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Tumour heterogeneity is a major barrier to cure
breast cancer. It can exist between patients with
different intrinsic subtypes of breast cancer or
within an individual patient with breast cancer. In
the latter case, heterogeneity has been observed
between different metastatic sites, between meta-
static sites and the original primary tumour, and
even within a single tumour at either a metastatic
or a primary site. Tumour heterogeneity is a
function of two separate, although linked, pro-
cesses. First, genetic instability is a hallmark of
malignancy, and results in ‘fixed’ genetic changes
that are almost certainly carried forward through
progression of the cancer over time, with increas-
ingly complex additional genetic changes in new
metastases as they arise. The second type of
heterogeneity is due to differential but ‘plastic’
expression of various genes important in the biol-
ogy and response to various therapies. Together,
these processes result in highly variable cancers
with differential response, and resistance, to both

targeted (e.g. endocrine or anti-human epithelial
growth receptor type 2 (HER2) agents) and nontar-
geted therapies (e.g. chemotherapy). Ideally,
tumour heterogeneity would be monitored over
time, especially in relation to therapeutic strate-
gies. However, biopsies of metastases require inva-
sive and costly procedures, and biopsies of
multiple metastases, or serially over time, are
impractical. Circulating tumour cells (CTCs) rep-
resent a potential surrogate for tissue-based can-
cer and therefore might provide the opportunity to
monitor serial changes in tumour biology. Recent
advances have enabled accurate and reliable quan-
tification and molecular characterization of CTCs
with regard to a number of important biomarkers
including oestrogen receptor alpha and HER2.
Preliminary data have demonstrated that expres-
sion of these markers between CTCs in individual
patients with metastatic breast cancer reflects the
heterogeneity of the underlying tumours. Future
studies are designed to determine the clinical
utility of these novel technologies in either research
or routine clinical settings.
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Introduction: tumour heterogeneity

The concept of tumour heterogeneity in breast
cancer has been recognized for decades [1], and
interpatient tumour heterogeneity is well estab-
lished. Malignancies that originate in the breast
epithelium have been divided into at least five
categories, in addition to the classical histopatho-
logical subtypes, based on gene array expression
patterns: luminal A and B, human epithelial
growth receptor type 2 (HER2), basal-like and
claudin-low [2]. These five subtypes exhibit funda-
mental biological and untreated characteristics,
and treatment is directed by their relative content
of oestrogen receptor alpha (ERa) and HER2 [3, 4].

Of particular relevance, intrapatient heterogeneity
has recently received renewed interest as a mech-

anism of resistance to systemic therapy [5]. In the
late 1970s and 1980s, Goldie and Coldman as well
as Norton (with his colleague Simon) generated
mathematical models in which they proposed that
genetic instability would result in accumulation of
mutations and subsequent resistance to chemo-
therapy during uncontrolled cellular proliferation
associated with tumour growth [6, 7]. Skipper and
colleagues used rodent models to demonstrate that
early tumour transplants were more sensitive to
the cytotoxic effects of chemotherapy than tumour
grafts that were allowed to grow for longer periods
of time before treatment was initiated [8]. These
studies were the basis for subsequent prospective
randomized clinical trials that established that
adjuvant systemic therapy substantially reduces
mortality compared with delayed therapy after
establishing the presence of metastases [9, 10].
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Intrapatient heterogeneity also takes several forms.
Studies conducted in the 1980s demonstrated that
metastases may have different ERa expression
patterns to the original primary cancers from
which they arose [11]. These findings have been
confirmed and extended to other biomarkers, in
particular HER2 [12]. Early findings suggested that
this heterogeneity might be a function of treatment
pressure [13]; however, subsequent investigations
proved that differences in tumour biomarker
expression patterns can occur in the absence of
any intervening treatment, between different
metastases diagnosed simultaneously and even
within the same excised primary or metastatic
tumour [11, 12, 14–17].

These findings have several important implications
for diagnosis and treatment of patients with breast
cancer. First, interpatient tumour heterogeneity
may account for the remarkable differences in the
risk of a breast cancer recurring in the absence of
any systemic therapy (prognosis). Secondly,
tumour heterogeneity almost certainly accounts
for the problematic issue of resistance to systemic
therapies of all types, including chemotherapy and
treatments directed against a molecular target
such as ERa, HER2 and the mammalian target of
rapamycin (mTOR) [18]. Although adjuvant sys-
temic treatment is now well established for chemo-
therapy as well as for endocrine and anti-HER2
agents, at least 15% of patients with early-stage
disease still experience distant metastases, result-
ing in death in almost all these cases.

It is clear that lack of expression of these targets
(i.e. ERa, HER2 and mTOR) renders patients highly
unlikely to respond to the specific therapies
directed towards them. For example, patients with
ERa-negative primary breast cancers do not benefit
from adjuvant tamoxifen [9]. However, whereas
some of the patients who do express these targets
seem to have intrinsic de novo resistance to
systemic therapies, many initially show sensitivity
but gain ‘acquired resistance’ over time during
treatment. The use of serial single-agent chemo-
therapies to treat patients with metastatic disease
is widespread, providing reasonably high chances
of response and benefit but subsequent emergence
of resistance to one agent with retained sensitivity
to the next, until finally the entire tumour appears
to be refractory to all types of treatment [19].
Likewise, it was established more than 40 years
ago that administration of serial endocrine thera-
pies to patients with hormone-dependent breast

cancers (now defined by expression of ERa-positive
cancers) often results in a series of prolonged
episodes of response and palliation, each punctu-
ated by subsequent progression, but then response
to the next treatment. Unfortunately, as with
chemotherapy, ultimately almost all patients
develop resistance to endocrine therapy resulting
in death due to their disease [20].

The 3rdmillenniumhasushered inan era of targeted
therapy for cancer in general. Breast cancer repre-
sents the paradigm of this approach, coupling our
understanding of at least two major ‘driving’ targets,
ERa and HER2, with an astonishing array of specific
therapies directed towards them. The recently
reported success of adding an mTOR inhibitor,
everolimus, to endocrine therapy promises even
better outcomes [18], and several other pathways
and the agents that target them are now under
investigation. Nonetheless, the adverse effects of
tumour heterogeneity will remain a critical issue for
the use of these therapies in a systematic manner.

Mechanisms of tumour heterogeneity

In a landmark paper published about 30 years ago,
Fidler and Hart first demonstrated emergence of
intratumour heterogeneity in murine models [21].
More recent studies, using next-generation genomic
technologies, have provided insight into the over-
whelming genetic diversity between different breast
cancers [22–24] and between primary and meta-
static tumours in the same patient [25]. Demonstra-
tion in a patient with renal cell cancer of the
evolution of genetic heterogeneity between and
amongst different metastatic tumours has con-
firmed that accumulation of mutations and other
genetic variations (amplifications and deletions)
results in increasingly complex, although still viable,
clones that ultimately lead to mortality [5]. Indeed,
this cumulative complexity has been implicated as
at least one mechanism of resistance to aromatase
inhibition in ERa-positive breast cancer [24].

Genetic heterogeneity due to chromosomal insta-
bility is a relatively fixed phenomenon. In other
words, once a clone has a genetic variation, this
variation is likely to remain constant throughout the
evolution of that clone, even as it acquires further
genetic variations. Although it is possible that a
mutationmight be eliminated by backmutation (i.e.
reversion to wild type), this appears to occur rarely,
and amutation to a cellular lethal event, eliminating
the clone altogether, is more likely.
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However, in addition to fixed tumour heterogeneity,
‘plastic’ heterogeneity must also be considered. In
this case, for a variety of reasons, expression of a
driving protein pathway is not under control of a
fixed constitutive mechanism, but rather is subject
to environmental stresses resulting in up- or
downregulation. Such regulation may be due to
interpathway cross-talk. For example, it has been
demonstrated in several preclinical studies that
apparently ERa-positive, ‘HER2-negative’ cancers
can in fact upregulate HER2 in the presence of
anti-oestrogenic agents [26–29]. Thus, to guide
treatment strategies, clinical scientists and care-
givers will need to be able to monitor both the
emergence of fixed heterogeneity within a patient
and treatment-related plastic tumour variability.

Clinical implications of tumour heterogeneity: potential role of
circulating tumour cells

The phenomenon of emerging variable tumour
heterogeneity must be taken into consideration as
therapeutic trials of new targeted therapies are
being planned. It is highly probable that each new
targeted therapy introduced in the clinic will
induce transient, short-term benefit to which the
tumour will ultimately become resistant. Although
such responses represent steps forward, they are
unlikely to result in substantial gains in overall
survival or increases in cure rates.

By implication, using the tissue collected from a
patient’s primary cancer to predict the best treat-
mentmany years later, after several prior therapies,
is unlikely to provide reliable information. Likewise,
monitoring accumulated genetic or plastic changes
in cancers, as the patient is treated, might guide
selection of the next therapy, or even addition of a
subsequent therapy, whilst maintaining the treat-
ment on which the cancer has already progressed.
Ideally, these concerns would be resolved by per-
forming a biopsy of the metastases at each critical
clinical stage. A biopsy to establish the diagnosis
and determine whether the predictive biomarkers of
metastases remain concordant, or have changed,
comparedwith the primary cancer, is now fairly well
established as the standard of care. However, most
metastases are localized in internal organs (liver,
lung and bone), and therefore, biopsies are invasive,
inconvenient and costly, and multiple biopsies are
logistically difficult if not impossible.

In this regard, detection and characterization of
circulating tumour cells (CTCs) might serve as a

‘liquid’ real-time biopsy. CTCs were first identified
postmortem by Ashworth nearly 150 years ago
[30]. However, until recently, accurate and reliable
methods of isolating, quantifying and genotyping
or phenotyping CTCs were not available. Over the
last decade, a number of strategies to isolate CTCs
from the billions of erythrocytes and millions of
leucocytes present in a single blood sample have
been investigated [31]. These approaches are based
on the physical differences between cancer and
normal haematopoietic cells, such as size or
expression of either epithelial-specific or relatively
cancer-specific molecules, such as epithelial cell
adhesion molecule (EpCAM) or HER2.

Of these, the most widely used commercially
available assay is the CellSearch� system (Veridex,
LLC, Raritan, NJ, USA). The CellSearch� system is
a highly automated assay based on an anti-EpCAM
immunomagnetic capture step followed by fluores-
cent images that capture nucleated (DAPI-positive),
cytokeratin-positive CD45-negative events that are
designated as CTCs (Fig. 1). It has recently been
demonstrated in several studies in patients with
metastatic breast, colorectal and prostate cancer,
as well as in the adjuvant breast cancer setting,
that those who have elevated baseline CTC levels,
determined using CellSearch�, have worse prog-
nosis than those with normal levels [31–33].

However, as these studies are plagued by obstacles
to all diagnostic approaches, sensitivity and spec-
ificity, only approximately 50% of patients with
metastatic breast cancer have elevated CTC levels
at baseline (defined as �5 CTCs/7.5 mL whole
blood), and in the adjuvant setting, only approxi-
mately 10–25% have �1 CTC/7.5–23 mL whole
blood [31, 33, 34]. Furthermore, even if CTC levels
are elevated using these definitions, very few
patients have more than 10 CTCs/7.5 mL whole
blood, which severely limits the ability to further
characterize the CTC in any meaningful manner.
This lack of sensitivity may be due to both techni-
cal and biological factors. In any assay, repeated
handling and washing of a specimen will result in
loss of analyte. Moreover, because the CellSearch�

system is based on EpCAM expression, cancers
that do not express this marker (estimated at about
20%), or individual cells within tumours that do
not express EpCAM, may not be captured [35].

Similarly, specificity may be a technical or biolog-
ical issue. An assay that increases sensitivity is
more prone to capturing nonmalignant cells,
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emphasizing the importance of the second charac-
terization step in CellSearch� and other emerging
assays. Perhaps of more importance, even if a
captured cell is considered morphologically or
phenotypically to represent a cancer cell, it may
not have malignant potential. It has been demon-
strated in several clinical studies that the presence
of microscopic malignant cells at sites external to
the primary tumour (lymph nodes, bone marrow or
the circulation) is associated with poor prognosis
[33, 36, 37]. However, the presence of documented
micrometastases does not imply absolute risk of
subsequent recurrence. Indeed, Meng et al. [38]
reported that 13 of 36 (36%) women who had no
evidence of clinical disease 7–22 years after mas-
tectomy had detectable aneusomic CTCs. Further-
more, Weidswang et al. reported that 53 of 356

(15%) patients who were disease-free after 3 years
of follow-up had bone marrow micrometastases.
After a subsequent follow-up period of approxi-
mately 3 years, only 21% of these patients with
documented persistent bone marrow metastases
relapsed [39]. Taken together, these studies sug-
gest that simply finding more cells using high-
sensitivity assays may not have clinical implica-
tions and that future studies using next-generation
capture devices need to be planned carefully,
taking into consideration clinical outcomes and
not just diagnostic comparisons with the current
gold standard.

Nonetheless, molecular characterization of cap-
tured CTCs might provide insight into the future
clinical behaviour of the cancer, especially in
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Fig. 1 Immunomagnetic separation and characterization of circulating tumour cells (CTCs) using the CellSearch� system.
CTCs are isolated from whole blood using anti-EpCAM-coated nanomagnetic particles and then characterized for the
presence of a nucleus (by DAPI staining) and expression of cytokeratin (FITC-labelled anticytokeratin). Demonstration that
the cells are not leucocytes is determined by lack of staining with APC-labelled CD45. The fluorescent ‘events’ are captured
by automatic fluorescent laser microscopy and presented in separate channels (labelled, respectively) and as a composite
channel. A separate fourth channel is available for characterization of other markers.
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relation to targeted therapy. However, it is not clear
that CTCs actually reflect the biology of the tissue-
based cancer. Rather, it is possible that the
detected cells with currently available techniques
are merely those that were shed and are only the
‘tip of the iceberg’. These cells do not necessarily
represent the biology of the underlying tumour. For
example, it is clear that an elevated number of
CTCs as detected by CellSearch� are associated
with poor prognosis, but one does not know
whether these cells actually have malignant behav-
iour themselves. Perhaps they are terminally dif-
ferentiated cells that simply reflect the presence of
more malignant, but uncaptured, cancer stem cells
[40]. Recent observations that cancer cells undergo
epithelial to mesenchymal transformation, with
loss of EpCAM, as a critical part of the metastatic
process further suggest that the truly malignant
cell might not be detected with currently available
assays [41, 42].

A number of groups have now demonstrated the
technical ability to perform molecular character-
ization of CTCs. Protein biomarkers such as ERa,
HER2, Ki67, BCL2 androgen receptor, and insulin-
like growth factor, as well as HER2 amplification
and multi-gene transcript expression, can be mea-
sured reliably and accurately [31, 43–47]. Further-
more, using other platforms, the ability to detect
these and other markers [48, 49] as well as DNA
variations such as mutations in EGFR [50] have
been demonstrated. However, at present, there is
no evidence that the biomarker status of a CTC
predicts clinical response or outcome; indeed, it
was recently reported that HER2 positivity in CTCs
was not associated with response to lapatinib [51].

Regardless of the immediate biological or clinical
applications of CTCs, these studies have demon-
strated that, like their associated cancers, these
cells are remarkably heterogeneous [52]. Expres-
sion levels of HER2 in CTCs can vary considerably
within individual patients [53] (Fig. 2). Using the
CellSearch� system, we recently developed a CTC-
Endocrine Therapy Index, based on semi-quanti-
tative phenotyping of CTCs for ERa, BCL2, HER2
and Ki67. In a pilot study, we rarely observed a
single patient in whom all of the CTCs expressed
any one of these markers uniformly [43]. Rather,
there was generally a broad range of expression of
each marker in the CTCs identified in individuals
with metastatic breast cancer. We speculate that
CTC heterogeneity might provide a more biologi-
cally and clinically useful description of the heter-

ogeneity of the entire tumour burden within a
patient, compared with biopsies of individual met-
astatic lesions. However, it is also possible, as
discussed above, that the molecular features of
CTCs may not be representative of the tissue-based
tumour behaviour. Future studies are planned to
investigate the clinical implications of the molecu-
lar characteristics of CTCs, the heterogeneity of
these characteristics and the changes over time
during treatment.

Conclusions

In summary, the biological implications of tumour
heterogeneity, which has been recognized for
years, are fundamental to therapeutic resistance
and therefore mortality due to breast cancer. CTCs
may offer a virtual, or ‘real-time’, opportunity to
perform ‘liquid biopsies’, thus permitting a more
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Fig. 2 Heterogeneity of human epithelial growth receptor
type 2 (HER2) expression in cell lines and on circulating
tumour cells (CTCs) from three patients with breast cancer.
(a) HER2 expression on leucocytes, PC3 cells and SkBr-3
cells immunomagnetically selected from 5 mL blood and
gated on CD45 and cytokeratin expression. The expres-
sion levels of HER2 were subdivided into four categories
(�, +, ++, +++) based on the quantitative assessment of
HER2 expression on PC3 and SkBr-3 cells. -, no expression
below 5000 receptors (i.e. wbcs); +, expression of between
5000 and 50 000 receptors (PC-3); ++, expression of
between 50 000 and 500 000 receptors; +++, expression
of more than 500 000 receptors (SkBr-3). (b–d), expression
of cytokeratin and HER2 on CTCs from three patients with
breast cancer. Adapted from Hayes et al. [53] with
permission.
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accurate prediction of the likelihood of response to
specific therapies and greater insight into the
mechanisms of emerging resistance during treat-
ment.
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