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[1] In a 2008 publication a first principles calculation of the dayside reconnection rate
expressed in terms of upstream–solar wind parameters led to a rudimentary solar wind
coupling function R1 for the Earth’s magnetosphere. Four improvements to that derivation
are added in the present paper, resulting in a more correct solar wind control function
describing the rate at which solar wind magnetic field lines connect into the Earth’s
magnetosphere. The first is the inclusion of the effect of b-dependent plasma compressibility
on the reconnection rate. The second is a corrected calculation of the inflow of magnetic
field lines into the reconnection X-line. The third is a more accurate estimate of the orientation
of the reconnection X-line for asymmetric reconnection. The fourth correction accounts for
the compression ratio of the Earth’s bow shock for arbitrary orientation of the solar wind
magnetic field. Two solar wind control functions result: one function, R2CS, is based on the
Cassak-Shay equation and another function, R2CSB, is based on the Cassak-Shay-Birn
equation. The control functions are tested using solar wind measurements and geomagnetic
indices from 1980 to 2012, and some improved correlation coefficients over the rudimentary
function R1 are found. Simplified approximations to the new control functions are supplied:
one is R2CS-approx = 1.68� 10�2 sin2(θ/2)no

1/2vo
2MA

�0.3044exp(�[MA/3.18]
1/2), where the

subscript “o” denotes the solar wind upstream of the bow shock and MA is the solar
wind Alfvén Mach number.
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1. Introduction

[2] In this report, solar wind/magnetosphere coupling
functions based on the rate of dayside reconnection are
explored. The reconnection rate (amount of magnetic flux
reconnection per unit time per unit length of the reconnec-
tion X-line) at the magnetopause is given by a magnetic field
strength times a reconnection-inflow speed, with the inflow
speed given by a hybrid Alfvén speed determined by the
field strength B and plasma mass density r on both sides
of the reconnection site: the magnetospheric side and the
magnetosheath side. The magnetospheric magnetic field
strength is determined by pressure balance with the ram
pressure rovo

2 of the upstream solar wind (subscript “o”).
The mass density of the magnetosheath is given by the solar
wind mass density ro and the Mach number–dependent
compression ratio of the bow shock. Applying pressure
balance at the magnetopause, the magnetic field strength of
the magnetosheath is given by the magnetic field strength
of the magnetosphere and the plasma beta of the magne-
tosheath, which is Mach number–dependent. The dayside

reconnection rate is given by a magnetic field strength times
an Alfvén speed, which goes as B2/r1/2. With B2 given by
rovo

2 and r given by ro, the reconnection rate is ro
1/2vo

2, mul-
tiplied by Mach number–dependent terms that describe the
compression ratio of the bow shock and the reduction of
the magnetosheath magnetic field by finite b effects.
[3] Borovsky [2008] derived a dayside reconnection rate

based on the Cassak-Shay equation [Cassak and Shay, 2007].
The Cassak-Shay equation expresses the reconnection rate as
a function of the local plasma parameters on both sides of the
reconnection site. In terms of magnetospheric (subscript “m”)
and magnetosheath (subscript “s”) magnetic fields and mass
densities, the Cassak-Shay equation for the rate of flux
reconnection per unit length of the X-line can be written as

RCS¼ 0:1=p1=2
� �

Bm
3=2Bs

3=2= BmrsþBsrmð Þ1=2 Bmþ Bsð Þ1=2
n o

(1)

[4] for antiparallel, asymmetric reconnection. The units of
R are a magnetic field strength times velocity. In Borovsky
[2008], this Cassak-Shay relation applied at the dayside
magnetopause was written in terms of the upstream solar
wind plasma parameters using the properties of the bow
shock and the flow properties of the magnetosheath. This
yielded an expression for the dayside reconnection rate in
terms of solar wind parameters upstream of the bow shock.
This expression was referred to as the “rudimentary solar
wind control function” R. Here it will be denoted as R1 to
indicate the first version. Correlating this control function
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with geomagnetic activity indices showed it to be as accurate
as the best of the tuned-variable solar wind driver functions.
[5] In Borovsky [2008], it was noted that the derivation of

this reconnection control function had several approximations
and that the function published was the first cut at what could
be a more accurate derivation. In the present study, four
improvements to that derivation are given, yielding a second
version R2 of the reconnection control function, which is an
improvement over the first version. Using 1 h values of the
solar wind parameters to calculate the control functions in
the years January 1980 to May 2012, the improved control
function is cross correlated with various geomagnetic indices
to confirm the fact that it improves the description of geomag-
netic activity in terms of solar wind parameters.
[6] The first and second versions of the solar wind control

function are algebraically complicated. That being the case,
simplified expressions for the control functions are provided
that are approximately as accurate as the full version.

2. Improvements to the Derivation

[7] In this section, four improvements will be made to
the derivation of the solar wind coupling function from the
Cassak-Shay equation for the reconnection rate expressed in
terms of local plasma parameters. The first will be a correction
to the reconnection rate accounting for plasma compressibility
(section 2.1). The second and third will be corrections to the
clock-angle dependence of the rate of solar wind magnetic
field line connection to the Earth (section 2.2). The fourth will
be an improved estimate of the density compression ratio of
the Earth’s bow shock (section 2.3).

2.1. The Birn Compressibility Correction

[8] The Borovsky [2008] solar wind control function R1 is
based on the Cassak-Shay equation [Cassak and Shay, 2007]
for the rate of asymmetric reconnection [expression (1)].
For asymmetric antiparallel reconnection, [Birn et al., 2010]
rederived the Cassak-Shay equation accounting for the
compressibility of the plasma flow near the reconnection
site and accounting for the conversion of magnetic field
energy into enthalpy (see also [Soward and Priest, 1982],
[Birn et al. 2008, 2012], and [Aunai et al., 2011]. Antiparallel
reconnection corresponds to a clock angle θ between the two
magnetic fields of θ=180�. That rederivation produced a
corrective factor B (equation (21) of Birn et al. [2010]) that
multiplies the right-hand side of the Cassak-Shay equation:

B 180oð Þ ¼ Γ Bm þ Bsð Þ= lsBm þ lmBsð Þ (2)

where Γ� g/(g�1) = 5/2 for g = 5/3 and where ls�
(1 +Γbs)/(1 +bs) and lm� (1 +Γbm)/(1 +bm) with b being
the plasma beta bs = 8pnskBTs/Bs

2 and bm=8pnmkBTm/Bm
2

with T being the sum of the electron and ion temperatures
in the plasma.
[9] The compressibility correction acts at low b when the

antiparallel-reconnecting plasma is compressible; at high b,
the multiplicative correction factor is unity. As noted in
[Birn et al. 2010, 2012] the presence of a guide field should
reduce the compressibility of the reconnecting plasma.
Hence, for non-antiparallel reconnection, the Birn compress-
ibility correction as expressed by equation (2) should

be weakened toward unity. Birn [Joachim Birn, private
communication, 2012] has made a preliminary derivation of
the multiplicative compressibility correction factor including
a guide field that is valid for any value of the clock angle
0� ≤ θ≤ 180� (see Figure 1):

B θð Þ ¼ lhybrid2 þ 4ΓA
� �1=2 � lhybrid

n o
=2A (3)

where

lhybrid ¼ ΛmBs þ ΛsBmð Þ= Bm þ Bsð Þ (4a)

Λm ¼ 3þ Γbm � 2 g2
� �

= 2þ bm � g2
� �

(4b)

Λs ¼ 3þ Γbs � 2 h2
� �

= 2þ bs � h2
� �

(4c)

A ¼ Γ� 2ð Þ a= 2þ bs � h2
� �

(4d)

a ¼ 1� g2
� �1=2 þ 1� h2

� �1=2�2
=

�
1þ Bs=Bm

� �2
(4e)

and where g = sin(a) and h = sin(θ� a), where θ is the
clock angle between Bm and Bs, and a is the clock angle
between Bm and the orientation of the reconnection X-line
(see Figure 1 and section 2.2).
[10] The Alfvén Mach number dependence of the Birn

correction factor is examined Figure 2 (top). The strongest
correction occurs when there is no guide field, i.e., when
θ = 180�. Using the convenient notation w�Bm/Bs, taking
g = 5/3, which gives Γ = 5/2, and approximating the plasma
beta of the magnetosphere as bm� 0 to give lm� 1, the Birn
correction factor B (180�). Expression (2) can be written as

B 180oð Þ ¼ 5 w2 þ w
� �

= 5w2 þ 2w� 3
� �

(5)

[11] This is the correction for θ=180�, where there is no
guide field. Using the parameterization w =Bm/Bs = (1 +bs)

1/2

and bs = (MA/6)
1.92 [cf. equations (4), (5), and (7) of

Borovsky (2008)], expression (5) is plotted as a function of
MA as the upper curve in Figure 2 (top): as can be seen,

Figure 1. The angles associated with the orientation of the
reconnection X-line when the magnetospheric magnetic field
Bm and the magnetosheath magnetic field Bs form an angle
of θ. a is the clock angle between Bm and the reconnection
X-line. In this sketch, all of the vectors and lines lie in the
plane of the dayside magnetopause.
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B (180�) varies from B (180�) = 2.5 at MA = 1 (low bs) to
B (180�) = 1 as MA!1 (high bs). The Mach number
dependence of the compression correction factor B derived
with a guide field is not as strong. The maximum guide field
occurs for θ=90�; here, g� h� sin(45�) = 1/21/2. At θ=90�,
expression (3) can be approximated as

B 90oð Þe 2w2 þ 1
� �

wþ 1ð Þ=4w2� 	

4=3ð Þ þ Λsw½ �2 þ 20w2= 2w2 þ 1

� �� �� �1=2

� 4=3ð Þ þ Λsw½ �



(6)

where ls� (5w2�1)/(2w2 + 1) at θ= 90�. Again using
w = (1 + (MA/6)

1.92)1/2, B (90�) is plotted as a function of
MA as the second curve in Figure 2 (top). The shallower
Mach number dependence of B (90�) is clearly seen.
[12] With this factor B given by expression (6) multiply-

ing the right-hand side of the Cassak-Shay equation given

by expression (1), the Cassak-Shay-Birn equation for the re-
connection rate is

RCSB¼0:05p�1=2Bm
3=2Bs

3=2A�1 lhybrid2þ4ΓA
� �1=2�lhybrid
n o

= Bmrs þ Bsrmð Þ1=2 Bm þ Bsð Þ1=2
n o (7)

where the factors A and lhybrid are defined in expression (4)
and Γ� g/(g � 1).

2.2. The Clock-angle Dependence of the Number
of Field Lines Reconnected

[13] The objective of the solar wind control function R is to
calculate the rate at which magnetic field lines of the solar
wind become connected to the Earth by dayside reconnection.
The clock angle θ of the solar wind magnetic field, with
respect to the direction of the Earths dipole field, is an impor-
tant factor in the reconnection rate. It is taken to be the clock
angle of the magnetic fields at the site of reconnection, but
owing to field-line draping across the magnetopause, it may
only be an approximation to the clock angle of the reconnect-
ing fields. The control function R1 of Borovsky [2008] had a
sin(θ/2) dependence, where θ is the clock angle of the magnetic
field relative to the Earth’s field at the dayside magnetopause
(θ=0� for a purely northward interplanetary magnetic field
(IMF) and θ=180� for a purely southward IMF). For symmet-
ric reconnection, the X-line is oriented at θ/2. That sin(θ/2) de-
pendence came from an argument that the rate of field line con-
nection was given by the product of the magnetic field strength
and the plasma inflow velocity, with the inflow velocity having
a sin(θ/2) dependence. In calculating the number of field lines
connected, [Borovsky 2008] neglected to account for the pro-
jection of the inflowing magnetic field onto the reconnection
X-line. As pointed out by Sonnerup [1974] for the reconnec-
tion of non-antiparallel magnetic fields in symmetric plas-
mas, one factor of sin(θ/2) comes about in calculating the
reconnection inflow speed and a second factor of sin(θ/2)
comes about from the projection angle of the inflowing mag-
netic field on the reconnection line, with the reconnection line
tilting in response to the clock angle of the reconnecting mag-
netic fields. Hence, the number of field lines reconnected per
unit length of the X-line varies as sin2(θ/2). If the reconnect-
ing plasmas were symmetric and the X-line were oriented at
θ/2, that correction would be written as

sin θ=2ð Þ ! sin2 θ=2ð Þ (8)

and in the Cassak-Shay expression [equation (1)], this
correction would result in a sin2(θ/2) multiplicative factor.
[14] Note that Sonnerup [1974] argues that there is a critical

clock angle θcrit = invcos(Bs/Bm) below which no reconnection
will occur. In that case, the sin2(θ/2) clock angle term is
replaced by

sin2ðθ=2Þ ! sin2fðθ� θcritÞ½90o=ð180o � θcritÞ�g for θ ≥ θcrit
sin2ðθ=2Þ ! 0 for θ < θcrit

(9)

At themagnetopause, pressure balance yieldsBs/Bm= (1+bs)
�1/2

(cf. equations (4) and (5) of Borovsky [2008]), where bs is
the plasma beta of the magnetosheath near the magneto-
pause and where the beta of the magnetosphere has been

Figure 2. The Alfvén Mach number MA dependences
of (top) three factors entering into the Cassak-Shay-Birn
equation and the Mach number dependence of the (bottom)
reconnection control functions R2CS and R2CSB for the
magnetosphere are plotted.
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approximated to be zero. The magnetosheath beta is param-
eterized as bs = (MA/6)

1.92 (cf. equation (7) of Borovsky
[2008]); hence,

θcrit ¼ invcos 1þ MA=6ð Þ1:92
h i�1=2

� �
(10)

[15] The Sonnerup θcrit varies from 10.2� atMA= 1 to 81� at
MA= 40. Attempts at implementing the Sonnerup critical
clock angle into the solar wind control functions yield reduced
correlation coefficients between solar wind parameters and
various geomagnetic indices.
[16] Swisdak and Drake [2007] and Schreier et al. [2010]

argue that this critical clock-angle effect [expressions (9) and
(10)] does not prevent reconnection from occurring. Rather,
they argue that the reconnection X-line tilts in a manner to
maximize the outflow velocity from the reconnection site.
Modifying the Swisdak and Drake [2007] argument, we
examine the tilt of the reconnection X-line in a manner that
maximizes the reconnection rate per unit length of the X-line
(rate of magnetic flux transport into the reconnection X-line).
For a plasma-physics problem in which reconnection leads
to a lower energy state, maximizing the reconnection rate
maximizes the rate of energy reduction. For this calculation,
the geometry of the reconnection X-line is sketched in
Figure 1. Denoting the clock angle between the magneto-
spheric magnetic field Bm direction and the magnetosheath
magnetic field Bs direction as θ, the reconnection X-line will
align itself with an angle a away from Bm, in which a ≤ θ/2.
a can be thought of as the clock angle between the magneto-
spheric magnetic field Bm direction and reconnection X-line.
For asymmetric, non-antiparallel reconnection, the reconnec-
tion outflow speed vout can be written in terms of the compo-
nents of the magnetic field normal to the orientation of the
reconnection X-line as

4pvout2 ¼ Bmn þ Bsnð Þ rm=Bmnð Þ þ rs=Bsnð Þ½ ��1 (11)

(cf. equation (7) of Swisdak and Drake [2007]) where the
subscript “n” denotes the component normal to the X-line.
Conferring with Figure 1, this is written in terms of the
angles a and θ as

4pvout2 ¼ Bmgþ Bshð Þ rm=Bmgð Þ þ rs=Bshð Þ½ ��1 (12)

(cf. equation (8) of Swisdak and Drake [2007]) where
g� sin(a) and h� sin(θ � a). For the Cassak-Shay equation,
the reconnection rate is given by the outflow speed vout times
the hybrid magnetic field strength Bhybrid in the inflow:
R= 0.1 voutBhybrid. For the Cassak-Shay-Birn equation, the
reconnection rate is given by R= 0.1 voutBhybridB. The hybrid
inflow magnetic field (cf. equation (3) of Birn et al. [2010])
is given in component form as

Bhybrid ¼ 2BmnBsn=ðBmn þ BsnÞ ¼ 2BmBsgh=ðBmgÞBsh (13)

[17] The Birn compressibility factor B [expression (3)]
is already written in component form. In this component
notation, the Cassak-Shay equation R=0.1 voutBhybrid becomes

RCS ¼ 0:1p�1=2 BmBsghð Þ3=2 rmBshþ rsBmgð Þ�1=2

Bmgþ Bshð Þ�1=2

(14)

and the Cassak-Shay-Birn equation R=0.1voutBhybridB becomes

RCSB ¼ 0:05p�1=2A�1 BmBsghð Þ3=2 lhybrid2 þ 4ΓA
� �1=2 � lhybrid
h i

� rmBshþ rsBmgð Þ�1=2 Bmgþ Bshð Þ�1=2 (15)

[18] Defining w�Bm/Bs, the Cassak-Shay equation (14) in
component form can be written conveniently as

RCS ¼ 0:1p�1=2Bm
2rs

�1=2w�1 ghð Þ3=2
gþ hrm=wrsð Þ�1=2 gwþ hð Þ�1=2

(16)

and the Cassak-Shay-Birn equation (15) in component form
can be written as

RCSB ¼ 0:05p�1=2B2
mrs

�1=2A�1w�1 ghð Þ3=2

lhybrid2 þ 4ΓA
� �1=2 � lhybrid
h i
� gþ hrm=wrsð Þ�1=2 gwþ hð Þ�1=2

(17)

[19] The θ and a dependence of the Cassak-Shay equation
(16) is contained in the function

fCS θ; rm=rs; w; að Þ ¼ ghð Þ3=2 gþ hrm=wrsð Þ�1=2 gwþ hð Þ�1=2 (18)

and the θ and a dependence of the Cassak-Shay-Birn
equation (17) is contained in the function

fCSB θ;rm=rs; w; að Þ ¼ A�1w�1 ghð Þ3=2

lhybrid2 þ 4ΓA
� �1=2 � lhybrid
h i
� gþ hrm=wrsð Þ�1=2 gwþ hð Þ�1=2 (19)

[20] For a given set of θ, rm/rs, and w =Bm/Bs values, the
reconnection rate of the Cassak-Shay equation is maximized
by finding the maximum value of fCS(θ,rm/rs,w,a) [expression
(18)] as a function of the X-line clock angle a. In Figure 3
(top), this value of aCS(θ), which maximizes fCS, is plotted as
a function of θ for various values of w=Bm/Bs, with rm/rs
taken to be 1/6. The values of aCS(θ) are relatively insensitive
to the value of rm/rs as long as rm/rs<<1. For rm<<rs, the
value of the angle a, which maximizes fCS(θ,rm/rs,w,a), is
given approximately by

aCS � θ=2� 15o 1� 1þ wð Þ�1=2
� �

sin θð Þ (20)

which is valid for w ≥ 1. For a given set of θ, rm/rs,
and w = Bm/Bs values, the reconnection rate of the
Cassak-Shay-Birn equation is maximized by finding the
maximum value of fCSB(θ,rm/rs,w,a) [expression (19)] as a
function of a. In Figure 3 (bottom), this value of aCSB(θ),
which maximizes fCSB, is plotted as a function of θ for various
values of w =Bm/Bs, with rm/rs taken to be 1/6. Again, the
values of aCSB(θ) are relatively insensitive to the value of
rm/rs as long as rm/rs<< 1. For rm<< rs, the value of
the angle a, which maximizes fCSB (θ,rm/rs,w,a), is given
approximately by

aCSB � θ=2� 15o 1� 1:38w�0:9 þ 0:619w�2
� �

sin θð Þ (21)

which is valid for w ≥ 1.
[21] Note that for both Cassak-Shay and Cassak-

Shay-Birn equations, the orientation of the X-line is less
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than θ/2 from the direction of the magnetospheric magnetic
field direction, which is the high-Alfvén speed side of the
reconnection site (cf. Figure 1). For asymmetric reconnec-
tion in which one plasma is labeled as the “fast” Alfvén
speed side and the other plasma is labeled as the “slow”
Alfvén speed side, the Cassak-Shay equation given by
expression (1) can be written as

R � 0:2 vAslow BfastBslowð Þ1=2 (22)

[22] Expression (22) points out that the slow-Alfvén speed
side controls the reconnection rate. The X-line twists toward
the magnetic field direction of the fast-Alfvén speed side
(the magnetosphere) to increase the normal component of
the magnetic field on the slow-Alfvén speed side
(the magnetosheath side). This X-line twist is, in a fashion,
to enhance the flux inflow from the lower Alfvén speed,
which enhances the reconnection rate. As can be seen in
Figure 3, the lower the field strength on that low-Alfvén
speed side, the greater the twist, until a limit of about 15�
away from the θ/2 orientation is reached.

2.3. The Shock Compression Ratio Improvement

[23] In Borovsky [2008], the density compression ratio C
of the bow shock at the nose was parameterized for a

quasi-perpendicular bow shock. That is, it was parameter-
ized for a solar wind magnetic field that is assumed to be
perpendicular to the solar wind flow vector. Calling that
parameterization of the compression ratio C⊥, equation (10)
of Borovsky [2008] yielded

C⊥ ¼ 2:44� 10�4 þ 1þ 1:38loge MAð Þ½ ��6
n o�1=6

(23)

[24] A parameterization for the shock compression ratio is
desirable for arbitrary orientations of the upstream solar
wind magnetic field. Noting the angle θBn of the upstream
magnetic field relative to the Sun-Earth line

θBn ¼ invcos Bxj j=ð jBjÞ (24)

the density compression ratio C⊥ of Borovsky [2008] was for
θBn= 90�. Cubic equations for the density compression ratio
of MHD (magnetohydrodynamic) shocks for arbitrary values
of θBn are given by equation (2.3) of Kabin [2001] or equation
(12) of Petrinec and Russell [1997]; the solutions to those
cubic equations were explored for a complete range of MA

(= vsw/vA), Ms (= vsw/Cs), and θBn. That exploration deter-
mined that the compression ratio C of the bow shock could
be fit approximately as

C ¼ C⊥sin
2θBn þ 1� sin2θBn

� �
Cjj (25)

where C|| is the compression ratio at θBn = 0�. An expression
for C|| can be found between equations (2.3) and (2.4) of
[Kabin 2001] (for a = 0� and g = 5/3):

Cjj ¼ 4= 1þ 3 Ms
�2

� �
(26)

[25] Using expressions (23) and (26), expression (25)
yields the improved parameterization of the bow shock
compression ratio

C ¼ sin2θBn 2:44� 10�4 þ 1þ 1:38loge MAð Þ½ ��6
n o�1=6

þ 1� sin2θBn
� �

4= 1þ 3 Ms
�2

� �� 	 (27)

[26] For the OMNI2 1 h data set, the mean value of θBn is
52� and using C instead of C⊥ amounts to, on average, a 5%
correction of the compression ratio.

3. The Improved Solar Wind Control Function

[27] Two new versions of the solar wind control function are
derived: one from the Cassak-Shay equation [expression (14)]
and one from the Cassak-Shay-Birn equation [expression (15)].
Using (a) the pressure-balance argument at the magnetopause

Bm ¼ 8pð Þ1=2ro1=2vo 1þ 0:5 Mms
�2

� �1=2
(28)

(cf. equation (4) of Borovsky [2008]) where Mms is the
magnetosonic Mach number of the solar wind and where
the subscript “o” denotes the solar wind upstream of the
bow shock, (b) the relation

rs ¼ Cro (29)

cf. equation (9) of Borovsky [2008]) determined from MHD
simulations of the magnetosphere, where C is the density
compression ratio at the nose of the bow shock, (c) the

Figure 3. The clock angle a of the reconnection X-line
away from the direction of the magnetospheric magnetic field
is plotted as a function of the clock angle θ between the
upstream–solar wind magnetic field and the Earth’s dipole.
The colors are for various values of the ratio of the magneto-
spheric to magnetosheath magnetic field strengths Bm/Bs.
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notations w=Bm/Bs, ro =mpno, and rm=mpmmnm with mp

being the proton mass and mm being the mean molecular
weight of the magnetospheric ions, and (d) lm� 1 for bm
0 and ls = (5 � 2w�2)/2 for g= 5/3, the Cassak-Shay expres-
sion [equation (14)] is written as

R2CS ¼ 0:8p1=2mp
1=2no

1=2vo
2 1þ 0:5 Mms

�2
� �

C�1=2 ghð Þ3=2

= w g þ hmmnm=wCnoð Þ1=2 gwþ hð Þ1=2
n o

(30)

and the Cassak-Shay-Birn expression [equation (15)] is
written as

R2CSB ¼ 0:4p1=2mp
1=2no

1=2vo
2 1þ 0:5 Mms

�2
� �

C�1=2A�1 ghð Þ3=2

lhybrid2 þ 4ΓA
� �1=2 � lhybrid

n o
= w gþ hmmnm=wCnoð Þ1=2 gwþ hð Þ1=2
n o

(31)

which are the two newly derived solar wind control func-
tions describing the reconnection rate per unit length of the
dayside X-line. The subscript “2” denotes the second ver-
sion, with equation (12) of Borovsky [2008] being the first
version R1. In expressions (30) and (31), mm is the mean
molecular weight of the magnetospheric ions and

w ¼ 1þ bsð Þ1=2 (32a)

bs ¼ MA=6ð Þ1:92 (32b)

C ¼ C⊥sin
2θBn þ Cjj 1� sin2θBn

� �
(32c)

C⊥ ¼ 2:44� 10�4 þ 1þ 1:38loge MAð Þ½ ��6
n o�1=6

(32d)

Cjj ¼ 4= 1þ 3 Ms
�2

� �
(32e)

MA ¼ vsw=vA (32f)

Mms ¼ vsw= vA
2 þ Cs

2
� �

(32g)

lhybrid ¼ Λm þ wΛsð Þ= wþ 1ð Þ (32h)

lhybrid ¼ Λm þ wΛsð Þ= wþ 1ð Þ (32i)

Λs ¼ 3þ 2:5bs � 2 h2
� �

= 2þ bs � h2
� �

(32j)

A ¼ 0:5 1� g2
� �1=2 þ 1� h2

� �1=2h i2
2þ bs � h2
� ��1

1þ w�1
� ��2

(32k)

[28] where θ is the IMF clock angle with respect to the
Earth’s dipole, θBn is the angle of the IMF relative to the
Sun-Earth line, no and vo are the upstream solar wind
number density and velocity, nm is the magnetospheric mass
density just inside the dayside magnetopause, vA is the
Alfvén speed in the solar wind upstream of the bow shock,
Cs = (gkB(Ti + Te)/mp)

1/2 is the sound speed in the solar wind
upstream of the bow shock, g = sin(a) and h = sin(θ� a),
with the appropriate X-line tilt angle a given by expression
(20) for the Cassak-Shay equation or by expression (21)
for the Cassak-Shay-Birn equation.
[29] As outlined in the first paragraph of section 2,

four corrections are in the derivation of the reconnection

control function R2 for the magnetosphere, making it an
improved version of the rudimentary control function R1 of
Borovsky [2008].

4. A Simplified Expression for the Reconnection
Control Function

[30] The rudimentary solar wind control function R1

(equation (12) of Borovsky [2008]) is complicated and awk-
ward to implement. The improved reconnection control
functions R2CS and R2CSB given by expressions (30) and
(31) are even more complicated and awkward to implement.
The algebraic complexity of these control functions comes
from the Mach number dependence through the variable
w = (1 + bs)

1/2 = (1 + (MA/6)
1.92)1/2. In Figure 2, that Mach

number dependence is explored, under the simplifying as-
sumption that nm<< no, θBn = 90�, and θ= 180� (where g=
h=1). In Figure 2 (top), three terms of the Cassak-Shay-Birn
equation are plotted as a function of the Alfvén Mach number
MA of the solar wind. The three terms are (1) the C�1/2 term
associated with the compressibility of the bow shock [given
by expression (32d)], which affects the mass density of the
magnetosheath plasma at the reconnection site; (2) the Mach
number dependence of the hybrid magnetic field strength for
the reconnection site

w3 þ w3
� ��1=2 ¼ 1þ bsð Þ3=2 þ 1þ bsð Þ

h i�1=2

¼ 1þ MA=6ð Þ1:92
h i3=2

þ 1þ MA=6ð Þ1:92
h i
 
�1=2

(33)

which characterizes the reduction of the magnetosheath
magnetic field strength from 8provo

2 owing to the nonzero
b of the magnetosheath plasma; and (3) the Birn plasma-
compressibility correction B [expression (3)] to the recon-
nection rate (which is plotted for θ = 180� and for θ= 90�).
The Cassak-Shay equation contains the first two of these
terms: the Cassak-Shay-Birn equation contains all three.
As can be seen in Figure 2 (top), the bow shock compress-
ibility has a change in behavior at about MA= 3 between
low-Mach number weak compression and higher-Mach
number compression approaching a factor of 4. The
Mach number dependence of the magnetic field strength
[expression (33)] has a change in behavior at about MA= 6,
with the magnetosheath plasma being low beta for MA<< 6
and the magnetosheath plasma being high beta forMA >> 6.
The Birn compressibility correction for a clock angle of
θ=180� makes a gradual transition from B� 2.5 at MA= 1
to B� 1 at very-high Mach number; for θ< 180�, the Birn
compressibility correction is weaker because of the reduction
of compressibility by the presence of the guide field.
[31] In Figure 2 (bottom), the full Mach number depen-

dence of the solar wind control functions R2CS and R2CSB

are plotted (holding no
1/2vo

2 fixed). The Mach number depen-
dence of R2CSB is plotted twice, once for a clock angle
θ = 180� and once for θ = 90�. The reconnection control
function exhibits a change in the Mach number dependence
at about MA = 6, reflecting the transition of the magne-
tosheath plasma from low-beta to high-beta as MA increases
across MA = 6.
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[32] To obtain simplified versions of the solar wind con-
trol functions R2CS and R2CSB given by expressions (30)
and (31), the approximations nm= 0 and g = h = sin(θ/2) are
taken, and the Alfvén Mach number–dependent portions of
the control function that are plotted in Figure 2 (bottom)
are fit as a function of MA, and the term (1 + 0.5 Mms

�2)1/2 is
approximated to be unity. Accordingly, the approximation
to the Cassak-Shay reconnection control function for the
magnetosphere R2CS of expression (30) is

R2CS�approx ¼ 1:68� 10�2sin2 θ=2ð Þ no1=2vo2MA
�0:3044

� exp � MA=3:18½ �1=2
� �

(34)

and the approximation to the Cassak-Shay-Birn reconnec-
tion control function for the magnetosphere R2CSB of expres-
sion (31) is

R2CSB�approx ¼ 3:29� 10�2sin2 θ=2ð Þno1=2vo2MA
�0:18

� exp � MA=3:42½ �1=2
� �

(35)

[33] The units of R in expressions (34) and (35) are gauss
cm/s or, equivalently, nT km/s, where the solar wind number
density no is in units of cm�3 and the solar wind speed vo is
in units of km/s. For the 198,000 hourly values available in
the OMNI2 data set for 1980 to 2012, the linear correlation
coefficient between R2CS-approx [expression (34)] and R2CS

[expression (30)] is 0.998, and the linear correlation coeffi-
cient between R2CSB-approx [expression (35)] and R2CSB

[expression (31)] is 0.990.

5. Correlations of the Reconnection Control
Functions with Geomagnetic Indices

[34] For the hourly averaged solar wind parameters [King
and Papitashvili, 2005] and geomagnetic indices for 1980 to
2012, the improved solar wind control functions R2CS and
R2CSB are correlated with various geomagnetic activity
indices and the value of Pearson’s linear correlation coefficient
r (equation (11.17) of Bevington and Robinson [1992]) is
entered into Table 1. For every hour of solar wind data, a value
of R2 (no,vo,MA,Mms,θ,θBn) is calculated and matched against
the hourly averaged values of the geomagnetic indices.
Approximately 198,000 hourly intervals are available with
vo, no, and Tp values to calculate R2 (no,vo,MA,Mms,θ,θBn).

[35] To evaluate the solar wind control functions, the mag-
netosonic Mach numberMms is needed, but electron temper-
ature measurements of the solar wind are often not available
to calculate the ion sound speed. To evaluate Mms from only
proton-temperature measurements, the electron temperature
Te is approximated from the proton temperature Tp as
follows. For the 1998 ACE electron moments of Skoug
et al. [2000], a Gaussian fit to log(Te) as a function of log
(Tp) yields

Te ¼ 7:21 Tp
0:393 (36)

[36] This expression is used to evaluate the sound speed
Cs = [gkB(Tp + Te)/mp]

1/2 with g = 5/3, which goes into the
magnetosonic Mach number Mms = vsw/(vA

2 +Cs
2)1/2.

[37] In evaluating the reconnection control functions R2CS

and R2CSB, the number density of the magnetospheric
plasma is taken as nm= 0.
[38] The correlation coefficients for R2CS, R2CSB, and other

solar wind driver functions are also entered into Table 1. The
columns are �vBz [Rostoker et al., 1972] (with Bz in
GSM coordinates), vBsouth [Holzer and Slavin, 1982] (where
Bsouth =�Bz for Bz< 0 and Bsouth = 0 for Bz≥ 0, again in
GSM), Newell vo

4/3Bo⊥
2/3sin8/3(θ/2) [Newell et al., 2007], R1

[Borovsky, 2008], R2CS [expression (30)], R2CSB [expression
(31)], R2CS-approx [expression (34)], and R2CSB-approx

[expression (35)]. The geomagnetic indices used (rows of
Table 1) are the 1 h lagged AE index, the 1 h lagged AU index,
the 1 h lagged AL index, the northern polar cap index
(Thule) with no time lag, the 1 h lagged midnight boundary
index (MBI) [Gussenhoven et al., 1983], the Kp index
with a 1 h time lag, and the pressure-corrected Dst index
Dst* =Dst � 20.7 Pram + 27.7 [Borovsky and Denton,
2010] with a 2 h time lag.
[39] In Table 1, the linear correlation coefficients between

the various driver functions and the various geomagnetic
indices can be seen. For the geomagnetic indices AE, AL,
and PCI, the improved coupling functions R2CS and R2CSB

yield higher correlation coefficients than obtained for the
Borovsky [2008] rudimentary control functions R1. For other
indices, the rudimentary function R1 yields higher correla-
tion coefficients: those indices are AU, MBI, Kp, and Dst*.
[40] The bottom row of Table 1 contains a seven-index

sum of the linear correlation coefficients for each driver
function. As can be discerned from that sum, the Newell
function and the R1 and R2 reconnection control functions
perform superior jobs at correlating with geomagnetic

Table 1. Linear Correlation Coefficients between Various Solar Wind Driver Functions and Various Geomagnetic Indicesa

�vBz vBsouth Newell R1 R2CS R2CSB R2CS-approx R2CSB-approx

AE 1 h lag 0.570 0.687 0.780 0.750 0.774 0.758 0.771 0.766
AU 1 h lag 0.445 0.542 0.650 0.676 0.674 0.665 0.669 0.663
�AL 1 h lag 0.573 0.689 0.764 0.710 0.744 0.727 0.744 0.738
PCI 0.576 0.653 0.757 0.735 0.756 0.744 0.752 0.750
�MBI 1 h lag 0.471 0.605 0.710 0.736 0.730 0.718 0.729 0.723
Kp 1 h lag 0.338 0.535 0.653 0.747 0.704 0.695 0.700 0.696
�Dst* 2 h lag 0.340 0.581 0.634 0.692 0.668 0.668 0.660 0.667
7-Index Sum 3.313 4.292 4.948 5.046 5.050 4.977 5.025 5.003

aThe correlation coefficients are for the January 1980 to May 2012 1-h resolution OMNI2 data set. The Newell function is vo
4/3Bo⊥

2/3sin8/3(θ/2), R1 is given
by equation (12) of Borovsky [2008], and R2CS, R2CSB, R2CS-approx, and R2CSB-approx are given by expressions (30), (31), (34), and (35), respectively. The
statistical errors �1/N1/2 (where N is the number of point pairs) for the correlation coefficients are �0.002 for all geomagnetic indices except for MBI, in
which the statistical error is �0.003.
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indices compared with the simpler functions �vBz and
vBsouth. It can be seen that the reconnection control func-
tion based on the Cassak-Shay-Birn equation R2CSB does
not perform quite as well as the simpler R2CSB based on
the Cassak-Shay equation.
[41] The correlation coefficients for the approximations

R2CS-approx [expression (34)] and R2CSB-approx [expression
(35)] in Table 1 are, on average, within a few percentage
points of the coefficients for the full expressions R2CS

[expression (30)] and R2CSB [expression (31)].
[42] Note in Table 1 that, in general, the inclusion of the

Birn compressibility correction does not improve the
correlation of the solar wind with the geomagnetic indices
(i.e., compare R2CS with R2CSB and compare R2CS-approx

with R2CSB-approx).

6. Discussion

[43] This section contains discussions about (a) the role of
the solar wind electric field in determining the magnitude of
the driving of magnetospheric activity, (b) why the Birn
compressibility correction as implemented does not improve
the coupling functions for the magnetosphere, and (c) future
work needed for further improvements to the reconnection
control function for the magnetosphere.

6.1. Why Do vB-type (Electric Field) Driver Functions
Do a Good Job of Describing Geomagnetic Activity?

[44] The quantity vBz of the upstream solar wind is said to
determine the electric field in the reconnection line at the
dayside magnetopause [Burton et al., 1975; Kan and Lee,
1979; Axford, 1984; Grocott et al., 2009]. However,
[Borovsky et al. 2008] showed that because of the diverging
flow of the magnetosheath around the magnetosphere, the
electric field at the dayside reconnection site is not equal to
vBz of the solar wind upstream of the bow shock [see also
Birn and Hesse, 2007]. On the other hand, �vBz and other
vB-type drivers do a good job of correlating with the level
of geomagnetic activity (cf. Table 1). The question is: Why
do they do so well? We see two possibilities as to why vBz

of the solar wind does such a good job of correlating with
the level of geomagnetic activity: (1) vBz coincidentally
approximates the rate of reconnection of solar wind mag-
netic field lines with the Earth or (2) vBz describes the
strength of the solar wind MHD generator connected to the
Earth’s polar cap [Goertz et al., 1993; Borovsky et al.,
2009] and it is describing the strength of coupling after the
reconnection has occurred. The first point will be explored
in this subsection.
[45] In point (1), the relationship of vBz of the solar wind to

the reconnection control functions R2CS and R2CSB is explored
by looking at the Alfvén Mach number dependences of the
solar wind coupling functions (30) and (31). In the approxima-
tions a = θ/2 and g= h= sin(θ/2), these control functions can
both be written in the form

R / sin2 θ=2ð Þ no1=2vo2f MAð Þ; (37)

where the Mach number dependences f(MA) are plotted in
Figure 2 (bottom) for expressions (30) and (31). In the
OMNI2 data set, more that 85% of the 1 h solar wind inter-
vals have Alfvén Mach numbers in the range of MA = 4.5 to

15. In that range, 4.5<MA< 15, the curves in Figure 1
(bottom) can be fit by the power laws f(MA) = 4.14 MA

�1.255

for the top curve R2CSB and f(MA) = 1.33MA
�0.928 for the bot-

tom curve R2CS. Utilizing these fits in expression (37), and
writing MA / no

1/2vo/Bo, the functional dependences of the
solar wind control functions (30) and (31) in the range of
4.5<MA< 15 become

R2CS / sin2 θ=2ð Þ no0:04vo1:07Bo
0:93 (38a)

R2CSB / sin2 θ=2ð Þ no�0:13vo
0:74Bo

1:26 (38b)

[46] Expressions (38a) and (38b) have linear correlation
coefficients with the 1 h lagged AE index of +0.756 and
+0.707 for the 1980 to 2012 OMNI2 data set, so they do a
good job of describing geomagnetic activity. Functions
(38a) and (38b) are on the order of sin2(θ/2)vo

1Bo
1 of the solar

wind, which is related to the solar wind electric field.
These are of a similar form to vBz, vBsouth, and Newell
vo
1.33B⊥

0.66, but with Bo = (Bx
2 +By

2 +Bz
2)1/2 instead of

B⊥= (By
2 +Bz

2)1/2. Hence, it seems to be coincidental that
the dayside reconnection rate has a function form that is
similar to that of the solar wind electric field. Note that in
the derivation of the reconnection rate in the present report
and in [Borovsky 2008], the magnetic field B enters via a
Mach number that determines the shock and sheath proper-
ties that reduce the reconnection field strength down from
(8provo

2)1/2. No solar wind electric field appears in the deri-
vation and no product of v times B appears in the derivation.

6.2. The Birn Compressibility Correction

[47] As can be seen in Table 1, R2CSB for the Cassak-
Shay-Birn picture has weaker correlations with geomagnetic
activity than R2CS for the Cassak-Shay picture does. Hence,
including the Birn compressibility correction B did not
improve the performance of the reconnection control func-
tion for the magnetosphere.
[48] As can be seen in Figure 2 (bottom), adding the Birn

compressibility correction steepens the falloff of the coupling
function with increasing values of the Alfvén Mach number
MA. This steepening of theMA dependence lowers the correla-
tions. In fact, if R2CS [given by expression (30)] were to be
multiplied by MA

0.2 to make its Mach number dependence
slightly shallower, noticeably improved correlation coeffi-
cients with the geomagnetic indices would be obtained.
[49] The Mach number dependence of R2CS and R2CSB

are chiefly via the parameter w =Bm/Bs = (1+bs)
1/2 where

bs = (MA/6)
1.92. The bs = (MA/6)

1.92 relation was obtained from
fits to bs(MA) in global MHD simulations of the solar wind
flow around the magnetosphere [Borovsky, 2008]. These
simulations had some idealizations likeBx=0 in the solar wind
and no dipole tilt. The inaccuracy of this bs(MA) fit versus the
actual values of bs for the real magnetosphere could more than
account for MA

0.2 changes in R2CS and R2CSB.

6.3. Future Work

[50] Several future improvements of the derivation of the
reconnection control function R2 remain, including (1) more
accurate parameterizations for the values of bs and rs
as functions of the Alfvén Mach numberMA, (2) a parameter-
ization of the magnetosheath magnetic field Bs and density rs
across the face of the magnetosphere and calculation of the
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total reconnection rate integrated along the entire dayside
reconnection X-line, and (3) accounting for the effects of
velocity shear on the magnetopause reconnection rate.
[51] Avenues for the improvement of the correlations

between solar wind parameters and the level of geomagnetic
activity include (1) adding postreconnection MHD generator
physics [e.g., Goertz et al., 1993; Lavraud and Borovsky,
2008; Borovsky et al., 2009] to the control function R2, (2)
adding a viscous interaction term to the control function
[cf. Oberc, 1979; Borovsky and Funsten, 2003; Newell et al.,
2008], and (3) parameterizing the dayside-magnetospheric
plasma mass density rm and using rm 6¼ 0 in the reconnection
control function R2.

7. Summary

[52] Following Borovsky [2008], improved physics was
incorporated into a rederivation of the reconnection control
function for the Earth’s magnetosphere. This rederivation
accounted for the Birn et al. [2010] compressibility correction
to the reconnection rate, accounted for the tilt of the recon-
nection X-line, accounted for the projection of the inflow–
magnetic field vector along the reconnection X-line, and
relaxed the assumption of a quasi-perpendicular bow shock
at the nose.
[53] New reconnection control functions for the magneto-

sphere were given, R2CS and R2CSB, based on the Cassak-Shay
and the Cassak-Shay-Birn equations, respectively. These
reconnection control functions express the magnetopause
reconnection rate per unit length of the X-line in terms of the
solar wind parameters no, vo, θ, θBn, MA, and Mms upstream
of the bow shock, where no is the solar wind number density,
vo is the solar wind speed, θ is the magnetic field clock angle
with respect to the dipole, θBn is the angle of the solar wind
magnetic field away from the Sun-Earth line,MA is the Alfvén
Mach number, and Mms is the magnetosonic Mach number.
[54] Measured by the magnitude of the linear correlation

coefficients with geomagnetic indices, R2CS is a slight
improvement over R1 and R2CSB is slightly inferior to R1.
It was pointed out that potential errors in the parameterization
of the plasma-beta of the magnetosheath as a function of
the solar wind Alfvén Mach number could produce errors
in R2CSB and R2CSB that are larger than the Mach number
difference between R2CSB and R2CSB.
[55] Arguments were presented as to why the Birn com-

pressibility correction (derived for antiparallel reconnection)
needs to be modified for non-antiparallel reconnection.
[56] Simplified expressions approximating the new recon-

nection control functions R2CS and R2CSB were given, with
geomagnetic index correlation coefficients nearly as high
as the full expressions.
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