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ABSTRACT: Organic/inorganic epoxy nanocomposites containing diglycidyl ether of bisphenol A (DGEBA), 4-methylhexahydrophthalic

anhydride (MHHPA) and poly(aminopropyl/phenyl) silsesquioxanes (PAPPS) were prepared and characterized. PAPPS were synthesized

via fluoride-catalyzed cage formation from random-structured poly(phenyl)silsesquioxane (PPS) and 3-aminopropyltriethoxysilane

(APTES) in tetrahydrofuran (THF) using tetrabutylammonium fluoride (TBAF) catalyst containing substantial water. The PPS/APTES

stoichiometric ratios were varied. The FTIR, 1H, solid-state 29Si-NMR studies show that PAPPS probably consists of cages, partial cages,

and some linear structures containing phenyl and aminopropyl functional groups. The amine content was determined by back titration

and elemental analysis. In comparison with neat epoxy, incorporation of these materials can improve the resultant thermal stabilities,

raise glass transition temperatures (Tgs), and reduce coefficients of thermal expansion (CTEs) of epoxy nanocomposites as confirmed by

TG/DTA, DMA and TMA tests, respectively. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 128: 3601–3608, 2013
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INTRODUCTION

There is recent intense interest in the development of silses-

quioxane (SQ) based materials based on their 3D nature, their

ability to offer a very high degree of functionalization, their ease

of synthesis and typically high thermal stability. This is evi-

denced by the fact that there are now some 17 reviews on SQs

and the related Q silicates.1–17 These references describe their

potential application in a broad range of areas from biomedical,

to organic light emitting diodes, to nanocomposites.

In our own efforts, we have described their utility in formulating

nanocomposites that offer control of coefficients of thermal

expansion in epoxy resins from 23 to 230 ppm/�C, and as O2 bar-

rier materials, as recently summarized.9 In this work, we used

primarily [NH2C6H4SiO1.5]8 as the curing agent varying only the

types of epoxy compounds used. Most recently, we discovered a

method of using F� catalysis to form T10 and T12 mixed

[NH2C6H4SiO1.5]2.x[C6H5SiO1.5]10/12-2.x SQ systems18 with the

objective of controlling the degree of crosslinking such that it is

now possible to produce soluble, processable epoxy resins.

In this work, we discuss several new firsts. These include the

first example of the use of F� catalysis to introduce amino-

propyl moieties directly into T10 and T12 phenylSQs. Second the

first example of the use of a monomer, aminopropyltrialkoxysi-

lane, as a reactant in the formation of T10 and T12 cages.

Finally, we provide the first examples of the use of aminopropyl

functionalized T10 and T12 cages to form epoxy resins. The

objective here is to provide general methods for the use of ami-

nopropyl functionality to control resin properties with the goal

of greatly expanding the utility of SQ systems in diverse epoxy

resin applications.

The incorporation of organic/inorganic silsesquioxanes (SQs)

into polymer matrices has been extensively investigated to

improve nanocomposites properties due to the intrinsic proper-

ties of SQs including nanometer dimensions, low densities,

excellent heat, and fire-resistant properties as well as the ability

to tailor the types and amounts of functional groups. SQs gen-

erally consist of silicon-oxygen cores with (SiO1.5)n abbreviated

Tn, where n ¼ 6, 8, 10, 12 along with pendant organic substitu-

ents (R) such as phenyl,19 vinyl,20 amine,21–25 epoxy,26–29 and

arylhalide30,31 depending on the final required chemical struc-

ture and target properties required of the specific application.

The chemical structures of SQ cores include random, partial

cage, and cage structures.2 SQs are an interesting class of organic/

inorganic compounds that have been used as a nanobuilding
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blocks owing to their high 3D symmetry, in particular octaSQ

(T8), as well as well-defined architectures. Conversely, polymeric

SQs are less useful because the chemical structures are difficult to

characterize; however, they offer potential to be applied for use in

the preparation of nanocomposites in lieu of particulates such as

silica without decreasing the nanocomposite thermomechanical

properties significantly.21

Acid-catalyzed hydrolysis provides small amounts of T8

cages,32,33 whereas base-catalyzed reaction increases the yields of

desired products. Kim et al.23 prepared octa(phenyl)SQ (OPS)

with 90% yields from phenyltriethoxysilane in ethanol under

reflux condition using KOH as a base. Among various base cata-

lysts, those containing a fluoride ion such as tetrabutylammo-

nium fluoride (TBAF)34,35 and potassium fluoride (KF),36 have

been widely used for fluoride-catalyzed hydrolytic condensation

to prepare SQ cages in reasonable yields.

Bassindale et al.37 provided evidence for the encapsulation of a

fluoride ion in the center of T8 during the hydrolytic condensa-

tion process catalyzed by TBAF containing substantial quantities

of water (Scheme 1a) indicated by single-crystal X-ray crystal-

lography and 19F/29Si-NMR spectroscopy. Bowers et al.38 pre-

pared a series of fluoride-encapsulated SQ compounds from the

reaction between T8 and tetramethylammonium fluoride

(TMAF) in wet tetrahydrofuran (THF) (Scheme 1b). Addition-

ally, the T8 cages containing an entrapped fluoride ion are

obtained in good to excellent yields if R is an electron-with-

drawing substituent, e.g., aryl, vinyl, and styrenyl. It was also

found that the fluoride ion of TBAF is an important nucleo-

philic catalyst in cage rearrangements of two random-structured

SQs having distinct functional groups at room temperature to

produce a novel T8, T10, and T12 cages with di- and trifunc-

tional groups at the vertices.18,39,40

Here, our attempt is to synthesize poly(aminopropyl/phenyl)SQs

(PAPPS) structures consisting of SQ cores surface functionalized

with phenyl and aminopropyl groups, produced via fluoride-

promoted rearrangement between poly(phenyl)SQ (PPS) and

3-aminopropyltriethoxysilane (APTES) in THF using TBAF cata-

lyst under water scarce conditions. The PPS/APTES stoichiomet-

ric molar ratios were varied between 1:1.5 (PAPPS1) and 1:5.0

(PAPPS2). These materials served as organic/inorganic building

blocks to improve the thermomechanical properties of epoxy

nanocomposites. The chemical structure of synthesized products

and properties of epoxy nanocomposites were characterized by

standard tests.

MATERIALS AND METHODS

Materials

Poly(phenyl)SQ (PPS) is a by-product from hydrolytic condensa-

tion of phenyltriethoxysilane.41 3-aminopropyltriethoxysilane

(APTES, 97%), tetrabutylammonium fluoride (1.0 M TBAF solu-

tion in THF; water ca. 5% wt), tetrahydrofuran, hexane, calcium

chloride, diglycidyl ether of bisphenol A (DGEBA) (DER 331,

MW 372), 4-methylhexahydrophthalic anhydride (MHHPA,

96%), and 2,4,6-tris(dimethylaminomethyl) phenol (95%) were

purchased from Aldrich and used as received without further

purification.

Analytical Methods

Fourier Transform Infrared Spectroscopy. Diffuse reflectance

Fourier transform IR spectra (DRIFTS) were conducted on a

Mattson Galaxy Series FTIR 3000 spectrometer (Mattson Instru-

ments). Optical-grade, random cuttings of crystalline potassium

bromide (KBr, International Crystal Laboratories, Garfield, NJ)

were used as a background. The analysis sample (5 mg) and KBr

crystal (400 mg) were ground together using an alumina mortar

and pestle. The ground powder was loaded into the sample

holder and leveled off with a glass plate to a smooth surface. The

holder was placed in a chamber, and the spectrum was collected

under the continuous flow of dry N2 in a range of 4000–400

cm�1 with a resolution of 64.0 cm�1.

NMR Analyses. 1H-NMR data were done in acetone-d6 (2.05

ppm) and recorded on a Varian INOVA spectrometer at 400 MHz

using a 6000 Hz spectral width, a relaxation delay of 3.5 s, 30 k

data points, a pulse width of 38�, and tetramethylsilane (TMS,

Scheme 1. The fluoride-encapsulation obtained with the use of base catalysts containing fluoride ion from (a) triethoxysilane, and (b) T8 cages.
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0.00 ppm) as the internal reference. Solid-state 29Si NMR data

were recorded on a Varian INOVA spectrometer at 500 MHz with

the frequency of 99.36 MHz, a 20-s pulse delay, a 2-ms contact

time and a spinning speed of 5 kHz.

Gel Permeation Chromatography. GPC analyses were per-

formed on a Waters 440 system equipped with Waters Styragel

columns (7.8 � 300, HT 0.5, 2, 3, 4) with refractive index detec-

tion using a Waters refractometer. THF was used as an eluent, at

a flow rate of 1.0 mL/min. The system was calibrated using poly-

styrene standards and toluene as a reference.

Elemental Analyses

Elemental analyses were run on a CHNS/O Analyzer (Perkin

Elmer PE2400 SeriesII, USA). Powder samples (1.5–2.0 mg)

loaded into tin vials were combusted at 1000�C in a stream of

high-purity oxygen using helium as a carrier gas. Acetanilide was

used as a reference standard. Gaseous products were chromato-

graphically separated by frontal analysis and quantitatively

detected using a thermal conductivity detector.

Back Titration. The content of amino groups on the synthesized

products was quantitatively determined by back titration.42,43 A

typical example is as follows: 0.20 g of PAPPS1 (or PAPPS2) was

treated with 20 mL of 0.012 M HCl aqueous solution in a 100-

mL flask, and the mixture was stirred over 3 h with a magnetic

stirrer at room temperature. The reaction mixture was filtered

and the filtrate was titrated with of 0.01 M NaOH aqueous solu-

tion using phenolphthalein as a pH indicator.

Thermogravimetric/Differential Thermal Analysis. Thermal

stabilities of PAPPS1, PAPPS2, and epoxy nanocomposites were

measured using a 2960 simultaneous DTA-TGA instrument (TA

instruments, New Castle, DE). Samples (10–15 mg) were loaded

in ceramic pans and the temperature was ramped at 10�C/min to

1000�C under two atmospheres, air and N2, at flow rate of 100

mL/min.

Dynamic Mechanical Analysis. DMA shows the properties

obtained from the dynamic mechanical analysis, the storage mod-

ulus (E
0
), loss modulus (E

00
) and loss tangent (tan d). DMA meas-

urements were performed using a dynamic mechanical analyzer

(Perkin Elmer, Pyris Diamond, USA). The cured samples were

polished to 10 � 2 � 50 mm3 and mounted on a single cantilever

clamp. The thermomechanical properties were measured at a

heating rate of 5�C/min from 30 to 150�C under a nitrogen

atmosphere using bending mode at a frequency of 1.0 Hz.

Thermomechanical Analysis. TMA is used to measure the coef-

ficient of thermal expansion (CTE) of epoxy nanocomposites

while it is subjected to heat. TMA results were recorded using a

Perkin Elmer, Pyris Diamond Thermomechanical analyzer, USA,

in expansion mode. Samples were polished to give 5 � 5 � 2–3

mm3 specimens, placed under a quartz probe and heated in a

flowing N2 from 30 to 150�C at a heating rate of 5�C/min.

Synthesis of Poly(aminopropyl/phenyl)SQs

For the synthesis of PAPPS1 (PPS:APTES 1:1.5), PPS (2.00 g) was

dissolved in THF (40 mL) with mechanical stirring in a round-

bottom flask for 30 min. Next, TBAF (0.14 mL, 0.14 mmol),

distilled water (0.16 mL, 8.70 mmol) and APTES (0.52 mL, 2.90

mmol) were added via syringe, and the reaction was carried out

at room temperature for 4 days. After the reaction was complete,

the clear solution at the top of the reaction mixture was trans-

ferred into a 50-mL round-bottom flask containing CaCl2 (5.0 g,

45.0 mmol). The reaction mixture was stirred for 2 h in order to

kill the remaining fluoride ions, forming an insoluble CaF2 solid.

The reaction mixture was filtered and the filtrate was vacuum

dried. Then, it was redissolved in 5 mL of THF, precipitated into

150 mL of cold hexane, filtered, and a residue was vacuum dried

until constant weight was achieved. The white powder was col-

lected to give a yield of 72% with respect to an initial mass of

starting PPS.

For the synthesis of PAPPS2 (PPS:APTES 1:5.0), the reaction con-

dition and work-up procedure were similar to the synthesis of

PAPPS1with slight difference in mass of starting reactants. PPS

(2.00 g), TBAF (0.14 mL, 0.14 mmol), distilled water (0.52 mL,

29.03 mmol) and APTES (1.74 mL, 9.68 mmol) were used

instead. The white powder was collected to give a yield of 67%

with respect to an initial mass of starting PPS.

Preparation of Epoxy Nanocomposites

Because the synthesized PAPPS1 (or PAPPS2) was hardly dis-

persed in DGEBA, it was first dissolved in THF (3 mL) and

stirred until the solution became clear. The requisite amount of

DGEBA was then added and the mixture stirred to give a pale yel-

low transparent solution. THF was removed slowly in a vacuum

oven at 50�C for 12 h. MHHPA and the catalyst, 2,4,6-tris(dime-

thylaminomethyl)phenol, were added to the mixture and stirred

until a homogeneous dispersion was obtained. Thereafter, the

resulting solution was poured into a Teflon mold and was

degassed for 30 min. It was then cured at 230�C for 30 min in

air. The resulting epoxy nanocomposites were removed on cooling

and polished using 120 grit SiC paper before the DMA and TMA

testing.

RESULTS AND DISCUSSION

Synthesis and Characterization of PAPPS

Bassindale et al.34 synthesized T8 from trialkoxysilanes in 20–

95% yields in the presence of TBAF solution containing 5%

water, and found that the fluoride ion plays an important role

in forming the SiAOASi framework with no reaction occurring

if tetrabutylammonium chloride is used instead. Moreover, sila-

nol groups (RSiOH) likely form as intermediates during the

reaction. Asuncion and Laine39 prepared T10 and T12 from T8

using TBAF catalyst anticipating that the mechanism begins

with the cleavage of SiAOASi bonds by the strong nucleophilic

fluoride ion or hydroxide ion to form RSiO2
� fragments fol-

lowed by reassembling to larger cages.

Cage rearrangements were explored by Rikowski and Mars-

mann44 in 1997 in efforts to prepare T10 and T12 from related

T8 SQs using various bases in acetone and acetonitrile. Recently,

Laine et al.18,39,40 described fluoride-mediated rearrangement of

T8 SQs in THF at room temperature using TBAF catalyst to

produce mixtures of di- and trifunctional T10 and T12 (R ¼
phenyl, vinyl and methyl) in 80–90% yields using random-

structured SQs as starting materials.

Even though TBAF was found to be a suitable catalyst for the

generation of the T10 and T12 cages, solvent removal resulted in

repolymerization of products to form undesired high MW poly-

mers took place if the fluoride ion was retained in the reaction

mixture. Thus, calcium chloride (CaCl2) was used to trap excess
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fluoride ion forming insoluble calcium fluoride salt (CaF2) and

insoluble tBu4NCl which are removed easily by filtration.40

GPC analyses of PPS, PAPPS1, and PAPPS2 after workup (5

mol % TBAF, room temperature, 4 days) are displayed in Figure

1. PPS does not completely dissolve in THF; however, GPC data

of soluble PPS is composed of a sharp peak at ca. 32.8 min

(Mp ¼ 895) with a broad shoulder in the 30.7–32.0 min range.

The broad shoulder changes into a narrow peak at ca. 32.5 min,

indicating that the reaction is complete and most of the high

MW polymer has transformed into low MW species during the

reaction. PAPPS1 and PAPPS2 exhibit very similar elution times

that can be associated with the spherical nature of the products

rather than reflecting the different molecular weights of the T10

and T12 components as seen elsewhere.18 In addition, the ab-

sence of any shoulders at shorter retention times suggests that

the starting PPS has been mostly consumed.

Figure 2 compares the FTIR spectrum of octa(phenyl)SQ (OPS)

with those of the starting PPS and PAPPS1 (spectrum of

PAPPS2 is similar to that of PAPPS1). Previous work19 reported

that T8, T10, and T12 SQs exhibit a sharp singlet for a symmet-

ric SiAOASi stretching vibration in a range of 1120–1130

cm�1, whereas polymeric SQs exhibit two bands at 1135–1150

and 1045–1060 cm�1 which are characteristic of mSiAOASi

bands of cages, and those of partial cages, respectively. Hence,

PAPPS1, which shows an FTIR spectrum similar to that of PPS

presumably also consists of cages and partial cages structures.

Furthermore, a medium peak at 1400–1600 cm�1 is associated

with aromatic mC¼¼C.

Figure 1. GPC analyses on PPS, PAPPS1, and PAPPS2.

Figure 2. FTIR spectra on the OPS, PPS, and PAPPS1.

Figure 3. 1H-NMR spectrum on the PAPPS1.

Figure 4. Solid-state 29Si-NMR spectra on the (a) PAPPS1 and (b)

PAPPS2.
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As illustrated in Figure 3, the 1H-NMR spectrum of PAPPS1 in

acetone-d6 (2.05 ppm; water in acetone-d6 appears at 2.8 ppm)

reveals the expected aromatic protons in the 7.00–8.00 ppm

range. The exact chemical shift of ANH2 is difficult to identify

precisely because it depends on solvent used, temperature and

concentrations. However, peaks with chemical shifts at 0.98 (A),

1.40 (B), and 3.45 (C) ppm can be assigned to protons on meth-

ylene groups (ACH2). Figure 4 shows the solid-state 29Si-NMR

spectra of PAPPS1 and PAPPS2. According to Frye et al.,45 T8

and T10 present singlets each related to the strain-free structures,

while T12 shows two singlets suggesting its unstrained geometri-

cal isomers. The 29Si-NMR data of PAPPS1 and PAPPS2 display

two broad peaks at ca. �67.5 and �78.4 ppm assigned to the T3

and T2 molecules, respectively.46 These spectroscopic results cor-

respond to the above-mentioned FTIR data. In accordance with

FTIR, 1H and solid state 29Si-NMR data, the possible chemical

structure of PAPPS is illustrated in Scheme 2.

The amino contents and thermal stabilities of PAPPS1 and

PAPPS2 are listed in Table I. It shows that PAPPS2 exhibits a

higher amine content compared to that of PAPPS1, which cor-

responds to the molar ratio of PPS/APTES, resulting in lower 5

and 20% mass loss temperatures because of the decomposition

of aminopropyl chains. In contrast, PAPPS1 possesses higher

mass loss temperatures owing to a larger number of highly sta-

ble aromatic rings. Ceramic yields indicate that the silica con-

tents of PAPPS1 and PAPPS2 are almost identical.

Preparation and Characterization of Epoxy Nanocomposites

Table II presents the properties of epoxy nanocomposites for

various reinforcing component type and loading, e.g., glass

transition temperature (Tg), rubbery state modulus, decomposi-

tion temperature and char yield. Incorporating PAPPS1 and

PAPPS2 into epoxy resins results in nanocomposites with better

thermal stabilities than those of the neat epoxy because the

silica introduces as the SQ cores and phenyl rings. In compari-

son with neat epoxy, the 5% mass loss temperatures of EC1-5

and EC2-5 increase by �30� and 20�C. The char yields at

1000�C under nitrogen of EC1–5 and EC2–5 increase by 2.6

and 2.4 times, respectively. The epoxy nanocomposites contain-

ing PAPPS1 have slightly higher thermal stabilities than those of

PAPPS2 for reasons described above.

Figure 5 displays the storage modulus (E
0
), loss modulus (E

00
)

and tan d for the neat epoxy. It shows a Tg at 85�C based on

the maximum peak of tan d peaks or at 73�C based on the

maximum peak of the loss modulus. The magnitude of the stor-

age modulus in the rubbery plateau region (Tgþ40�C) is an

indication of the crosslink densities of the nanocomposites with

an increase in the storage modulus being due to greater degree

of crosslinking within the system. The Tg of epoxy nanocompo-

sites based on the maximum peak of tan d increases with

increasing SQ loading as shown in Figure 6. EC1–5 gives the

highest Tg of 106 6 5�C. The single peak of tan d reveals that

the epoxy nanocomposites were homogeneous.

Coefficients of thermal expansion (CTEs) below the Tg of epoxy

nanocomposites gradually decrease with increasing in SQ load-

ing as demonstrated in Figure 7. Neat epoxy has a CTE of 80

ppm/�C.47 Introduction of PAPPS1 (PAPPS2) restricts polymer

segment movement due to direct coupling with DGEBA to

form a nanocomposite with higher crosslink densities thereby

Scheme 2. Possible chemical structure of PAPPS. T2 and T3 design the doubly and completely condensed silicons.[Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table I. Amino Functional Group Content and TG/DTA Results for PAPPS1 and PAPPS2

Sample
Molar ratios of
PPS: APTES

Amino contenta

(mmol-NH2)

Elemental analysis (%)

Td (5%)b (oC) Td (20%)c (oC) CYd (%)C H N

PAPPS1 1 : 1.5 0.18 42.56 4.71 1.35 286 476 45.5

PAPPS2 1 : 5.0 0.45 34.71 5.50 1.57 244 422 44.5

aDetermined by back titration, bTd (5%): 5% mass loss temperature under air, cTd (20%): 20% mass loss temperature under air, dCY, ceramic yield at
1000�C under air.
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reducing the CTE. The epoxy nanocomposites from PAPPS2

exhibit lower CTEs than those from PAPPS1 because of greater

number of aminopropyl chains as evidenced by back titration

and elemental analysis in Table I. The crosslink density of epoxy

nanocomposites indicated by the storage modulus in the rub-

bery plateau as shown in Table II confirms this result. EC1–5

and EC2–5 have CTEs of 67 ppm/
�
C and 63 ppm/

�
C, which are

16 and 21% lower than that of neat epoxy.

Furthermore, we concluded that an increase of crosslink density

is the major factor affecting the thermomechanical properties of

composites, i.e., CTE and Tg, compared with the reinforcing

effect. According to TGA data of PAPPS1 and PAPPS2 shown in

Table I the ceramic yields, which imply the inorganic content,

of PAPPS1 and PAPPS2 are nearly identical indicating that at

the same filler content the reinforcing effect of PAPPS1 and

PAPPS2 on the thermomechanical properties of composites

should be almost identical too. Additionally, the crosslink den-

sity of composites contained PAPPS2 is higher than that con-

tained PAPPS1 as confirmed by the higher storage modulus in

rubbery plateau, which implies the crosslink density of compo-

sites, as displayed in Table II.

CONCLUSIONS

The poly(aminopropyl/phenyl)SQs were not only synthesized

from PPS and APTES at different molar ratios (PAPPS1 and

PAPPS2) in THF solvent with TBAF catalyst containing scarce

water, but also used as organic/inorganic components for

improvement of thermomechanical properties of epoxy nano-

composites. FTIR, 1H, solid-state 29Si-NMR studies of both

PAPPS1 and PAPPS2 suggest that they likely consist of cages

and possibly some partial cages containing both aminopropyl

and phenyl functionalized SQs. PAPPS1 offers a greater number

of phenyl rings than PAPPS2 as proved by back titration and

Table II. The Properties of Nanocomposites from PAPPS1 and PAPPS2

Sample Filler type
Wt %
filler Tg (oC)a

Rubbery state
modulus (MPa)b Td (5%)c (oC)

Char
yieldd (%)

CTEe

(ppm/oC)

Neat epoxy – 0 85 2.03 328 4.66 80

EC1–1 PAPPS1 1 88 2.62 344 7.61 75

EC1–3 PAPPS1 3 99 3.41 352 9.16 72

EC1–5 PAPPS1 5 106 4.20 356 12.14 67

EC2–1 PAPPS2 1 92 2.86 339 7.24 70

EC2–3 PAPPS2 3 97 3.95 350 9.18 66

EC2–5 PAPPS2 5 106 5.15 349 11.43 63

aDetermined from maximum peak of tan d, bDetermined at Tgþ40�C, cTd (5%): 5% mass loss temperature under nitrogen (oC), dChar yield at 1000�C
under nitrogen, eCTE (ppm/oC) was collected below infection point of TMA plot.

Figure 5. Thermomechanical plots for neat epoxy at a heating rate of

5�C/min.

Figure 6. Thermomechanical profiles of: (A) neat epoxy, and epoxy nano-

composites containing PAPPS1 at (B) 1 wt % and (C) 5 wt % at a heating

rate of 5�C/min.
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elemental analysis. In comparison with neat epoxy, incorporat-

ing these fillers can improve the properties of nanocomposites.

Epoxy nanocomposites filled with PAPPS1 show superior ther-

mal stabilities, whereas epoxy nanocomposites filled with

PAPPS2 show lower CTEs.
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