneous boundary conditions and,
because we defined s as the distribution of Ca in the region
Wa, the initial condition becomes

y x; Tað Þ ¼
@Ca

@Ca

¼ 1 for x 2 Wa

0 otherwise:

8><>: ð23Þ

[31] Taking the product of each term in equation (22)
with an arbitrary function y* (the adjoint state), integrating
over time and space, adding this equation to the right-
hand side of equation (21) and integrating by parts yields
[Neupauer and Wilson, 2001]

dP

ds
¼
Z Z

W;t

�
@z s;Cð Þ

@s
þ y



@z s;Cð Þ

@C
þ h

@y*
@t

þ @

@xi
hDji

@y*
@xj

� �
þ hvi

@y*
@xi

� q0y*
�
� @

@t
yhy*ð Þþ @

@xi



y*h

@y
@xj

� yhDij

@y*
@xj

� hviyy*
��

dWdt: ð24Þ

[32] Because y* is not defined at this stage, we can
prescribe its properties in a manner that is most convenient
to our goal of eliminating y from equation (24). The second
term in the integral can be eliminated by defining an
appropriate governing equation for y*. The remaining terms
that contain y are the spatial and temporal divergence terms.
Integrating the temporal divergence term over the time
domain, applying Gauss’s divergence theorem to the spatial
divergence terms, and substituting the initial and boundary
conditions on y, it can be shown that the remaining terms

Table 2. Possible Boundary Conditions for Solute Transport

Type Name Meaning Expression

First Dirichlet fixed concentration C (x, t) = eC on G1

Second Neumann fixed dispersive flux �Dij(@C/@xj)ni = qD on G2

Third Cauchy fixed total mass flux [hviC � hDij(@C/@xj)]ni = hvieCni on G3
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containing y vanish if the final condition on y* is set to y*
(x, Tb) = 0, and the boundary conditions on y* are
homogeneous on G1, G2, and G3 [Neupauer and Wilson,
2001]. Specifying y* in this way and defining backward
time as t = Tb � t, the adjoint of the governing operator and
its initial and boundary conditions are

L* y*½ 
 ¼ �h
@y*
@t

þ @

@xi
hDij

@y*
@xj

� �
þ @

@xi
hviy*ð Þ � qsy*

¼ � @z
@C

ð25Þ

y* x; 0ð Þ ¼ 0

y* x; tð Þ ¼ 0 on G1

hDij

@y*
@xj

þ hviy*

 �

ni ¼ 0 on G2

hDij

@y*
@xj


 �
ni ¼ 0 on G3;

ð26Þ

where we assume steady flow (i.e.,r � hv = c
Cs

�d = qs � q0,
and hvi

@y*
@xi

� q0y* = @
@xi

(hviy*) � qsy*). In equation (25),
L* [ ] is the adjoint operator of equation (19) and y* is
the adjoint state. Note that the differences between the
governing equation and its adjoint are that the signs on the
first-derivative terms are reversed. In addition, the form
of Dirichlet (first-type) boundary condition remains
unchanged, the adjoints of Neumann (second-type) boundary
conditions are Cauchy (third-type) boundary conditions,
and vice versa. For our setup the marginal sensitivity of
the performance measure in equation (24) simplifies to

dP

ds
¼

Z Z
W;t

@z s;Cð Þ
@s

dWdt þ
Z
W
y*jt¼Ta

@Ca

@s
dW: ð27Þ

According to equation (23), given that in our setup s is the
concentration distribution in the subdomain Wa at time Ta,
this equation simplifies to

dP

ds
¼

Z Z
W;t

@z s;Cð Þ
@s

dWdt þ
Z
Wa

y* jt¼Ta
dWa; ð28Þ

where the integral of y* is over the subdomain Wa,
because y(x ,Ta) = 0 everywhere else.

5.3. Adjoint State Source Terms

[33] In our setup the performance measure P is C(X, 0),
the solute resident concentration at a measurement location
defined in three spatial directions X = (X1, X2, X3), and t =
0. The load term for the adjoint state, @z/@C, is defined such
that the integral of the performance functional z evaluates to
the observation value. Assuming a point measurement, z is
given by

z s;Cð Þ ¼ C x; tð Þd x� Xð Þd tð Þ: ð29Þ

The Dirac delta function in time causes the integral to be
evaluated only at t = 0. Using this z, the resulting governing
equation for the adjoint state is

L* y*½ 
 ¼ � @z
@C

¼ �d x� Xð Þd tð Þ: ð30Þ

[34] Having defined the governing equation, boundary
conditions, and source terms on y*, the only remaining task
is to derive H from the results of the adjoint runs. Given the

form of the performance functional z (s,C ) in equation (29),
it is clear that the direct contribution to the marginal
sensitivity as defined in equation (28) (i.e., @z(s,C )/@s) is
zero. In a discretized domain the individual contaminant
regions that we are interested in, Wa, are simply the grid cells
within the area where the historical contaminant distribution
is to be estimated. Therefore, for each observation location,
one adjoint run is performed using a source term as defined
in equation (30), and the marginal sensitivities of this
observation to the discretized unknown contaminant distri-
bution s are defined simply by y* (x, t = Tb � Ta), where x
are the grid points at which s is to be estimated. An adjoint
run with a source term at the location of observation Ca thus
defines one full row of the H matrix, Hi,j = 1..m.

5.4. Implementation

[35] Many general purpose codes as well as case or site-
specificmodels are available for the solution of the advection-
dispersion equation.Although implementing inversemethods
that provide function estimates of sources or historical dis-
tributions has up to this point required the development of
custom groundwater flow and/or contaminant transport
codes, there are many advantages to reusing existing models,
especially if modifications to these models can be avoided. In
such cases, thesemodels would essentially be used as external
program modules by the inverse modeling code. The use of
modules has been shown to improve code maintainability
[Glass and Noiseux, 1981; Lientz and Swanson, 1980] and
comprehension [Shneiderman and Mayer, 1979] and is
compatible with the notions of encapsulation and abstrac-
tion advocated by object-oriented design [McConnell,
1993]. Because groundwater flow and transport codes offer
a collection of services in a way that allows for an external
program to interact with them cleanly, they are perfectly
suited for being coupled with an additional inverse model.
For example, Neupauer and Wilson [2001] described the
possibility of using existing groundwater transport codes
for performing adjoint simulations.
[36] In this section we present an implementation of this

idea for the problem of deriving the historical distribution of
a contaminant. The flow field, boundary conditions, and load
terms in the transport model need to be set up in a manner
that reflects the adjoint model described in sections 5.2 and
5.3. The setup of adjoint transport simulations is described
here, with additional implementation details presented by
Michalak [2003]. Note that the setup for the flow field and
boundary conditions would be similar for various applica-
tions of the adjoint state method, and is also described by
Neupauer and Wilson [2001] for a different problem. The
initial conditions and performed simulations, on the other
hand, are specific to the problem being addressed.
5.4.1. Flow Field
[37] The steady state flow field should first be calculated

in the same manner as if forward simulations were to be run.
The flow field is then reversed because the time parameter t
is defined as reverse time in the derivation of the adjoint state
methodology, starting at the time at which observations were
taken (t = T� t). The simplest way to do this is to change the
sign on all flow terms in the output file of the flow model.
5.4.2. Boundary Conditions
[38] First-type boundary conditions remain first-type,

second-type boundary conditions become third-type, and
third-type boundary conditions become second-type. Fur-
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thermore, all boundary conditions are homogeneous
(i.e., the right-hand side is zero) for the adjoint runs (see
equation (26)). Note that if the velocities normal to a
boundary are zero, second-type and third-type boundary
conditions have equivalent forms and can therefore be
simulated even if the transport code only supports one of
these boundary types (see also section 6.2).
5.4.3. Initial Conditions
[39] Because we are working in discretized space, the

Dirac delta function d (x � X) d (t) that was derived as
the initial condition in equation (30) becomes a Kronecker
delta function in numerical applications. Therefore, if we
are interested in estimating the historical contaminant
distribution in an aquifer, each adjoint run has an initial
concentration of zero everywhere, except in the grid cell
containing the observation, where the concentration is set
to one.
5.4.4. Simulations
[40] The transport model is run once for each observation.

The total duration of the run is equal to the amount of time
elapsed between the time at which the contaminant distri-
bution is to be estimated and the time at which the
observation was made. Once the simulation has been run
for the appropriate time, the concentration is recorded at
each point in the discretized area of interest. The concen-
trations in this zone resulting from each adjoint run
represent sensitivities of that observation to a historical
concentration at each of the points in the discretized zone.
As such, the results of each adjoint run allow for one row of
the sensitivity matrix H to be filled.

6. Application to the Estimation of the
Historical Contaminant Distribution in
Two-Dimensional Aquifers

[41] Three sample applications are presented. They
involve the identification of the historical distribution of a
contaminant in a two-dimensional aquifer. Measurements
are taken at a time Tb, and the distribution at a prior time
Ta is to be estimated. Although the presented examples
involve hypothetical cases, they are representative of con-
ditions observed at the field scale. For the first two examples,
the aquifer is assumed to be homogeneous, whereas a
deterministically heterogeneous hydraulic conductivity field
is used in the third. The first example is an idealized case,

whereas the second and third examples have more realistic
setups. Although the method is directly applicable to three-
dimensional systems, two-dimensional systemswere selected
for these applications for ease of illustration.

6.1. Homogeneous Aquifer

[42] The first two examples involve the identification of
the historical contaminant distribution in a homogeneous
aquifer at time Ta, based on downgradient concentration
measurements taken at a time Tb = (Ta + 2000) days (or
approximately 5.5 years later). The aquifer is assumed to be
infinite in both directions, with a groundwater seepage
velocity of v1 = 0.1 m/d, v2 = 0 m/d. The effective dispersion
coefficients are D1 = 0.3 m2/d, D2 = 0.03 m2/d. The actual
distribution at time Ta, which would be unknown in a field
case, is presented in Figure 1. The measured distribution at
time Tb is presented in Figure 2. We intend to recover the
contaminant distribution in the regionWa = {x : x12 (0, 256),
x2 2 (168, 392)}, which is also outlined in Figure 1. For the
purpose of solving the inverse problem, this area will be
discretized into 8-m intervals, yielding 896 points at which
the concentration at time Ta is to be estimated.
[43] The first example, referred to as the Idealized Case, is

designed to demonstrate the method’s ability to recover the
historical contaminant distribution for a case with extensive
sampling and small measurement error. For this example,
sampling was conducted on a 16-m � 16-m grid in the
range {x : x1 2 (200, 456), x2 2 (152, 408)}, yielding a
total of 289 concentration measurements. A vector of
normally distributed measurement errors E with mean zero
and small variance of 10�10 (mg/L)2 was added to the actual
concentration values C.
[44] The second example, referred to as the Homoge-

neous Case, involves a sparser measurement array and
higher errors. The sampling was conducted on a 32-m �
32-m grid, yielding 54 concentration measurements. Given
the ratio of observations to unknowns (54 : 896), the
problem is strongly underdetermined. A vector of normally
distributed measurement errors E with mean zero and
variance 10�6 (mg/L)2 was added to the actual concentra-
tion values C to simulate the effect of the model and
measurement error that would always be present in a field
setting. This measurement error is equivalent to a standard
deviation of 1 ppb.

Figure 1. Actual contaminant distribution at time Ta and
estimation region (in dotted line).

Figure 2. Actual contaminant distribution at time Tb for
the Idealized and Homogeneous Cases and measurement
locations for the Homogeneous Case.
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[45] For both examples, the vector of observations, z, and
that of the unknown function s we wish to estimate are

z ¼

C X1;1;X2;1; Tb

 �

C X1;2;X2;2; Tb

 �

..

.

C X1;n;X2;n; Tb

 �

26666666664

37777777775
þ E; s ¼

s x1;1; x2;1; Ta

 �
s x1;2; x2;2; Ta

 �

..

.

s x1;m; x2;m; Ta

 �

26666666664

37777777775
: ð31Þ

For these examples, we have an analytical solution for the
forward problem:

C X1;X2; tð Þ ¼
Z
Wa

s x1; x2ð Þ f X1 � x1;X2 � x2; tð Þ dW; ð32Þ

where C (X1, X2, t) is the concentration at location (X1, X2)
at a time t after the time at which the historical distribution s
(x1, x2) is defined. In this case, t = Tb � Ta = 2000 days. The
distribution is a function of location and is expressed by s
(x1, x2) and the integration is over the historical plume
region Wa. The transfer function f (X1 � x1, X2 � x2, t)
applies the appropriate weight to the historical distribution
function:

f X1 � x1;X2 � x2; tð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
pD1t

p 1

2
ffiffiffiffiffiffiffiffiffiffi
pD2t

p

� exp � X1 � x1 � v1tð Þ2

4D1t
� X2 � x2 � v2tð Þ2

4D2t

" #
: ð33Þ

[46] In a standard setup the sensitivity matrix would have
elements Hi,j = Dx1Dx2 f (X1,i � x1,j, X2,i � x2,j, t). These
components could be calculated by perturbing each element
of sj (x1,j, x2,j), where j = 1,. . ., m and observing the impact
at each observation location (X1,i, X2,i), where i = 1,. . ., n.
To define the solution to the adjoint problem, the flow field
is reversed. Because there are no domain boundaries in this
case, we do not need to adjust boundary conditions for the
solution of the adjoint problem. Therefore the sensitivity
matrix H is expressed as

H ¼ Dx1Dx2

fy* x1;1 � X1;1; x2 � X2;1; t

 �

� � � fy* x1;m � X1;1; x2;m � X2;1; t

 �

fy* x1;1 � X1;2; x2 � X2;2; t

 �

� � � fy* x1;m � X1;2; x2;m � X2;2; t

 �

..

. . .
. ..

.

fy* x1;1 � X1;n; x2 � X2;n; t

 �

� � � fy* x1;m � X1;n; x2;m � X2;n; t

 �

26666666664

37777777775
;

where the adjoint transfer function is

fy* x1 � X1; x2 � X2; tð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
pD1t

p 1

2
ffiffiffiffiffiffiffiffiffiffiffi
pD2t

p

� exp � x1 � X1 þ v1tð Þ2

4D1t
� x2 � X2 þ v2tð Þ2

4D2t

" #
ð35Þ

and t = �(Tb � Ta) = 2000 days. Each row of matrix H can
be computed using a single vector operation, yielding a total
of n vector operations.
[47] From this point forward, the solution for both exam-

ples is obtained using the geostatistical inverse modeling
approach described in section 4. The cubic GCF with linear
drift was selected for this application because it yields
smooth estimates that have continuous first and second
derivatives everywhere, which is consistent with the con-
taminant distribution function used here. For the second
example, the structural parameter q in the cubic GCF model
and the measurement error variance sR

2 were assumed
unknown and were optimized using the restricted maximum
likelihood approach (see Table 3). The recovered contam-
inant distribution is presented in Figure 3a for the Idealized
Case and Figure 4a for the Homogeneous Case. The
standard deviations of the estimates are presented in
Figures 3b and 4b and are indicative of the uncertainty of
the inversion results.

6.2. Heterogeneous Aquifer

[48] The third example, referred to as the Heterogeneous
Case, again involves the identification of a historical con-
taminant distribution, but this time in a heterogeneous
aquifer. The distribution at time Ta is estimated based on
downgradient concentration measurements taken at time
Tb = Ta + 2000 days.
[49] The domain used for the third example is presented

in Figure 5. The domain is finite, measuring 1024 m and
512 m in the x1 and x2 directions, respectively. It is
discretized into 128 � 64 nodes in the x1 and x2 directions,
respectively, resulting in an 8-m � 8-m grid. No-flux
boundary conditions were applied at the top and bottom
boundaries for both flow and transport. The left-hand side
and right-hand side boundaries have prescribed constant
heads, resulting in a mean gradient of 3.472 � 10�2 m/m.
[50] The domain has a deterministically heterogeneous

hydraulic conductivity field with a geometric mean of
0.864 m/d (1.00 � 10�5 m/s), resulting in a mean velocity
in the x1 direction comparable to that used in the homo-
geneous application. The field was generated using the
numerical spectral approach of Dykaar and Kitanidis
[1992a, 1992b]. The flow solution was obtained using
MODFLOW [McDonald and Harbaugh, 1988; Harbaugh
and McDonald, 1996].

Table 3. Optimal Structural Parameter Values for Homogeneous

and Heterogeneous Cases

Structural Parameter Homogeneous Heterogeneous

q [(mg/L)2m�3] 4.1 � 10�7 6.8 � 10�7

sR
2 [(mg/L)2] 0.80 � 10�6 1.06 � 10�6

ð34Þ
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[51] The actual contaminant distribution at time Ta used
in this example is identical to the one used in the homoge-
neous applications (see Figure 1). The plume profile at time
Tb was obtained using MT3DMS [Zheng, 1990; Zheng and
Wang, 1999]. The boundary conditions used to solve the
forward problem were

C x; tð Þ ¼ 0 x1 ¼ 0; 1024½ 
; x2 2 0; 512½ 
 ð36Þ

hviC � hDij

@C

@xj

� �
ni ¼ 0 x1 2 0; 1024½ 
; x2 ¼ 0; 512½ 
:

ð37Þ

The distribution at time Tb is presented in Figure 6, along
with sampling locations. The sampling was conducted on
a 32-m � 32-m grid, as in the Homogeneous Case.
However, because the heterogeneous domain resulted in
more spreading of the plume, a total of 105 observation
locations were needed. The zone Wa for which we try to
recover the contaminant distribution is identical to that
used in the homogeneous applications, once again
yielding 896 points at which the distribution is estimated.
As in the homogeneous case, the problem is strongly
underdetermined.

Figure 3. Recovered contaminant distribution for time
Ta for the Idealized Case. (a) Best estimate. (b) Estimate
standard deviation.

Figure 4. Recovered contaminant distribution for time Ta
for the Homogeneous Case. (a) Best estimate. (b) Estimate
standard deviation.

Figure 5. Hydraulic conductivity field used for the
Heterogeneous Case.

Figure 6. Actual contaminant distribution at time Tb and
measurement locations for the Heterogeneous Case.
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[52] The solution was obtained in a method analogous to
the one presented for the homogeneous domain. The solution
to the adjoint problems, however, was obtained numerically,
using MT3DMS. For the adjoint runs, the MODFLOW-
derived flow field was reversed, and the boundary conditions
were changed to

y* x; tð Þ ¼ 0 x1 ¼ 0; 1024½ 
; x2 2 0; 512½ 
 ð38Þ

hviy*� hDij

@y*
@xj


 �
ni ¼ 0 x1 2 0; 1024½ 
; x2 ¼ 0; 512½ 
:

ð39Þ

Note that according to equation (26), the third-type
boundary condition in equation (37) should have been
changed to a second-type boundary condition. However, in
this case, the boundary condition for flow had been set as
no-flux for the upper and lower boundaries of the domain
(v2 = 0 for x1 2 [0, 1024]; x2 = [0, 512]) and the boundary
condition in equation (39) is equivalent to the required
second-type boundary condition:

hDij

@y*
@xj


 �
ni ¼ 0 x1 2 0; 1024½ 
; x2 ¼ 0; 512½ 
: ð40Þ

Therefore, in this case, the boundary conditions did not
need to be modified for the adjoint runs.
[53] Each adjoint run consisted of setting the initial

concentration to zero throughout the domain, except in the

grid cell corresponding to one of the observations, where
the concentration was set to one. The adjoint simulation was
run for 2000 days, at which point the concentration at each
point in the discretized historical distribution area Wa was
recorded. This process was repeated 105 times, once for
each observation. Without the use of the adjoint methodol-
ogy, a total of 896 runs would have been required. The
results from the adjoint simulations were used to fill in the
sensitivity matrix as outlined in equation (34).
[54] The recovered concentration distribution at time Ta

is presented in Figure 7a, and its standard deviation is
contoured in Figure 7b. Restricted maximum likelihood
estimates of parameter values q and the variance of the
measurement error sR

2 are presented in Table 3.

6.3. Discussion

[55] The adjoint state formulation was successfully
implemented both in cases where an analytical solution
exists for the forward problem and where a numerical
solution is required. In cases where a numerical solution
is required for the forward problem, the computational
savings are considerable, making the implementation of
inverse modeling in multidimensional heterogeneous media
manageable.
[56] The estimated covariance parameter q is similar for

the Homogeneous and Heterogeneous Cases (4.1 � 10�7

and 6.8 � 10�7 (mg/L)2 m�3, respectively). These param-
eters are an indication of the inferred correlation structure of
the historical distribution presented in Figure 1 but were
estimated without the use of this function, relying instead on
information contained in the available measurements (see
equations (10)–(12)). Because the historical distribution,
and therefore its spatial correlation structure, is the same for
both applications, the fact that the estimated q are similar is
indicative of the robustness of the approach. Also, because
in this pseudodata example we have access to the actual
historical distribution, the actual q can be derived [e.g.,
Kitanidis, 1997]. This parameter is estimated to be 1.1 �
10�7 (mg/L)2 m�3, which is in good agreement with the
values inferred from the measurements. The fact that the
inferred q is slightly lower than those recovered as part of
the inversion is likely due to the large fraction of the plume
area with zero concentration, which is not fully constrained
by the limited measurements used in the inversions, yield-
ing a higher inferred q.
[57] In addition, the variance of the error E that was

artificially added to the measurements to simulate the effect
of measurement and model error was assumed unknown
and was estimated for both test cases. The estimates
obtained for the Homogeneous and Heterogeneous Cases
were once again consistent (0.80 � 10�6 and 1.06 �
10�6 (mg/L)2, respectively) and are also close to the actual
variance of 1.00 � 10�6 (mg/L)2 (which would not be
known in a field setting).
[58] A good way to verify the effectiveness of the new

geostatistical approach combined with the use of the adjoint
method is to look at whether the overall method is effective
at estimating the historical contaminant distribution and the
uncertainty about that estimate. As can be seen in Figure 3a,
the distribution is recovered almost perfectly in the Ideal-
ized Case, indicating that the method can recover the
contaminant distribution, when there is enough information
in the measurements to strongly constrain the inversion. For

Figure 7. Recovered contaminant distribution for time Ta
for the Heterogeneous Case. (a) Best estimate. (b) Estimate
standard deviation.
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this Idealized Case, the posterior standard deviations pre-
sented in Figure 3b are very low (notice the different color
scale relative to Figures 4b and 7b), indicating that the
method recognizes the fact that the contaminant distribution
is very well defined.
[59] Having demonstrated the method’s effectiveness for

the Idealized Case, we now examine the results for the
Homogeneous and Heterogeneous Cases. As can be seen
in Figures 4a and 7a, the historical contaminant distribu-
tion is recovered reasonably well in these applications. We
do not, in fact, expect to be able to recover the contam-
ination distribution perfectly in these cases, because of the
information loss that inevitably results from the mixing
process, the added model and measurement error, and the
small number of measurements relative to unknowns. In
these hypothetical cases, we could easily have come as
close to recovering the exact historical distribution as we
would have wanted to, by increasing the number of
measurement locations n and decreasing the variance of
the error vector E added to the measurements, as was
demonstrated in the Idealized Case. This was not the goal
of the exercise, however. Instead, we are interested in
verifying whether the method can accurately gauge to
what extent the distribution can be recovered in realistic
cases, by providing meaningful confidence intervals (as
quantified by the posterior variance of bs ) in addition to a
best estimate. In other words, we want the method to be
able to gauge the precision of the best estimate. The
posterior standard deviations presented in Figures 4b
and 7b give an indication of the precision of the obtained
solution, and ideally, the actual contamination distribution
at time Ta should fall within two standard deviations of the
best estimate 95% of the time. Conversely, the actual
contamination distribution should fall outside the 95%
confidence intervals at 5% of the points in the discretized
unknown function. This would be an indication that the
method has effectively gauged the degree to which the
historical distribution could be recovered. For the Homo-
geneous and Heterogeneous Cases presented here, the
actual historical contaminant distribution lay outside two
standard deviations of the best estimate at 6.1% and 8.0%
of the grid cells, respectively. Both of these percentages
are close to the ideal case where this would occur at 5% of
the points, indicating that the method is successful in
determining the precision of the obtained best estimate.
Note that these percentages would vary somewhat based
on the particular realization of the measurement error E

that is artificially added in generating the observation
pseudodata. For the sample applications presented here,
the percentages varied between approximately 5% and 7%
for the Homogeneous Case, and between approximately
3% and 10% for the Heterogeneous Case for different
realizations.
[60] Finally, it is worthwhile to note that for the presented

applications, the historical distribution was recovered based
on measurements that were all obtained at the same time. As
has been demonstrated in past applications of the geo-
statistical approach to inverse modeling [e.g., Michalak
and Kitanidis, 2002], the method can also be applied if
measurements are taken at different times. In that case, the
duration of the individual adjoint simulations would be
variable, equal to the time elapsed between the time at

which the contaminant distribution is to be estimated and
the time at which a given measurement was taken.

7. Conclusions

[61] The work presented in this paper extends the geo-
statistical approach to inverse modeling to the recovery of a
historical contaminant distribution, implements an adjoint
methodology that improves the efficiency of solving under-
determined inverse problems, allows existing groundwater
flow and transport codes to be used as modules of the
inverse model, and presents the first application of an
inverse modeling method to the identification of a historical,
multidimensional contaminant distribution in a heteroge-
neous medium.
[62] The method was tested using three applications. The

Idealized Case demonstrated the method’s ability to
precisely and accurately recover the historical contaminant
distribution in an aquifer when the quantity and quality
of available data are sufficient. The Homogeneous and
Heterogeneous Cases demonstrated the method’s ability to
recover a reasonable best estimate of the contaminant
distribution and to accurately gauge the precision of that
estimate. Although the method was applied here to derive
the historical contaminant distribution at a single time, the
method is also applicable to obtaining a time-dependent
description of the history of a plume. In that case the
distribution of the adjoint state y* in the adjoint runs would
be recorded for a series of times t, and the inversion would
be performed for each of these times.
[63] Finally, although the adjoint state methodology was

presented with an application to geostatistical inverse mod-
eling in mind, several of the other inverse modeling
methods described in Table 1 could benefit directly from
this work. Methods such as Tikhonov regularization, non-
regularized nonlinear least squares, and minimum relative
entropy all require the calculation of a sensitivity matrix
analogous to H. Therefore, although the specific inverse
modeling algorithms differ from the geostatistical approach,
the adjoint method implemented in this work would allow
for similar computational savings in calculating the sensi-
tivity matrix if applied with these methods.
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