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Understanding the interactions between proteins and ligands is

critical for protein function annotations and drug discovery. We

report a new sequence-based template-free predictor

(TargetATPsite) to identify the Adenosine-50-triphosphate (ATP)

binding sites with machine-learning approaches. Two steps are

implemented in TargetATPsite: binding residues and pockets

predictions, respectively. To predict the binding residues, a novel

image sparse representation technique is proposed to encode

residue evolution information treated as the input features. An

ensemble classifier constructed based on support vector

machines (SVM) from multiple random under-samplings is used

as the prediction model, which is effective for dealing with

imbalance phenomenon between the positive and negative

training samples. Compared with the existing ATP-specific

sequence-based predictors, TargetATPsite is featured by the

second step of possessing the capability of further identifying the

binding pockets from the predicted binding residues through a

spatial clustering algorithm. Experimental results on three

benchmark datasets demonstrate the efficacy of TargetATPsite.

VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23219

Introduction

Protein–ligand interactions are ubiquitous and play important

roles in a wide variety of biological processes.[1–3] Hence, accu-

rately identifying the protein–ligand binding sites or pockets is

of significant importance for both protein function analysis

and drug design.[4] Tremendous experimental efforts have

been made to understand protein–ligand interactions and

thousands of protein–ligand interaction structure complexes

have been deposited into PDB.[5] However, experimentally

identifying the protein–ligand interaction sites is still labor-in-

tensive and time-consuming. Hence, it is highly desired to de-

velop intelligent automatic computational methods for pro-

tein–ligand binding sites prediction to speed up the

annotation process especially when facing with the large-scale

protein sequences in the post-genomic era.[6–8]

There have emerged many computational methods for pre-

dicting protein–ligand binding sites during the past dec-

ade.[9,10] Roughly speaking, these existing methods can be

grouped into three categories[11]: sequence-based methods,

structure-based methods, and hybrid methods that utilize

both the structural and sequence information. In the early

stage, structure-based methods dominate in the fields of pro-

tein–ligand binding sites prediction. To name a few:

POCKET,[12] LIGSITE,[13] SURFNET,[14] and fpocket,[15] etc. Later

on, researchers found that sequence-induced conservation in-

formation can also be effectively used for protein–ligand bind-

ing sites prediction. For example, ConSurf[16] and Rate4Site[17]

use the evolutionary data in the form of multiple-sequence

alignment for a protein family to identify hot spots and

surface patches that are likely to be in contact with other

proteins, domains, peptides, DNA, RNA, or ligands; L1pred[18]

predicts catalytic residues in enzymes by using the L1-logreg

classifier to integrate eight sequence-based scoring functions.

Recently, much attention has been paid to the methods that

combine both the structure and the sequence information. For

example, LIGSITEcsc [19] extends the LIGSITE[13] by further
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incorporating the degree of conservation of the involved sur-

face residues; ConCavity[20] integrates evolutionary sequence

conservation estimates with structure-based methods for iden-

tifying protein surface cavities; SURFNET-ConSurf[21] also incor-

porates residue evolutionary conservation into pocket detec-

tion. All in all, much progress has been made in

computational methods for protein–ligand binding site predic-

tion and many applications based on these methods have

emerged.

However, there are still several issues deserved to be further

discussed. For example, many structure-based methods are

template-based that require the tertiary protein structures as

inputs to search for homology protein–ligand complex struc-

tures for comparison.[9,10] Although the success of these struc-

ture-based methods have been demonstrated with many good

software packages, e.g., Q-SiteFinder[22] and SITEHOUND,[23]

their applicabilities will be limited especially in post-genomic

era where there exists large number of protein sequences

without known structures and at the same time for some

query targets there are no homology templates in current PDB

database. This is one of the major reasons that motivate

researchers in this field to develop useful tools for predicting

protein–ligand binding sites from only the protein sequence

information. On the other hand, previous reports have shown

that protein binding sites vary significantly in their roles in dif-

ferent types of protein–ligand interactions.[24] Thus, developing

ligand-specific binding site predictor has attracted consider-

able attentions to expect much more accurate predictions. As

a result, many ligand-specific binding site predictors have

emerged recently. For example, Sodhi et al.[25] exploited neural

network methods to predict metal ions binding sites; Brylinski

et al.[26] extended the FINDSITE software to FINDSITE-metal

specifically for predicting metal ions binding sites; Kumar

et al.[27] developed Pprint, a RNA binding site predictor using

support vector machines (SVM) and position-specific scoring

matrix (PSSM) profiles; Liu et al. developed HemeNet[28] and

HemeBIND [11] for specifically predicting heme binding resi-

dues based on structural and sequential information. Recently,

several predictors for Adenosine-50-triphosphate (ATP) binding

residues prediction have also been developed.[6,7,29]

Adenosine-50-triphosphate is an important molecule in cell

that plays important roles in membrane transport, muscle con-

traction, cellular motility, signaling, replication, and transcription

of DNA, and various metabolic processes.[30,31] Adenosine-50-tri-

phosphate interacts with proteins through protein–ATP binding

sites and provides chemical energy to proteins through the hy-

drolysis of ATP.[32] Powered by the chemical energy, a protein

can then perform various biological functions. In addition, the

ATP binding sites are also valuable drug targets for antibacterial

and anti-cancer chemotherapy. Hence, accurately localizing the

protein–ATP binding sites is of significant importance for both

protein function analysis and drug design. Developing accurate

intelligent automatic computational methods for protein–ATP

binding prediction is in urgent need.[6–8]

Unfortunately, because of the limited experimentally verified

ATP binding proteins, there are no such predictors until

ATPint[6] was reported. ATPint was built on a benchmark data-

set consisting of 168 non-redundant ATP-binding proteins. Fol-

lowing ATPint, another two protein–ATP binding predictors

were constructed very recently based on a larger benchmark

dataset of 227 protein sequences, i.e., ATPsite[7] and Nsi-

tePred,[29] where only NsitePred provides online services.

A drawback of existing sequence-based protein–ATP binding

prediction methods, including ATPint,[6] ATPsite,[7] and Nsi-

tePred[29], is that they only predict the protein–ATP binding resi-

dues and do not tell which residues may potentially form the

binding sites (pockets). Besides knowing individual binding resi-

dues alone, it would also be of great use if the real binding

pockets can be identified through the set of predicted individual

residues.

This article will follow the abovementioned pioneering work

on predicting ATP-binding residues from sequences, and aims

to further improve the binding residues prediction perform-

ance. In addition, we also make efforts to further identify the

potential binding sites from the predicted binding residues. A

new template-free predictor, called TargetATPsite, is proposed

with machine-learning techniques. The first task of TargetAT-

Psite is to predict the binding residues from the primary

sequence, which is achieved by an ensembled classifier. The

input features to the predictor are encoded by a novel image

sparse representation of the residue conservation matrix. In

order to release the serious imbalance between negative and

positive samples (i.e., non-binding and binding residues), ran-

dom under-sampling technique is applied in TargetATPsite, fol-

lowed by which the AdaBoost classifier ensemble scheme[33]

with SVM[34,35] as base classifier is used to relieve the impact

of information loss caused by random under-sampling. Accord-

ing to the predicted binding residues, a spatial clustering algo-

rithm is developed to find the binding sites (pockets) from the

protein 3D structures either provided by the user or modeled

by the MODELLER software.[36]

Materials and Methods

Benchmark datasets

Two benchmark datasets were used to demonstrate the effec-
tiveness of the proposed TargetATPsite. The first dataset was
selected from SuperSite encyclopedia[37] by Chauhan et al.[6]

and consists of 168 non-redundant protein sequences, denoted
as ATP168. The sequence identity between any two sequences
in ATP168 is below 40%. The second dataset was constructed by
Chen et al.[7]: first, they extracted all complexes in PDB (as of
February 2010) that include ATP; then, the maximal pairwise
sequence identity of the resulting protein sequences was
reduced to 40% with CD-hit[38]; the remaining 227 chains consti-
tute the final dataset, denoted as ATP227. To further demon-
strate the generalization capability of the TargetATPsite, an inde-
pendent testing dataset which contains 17 ATP-binding protein
sequences was also taken as done in Ref. [7].

Sparse feature extraction

Position-specific scoring matrix feature. Protein evolutionary in-
formation encoded in position-specific scoring matrix (PSSM)
has been demonstrated to be an effective feature source for

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 974–985 975

http://onlinelibrary.wiley.com/


reflecting the residue conservations. For a protein sequence P
with N amino acid residues, we obtain its PSSM (N rows and
20 columns) by using the PSI-BLAST[39] to search the Swiss-
Prot database through three iterations with 0.001 as the
E-value cutoff for multiple sequence alignment against the
query sequence. Elements in the i th row of PSSM measure
the probabilities of the i th residue in the protein sequence
being mutated to 20 native residues during the evolution pro-
cess. Then, we normalize the obtained PSSM by the logistic
function defined as follows:

f xð Þ ¼ 1

1 þ exp �xð Þ (1)

where x is the original score in PSSM matrix.

Based on the normalized PSSM, a sliding window with size
W is taken to extract feature vector for each residue. More
specifically, the feature vector of a residue is obtained by con-
catenating the scaled PSSM scores of its neighboring residues
within the window centered at the residue. In this study, we
have tested different W and found that W ¼ 17 is a better
choice. Thus, the PSSM feature for each residue is a matrix of
size 17 � 20.

Sparse representation of evolution image. As stated in above
section, the PSSM feature of a residue is represented by a ma-
trix of size 17 � 20, among which the value of each element
is within the range of 0–1. Interestingly, from the perspective
of digital image processing, this matrix can be considered as
the evolution image of the residue.

Figure 1 intuitively illustrates evolution images of six resi-
dues randomly selected from the dataset ATP227, where three
residues are binding residues and the other three are non-
binding residues. By carefully observing images illustrated in
Figure 1, we can find that there does exist differences
between binding and non-binding residue images, although it
is hard for humankind to directly cognize the actual meaning
of these images. It is found there tends to appear more dark
areas in binding residue images.

Considering these evolution images are generated by PSI-
BLAST[39] software, it is inevitable that noises will be intro-
duced into the generated images since redundant sequences
may be contained in the multiple sequence alignments. Thus,
reducing noises contained in images will help to improve the
image qualities and thus enhance the subsequent prediction
performance. On the other hand, dimensionality reduction is
demonstrated as an effective procedure to remove redun-
dancy in image processing.[40] Considering the above two rea-
sons, we apply a new sparse representation way to represent
the residue evolution images in this study.

Recently, much attention has been paid to image sparse repre-

sentation and it has been found that sparse representation is an

effective tool for image denoising and dimensionality reduc-

tion.[41,42] Sparse representation provides a class of algorithms for

finding succinct representations of image data. Sparse represen-

tation learns a small set of basis functions (basis vectors) that

capture higher-level features buried in the training dataset.[43]

Based on the learned basis functions, any new sample can be

approximately represented as a weighted linear combination of

the learned basis functions. Here, we only briefly introduce the

main principles, and the details can be found in Refs. [41–43].

Let X ¼ {xi}
N
i¼1 be the set of training vectors, where N is the

number of training samples and xi [ Rn � 1 (n ¼ 340 in this
study). The sparse representation aims to find a set of m basis
vectors {bj}

m
j¼1, where bj [ Rn � 1, so as to any xi [ X can be

succinctly represented using basis vectors and a sparse vector
weights or coefficients s ¼ (s1, s2,���, sm) [ Rm � 1 such that xi
�

P
m
j¼1 bj � sj. The basis vectors could be found by solving the

following optimization problem[43]:

minimizefbjg;fsig
XN

i¼1
1

2r2 xi �
Xm

j¼1
bjsij

��� ���2

þ b �
XN

i¼1

Xm

j¼1
/ sij
� �

subjectto bj

�� ��2 � c;8j ¼ 1; � � � ;m: ð2Þ

where si ¼ (si1, si2, ���, sim), r is the standard deviation of the

reconstruction error, b is the sparsity coefficient, and / (�) is

Figure 1. Evolution images of six residues randomly chosen from the dataset ATP227. Images in top row are of the three binding residues and images in

bottom row are of the three non-binding residues.
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the penalty function. In this study, we used L1 penalty function

as follows:

/ðsÞ ¼ sk k1 (3)

Once the basis functions are computed, a sparse dictionary D

can be constructed as follows:

D ¼ ½b1jb2j � � � jbm�n�m (4)

For any new sample x, its sparse coefficient vector y can be

computed as follows:

y ¼ DT � x (5)

And the sparse coefficient vector y is then used as the sparse

representation feature of sample x for subsequent classifica-

tion or prediction. In this study, the number of basis functions

is set to be 128 according to our preliminary testing. More

specifically, the dimensionality of the sparse representation

feature of a residue evolution image is 128-D.

Dealing with imbalance between binding and non-binding

residues.

Clearly, the protein–ATP binding prediction is a typical imbal-
anced learning problem, i.e., the number of samples in differ-
ent class differs significantly. For example, in ATP227 dataset,
the number of the majority samples (non-binding residues) is
more than 20 times of that of the minority samples (binding
residues). Previous studies have shown that directly applying
the traditional statistical machine-learning algorithms, which
assume that samples in different classes are balanced, to
imbalanced problems often leads to a poor performance.[44]

To circumvent this problem, random under-sampling tech-
nique is taken[45] to alter the size of the majority class by ran-
domly removing samples from the majority class. Random
under-sampling can provide a parsimonious training dataset
since it removes samples from the original dataset. However,
part of the important information buried in the removed sam-
ples may also be lost simultaneously.

Previous studies[46] have shown that classifier ensemble is a
promising route to relieve the impact of information loss
caused by random under-sampling. In this study, we exploited
the method of combing multiple under-samplings with classi-
fier ensemble and try to further improve the prediction per-
formance of protein–ATP binding sites prediction: first, we
sample L different majority training subsets by random under-
sampling the majority class L times; then, we train a base clas-
sifier on each of the majority training subsets plus the minority
training set; finally, the trained base classifiers are ensembled
to perform the final decision.

In this study, SVM[34] was used as base classifier and
LIBSVM[35] was applied. Here, radial basis function (RBF) was
chosen as the kernel function. The two parameters contained
in the RBF, i.e., the regularization parameter c and the kernel
width parameter r were optimized based on ten-fold cross-val-
idation using a grid search strategy in the LIBSVM software.

As to classifier ensemble, Kuncheva[47] well surveyed many
widely used ensemble schemes and pointed out that different
ensemble schemes have their own merits and shortcomings,

and there does not exist a general ‘‘best’’ ensemble scheme for
all kinds of applications. In light of this, we have tested several
popular ensemble schemes in this study, i.e., Maximum ensem-
ble, Minimum ensemble, Mean ensemble, Decision Template en-
semble,[47] Dempster-Shafer ensemble,[48] and AdaBoost ensem-
ble.[33] The best one, i.e., AdaBoost ensemble, was finally
chosen.

After classifier ensemble, for each residue to be predicted,
the ensembled classifier outputs its possibility for being a pro-
tein–ATP binding residue. If the possibility is higher than a pre-
defined threshold T, the residue is labeled as binding residue;
otherwise, it is labeled as non-binding residue.

Spatial clustering: identification of pockets from predicted

binding residues

To the best of our knowledge, all existing sequence-based
ATP-binding predictors, including ATPint,[6] ATPsite,[7] and Nsi-
tePred,[29] can only predict the potential binding residues from
a given protein sequence. In fact, it will be more useful for
biologists and users if the predictor can tell which residues
actually form binding site (pocket) for ATP ligand, especially in
the situation where there exists more than one binding sites
(pockets) in one protein sequence.

Previous studies have shown that residues located in ligand
binding interfaces tend to form spatial clusters.[49] Taking
chain A of protein 1L2T as an illustration, we drew its 3D struc-
ture with cartoon representation as shown in Figure 2, where
the blue and red residues are observed ATP-binding residues.
From Figure 2, it is clear that the blue ones and red ones are
spatial clustered and form binding sites 01 and 02,
respectively.

Based on this observation, we thus developed a post-proc-
essing procedure to further identify which of the predicted
ATP-binding residues may potentially form binding site(s).

Let C be the set of the predicted ATP-binding residues for a
given protein sequence, then the residues in C can be

Figure 2. Visualization of two binding sites for chain A of protein 1L2T.

The pictures were made with PyMOL.[50] [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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clustered into binding site(s) using the following spatial clus-
tering algorithm based on their spatial coordinates, as shown
in Figure 3.

Note that in the spatial clustering algorithm, the only pa-
rameter TCluster is a threshold determining how many clusters
will be obtained. Clearly, a large TCluster will produce small
number of clusters (binding sites); while a small TCluster will
lead to a large number of clusters (binding sites). Thus, how to
set an appropriate TCluster is crucial for enabling the spatial
clustering algorithm to work well. Here, we present a possible
solution: Let Ravg be the averaged distance between the ATP-
binding residues and the centers of their corresponding ATPs.
We calculated that Ravg is about 11 Å in both ATP168 and
ATP227; Thus, the TCluster can be initialized as TCluster ¼ a � (2 �
Ravg), where a is a coefficient which controls the maximal
width of cluster. We empirically tested different a and found
that the best clustering performance was achieved when a ¼
1.25, i.e., Tcluster ¼ 27.5 Å.

Evaluation procedure

Cross-validation. In this study, five-fold cross-validation was
performed on both the two benchmark datasets for evaluating
the performance of the proposed method. In the present
study, our purpose is to predict whether a residue is a binding
residue or not. However, if applying the residue-based cross-
validation procedure, residues in all the training protein
sequences will be randomly partitioned into five disjoint sub-
sets; then, one subset was used for testing and the remaining
four subsets were used for training; this practice continued
until all the four subsets of the dataset were traversed over.
The above procedure can yield the following phenomenon
that testing and training residues may originate from the same
protein sequence, which could make the predictor over-fitted.
In light of this, we perform a sequence-based cross-validation
in current study, i.e., training protein sequences are firstly ran-

domly partitioned into five disjoint subsets; then, one subset
was used for testing and the remaining four subsets were
used for training; this practice continued until all the four sub-
sets of the dataset were traversed over.

Evaluation indexes. Four routinely used evaluation indexes in
this filed, i.e., Specificity (Spe), Sensitivity (Sen), Accuracy (Acc),
and the Matthews correlation coefficients (MCC) were taken to
evaluate the performance of the TargetATPsite as defined:

Specificity ¼ TN

TN þ FP
(6)

Sensitivity ¼ TP

TP þ FN
(7)

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(8)

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p (9)

where TP, FP, TN, and FN are the abbreviations of true positive,

false positive, true negative, and false negative, respectively. In

addition to these four threshold-dependent evaluation indexes,

we also exploited another evaluation index AUC, which is the

area under the Receiver Operating Characteristic (ROC) curve

and is threshold-independent and increases in direct propor-

tion to the prediction performance.

The prediction performance of a predictor can be repre-
sented by a confusion matrix (contingency table), as illustrated
in Figure 4. Gradually, adjusting prediction threshold will pro-

duce a series of confusion matrices. From each confusion ma-
trix, a ROC point, whose coordinate is (FP/(FPþTN), TP/
(FNþTP)), can be calculated. A series of ROC points constitute
the ROC curve. Figure 5 illustrates an exemplary ROC curve.

Next, let’s consider how to choose an appropriate threshold
T for reporting threshold-dependent evaluation indexes. As
stated in the section ‘‘Dealing with imbalance between binding
and non-binding residues’’, for each residue to be predicted,
the ensembled classifier will output its possibility (a real num-
ber between 0 and 1) for belonging to the protein–ATP bind-
ing residue. If the possibility is higher than a predefined
threshold T, the residue is labeled as binding residue; other-
wise, it is labeled as non-binding residue. Clearly, a smaller T
will cause higher false positive rate (FPR ¼ FP/(FPþTN)); while
a bigger T will lead to higher false negative rate (FNR ¼ FN/
(FNþTP)).

Under the imbalanced learning scenario as in this study,
over pursuing the overall accuracy is not reasonable and can
be deceiving for evaluating the performance of a predictor/
classifier. Taking ATP227 (3,393 binding residues and 80,409

Figure 3. Spatial clustering algorithm for clustering predicted binding resi-

dues into binding sites. The residue coordinates are from the protein 3D

structures either provided by the user or modeled by the MODELLER

software.[36]

Figure 4. Confusion matrix for performance evaluation.
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non-binding residues) as an example, supposing we choose a
big T (e.g. T ¼ 1) by which the predictor predicts all the resi-
dues to be non-binding residues. The resulting confusion ma-
trix is

0 3; 393
0 80; 490

� �
(10)

and the corresponding ROC point is the red circle as shown in

Figure 5. Obviously, the predictor is meaningless as none of

the binding residues can be correctly identified. However, the

overall accuracy is still very high (80,409 / (80,409 þ 3,393) ¼
96.8%).

Another extreme situation appears when choosing a small
enough T (e.g. T ¼ 0), by which the predictor predicts all the
residues to be binding ones. In this case, although all the
binding residues can be correctly identified, the non-binding
residues are also mistakenly identified as binding ones simulta-
neously. The resulting confusion matrix is

3; 393 0
80; 490 0

� �
(11)

and the corresponding ROC point is the blue circle in Figure 5.

The overall accuracy is only 3,393 / (80,409 þ 3,393) ¼ 4.1%.

In view of this, the threshold which maximizes the MCC
value of the predictions on the training folds is used to report
the results, as done in ATPsite[7] and NsitePred.[29] In the pre-
sented study, the thresholds were identified to be 0.57 and
0.70 over five-fold cross-validation on ATP168 and ATP227,
respectively.

Results and Discussions.

Sparse representation can extract more discriminative

features

Table 1 compares the discriminative performance between the

PSSM feature and sparse representation feature extracted from

residue evolution image on ATP168 and ATP227. It was found

that the sparse representation feature consistently outperforms

the PSSM feature on both datasets concerning the five evalua-

tion indexes. Taking results on ATP227 as an example, the Sen,

MCC, and AUC of the sparse representation feature are 43.3%,

0.50, and 0.872, which are about 5%, 6%, and 1% better than

that of PSSM feature, respectively. As to other two evaluation

indexes, the sparse representation feature also slightly outper-

forms the PSSM feature. From Table 1, we can find that sparse

representation can help to reduce the noises in the residue

evolution images derived from the multiple sequence align-

ments and extract more discriminative features on the tested

benchmark datasets.

Classifier ensemble helps to further improve prediction

performance

As severe imbalance exists between the majority class and mi-

nority class, random under-sampling technique is taken to bal-

ance the number of samples in majority class and minority

class so as to enable the traditional statistical machine-learning

algorithms, which assume that samples in different classes are

balanced, to be appropriately applied. However, the informa-

tion contained in the discarded majority samples will be lost.

To remedy the disadvantage, classifier ensemble is utilized as

described in the section ‘‘Dealing with imbalance between

binding and non-binding residues’’. In this study, we trained L

independent base SVMs on the L randomly under-sampled

datasets and then ensembled them with AdaBoost ensemble

scheme. Note that in the presented results, the number of

base SVM classifiers (L) was set to be 5.

Table 2 lists the prediction results with and without Ada-

Boost ensemble on datasets ATP168 and ATP227 over five-fold

Table 1. Performance comparison between the PSSM feature and

sparse representation features on ATP168 and ATP227 with a single SVM

classifier (no ensemble) over five-fold cross-validation.

Dataset Feature

Sen

(%)

Spe

(%)

Acc

(%) MCC AUC

ATP168 PSSM 32.1 98.8 95.4 0.42 0.847

Sparse

representation[a]
37.9 98.9 95.7 0.48 0.851

ATP227 PSSM 38.2 98.6 96.1 0.44 0.861

Sparse

representation[a]
43.3 98.8 96.5 0.50 0.872

[a] Refer to eq. (5).

Figure 5. An exemplary ROC curve for performance evaluation. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 2. Prediction results with and without AdaBoost ensemble on

ATP168 and ATP227 over five-fold cross-validation.

Dataset Ensemble type Sen (%) Spe (%) Acc (%) MCC AUC

ATP168 No ensemble[a] 37.9 98.9 95.7 0.48 0.851

AdaBoost

ensemble[a]
39.2 98.9 95.8 0.49 0.860

ATP227 No ensemble[a] 43.3 98.8 96.5 0.50 0.872

AdaBoost

ensemble[a]
44.5 98.9 96.6 0.52 0.881

[a] Inputs are the residue images encoded by sparse representation of

eq. (5).
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cross-validation. Figure 6 illustrates the ROC curves of a single

SVM (no ensemble) and AdaBoost ensembled SVMs on ATP227

over five-fold cross-validation. From Table 2, we can find that

the prediction performances are further improved after classi-

fier ensemble. The considered five evaluation indexes with

AdaBoost ensemble are consistently better than those without

classifier ensemble.

Comparison with existing sequence-based predictors

In this section, we compare the proposed TargetATPsite with

three most recently released sequence-based protein–ATP

binding residue predictors, i.e., ATPint,[6] ATPsite,[7] and

NsitePred.[29]

Comparison on dataset ATP168. ATPint[6] is the first predictor

that was specifically designed for predicting protein–ATP bind-

ing residues from protein primary sequence. The ATPint was

developed based on PSSM-based feature and the SVM was

used to perform classification. In Ref. [6], Chauhan et al. tried

several different thresholds, and the threshold, where sensitiv-

ity and specificity are nearly equal in order to make the bal-

ance between sensitivity and specificity, was chosen for the

final reporting. To fairly compare with ATPint, we also per-

formed five-fold cross-validation on ATP168 and reported

results similar to that in ATPint.

Table 3 illustrates the comparison results between TargetAT-

Psite and ATPint on ATP168 over five-fold cross-validation.

Note that the threshold for reporting Table 3 is identified to

be 0.10, by which the value of Sen is roughly equal to that of

Spe as done in ATPint. From Table 3, it is easy to find that the

TargetATPsite outperforms the ATPint on all the five evaluation

indexes and an averaged improvement of 3–4% was obtained

on each of the five considered evaluation indexes.

Comparison on dataset ATP227. The performances of the

ATPsite and NsitePred were reported based on ATP227 over

five-fold cross-validation.[7,29] To fairly compare the TargetAT-

Psite with them, we also performed five-fold cross-validation

on the same dataset and reported the results, as shown in Ta-

ble 4.

By observing Table 4, we found that the TargetATPsite per-

forms the best among all the listed predictors including the

NsitePred, which is the most recently released protein–ATP

binding residues predictor. We also analyzed statistical signifi-

cance of the differences in the MCC and AUC values between

predictions generated by TargetATPsite and the other three

predictors using a paired t-test.[51] If the resulting p-value is

below the desired significance level (0.05 in this study), the

performance difference between two methods is considered

to be statistically significant. By this test, we found that the

MCC and AUC of the TargetATPsite are statistically better than

that of all the listed predictors.

Comparison on independent testing dataset. Independent data-

set test is often considered as an effective method to validate

the generalization ability of a predictor. However, how to

select the independent samples to test the predictor is very

important. Testing a predictor with inappropriate independent

dataset tends to obtain over-optimistic evaluation results. Tak-

ing this study as an example, if the proteins in the independ-

ent dataset have close homology with those proteins in the

training dataset, we will definitely obtain good prediction

results.

Chen et al.[29] have considered this point when constructing

the independent dataset: for each protein sequence in the in-

dependent testing dataset they constructed, it shares <40%

identity to any sequence in benchmark dataset ATP227. In

view of this, we trained our TargetATPsite on ATP227 and then

the independent dataset[29] was used to evaluate the general-

ization ability of the TargetATPsite. Table 5 lists the perform-

ance comparison of different predictors on the independent

Figure 6. ROC curves of no ensemble and AdaBoost ensemble on ATP227.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 3. Performance comparison between TargetATPsite and ATPint

on ATP168 over five-fold cross-validation.

Predictor Sen (%) Spe (%) Acc (%) MCC AUC

ATPint[a] 74.4 75.8 75.1 0.25 0.823

TargetATPsite 78.2 78.4 78.4 0.29 0.860

[a] Data excerpted from Ref. [6].

Table 4. Performance comparison of the TargetATPsite with ATPint,

ATPsite, and NsitePred over five-fold cross-validation on ATP227.

Predictor Sen (%) Spe (%) Acc (%)

MCC AUC

Value Sig. Value Sig.

ATPint[a] 53.9 65.1 64.8 0.08 þ 0.627 þ
ATPsite[a] 36.1 98.8 96.2 0.43 þ 0.854 þ
NsitePred[a] 44.4 98.2 96.0 0.46 þ 0.861 þ
TargetATPsite 44.5 98.9 96.6 0.52 0.881

[a] Data excerpted from Ref. [29]. The significance of the differences

between TargetATPsite and the other predictors are measured for the

MCC and AUC and they are given in the ‘‘Sig.’’ columns. The ‘‘þ’’ means

that the TargetATPsite is statistically significantly better with p-value <

0.05.
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dataset. From Table 5, we can find that the TargetATPsite

achieves satisfactory results with the best threshold independ-

ent AUC value of 0.882 and the best MCC value of 0.53. As to

other three evaluation indexes, TargetATPsite also performs

the best except for Sen which is slightly less than that of Nsi-

tePred. This experiment demonstrates that TargetATPsite has

good generalization capability for ATP-binding residues

prediction.

Performance of spatial clustering

As stated in the section ‘‘Spatial clustering: identification of

pockets from predicted binding residues’’, existing sequence-

based protein–ATP binding predictors can only predict the

binding residues. In TargetATPsite of this article, we further

performed spatial clustering on the predicted binding residues

to identify which binding residues may form binding site(s).

Two measures were used to evaluate the performance of spa-

tial clustering on the predicted binding residues.

The first measure is Vsite, which measures the percentage of

the observed binding sites in the testing dataset that have

been correctly predicted. In this study, an observed binding

site is considered to be correctly predicted if its 30% binding

residues are included in the predicted binding site. The second

measure is Vp, which measures the percentage of proteins in

the testing dataset that have been correctly predicted. A pro-

tein is considered being correctly predicted if all the binding

sites in this protein are correctly predicted and the number of

the predicted binding sites is also equal to the number of the

observed binding sites in the protein. We calculated that the

values of Vsite and Vp on dataset ATP227 over five-fold cross-

validation are 66% and 53%, respectively. Although the results

have space to be further improved, they are encouraging

especially considering they are derived from the ab initio pre-

dictions with the sequences alone without using any homol-

ogy complex structures in the PDB. It is expected to be partic-

ularly useful in the following two conditions: (1) Protein

sequences with no solved structures. In this case, we can firstly

predict the potential ATP-binding residues using the above

TargetATPsite protocol, and then perform the developed spa-

tial clustering algorithm on a modeled 3D structure from the

state-of-the-art algorithms like Rosetta, MODELLER, and I-

TASSER.[52–54] In this article, MODELLER is used for this pur-

pose. (2) Hard targets with no or very few homology protein–

ATP complex structures in the PDB. For some hard targets, if

we cannot find any homology protein–ligand complex struc-

ture in current database, the homology template-based ATP

site detection approach cannot be applied. In this case, cur-

rent approach is expected to play an important complemen-

tary role for correctly predicting the binding residues and the

pockets. As ATPint and NsitePred do not provide the capability

of detecting the binding pockets, we do not compare the

results with them on finding pockets.

Online implementation

The system architecture of the proposed TargetATPsite is illus-

trated in Figure 7. The final online implementation was built

on dataset ATP227 and is freely available at: http://

www.csbio.sjtu.edu.cn/bioinf/TargetATPsite/

The TargetATPsite server accepts two different types of

query protein information for protein–ATP binding sites predic-

tion: one is protein sequence in FASTA format; the other is

Table 5. Performance comparison of the TargetATPsite with three most

recently released protein–ATP binding residues predictors on

independent testing dataset.

Predictor Sen (%) Spe (%) Acc (%) MCC AUC

ATPint[a] 51.2 66.0 65.5 0.07 0.606

ATPsite[a] 36.7 99.1 96.9 0.45 0.868

NsitePred[a] 46.0 98.5 96.7 0.48 0.875

TargetATPsite 45.8 99.1 97.2 0.53 0.882

[a] Data excerpted from Ref. [29].

Figure 7. System architecture of the TargetATPsite predictor. (A) denotes that user submits protein sequence; (B) denotes that user submits a PDB file.

MODELLER[36] is a software package for predicting 3D structure from sequences. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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standard PDB file format, which contains 3D structure informa-

tion of a protein. For each protein (sequence or PDB file) sub-

mitted from the client, the server performs prediction with a

two-stage scheme: in the first stage, the server predicts which

residues are protein–ATP binding residues; while in the second

stage, the server further identifies binding sites from the pre-

dicted binding residues with spatial clustering algorithm. After

the two-stage prediction, the server returns the prediction

Figure 8. Illustration to show the TargetATPsite Web page at http://www.csbio.sjtu.edu.cn/bioinf/TargetATPsite/. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 9. Visualization of prediction results for 2XTIB. (a) ATPint, (b) NsitePred, and (c) TargetATPsite. The following color scheme is used: ATP in yellow,

true positives in red, false positives in blue, false negatives in green. The pictures were made with PyMOL.[50]
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results back to the client in two different ways: online real-

time feed back with 3D illustrations and text descriptions, and

independent email notifications (optional) to the email address

provided by the user.

Note that if the user submits a PDB file, then the residue

3D coordinates contained in the PDB file can be directly uti-

lized for spatial clustering, as denoted by (B) in Figure 7. If

user only submits a protein sequence, the 3D structure of

the query sequence will be first modeled by applying MOD-

ELLER[36] software package, and then the predicted 3D

structure is used for spatial clustering, as denoted by (A) in

Figure 7.

Next, we briefly introduce how to use TargetATPsite.

Step 1. Open the Web page http://www.csbio.sjtu.edu.cn/bio-

inf/TargetATPsite/ and you will see the top page of the

TargetATPsite on your computer screen, as shown in Figure 8.

Step 2. If you have protein sequences, either type or copy and

paste the query protein sequences into the input box

(depicted by the box at the top of Figure 8). The input

sequences should be in FASTA format, as shown by clicking on

the Sequences Example button below the input box. If you

have a PDB file, first click the PDB Format File radio button,

then click Browse button to locate the PDB file. After inputting

protein sequences or PDB file, you can also input your email

address (optional) to receive an email notification of your

future prediction results.

Step 3. Click on the Submit button, the protein information

you inputted will be sent to TargetATPsite server for prediction

and the predicted results will be delivered back to your

browser after a few minutes. For each protein to be predicted,

the outputted prediction results consist of the following seven

Figure 10. Visualization of spatial clustering procedure on the predicted binding residues for 1XEFA. (a) Initial predicted binding residues, (b) Cluster all

the predicted binding residues in one cluster, (c) Split the cluster into two smaller clusters, and (d) Final predicted binding sites. The following color

scheme is used: ATP in yellow, true positives in red, false positives in blue. The pictures were made with PyMOL.[50]
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components: sequence name, sequence, prediction threshold,

predicted binding residues, predicted binding sites, 3D view,

and probability of being protein–ATP binding for each residue.

Case studies

To further demonstrate the effectiveness of the proposed pre-

dictor, we take two ATP binding proteins that are not included

in the training dataset of our online prediction system for case

studies. The first protein is 2XTIB which has only one binding

site (pocket); while the second other one is 1XEFA which has

two binding sites (pockets).

The prediction results of ATPint were obtained by feeding

the two sequences to the web server that is available at:

http://www.imtech.res.in/raghava/atpint/. As ATPsite does not

provide a web server, thus it is not included in this section.

The prediction results of NsitePred were obtained by feeding

the two sequences to the web server that is available at:

http://biomine.ece.ualberta.ca/nSITEpred/. Note that we fed

the sequence of 2XTIB and the PDB file of 1XEFA to the Targe-

tATPsite respectively to demonstrate that TargetATPsite can

predict ATP binding sites from both the protein sequence and

the protein 3D structure information.

The prediction results of 2XTIB generated by ATPint, Nsi-

tePred, and TargetATPsite are illustrated in Figure 9. From Figure

9, it is easy to find that the TargetATPsite and NsitePred signifi-

cantly outperform the ATPint. The ATPint predicted too many

false positives (31 for 2XTIB), thus the predicted results cannot

be mapped easily to the binding pockets. TargetATPsite cor-

rectly predicted 10 out of the 15 binding residues and only two

non-binding residues are mistakenly identified as binding resi-

dues (two false positives). In contrast, the NsitePred correctly

identified only 8 out of the 15 binding residues while with 16

false positives.

As for 1XEFA, TargetATPsite also performs best with the predic-

tion results of 15 true positives, 1 false positive, and 1 false nega-

tive (ATPint: 12 true positives, 40 false positives, and 4 false nega-

tives; NsitePred: 15 true positives, 4 false positives, and 1 false

negative). In addition, TargetATPsite correctly identified the two

pockets from the 16 predicted binding residues (15 true positives

and 1 false positive) by applying the proposed spatial clustering

algorithm. Figure 10 illustrates the spatial clustering procedure. In

Figure 10a, all the predicted binding residues, i.e., the 15 true pos-

itives and 1 false positive, are labeled in red and blue color,

respectively. When applying spatial clustering algorithm, all the

predicted binding residues are initially clustered into one cluster

as shown in Figure 10b; then, the maximal distance (MD)

between any two residues in the cluster is calculated; as the MD

is larger than TCluster, the cluster is splitted into two smaller clus-

ters as shown in Figure 10c; it is found that the MDs of the two

splitted clusters are all smaller than TCluster, thus the spatial clus-

tering procedure terminates and the residues in the two clusters

form two ATP-binding sites as shown in Figure 10d.

Conclusions

In this study, a sequence-based template-free protein–ATP

binding site predictor, named TargetATPsite, is proposed.

Evolutionary information derived from PSSM is considered as

image and further processed by sparse representation to

obtain more discriminative features. To effectively deal with

the intrinsic imbalance between the positive and negatives

samples, random under-sampling and classifier ensemble tech-

niques are integrated. Experimental results on different data-

sets demonstrate that the TargetATPsite is better than the

existing state-of-the-art sequence-based predictors for predict-

ing the binding residues. In addition, compared with the exist-

ing predictors, the TargetATPsite is featured by the capability

of reporting binding pockets from the predicted binding resi-

dues with a spatial clustering process. Our work enriches the

contents of the protein–ATP binding sites prediction, which is

anticipated to become a useful tool in the area of in silico

identification of protein–ATP binding sites. TargetATPsite is

freely available for academic use at: http://www.csbio.sjtu.e-

du.cn/bioinf/TargetATPsite/
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