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Adaptive prior variance calibration
in the Bayesian continual
reassessment method
Jin Zhang,*† Thomas M. Braun and Jeremy M. G. Taylor

The use of the continual reassessment method (CRM) and other model-based approaches to design Phase I
clinical trials has increased owing to the ability of the CRM to identify the maximum tolerated dose better than
the 3C 3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the
model parameter, especially when a small number of patients are enrolled. Although methods have emerged
to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not
been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three
systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation
with methods proposed to calibrate the variance at the beginning of a trial. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. Introduction

Phase I clinical trials are studies of human subjects aimed at estimating the maximum tolerated dose
(MTD), with the sample size typically in the range of 20–40 subjects. The MTD is the dose at which
the probability of having a dose-limiting toxicity (DLT) is near a predefined target 0 < � < 1. Because
the dose identified as the MTD will be further investigated for efficacy in Phase II trials, it is important
to obtain an accurate estimate for the MTD. Owing to the severity of most DLTs, patient safety dictates
that the study begins at low doses and escalates doses as patients are accrued so that exposure of patients
to doses above the MTD is minimized. However, escalation of doses should also occur as quickly as
possible as lower doses are also expected to be ineffective for treating or preventing recurrence of cancer.

A vast amount of methodology exists for the design of Phase I trials. The 3 C 3 design is the
standard algorithmic design using cohorts of three patients. Although algorithmic designs are simple
to understand and implement, their resulting MTD estimates have large bias and variance. Also, many
subjects are likely to be treated at doses below the MTD [1, 2].

A preferred design would incorporate a parametric model for the association of dose and probability
of DLT. One popular model-based method is the continual reassessment method (CRM), which provides
the MTD estimate from a fixed set of dose levels by using a one-parameter model for the dose–toxicity
relationship. The parameter estimate is updated every time a new subject or cohort completes its follow-
up by using either a Bayesian approach proposed by O’Quigley et al. [3] or maximum likelihood methods
proposed by O’Quigley and Shen [4].

In the Bayesian CRM, one must determine a priori DLT rates for each dose, referred to as a skeleton,
and the first subject is assigned to the dose whose skeleton value is closest to �. Faries [5], Korn et al. [6],
and Moller [7] proposed modifications to the original CRM to promote patient safety and slow dose
escalation. Specifically, the modified CRM suggests that the first patient be assigned to the lowest dose,
regardless of the skeleton, and that skipping of doses during dose escalation should not be allowed.
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Numerous extensions to the CRM have been published since the original CRM manuscript, including
the time-to-event CRM (TITE-CRM) of Cheung and Chappell [8] to account for incomplete follow-up of
patients and the later generalization of Braun [9] to adapt the TITE-CRM for early-onset and late-onset
DLTs. Yin and Yuan [10] proposed the Bayesian model averaging CRM to allow for the incorporation
of multiple skeletons, and Yuan and Yin [11] developed a hybrid design to combine rule-based methods
and the CRM. Lee and Cheung [12, 13] suggested a systematic but computationally intensive approach
to calibrate the skeleton through the use of indifference intervals.

Lee and Cheung [13] also proposed methods to determine the value of the variance given to the prior
distribution of the parameter in the dose–toxicity model at the onset of the trial. In general Bayesian
applications, a large (i.e., vague) prior variance usually connotes a less influential prior distribution, and
Chevret [14] suggested the use of a vague prior variance with the Bayesian CRM, although the specific
definition of vagueness is controversial. Lee and Cheung [13] proposed a least informative prior variance,
defined as the value of the prior variance that results in all doses being a priori equally likely of being
the MTD. The value of the least informative prior variance tends to be much smaller than what is
traditionally considered a vague prior variance.

It is also not appreciated that the level of vagueness of the prior variance is dependent upon the values
selected for the skeleton. The aggressive behavior of the CRM in the case studies of Moller [7] and
Neuenschwander et al. [15] can be entirely explained by the dependence between the prior variance and
the skeleton, so that the prior variance used in each study was too small for the chosen skeleton. As a
specific example, O’Quigley et al. [3] suggested the use of a standard exponential distribution as a vague
prior distribution, but the prior variance may still be too small in some settings. Consider two skeletons
for five dose levels: the original skeleton used by O’Quigley et al. [3] and a skeleton developed using the
methods of Lee and Cheung [13]. Both skeletons specify the third as the MTD. The target probability is
0:20, the true MTD is dose 6, the maximum number of enrolled patients is 25, and the dose–response
model is the hyperbolic model defined by O’Quigley et al. [3]. From the results presented in Scenario 1
in Table I, we see a notable difference in the dose selected as the MTD under these two skeletons even
though both use the same prior distribution for the parameter. The prior variance works well with the
second skeleton but may be too small for the first skeleton. If we increase the prior variance by using
a Gamma distribution with mean 1 and variance 4, the first skeleton now gives results comparable with
the second skeleton. Hence, the vagueness of a prior variance heavily depends on the skeleton used.

For a specific skeleton used in a trial, the choice of the prior variance also depends on the relative
location of the true MTD and the MTD defined by the skeleton. If the MTD specified by the skeleton is
close to the true MTD, a small prior variance could help find the correct MTD more efficiently. However,
if the skeleton does not match the truth well, then a larger prior variance is needed to help find the MTD.
In Table I, for the same Skeleton A, we find that a larger prior variance works better when the true MTD
is dose 6 and that a smaller prior variance works better when the true MTD is dose 4. For both scenarios,
the a priori MTD is dose 3. Again, the vagueness of a prior variance depends on the skeleton used.

Table I. A simulation study comparing the impact of the prior variance and skeleton on the ability to identify
the MTD for the traditional continual reassessment method with a fixed prior variance.

Scenario Skeleton Prior 1 2 3 4 5 6

1 DLT rates: 0.00 0.00 0.03 0.05 0.11 0.22
A Exp.1/ 0 0 0 6 65 29
B Exp.1/ 0 0 0 4 36 60
A Gamma.1=4; 4/ 0 0 0 3 36 61

2 DLT rates: 0.02 0.05 0.10 0.20 0.30 0.50
A Exp.1/ 0 2 20 56 23 0
A Gamma.1=4; 4/ 0 2 18 47 31 1

B Exp.1/ 0 2 22 50 23 2
B Gamma.1=4; 4/ 0 2 20 49 26 3

Numbers 1–6 in the first row stand for doses 1 to 6. Other numbers in the table stand for the proportion of simu-
lations that select each dose as the maximum tolerated dose (MTD). Skeleton A denotes the original skeleton used
by O’Quigley et al.: f0:05; 0:10; 0.20; 0:30; 0:50; 0:70g. Skeleton B denotes the skeleton used by Lee and Cheung:
f0:05; 0:11; 0.20; 0:31; 0:42; 0:53g. Numbers in bold indicate which dose is the MTD. DLT, dose-limiting toxicity.
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To achieve similar performance with the use of Skeleton A and standard exponential distribution as the
prior, one might need to further reduce the prior variance used for Skeleton B. It seems that the CRM
using a constant prior variance could perform well in specific scenarios but might not perform well in
other scenarios, no matter which value is selected for the constant prior variance.

The aforementioned motivating example indicates that the traditional methods to calibrate the prior
variance may not work well in many scenarios, because the traditional approaches try to find a prior
variance based on the skeleton at the onset of a trial and keep it constant during a trial but fail to take into
account the relative location of the true MTD and a priori MTD for the specific scenario. However, the
accumulating data during a trial might provide us information regarding the relative distance between
the truth and the skeleton. Hence, we consider the prior variance as a tuning parameter that should be
adaptively calibrated during the entire study to determine whether or not the variance chosen at the
beginning of the study should be modified. In this paper, we introduce three systematic approaches for
adaptively calibrating the prior variance throughout a Phase I trial. In Section 2, we review the CRM and
the work of Lee and Cheung [13]. In Section 3, we present the details for our three variance calibration
approaches. In Section 4, we apply our methods to two hypothetical settings and compare operating
characteristics with current approaches. In Section 5, we conclude with some discussion.

2. Existing methods

2.1. Continual reassessment method

Under the assumption that the probability of DLT increases monotonically with dose, the CRM
procedure could update the dose–response relationship as new observations are available through the
trial. Patients are assigned to the dose whose estimated DLT rate is closest to the target probability �,
subject to possible restrictions. Let J denote the number of doses examined, and letN denote the number
of subjects enrolled by the end of the trial. For each dose j , j D 1; : : : ; J , there is a skeleton value pj ,
denoting the a priori DLT rate for dose j . The response yi of patient i is binary: yi D 1 if there is DLT, or
yi D 0 if there is no DLT, i D 1; : : : ; N . The CRM uses a one-parameter model given by �i D  .xi Iˇ/,
where ˇ is some unknown parameter,  is a monotonic function with the range Œ0; 1�, and xi denotes the
rescaled value of the assigned dose for subject i . In this paper, we consider two commonly used models:
(1) a logistic model with intercept 3 given by  .xi Iˇ/D 1=f1C expŒ�3� exp.ˇ/xi �g and (2) a power
model given by  .xi Iˇ/ D x

exp.ˇ/
i . In both models, we place a normal prior on ˇ, with mean zero and

variance �2.
The rescaling of doses attempts to mirror the investigators’ prior assumptions and provides a good fit

over the skeleton probabilities for the dose levels under the study [3]. Specifically, xi can take one of the
rescaled values x�j that are determined from the equations

pj D

Z
 
�
x�j Iˇ

�
g.ˇ/dˇ; j D 1; : : : ; J;

where g.ˇ/ is the prior distribution for ˇ. In practice, this computation is replaced with the simplified
formula

x�j D  
�1
ˇDE.ˇ/.pj /: (1)

Let Yn D fy1; : : : ; yng denote the observed DLT responses for subjects 1; : : : ; n; 1 6 n 6 N , after
subject n has completed follow-up for DLT. Then the likelihood function for Yn is given by

L.Ynjˇ/D
nY
iD1

f .xi Iˇ/g
yi f1� .xi Iˇ/g

1�yi :

By Bayes’ theorem, the posterior mean of the DLT rate at dose dj , given the observed data, is given by

Q�j DE
�
 
�
ˇI xi D x

�
j

�
jYn

�
D

Z
 
�
ˇI xi D x

�
j

� L.Ynjˇ/g.ˇ/R
L.Ynjˇ/g.ˇ/dˇ

dˇ:

In practice, the plug-in estimator,  
�
x�j I
Q̌
�

where Q̌ D E.ˇjYn/, is commonly used to simplify the

calculation for Q�j . On the basis of the updated posterior DLT rates Q�j , j D 1; : : : ; J , the recommended
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dose for the next patient is chosen as the one with a DLT rate closest to the target �. So the next subject
is assigned to dose level j such that

j D arg min
j2.1;:::;J /

j Q�j � �j: (2)

The CRM usually does not allow dose skipping during dose escalation. The trial either progresses until
the total number of subjectsN is reached or is terminated if a certain stopping rule is satisfied. The MTD
is determined at the end of the trial by simply selecting dose j according to (2) based upon YN .

To address the ethical concern of overdosing subjects, many authors have developed stopping rules
for dose-finding studies that halt a study if all doses under study are too toxic, including Korn et al. [6],
O’Quigley [16], and O’Quigley and Reiner [17]. In our simulations presented in Section 4, we used a
variant of the stopping rule proposed by Thall and Russell [18], in which the trial is stopped and no dose
is selected as the MTD once the posterior probability that the DLT rate of the lowest dose is higher than
the target probability is larger than a pre-specified value.

2.2. Least informative prior variance of Lee and Cheung [13]

We first briefly review the concept of indifference intervals proposed by Cheung and Chapell [19] in
the context of the CRM. The parameter space of ˇ can be divided into J intervals: I1 D Œbl ; b1/; Ij D
.bj ; bjC1/ for j D 1; : : : ; J � 2, and IJ D .bJ�1; bu/, where b1; : : : ; bJ�1 are solved from

 
�
x�j I bj

�
C 

�
x�jC1I bj

�
D 2�; for j D 1; : : : ; J � 1:

It is obvious that the CRM would assign dose j to the next subject if and only if the estimate Q̌ falls in
the interval Ij , j D 1; : : : ; J . Although ˇ 2 .�1;1/, finite values for bl and bu are used in practice to
avoid computational difficulty.

The least informative prior variance, denoted as �2LI , is the prior variance that results in ˇ being
equally likely of belonging to any of the J intervals, that is, all doses being a priori equally likely of
being the MTD. These J probabilities can be regarded as being from a discrete uniform distribution,
although it is usually not possible to make them exactly equal. Instead, Lee and Cheung [13] defined
�2LI as the prior variance such that the variance of the J probabilities matches .J 2�1/=12, the variance
of a discrete uniform distribution. Although �2LI is uninformative in terms of the prior model-based
MTD distribution, the value of �2LI is usually not large with respect to what is usually considered to be
an uninformative variance.

For example, in the setting where there are five dose levels, the skeleton is f0:05; 0:10; 0:20; 0:35; 0:50g,
the target � is 0:20, and a logistic model with intercept 3 is used; the resulting five intervals of ˇ in
which doses 1 to 5 are the MTD are I1 D .�1;�0:23/; I2 D .�0:23;�0:08/; I3 D .�0:08; 0:10/;
I4 D .0:10; 0:29/, and I5 D .0:29;1/, respectively. The least informative prior variance �2LI is 0:322,
which would usually be regarded as an informative prior variance in general Bayesian applications.

3. Methods for adaptive variance calibration

3.1. Defining a large prior variance �2HI

When the MTD defined by the skeleton is not the first or last dose, a prior variance larger than �2LI
would result in a U-shaped distribution of the a priori model-based MTD [13]. As a result, dose 1 and J
would be more likely to be selected as the MTD. Hence, �2LI could perform poorly when the MTD is the
lowest or highest dose and the MTD defined by the skeleton lies elsewhere, at least when no stopping
rule is used. Therefore, we further define a larger prior variance, �2HI , as the prior variance that satisfies
Pr.ˇ 2 I1 [ IJ /D 0:8, producing a U-shaped distribution for the model-based MTD. Presumably, �2HI
could perform well when �2LI performs poorly. A value other than 0.80 can certainly be used to deter-
mine the value of �2LI . However, values larger than 0.80 will place more mass in the tails of the MTD
distribution and may be too aggressive in situations when the MTD is not the highest dose. Conversely,
values smaller than 0.80 will place less mass in the tails of the MTD distribution and will lessen the
ability to find the MTD when it is the highest dose. We found that 0.80 was a good compromise between
these two situations.
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Figure 1. CRM-VC1: the prior variance increases with the sample size in five different patterns.

3.2. CRM-VC1: increasing the prior variance with the sample size

We denote CRM-VC1 as our first approach to adaptively calibrate the prior variance in the CRM.
Because the sample size is small early in a trial, it may be appropriate to use �2LI at the beginning
of a trial so that each dose is a priori equally likely to be selected as the MTD. However, it would not
be desirable for the prior to dominate the data [20], especially when the MTD is the lowest or highest
dose. Hence, a sufficiently large prior may be preferred later in a trial. One natural approach is to start
the prior variance at �2LI and increase it to �2HI at a rate based upon n, the number of currently enrolled
patients. We have selected five different functions explaining how the prior variance increases with n so
that different rates of change could be captured:

1. �2n D �
2
LI C

�
�2HI � �

2
LI

�
.n� 1/4=.N � 1/4

2. �2n D �
2
LI C

�
�2HI � �

2
LI

�
.n� 1/2=.N � 1/2

3. �2n D �
2
LI C

�
�2HI � �

2
LI

�
.n� 1/=.N � 1/

4. �2n D �
2
LI C

�
�2HI � �

2
LI

�
log.2n� 1/= log.2N � 1/

5. �2n D �
2
LI C 2N

�
�2HI � �

2
LI

�
.n� 1/=.N 2 � 1/�

�
�2HI � �

2
LI

�
.n� 1/2=.N 2 � 1/.

Figure 1 displays the five different patterns when N D 30, �LI D 0:33, and �HI D 1:08, a setting
we will further explore in our simulations. These five functions represent typical variance–sample size
relationships: (a) the prior variance increases slowly at first and then quickly reaches �2HI ; (b) the prior
variance increases with n with a constant rate; and (c) the prior variance increases quickly at first and
slowly reaches �2HI .

3.3. CRM-VC2: a hypothesis testing approach

If we start with a certain prior variance in the CRM, it would be ideal if the accumulating data could help
determine whether the current prior variance should change. If the skeleton specifies the correct MTD,
then the prior variance should be small, and the prior information is incorporated to enhance estimation
of the MTD. Otherwise, it is preferable to change the prior variance if the data indicate that the skeleton
has misidentified the MTD. This is the motivation for CRM-VC2.

A trial based on CRM-VC2 starts with the prior variance �2LI . When the data favor the hypothesis that
the MTD is the highest dose but the MTD defined by the skeleton lies elsewhere, CRM-VC2 increases
the prior variance to �2HI , because a large prior variance would increase the probability of selecting the
tail dose levels owing to the U-shaped distribution. We do not increase the prior variance if the MTD is
dose 1, because the use of a stopping rule makes it unnecessary. However, when the MTD defined by the
skeleton coincides with the highest dose, the prior variance determined by CRM-VC2 would remain at
�2LI because increasing the prior variance is no longer helpful when the prior information is correct.

The decision to switch from �2LI to �2HI involves a hypothesis testing approach similar to what
Yuan and Yin [11] proposed for their hybrid design. We propose three hypotheses: H1 W ˇ 2 I1,
H2 W ˇ 2 I2 [ I3 : : : [ IJ�1, and H3 W ˇ 2 IJ . We also propose two reasonable bounds bl and bu
for ˇ to avoid technical difficulties, that is, ˇ 2 Œbl ; bu� rather than .�1;1/. Specifically, bl satisfies

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2221–2234
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 .x1; bl/D �C0:05, and bu satisfies  .xJ ; bu/D ��0:05. Although it is guaranteed that bl is smaller
than bu for our model parameterization, such a result may not hold true for all models, in which case
one would switch bl with bu. Via simulation, we also examined using bounds defined by �˙ 0:025 and
�˙0:10 and found little change in the operating characteristics when using �˙0:05 (results not shown).
Actually, when the true ˇ falls outside Œbl ; bu�, the true DLT rates for all the J doses would be far away
from the target �, implying that the doses examined would be either too toxic or overly safe. A trial
would hence either be terminated by a stopping rule or quickly find the highest dose as the MTD.

To be objective, we assign a uniform prior distribution under each hypothesis: ˇjH1 � UnifŒbl ; b1/,
ˇjH2 � UnifŒb1; bJ /, and ˇjH3 � UnifŒbJ ; bu�. The marginal distribution of Yn under H1 is then
given by

p.YnjH1/D
Z b1

bl

nY
iD1

f .xi Iˇ/g
yi f1� .xi Iˇ/g

1�yi
1

b1 � bl
dˇ:

Similarly, we can compute p.YnjH2/ and p.YnjH3/. The posterior probability of Hk , k D 1; 2; 3, is
given by

p.HkjYn/D
p.Hk/p.YnjHk/

p.H1/p.YnjH1/C p.H2/p.YnjH2/C p.H3/p.YnjH3/
:

If we let BFhk D p.YnjHh/=P.YnjHk/, h D 1; 2; 3, denote the Bayes factor for comparing Hh and
Hk , then

p.HkjYn/D
p.Hk/

p.H1/BF1k CP.H2/BF2k CP.H3/BF3k
:

We specify p.H1/D P.H2/D P.H3/D 1=3 and use Jeffreys’ rule that log10.BFkk0/ > 1=2 indicates
substantial evidence in favor of Hk against Hk0 [11, 21]. This rule translates to the criterion that if
p.H3jYn/ > 0:61, then there is substantial evidence that ˇ 2 IJ . Once such evidence exists, the prior
variance would increase to �2HI ; otherwise, the prior variance stays at �2LI .

3.4. CRM-VC3: adaptively changing skeletons

Instead of changing the prior variance during a trial to make the MTD more likely to be selected,
CRM-VC3, our third approach to calibrate the prior variance, is to modify the skeleton adaptively but
keep the prior variance constant. Consequently, the intervals I1; : : : ; IJ would also change, because
the intervals I1; : : : ; IJ only depend on the skeleton and the model used. If we can properly adjust
these intervals, then more mass of the prior distribution could be placed over the interval that results in
selecting the correct MTD.

For CRM-VC3, a trial starts with the prior variance �2LI , and once the new estimates for �j are
obtained, the dose values would be rescaled again and used as the new dose values. Let Q̌n denote the
posterior mean of ˇ after n subjects have finished follow-up for DLT, and let x�j;0 D x�j . The updated

skeleton pnj is set equal to the current DLT probabilities based on Q̌.n/, that is,

pnj D  
�
x�j;.n�1/I

Q̌
.n/

�
; (3)

and similar to (1), the updated rescaled dose value for dose j is

x�j;n D  
�1
ˇDE.ˇ/.p

n
j /: (4)

Skeletons and rescaled dose values are updated according to (3) and (4) during a trial. All other
facets of the design, including the model and prior distribution, remain the same. The resulting intervals
I1 : : : IJ would change adaptively with the updating of Q̌. Consider the setting where there are five dose
levels, the skeleton is f0:05; 0:10; 0:20; 0:35; 0:50g, the target � is 0:20, and the model used is a logistic
model with intercept 3. Figure 2 shows that we could assign more mass to tail areas adaptively if Q̌

falls in I1 or IJ . After the first subject is observed, if Q̌ D 0, then the new skeleton will be the same
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Figure 2. Areas under the Normal prior density curve of ˇ with mean zero and variance �2
LI
D 0:322 for

intervals I1 to I5: S1 to S5. They are also the prior probabilities for selecting each of the five doses as the
maximum tolerated dose. Rescaling the doses sequentially could change the area under the curve for each interval.

The four vertical lines stand for the boundaries for the five intervals.

with the original skeleton, indicating that the prior information is close to the truth. As a result, the J
intervals and the resulting areas under the prior density curve for the J intervals do not change because
we are using �2LI as the prior variance (Figure 2(a)). This is reasonable because the data suggest that the
MTD does not lie in the tail. If Q̌ D log.3=2/, suggesting that the MTD is dose 5, then the prior density
will place more mass in I5 after rescaling the dose values with the area under I5 D 0:64 (Figure 2(b)).
If Q̌ D log.2=3/, suggesting that the MTD is dose 1, then the prior density places more mass on I1
after rescaling the dose values with the area under I1 D 0:70 (Figure 2(c)). As more subjects enter the
study, Q̌ becomes more accurate, and the resulting updated skeleton is driven by the data, avoiding the
effect that a misspecified skeleton would have in the conventional CRM. One may be concerned that
the updated skeleton values may be unstable early in the study when little data exist, and restrict the
use of CRM-VC3 after a minimum sample size has been accrued. However, restricting any skipping of
doses during escalation will alleviate any possible instability. Furthermore, we examined the mean dose
assigned to the first 10 subjects in the settings presented in Section 4 (results not shown) and found that
using CRM-VC3 was no more or less stable than the other methods.

4. Simulation results

4.1. Rules used in simulations

We used a cohort size of one subject in our study. Like most dose-finding studies, we restrict dose
escalation to be no more than one dose above the assignment of the most recent subject. However, we do
not impose any restriction on dose de-escalation. Also, the first subject is always assigned to the lowest
dose. However, in the simulations of the hypothetical trial of Lee and Cheung [13], we assign the third
dose to the first subject to make our results comparable with theirs.

The prior variance (CRM-VC1 and CRM-VC2) or skeleton (CRM-VC3) will be updated after a new
subject finishes follow-up for DLT. For patient safety, we will stop the trial if at least two out of the first
three patients experience DLT or if Pr.�1 > �jYn/ > 0:9 after four or more patients have been enrolled.
To reduce the sensitivity to the prior variance and instability due to small sample size, our stopping
rule mimics the 3C 3 method for the first three subjects and then switches to the use of the posterior
probability that the DLT rate for the lowest dose is above the target. We found that the threshold of 0:9
works well in simulations but could be adjusted, depending upon how great the need for early stopping
is. We performed 2000 simulations in each scenario; all simulations were performed in the statistical
package R [22], the code for which is available upon request.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2221–2234
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4.2. A hypothetical trial

In our hypothetical clinical trial of N D 30 subjects with five dose levels and the target DLT rate
� D 0:20, we used the logistic model with intercept 3. The prior distribution for ˇ was normal with
mean 0 and variance �2n . We considered two commonly used skeletons that specify the a priori MTDs
to be the middle dose and the highest dose. Specifically, Skeleton 1 is f0:05; 0:10; 0:20; 0:35; 0:5g
.�LI D 0:32I �HI D 1:04/, and Skeleton 2 is f0:01; 0:04; 0:07; 0:11; 0:20g .�LI D 0:35I �HI D 0:68/.

Table II. Simulation study comparing CRM-VC1, CRM-VC2, and CRM-VC3 with the traditional CRM
under Skeleton 1: f0:05; 0:10; 0:20; 0:35; 0:5g.

Percentage of simulations Mean number of
selected as MTD subjects assigned

Scenario None 1 2 3 4 5 1 2 3 4 5

1 Pr(DLT) 0.20 0.30 0.35 0.45 0.50
CRM �2

LI
17 44 29 9 1 0 11 9 5 1 0

�2
HI

32 36 23 8 1 0 11 6 3 1 1

CRM-VC1 1 23 47 21 7 1 0 12 8 4 2 0
2 26 43 24 9 1 0 11 9 5 1 0

CRM-VC2 18 44 28 9 1 0 10 8 6 2 0
CRM-VC3 34 36 20 8 1 0 10 6 4 1 1

2 Pr(DLT) 0.10 0.20 0.35 0.45 0.50
CRM �2

LI
4 15 62 16 1 0 6 14 7 2 0

�2
HI

6 18 56 19 2 0 8 12 6 2 1

CRM-VC1 1 4 22 57 22 2 0 7 13 7 2 0
2 4 20 56 19 1 0 7 13 7 2 0

CRM-VC2 4 15 61 19 1 0 6 14 7 2 0
CRM-VC3 9 18 55 17 2 0 8 12 6 2 1

3 Pr(DLT) 0.05 0.10 0.20 0.35 0.45
CRM �2

LI
0 1 19 66 13 0 2 7 15 5 0

�2
HI

2 1 19 59 18 1 3 7 12 6 2

CRM-VC1 1 0 1 23 61 14 1 2 7 14 6 1
2 2 1 19 60 18 1 2 7 13 6 1

CRM-VC2 0 1 20 65 14 1 2 7 15 5 1
CRM-VC3 2 1 20 61 15 1 3 7 12 6 2

4 Pr(DLT) 0.02 0.05 0.10 0.20 0.35
CRM �2

LI
0 0 1 28 61 10 1 2 10 14 3

�2
HI

0 0 1 23 60 16 2 3 7 12 7

CRM-VC1 1 0 1 1 25 58 16 1 2 9 14 4
2 0 0 1 21 61 16 1 2 8 13 5

CRM-VC2 0 0 1 27 56 16 1 2 9 12 5
CRM-VC3 0 0 1 23 60 15 2 3 7 12 7

5 Pr(DLT) 0.01 0.04 0.07 0.11 0.20
CRM �2

LI
0 0 0 7 37 56 1 2 5 12 11

�2
HI

0 0 0 4 27 69 1 2 3 7 16

CRM-VC1 1 0 0 0 6 28 66 1 2 4 11 12
2 0 0 0 4 27 68 1 2 4 9 14

CRM-VC2 0 0 0 6 26 68 1 2 4 8 14
CRM-VC3 0 0 0 5 25 70 1 2 3 7 17

‘None’ denotes the proportion of trials that stop early. Numbers 1–5 in the first row stand for doses 1 to 5.
Numbers in bold indicate which dose is the maximum tolerated dose (MTD). CRM, continual reassessment method;
DLT, dose-limiting toxicity.
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We examined the performances of CRM-VC1, CRM-VC2, and CRM-VC3 in five different scenarios
under both Skeletons 1 and 2 based on the percentage of simulations selected as the MTD and the
average number of patients assigned to each dose. The true MTDs are doses 1 to 5 for scenarios 1 to 5,
respectively. We also performed the traditional CRM using the fixed prior variances �2LI and �2HI in the
same five scenarios for comparison.

We summarize the performances under each scenario in the final 11 columns of Tables II and III for
Skeletons 1 and 2, respectively. The first five of the 11 columns display the percentage of simulations in

Table III. Simulation study comparing CRM-VC1, CRM-VC2, and CRM-VC3 with the traditional CRM
under Skeleton 2: f0:01; 0:04; 0:07; 0:11; 0:20g.

Percentage of simulations Mean number of
selected as MTD subjects assigned

Scenario None 1 2 3 4 5 1 2 3 4 5

1 Pr(DLT) 0.20 0.30 0.35 0.45 0.50
CRM �2

LI
18 41 30 8 1 0 9 9 4 2 1

�2
HI

26 44 24 5 1 0 13 7 3 2 1

CRM-VC1 1 21 46 26 6 1 0 10 8 4 2 1
2 22 45 26 8 2 0 10 9 4 2 1

CRM-VC2 18 41 30 8 1 0 9 9 4 2 1
CRM-VC3 31 43 20 5 1 0 12 6 3 1 1

2 Pr(DLT) 0.10 0.20 0.35 0.45 0.50
CRM �2

LI
6 16 60 17 2 0 5 13 7 3 1

�2
HI

5 20 57 14 2 0 8 12 5 2 1

CRM-VC1 1 6 20 57 16 2 0 5 13 6 3 1
2 6 16 57 17 3 1 6 13 6 3 1

CRM-VC2 6 16 60 17 2 0 5 13 7 3 1
CRM-VC3 9 21 55 14 2 0 9 11 5 2 1

3 Pr(DLT) 0.05 0.10 0.20 0.35 0.45
CRM �2

LI
1 1 22 54 21 2 2 7 11 7 3

�2
HI

1 2 25 49 22 2 3 8 10 6 3

CRM-VC1 1 1 1 29 49 20 2 2 8 11 7 3
2 2 1 26 49 20 2 2 8 11 7 3

CRM-VC2 1 1 22 54 21 2 2 7 11 7 3
CRM-VC3 2 2 29 50 17 1 3 8 10 6 3

4 Pr(DLT) 0.02 0.05 0.10 0.20 0.35
CRM �2

LI
0 0 3 22 58 18 1 2 6 12 8

�2
HI

0 0 2 21 55 22 2 3 6 11 9

CRM-VC1 1 0 0 3 22 58 18 1 2 6 12 8
2 0 0 2 23 54 21 1 2 6 12 9

CRM-VC2 1 0 3 22 58 18 1 2 6 12 8
CRM-VC3 0 0 3 24 55 18 2 3 7 11 8

5 Pr(DLT) 0.01 0.04 0.07 0.11 0.20
CRM �2

LI
0 0 0 2 23 75 1 1 2 7 19

�2
HI

0 0 0 2 23 75 1 2 2 6 18

CRM-VC1 1 0 0 0 3 23 73 1 1 2 7 18
2 0 0 0 2 22 75 1 1 2 6 19

CRM-VC2 0 0 0 2 23 75 1 1 2 7 19
CRM-VC3 0 0 1 4 23 73 1 2 3 6 18

‘None’ denotes the proportion of trials that stop early. Numbers 1–5 in the first row stand for doses 1 to 5. Numbers
in bold indicate which dose is the maximum tolerated dose (MTD). CRM, continual reassessment method; DLT,
dose-limiting toxicity.
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which each dose was identified as the MTD at the end of the study, and the last five columns display the
average number of patients assigned to each dose. For each scenario, we list the true toxicity probabilities
in the first row, the results for the CRM using the fixed prior variance �2LI and �2HI in rows 2 and 3,
the results obtained by CRM-VC1 using functions (1) and (2) in Section 3.2 in rows 4 and 5, the results
obtained by CRM-VC2 in row 6, and the results obtained by CRM-VC3 in row 7. We do not present the
results for CRM-VC1 using functions (3) to (5) as they did no better or worse than functions (1) and (2).
We note that in general, we have found that all five functions perform similarly in terms of finding the
correct MTD, indicating that there is no real need to choose among them in application.

In Table II, we note that the traditional CRM is sensitive to the value of the prior variance. Using
the prior variance �2LI (a similar approach with Method A1 in [13]) performs better than using �2HI in
Scenarios 2, 3, and 4, where the true MTD is close to the MTD defined by the skeleton. But using �2LI
performs poorly relative to �2HI in Scenario 5, where the true MTD is the highest dose but the MTD
defined by the skeleton is dose 3. Overall, the CRM using �2HI is more robust than using �2LI in finding
the MTD except when the true MTD is at or close to the skeleton MTD. We also see that using a large
prior variance could produce more unnecessary early stopping. For example, in Scenario 1, using �2HI
results in 44% early stopping compared with 36% when using �2LI . This is why the prior variance does
not increase to �2HI in CRM-VC2 when there is evidence that the true MTD is dose 1.

When the true MTD is similar to that specified by the skeleton, CRM-VC1 gives comparable results
with the traditional CRM using �2LI but performs much better when the true MTD is the highest dose.
Compared with the traditional CRM using the prior variance �2HI , CRM-VC1 performs slightly better
in Scenarios 1, 2, and 3 and has comparable performance in Scenarios 4 and 5. CRM-VC2 performs
consistently well overall, even though it performs slightly worse than other competing methods in
Scenario 4. CRM-VC2 performs as well as the CRM using the prior variance �2LI in Scenarios 1, 2,
and 3, but CRM-VC2 performs much better in Scenario 5, where the true MTD is dose 5. Compared
with the traditional CRM using �2HI , CRM-VC2 also demonstrates a better ability in identifying the
MTD: 61% versus 56% in Scenario 2 and 65% versus 59% in Scenario 3. CRM-VC3 performs similarly
with the traditional CRM using the prior variance �2HI .

We also see that the design giving a higher probability of selecting the MTD also assigns more patients
to the correct dose. Hence, similar results are obtained if we compare mean dose assignments among
the methods examined. Overall, CRM-VC2 performs best among all the methods examined across the
five scenarios.

It is also common in practice that the MTD determined by the skeleton is the highest dose. Skeleton
2 is one such skeleton. When using Skeleton 2 while keeping other facets of the design unchanged,
we notice that the results presented in Table III are quite similar among the five scenarios for most of
the methods examined. However, CRM-VC2 and the traditional CRM using prior variance �2LI slightly
outperform other methods across the five scenarios.

4.3. A hypothetical trial by Lee and Cheung [13]

In this setting, there are N D 25 subjects and six dose levels, and the target DLT rate is � D 0:20.
The first patient is assigned to dose 3, and the model used is the power model. To make our results
comparable with those of Lee and Cheung, we used the skeleton f0:05; 0:11; 0:20; 0:31; 0:42; 0:53g
.�LI D 0:68I �HI D 2:45/ used with Method A1 of Lee and Cheung, which we denote as
LC-A1. Table IV shows results obtained from the traditional CRM, LC-A1, CRM-VC1, CRM-VC2,
and CRM-VC3 in the similar scenarios examined by Lee and Cheung. Note that LC-A1 is equivalent to
the traditional CRM using the prior variance �LI in this example because the skeleton is the same for
both methods.

In Scenario 1, all the methods work similarly. The traditional CRM using prior variance �2HI results in
more trials being terminated than using �2LI . In Scenarios 2 and 3, LC-A1, CRM-VC2, and the traditional
CRM using �2LI perform slightly better than other approaches; all three approaches correctly identify the
MTD in approximately 55% of simulations in contrast to 49–53% for the other approaches. However,
LC-A1 and the traditional CRM using �2LI perform poorly relative to CRM-VC2 in Scenario 5 where
the MTD is the highest dose.

As seen earlier, the traditional CRM using �2HI does not perform as well as �2LI in Scenarios 2 and 3
where the true MTD is close to the MTD defined by the skeleton, even though the difference is not large.
CRM-VC1 and CRM-VC2 perform as well as or better than LC-A1 in Scenarios 2,3 and 4 but performs
better than LC-A1 in Scenario 5. CRM-VC3 performs similarly with the traditional CRM using �2HI .
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We also see that the design giving a higher probability of selecting the MTD also assigns more patients
to the correct dose. Hence, similar results are obtained if we compare mean dose assignments among the
methods examined. Overall, in this setting, CRM-VC2 and CRM-VC3 seem to perform best among all
the methods examined in terms of the ability of identifying the MTD across the five scenarios.

5. Discussion

In the present paper, we relax the assumption of a fixed prior variance in the traditional CRM and
propose three systematic approaches to adaptively calibrate the prior variance continually throughout
the trial. Our approaches have the ability to perform better than the traditional CRM using a constant
prior variance as well as methods that calibrate the prior variance only at the beginning of the trial.

Although Lee and Cheung [13] suggested the use of �2LI after first calibrating the skeleton at the
beginning of the trial, this approach does not perform well when the true MTD is far away from the
MTD defined by the skeleton. Although Lee and Cheung proposed an alternate, computationally
intensive design, which we refer to as LC-A2, we found that LC-A2 generally offers no improvement
to the results of LC-A1. Our approaches, however, are able to improve upon the results of LC-A1
in scenarios where the MTD is the highest dose, without sacrificing the performance much in other
scenarios, and they are less computationally expensive than LC-A2. However, as seen in our simu-
lation results, our methods might be more aggressive than the CRM using �2LI in certain scenarios.
Nonetheless, CRM-VC2 and CRM-VC3 can be modified to be less conservative by simply changing
some of the thresholds used in those methods. For example, we could increase the threshold of 0.61 for
the posterior probability of H3 in CRM-VC2 to a larger value, in which case the performance would be
similar to that of Lee and Cheung. However, we note that there is no one value for the threshold that will
work best in all scenarios, and we feel that our threshold is a good choice in most scenarios.

One reviewer questioned whether or not our designs are coherent in the sense that dose escalation is
possible when the most recent patient experiences a DLT [23]. In the scenarios of Section 4.3, escalation
after a DLT never occurred, and in the scenarios of Section 4.2, the dose escalation never occurred
after an observed DLT in more than 3% of simulations. Thus, although there is no guarantee of coher-
ence of our designs in all settings, any deviation from coherence is quite small, and patient safety is
not compromised.

Our approaches could be extended to accommodate a wider range of applications. CRM-VC1 could be
easily applied to more complex studies, including finding the most successful dose (MSD) or the most
tolerated schedule, once we determine �2LI and �2HI . CRM-VC2 and CRM-VC3 rely on the skeleton
and hence could be naturally extended to a study where a skeleton is specified and the dose values are
rescaled, for example, modeling the toxicity in the study of finding the MSD. For a model with more
than two parameters, CRM-VC2 and CRM-VC3 are still applicable even though it may be hard to find
the indifference regions in high-dimensional parameter spaces.
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