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nanoparticles inside brain parenchyma after intravenous  injection with 5nm 

dopamine-AuNPs. AuNPs (red arrows) are shown inside the cerebral vascular 

lumen(LU), cytoplasm of endothelial cells (EC)and neuronal tissues. Also 

shown are lumen (LU), endothelial cell (EC), neuron (NEU), tight junction (TJ), 

basal lamina(BL), and astrocytic end-feet (AS). A and B are different views of 

EM slides. ....................................................................................................................123 
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ABSTRACT 

 

The endothelial cells of brain capillaries form the so-called blood brain barrier (BBB) and 

the BBB protects the central nervous system (CNS) from the entry of neurotoxins and blood 

components. Consequently, more than 98% of all potential CNS drugs fail because they cannot 

cross the BBB, to gain access to disease targets. Despite significant research efforts in this area, 

the delivery of drugs across the BBB into the brain remains the Achilles heel in CNS drug 

development. Therefore in this thesis, we describe the development and testing of ultra-small 

gold nanoparticles that can traffic drug molecules across the BBB into brain parenchyma, with 

the potential of also increasing the receptor-binding affinity of drugs. We present compelling 

results of in vitro and in vivo studies, combined with imaging and bioanalytical techniques to 

demonstrate the superior pharmacokinetics, brain penetration, and receptor binding of drugs 

conjugated to gold nanoparticles (AuNPs). 

In chapter one, we provide an introduction to the global impact of CNS diseases and 

discuss the physiological basis of the CNS. The role of the highly specialized BBB in 

transporting molecules such as nutrients into the brain, while restricting the uptake of drug 

candidates, is discussed. Various CNS drug delivery and targeting strategies are described as 

well as their advantages and limitations. Finally we describe unique features of gold 

nanoparticles (AuNPs) that make them attractive as drug carriers for CNS delivery.   

Chapter two describes a novel CNS drug-delivery strategy involving the conjugation of 

the anticancer agent 6-mercaptopurine riboside to AuNPs (6-MPR-AuNPs). 6-MPR and its 

antimetabolites have short half-life due to rapid metabolism by liver xanthine oxidase. The  

6-MPR-AuNPs drastically decreased the clearance of 6-MPR from 6190 ± 810 to 22.45 ± 1.95 

mL/min/kg. Correspondingly, the half-life of 6-MPR increased from 13.8 ± 5.94 to 44.16 ± 1.98 

minutes and the AUC increased (about 100-fold) from 12.45 ± 1.25 to 3695 ± 315 ng/mL•h. 

Three-dimensional (3D) spheroid culture with human hepatocarcinoma cells confirmed the 

results of the rat pharmacokinetic studies. Furthermore, studies using rat liver homogenate 
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revealed that the AuNPs directly inhibited liver xanthine oxidase and can explain the dramatic 

improvement of the stability of 6-MPR-AuNPs compared to 6-MPR alone.  

Chapter three examines the brain penetration of 6-MPR-AuNPs. Using whole-body 

fluorescence imaging and brain distribution experiments, we present compelling animal data that 

demonstrate brain uptake of 6-MPR after conjugation to AuNPs. We report on the biodistribution 

of fluorescein isothiocyanate-labeled 6-MPR-AuNPs (FITC/6-MPR-AuNPs) in rats. Compared 

to the control groups, the fluorescence intensity of rats injected with FITC/6-MPR-AuNPs was 

highest in the brain and cerebrospinal fluid (CSF). Tandem to these findings, we also observed 

that the AUC0.083-0.75h of CNS and plasma were respectively 5.3 and 142-fold higher in rats 

injected with 6MPR-AuNPs compared to rats given 6MPR alone. Correspondingly, the 6-MPR 

clearance decreased from 6076 ± 412 to 41.88 ± 3.24 mL/min/kg. Finally, transmission electron 

microscopy (TEM) of brain specimens provided further direct evidence that 6-MPR-AuNPs 

penetrated the intact BBB and was distributed into cerebral parenchyma and neuronal cells.   

In chapter four, we use dopamine-conjugated AuNPs (DA-AuNPs) to overcome the poor 

brain permeability of dopamine (DA). In addition, we use receptor binding studies to address the 

central question of whether or not a drug conjugated to AuNPs will lose its efficacy. Competitive 

binding studies using human dopamine receptor whole cells revealed that the binding affinity of 

DA-AuNPs was 10-fold higher than free dopamine. Also, rat ex vivo binding studies showed that 

DA-AuNPs compared to control groups had the strongest affinity to central D2R, producing 

receptor occupancy(RO) approaching 100% at 1uM dose. Free dopamine achieved only 80% 

occupancy at 1uM. We investigated the effect of AuNP size on the binding affinity of dopamine, 

and found that the RO of 5, 15, and 50 nm DA-AuNPs were respectively 90%, 60%, and 20%, 

whereas 100 and 200nm NPs had RO of only 5%. Furthermore, TEM images of rat brain striata 

provided evidence that DA-AuNPs indeed penetrated the BBB and was transported into the brain 

parenchyma. 

Finally, in chapter five, key findings of this thesis are summarized and perspectives on 

future research into brain drug targeting and nanotherapeutics are presented.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.0 BACKGROUND 

 

1.1 Burden of neurological disorders 

 
One out of every three individuals will experience a diagnosable mental and neurological 

disorder (MND) during their lifetime. 
1,2

 Despite significant advances in the field, MNDs remain 

a critical unmet medical need of this century. MNDs comprise a range of central nervous system 

conditions such as Alzheimer‘s, multiple sclerosis, Parkinson‘s disease, diabetic neuropathy, 

insomnia, migraine, attention deficit hyperactivity disorder, major depressive disorder, 

schizophrenia, bipolar disorder and epilepsy, that negatively impact mood, behavior, brain 

function, and cognition. CNS disorders represent five of the top ten causes of disability and 

constitute greater than 20% of total healthcare spending. The global market for CNS drugs has 

grown to $78 billion in 2010, from $36.8 billion in 2002 and is expected to rise to $82 billion in 

2015.
3
  The return on research dollars is low (4.5%) across all therapeutic areas, only second to 

the combined profits of anesthetics and analgesics (Figure 1-1-1). An aging population along 

with an increase in life expectancy is expected to increase the incidence of CNS disorders.
4
 

Chronic neurological disorders such Alzheimer‘s, Parkinson‘s disease, and the sequelae of 

stroke, affect older adults disproportionately and contribute to disability, diminish quality of life, 

and increased healthcare costs. Stroke and Alzheimer‘s afflict 30% and 20%, respectively, of 

persons over 65 years. For Alzheimer‘s, this rises to 49% of people ages 80 years or more.
5
 

Alzheimer‘s and Parkinson‘s alone, collectively affect approximately 40 million people 

worldwide and is expected to rise steeply to 115 million by 2050 with an annual cost exceeding 

$375 billion.
6,7  

1.2 Challenges in developing CNS drugs  

 
Recent advances in biotechnology and pharmaceutical sciences have greatly expanded 

the number of new drug candidates that are being developed for the treatment of CNS disorders. 
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Despite this, the development of new medicines to treat diseases of the CNS is one of the most 

challenging undertakings of today‘s biopharmaceutical industry. CNS drugs take on average 40-

50% longer to market than non-CNS drugs. CNS drugs have a higher attrition rate, 15% 

compared to 7%, on average, compared to other therapeutic areas.
8
 For drugs involving new 

mechanisms of action, the success rate is very low (Figure 1-1-2).  

The high risk of failure for new CNS drugs is linked to the extraordinary complexity of 

the anatomy and physiology of the human brain, and its pathologies. Part of the problem resides 

in the incomplete understanding of the underlying pathophysiology and drug targets of most 

CNS disorders, including multiple sclerosis, Alzheimer‘s, Huntington‘s, and Parkinson‘s disease.  

Another persisting problem is identifying the dose and schedule which are both efficacious and 

safe for patients. This difficulty is further aggravated if the drug candidate has a narrow 

therapeutic window and a validated biomarker is not available. 
9
 Further complications are 

presented in the many hurdles that a molecule has to overcome between administration and 

reaching the target site of action within the CNS. Drug concentration in the brain depends on 

several factors such as the free plasma concentration, drug half-life, protein binding and 

distribution within the brain, efflux, and the continual drainage of CSF and brain interstitial 

fluid.
10

 Last and most importantly, the vasculature of the brain which forms the BBB serves as an 

obstacle to the entry of potential new CNS drugs into the brain. More than 98% of all new CNS 

drug candidates fail because they cannot cross the BBB in sufficient amounts to exert 

pharmacological effect.
11,12 

Efforts to design CNS drugs that overcome poor brain uptake, either by manipulating 

drug chemical properties, or cloaking drug properties in a delivery carrier or promoiety, have 

proven  inadequate.
13

 Therefore, there is need for new and effective CNS drug delivery systems 

that can circumvent the BBB in sufficient quantities. 
14,15
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Figure 1-1-1. R&D costs and returns by Therapeutic Category. DiMasi, J.A.; 

Grabowski, H.G.; Vernon, J. Drug Information Journal, 38, 211–223, 2004; 

Therapeutic area influences drug development costs. Frantz, S. News and 

Analysis: Nature Reviews Drug Discovery 2004, 3, 466   
 

Figure 1-1-2. Probability of Success for New Mechanisms. Adapted from: 

Kola and Landis, Nature Review Drug Discovery, 2004 (3):711-715 
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2.0 BARRIERS OF THE CENTRAL NERVOUS SYSTEM 

 
The CNS is separated from the peripheral blood circulation by physiological barriers 

which regulate movement of solutes from blood into the brain and provide a fully autonomous 

milieu for cells within the CNS. These barriers ensure a constant supply of nutrients and removes 

waste products from the CNS.
16

  However, the CNS barriers also prevent access to cerebral 

targets for many useful drug molecules circulating in the blood stream. The three major 

independent barriers within the CNS are the BBB (Figure 1-2-1a), blood-CSF barrier (BCSFB) 

(Figure 1-2-1b) and arachnoid barrier (Figure 1-2-1c). 
17,18

 The fetal CSF–brain barrier (Figure 1-

2-1d) and adult ependyma are also important (Figure 1-2-1e). Other interfaces with blood and 

neural tissues are the blood-retinal barrier and the nose-brain barrier. 
19,20

 The most important 

transport interface of CNS is however the BBB.  

2.1 Blood-brain barrier 

 
Paul Ehrlich (1885) and his student Edwin Goldmann (1913) provided the first 

experimental evidence of the existence of a barrier between the blood and the brain, which is 

today known as the BBB. The term ―Blut-Hirn-Schranke‖ or blood-brain barrier was first coined 

by Lewandowsky. In 1941, Broman proposed that it was the cerebral capillary endothelial cells 

that contribute the physical barrier function of the BBB and not the astrocytic end feet. This was 

supported by electron microscopic cytochemical studies performed in 1967 by Reese and 

Karnovsky.  

The current understanding is that the BBB is formed by cerebral endothelial cells sealed 

together by a very complex network of tight junctions (arrowhead). The BBB is not uniform 

throughout the brain because the capillaries in the circumventricular organs are fenestrated. The 

permeability of BBB is modulated by autocrine and paracrine secretions from several types of 

cells, such as the pericyte, astrocyte, and neurons
21

. The downside of the tightly controlled BBB 

is that it also limits the transport of therapeutics into the brain. Approximately 98% of the small 

molecule drugs and nearly 100% of the large molecule (e.g. peptides, proteins and nucleic acids) 

cannot substantially cross this barrier. 
22
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2.2 Blood-cerebrospinal fluid 

 
The blood–CSF barrier (BCSFB) separates choroid plexus blood vessels from CSF and is 

functionally and morphologically different from the BBB. The BCSFB originates from the tight 

epithelia cells of the choroid plexus in the ventricles rather than the endothelial cells lining the 

brain capillaries as is the case of the BBB. Unlike the capillaries that form the BBB, choroid 

plexus capillaries are fenestrated, forming a nonrestrictive barrier
23

. Notwithstanding its 

permeability, the blood–CSF barrier does not significantly increase the penetration of drugs into 

the brain. The epithelial cells have apical tight junctions towards their apical surface that restrict 

intercellular passage of molecules. Also the surface area of the BCSFB is ca.5000 times less than 

the BBB
24

.  Additionally the BCSFB faces the CSF, not blood, and therefore, the BCSFB is not 

as important an influx barrier for CNS drugs as the BBB. Therefore, the BBB is generally 

viewed as having a greater role than the BCSFB in the delivery of CNS medications to the brain.   

2.3 Arachnoid barriers  

 
The arachnoid barrier is formed by the epithelium of the meninges and forms the physical 

barrier between CSF-filled subarachnoid space, dura mater and overlying structures. The 

arachnoid barrier is the least studied and structurally most complex of all the brain barriers. The 

blood vessels of the dura are fenestrated and provide little barrier function. However, the outer 

cells of the arachnoid membrane have tight junctions (arrowheads) and this cell layer is believed 

to form the physical barrier between the CSF-filled subarachnoid space and overlying structures. 

Finally, the blood vessels in the arachnoid and on the pial surface have tight junctions with 

similar barrier characteristics as cerebral blood vessels.  

2.4 Cerebrospinal fluid–brain barrier and ependyma 

 
The CSF–brain barrier, a barrier between the CSF and brain parenchyma, has been shown 

to be a functional barrier present only in early fetal development.  In early development, the 

neuroependymal cells are connected to each other by strap junctions (open arrowheads) that are 

believed to form the physical barrier restricting the passage of larger molecules such as proteins 

but not smaller molecules such as sucrose. During later development, the neuroependymal cells 
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flatten and lose their strap junctions. The adult ventricular ependyma, therefore, does not restrict 

the exchange of molecules, at least as large as proteins, between CSF and brain.  

 

 

 

Table 1-1: Landmarks in the understanding of BBB and development of CNS drug therapy
25,26

  
 

1885 First lumbar puncture to administer cocaine for anesthesia 

1885 Concept of BBB indicated by the observation that dyes injected into the vascular system were 

rapidly taken up by all the organs except the brain. 

1900 Coining of the term ‗‗blood–brain barrier‘‘ to describe the phenomenon. 

1913 BBB observed to be decreased in the choroid plexus. 

1920 Intracerebral distribution of various substances administered systematically was observed. 

1927 First injections into the cerebral circulation: contrast materials for cerebral angiography. 

1940 Description of vertebral venous plexus and its connection to blood vessels of the brain laid the 

anatomical basis for use of epidural venous injection for drug delivery to the CNS. 

1940s Tor Broman of Goteborg, Sweden showed that the anatomical substrate of the BBB was the 

brain capillary wall. This was confirmed by electron microscopy a quarter century later. 

1941 Opening of the BBB by pharmacological means. 

1947 Stereotactic equipment for guided placement of instruments at selected targets in the depth of 

the brain for the treatment of movement disorders. 

1950s Electron microscopy used to show lack of extracellular fluid compartment between glia and 

neurons and this was given as explanation for why substances do not enter the brain. 

1954 Injection of a mixture of procaine and alcohol into the globus pallidus of the brain for 

treatment of movement disorders. 

1967 Electron microscopy confirmed brain capillary wall to be the BBB. 

1973 First injection of a therapeutic substance (diazepam) into the carotid arteries. 

1978 First implantable pump for intrathecal and intraventricular injection of morphine. 

1980s Studies in molecular biology of the BBB. Cloning and sequencing of glucose transporter gene. 

1990s Further development of direct injections of therapeutic substances, including biologics (e.g., 

gene therapy), into the brain, and development of strategies to overcome the BBB. 

1995 Use of nanoparticles for drug delivery across BBB. 
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Figure 1-2-1. Schematics of the sites of the barrier interfaces (indicated in orange) in the adult 

and developing brain. Saunders, N. Trends Neurosci. 2008, 31(6):279-86. 
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3.0 STRUCTURE AND FUNCTION OF THE BLOOD-BRAIN BARRIER 

 

3.1 Blood-brain barrier 

 
 

The blood-brain barrier is mainly formed by the endothelial cells surrounding the brain 

capillaries, although other cell types, such as pericytes, astrocytes, and neuronal cells contribute 

to the formation and maintenance of a functional BBB in the CNS. 
27,28

 The endothelial cells are 

completely covered by a basal lamina. The pericytes are embedded within the basal lamina and 

this covers about 20-30% of the endothelial cells. The basal lamina is surrounded by astrocyte 

end-feet
29

.  

The total capillary length of the BBB is 650 km. Every cubic centimeter of cortex 

contains the amazing sum of 1 km of blood vessels and the surface area is ca. 12 m2 or 100–150 

cm2/g brain
30

. The luminal diameter of brain capillaries is 3 mm (mean distance 40 mm) and the 

capillary volume is 1 ml or ca. 11 ml/g brain. Cerebral blood flow has a transit time through the 

brain of only 5s. The distance between luminal and abluminal membranes of endothelial cells is 

only 200 nm, this allows substances to cross the endothelial cells and enter the brain parenchyma 

within a short time
31,32

.  

The BBB endothelial cell (BCEC) differs from endothelial cells in the rest of the body by 

the presence of tight and adherens junctions between the cells, lack of fenestrae, low frequency 

of pinocytic vesicles, and increased numbers of mitochondria
33

.There is also high enzymatic 

activity in the cells forming the BBB, which can efficiently metabolize bioactive molecules 

before they cross the BBB and gain access to the brain parenchyma
34

. Furthermore, BBB 

endothelial cells express several transporter proteins, including P-glycoprotein (P-gp), multidrug 

resistance associated proteins (MRPs), GluT1, LAT1, the monocarboxylic acid transporter 1 

(MCT1), cationic amino acid transporter and the adenosine transporter (CNT2), which affect the 

transport of molecules into and out of the CNS. 
35,36  

Figure 1-3-1 represents the schematic 

illustration of BCECs and associated structures.    
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3.2 Pericytes 

 
Pericytes are undifferentiated, contractile connective tissues that develop around capillary 

walls and share the basal membrane with brain capillary endothelial cells. There is 

approximately one pericyte for every three endothelial cells. 
37,38  

Pericytes play a regulatory role 

in brain angiogenesis, structural differentiation of the brain endothelial cells, and formation of 

endothelial tight junctions. They also contribute to the microvascular vasodynamic capacity and 

structural stability. 
39

 Additionally, cerebral pericytes express several enzymes, such as 

transpeptidase and aminopeptidase, therefore constituting a major component of the metabolic 

BBB.
40,41

 It has also been suggested that cerebral pericytes have phagocytotic potential.
42

 

 

3.3 Astrocytes 

 
Astrocyte cells occupy approximately 99% of the abluminal surface of the brain capillary 

formed by the endothelial cells and are attached to a basement membrane.
43

 Astrocytes are 

characterized by large nuclei and thick cytoplasmic appendices with cap-like structures known as 

endfoot. However, endfoot processes are not sealed to each other and small gaps between the 

astrocytes allow passage of large and hydrophilic molecules. Although astrocytes do not take 

part in the formation of the physical barrier of the BBB, they are important in the development 

and maintenance of the BBB. Astrocytes secrete a range of growth factors and cytokines that 

strongly contribute to the BBB phenotype of endothelial cells, leading to tighter tight-junctions, 

and the expression of several transporter proteins (e.g. LAT1, GluT1 and P-gp) in the brain 

endothelial cells. 
44

 Moreover, the expression of several enzymes at the BBB is induced by 

astrocytes. Therefore, astrocytes can play a major role in the BBB metabolism.
45

  

 

3.4 Tight junctions 

 
The most important factors responsible for the restriction of the paracellular diffusion 

across the BBB are the fused junctional complexes which are present between endothelial cells.
46

 

Tight junctions are large, multiprotein complexes and the structure of the tight junction in the 

BBB has been found to be the most complex of all such entities in the entire vasculature of the 

body.
47

 The tight junctions between adjacent endothelial cells are 50–100 times tighter than those 

encountered in peripheral endothelium.
48

 In addition to sealing the paracellular route across the 
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BBB, tight junctions are responsible for the polarization of the endothelial cells, which results in 

non-uniform distribution of transporters between the luminal and abluminal membranes.
49

 In 

addition to tight junctions, brain capillary endothelial cells are joined by adherens junctions 

located near the basolateral side of the endothelial cells. Tight junctions and adherens junctions 

are both needed to form the BBB. 
50

  

 

 

 

 

 

Figure 1-3-1 (a) The BBB is formed by 

endothelial cells of the cerebral 

capillaries. The endothelial cells 

interact with basal lamina, astrocytes, 

and pericytes to form a functional 

BBB. (b) Cerebral endothelial cells 

form complex tight junctions (TJ), and 

adherens junctions (AJ). The presence 

of intracellular and extracellular 

enzymes such as cytochrome P450 

endows the BBB with metabolic 

activity. Specific receptors and efflux 

transporters are also involved in brain 

transport. Cecchelli, R. Modeling of the 

blood-brain barrier in drug discovery 

and development. Nature Review Drug 

Discovory 2007, 650-661. 
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4.0 CENTRAL NERVOUS SYSTEM DRUG DELIVERY     

 
 

Despite the fact that the brain is highly perfused by capillaries, the entry of molecules 

from blood to brain is governed by the impervious BBB. Drug permeability of the BBB is 

dependent on a number of parameters such as molecular weight (MW), lipophilicity, pKa, 

hydrogen bonding as well as biological factors. High molecular weight and hydrophilic drugs 

tend to fail as CNS drugs because of their poor ability to cross BBB.
51

 Paracellular transport of 

hydrophilic molecules is restricted by the tight junctions present between brain endothelial cells. 

On the other hand, lipid-soluble molecules with molecular weights below 400Da are able to 

cross by transcellular diffusion, provided that they are not substrates for efflux transport system. 

Only a few brain diseases consistently respond to small lipid-soluble molecules.
52

 

 

4.1 Methods for overcoming poor brain uptake of drugs 

 
Several creative methods have been used to get drugs into the brain. These involve direct 

injection into the brain, using nerves innervating the nasal passages, and opening of BBB tight-

junctions. Other methods make use of known endogenous brain transport mechanisms. 

Transcellular diffusion, carrier-mediated transport, paracellular transport, adsorptive endocytosis 

and receptor-mediated endocytosis can transport drugs across the BBB (Figure 1-4-1). Targeting 

ligands, monoclonal antibody and small peptide-vectors or nanoparticles are already being used 

to enhance receptor-mediated transcytosis of drugs into brain. These methods have limitations 

which will be discussed below. As such, new brain delivery strategies are needed.
53

 

 

4.1.1  Modifying physicochemical properties of CNS drugs  

 
Passive diffusion across the BBB is believed to be the most common mechanism of CNS 

drug uptake. However, the importance of transporter mediated brain uptake may be 

underestimated. 
54

  Passive diffusion can occur either between the cells (paracellular) or through 

the cells (transcellular), depending on the physicochemical properties of the solutes. Tight 
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junctions restrict paracellular transport across the BBB, therefore passive diffusion is restricted 

to a few molecules which have optimal physicochemical properties. 

A simple approach to increase the CNS entry of a polar molecule involves masking the 

polar functionalities. In practice, lipidization through lipophilic drug analogues often results in 

diminished therapeutic effect, due to decreased activity or increased toxicity of analogues. 
55

 

However, lipidization through prodrugs (the so-called chemical drug delivery system) offers the 

possibility for a more efficient CNS delivery of polar drugs without compromising their 

pharmacological effect or safety. Prodrugs, being more lipophilic than the parent drug, enter the 

CNS more readily, and are then converted back to the parent drug within the CNS. However, 

lipophilic prodrugs share some problems with lipophilic drug analogues which limit the utility of 

this approach. Lipophilic modifications can lead to an increase in molecular weight of the drug, 

thereby reducing the diffusion through biological membranes. Prodrug lipidization increases 

permeation across all other biological membranes in the body, leading to marginal increase in 

brain uptake of the drug, even though the BBB permeability is greatly enhanced.
56

  Additionally, 

high BBB permeability due to increasing lipid solubility is offset by a correspondingly high 

plasma protein binding which reduces the free fraction of drug needed to provide the driving 

force across the BBB. Non-specific binding in the brain also exaggerates the distribution volume 

of drugs in the brain parenchyma, which sustains the blood to brain concentration gradient.
57

 

However, as only the free fraction of the drug is effective, the high brain uptake due to the non-

specific brain tissue binding is futile.  

 

4.1.2 Invasive delivery methods 

 
Invasive delivery circumvents the BBB, resulting in high drug concentrations and half-

life in the brain. This approach reduces systemic drug concentrations and side effects, but 

inevitably requires extremely invasive surgical procedures. Intracerebroventricular (icv) 

injection, intracerebral (ic) injection, direct implantation of biodegradable vehicles inside brain 

parenchyma and the use of permeability enhancers to disrupt tight-junctions are the main types 

of invasive delivery methods.
58

 During icv injection, the drug is injected into the CSF. The drug 

has to diffuse from the CSF to the brain parenchyma via the ependymal barrier. Because of the 

rapid turnover of the CSF and the slow diffusion rate of drugs, generally only a small amount of 
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the drug reaches the brain parenchyma. However, icv injection can be effective when local 

administration of drugs is needed (e.g. treatment of brain tumors) or when the target receptor lies 

in close proximity to the ependymal surface.
59

 

Another invasive injection method is ic injection. Here drugs are injected directly into the 

brain parenchyma using convection-enhanced delivery (CED). CED relies on a continuous 

infusion to drive the drug throughout a larger region of tissue at a sufficiently high rate to 

achieve an additional convective transport of drug. Injectable poly(lactic-co-glycolic acid) 

(PLGA) and polylactic acid (PLA) microspheres have been widely used to achieve sustained 

release of drugs at the desired site of the brain. The microspheres are delivered by minimally 

invasion stereotaxic injection technique.
60

 Brain implants of 1,3-bis(2-chloroethyl)-1-

nitrosourea-loaded biodegradable polymer wafers (Gliadel®) has demonstrated a novel approach 

to circumvent the BBB and been tested in Phase III clinical trials, leading to an extensive 

research interest in this area.
61

 Overall, ic injections and drug-releasing implants have turned out 

to be ineffective because the steady turnover of brain extracellular fluid carries the drug away 

from the injection site.
62

 

Osmotic disturbance of tight-junctions allows drugs to be delivered to the brain by 

manipulating the BBB tight-junctions. This is achieved by infusion of a hypertonic agent (e.g. 

mannitol 25%), bradykinin or other cytokines (e.g. histamine) into the carotid artery. The BBB 

opens for about 30 minutes, presumably by shrinking the endothelial cells and disrupting the 

tight junctions, allowing the drug to freely diffuse into the brain.
63

 However, opening of the BBB 

makes it possible for harmful substances such as neurotransmitters and circulating toxins to enter 

the brain as well.
64

 Therefore, tight-junction disturbance is restricted mostly for use in terminally 

ill patients with brain tumors. 

4.1.3 Intranasal delivery 

 
Intranasal drug delivery bypasses systemic circulation and the BBB by providing direct 

access to the brain via the olfactory and trigeminal nerves innervating the nasal passages.
65

 

Intranasal delivery has been successfully explored for the delivery of small lipophilic molecules 

like cocaine and morphine. It provides a noninvasive alternative to CNS delivery. The exact 

mechanism of brain entry via the nasal route remains unclear, but the main technical concern is 
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increasing the residence time in the nasal cavity for optimal nasal drug absorption. Bioadhesive 

formulations with active targeting to the olfactory region, as well as controlled release 

preparations have been investigated extensively for this purpose. Bioadhesive polymer 

formulations (prepared by low esterified pectins) have the requisite gelling and viscosity 

properties, and are being used in controlled-release vehicles for intranasal delivery.
66

  

 

4.1.4 Active transport 

Active targeting of the BBB represents a promising non-invasive strategy for improving 

drug delivery to brain. It involves various influx transport systems expressed within the cerebral 

endothelium. These transport systems include carrier-mediated transport, receptor-mediated 

endocytosis and adsorptive-mediated endocytosis.  

 

4.1.5 Receptor-mediated transport    

 
Large molecules and particles such as antibodies, lipoproteins, insulin, transferrin, leptin 

or nanoparticles can be transported into the brain via receptor-mediated transport (RMT).
67

  

Receptor-mediated drug delivery takes advantage of endogenous transport systems by directly 

coupling a targeting ligand to the drug. Examples include L-DOPA and gabapentin (using amino 

acid transporter, LAT), mepyramine and lidocaine (using the organic cation transporter, OCT) 

and glycosylated morphine (using the glucose transporter, GLUT-1).
68

  

One widely characterized BBB receptor is the insulin receptor. Unfortunately, high doses 

of insulin are required for efficacy, making it an unsafe targeting ligand. Such high doses of 

insulin have the potential to result in hypoglycemia. Therefore, antibodies including the murine 

83-14 monoclonal antibody are being studied for targeting.
69

 Other receptors are low density 

lipoprotein receptor (LDLR) and LDLR-related protein (LRP). These receptors can bind multiple 

ligands, including low-density lipoprotein (LDL), lactoferrin and apolipoproteins.  

The most studied receptor used for BBB targeting is the transferrin receptor (TfR). In 

contrast to apo-transferrin, the natural TfR ligand (holo-transferrin) has much higher affinity. 

However, the application is limited because endogenous levels of transferrin are high, resulting 

in nearly saturated transferrin receptors.
70

 A strategy to circumvent endogenous competition of 

transferrin is to use antibodies directed against the TfR. The most studied TfR-targeted antibody 
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is the mouse anti-rat monoclonal antibody OX26, which binds to an epitope of the TfR rather 

than to the transferrin binding site. The monoclonal antibodies (MAbs) serve as a ―molecular 

Trojan horses‖ to ferry drugs across the BBB.
71

    

4.1.6 Adsorptive-mediated endocytosis 

 
Large molecules such as antibodies, proteins, and structures such as nanoparticles can be 

transported into the brain by adsorptive-mediated endocytosis.
72,73

  Adsorptive-mediated 

endocytosis is initiated by non-specific electrostatic interactions between polycationic substances 

and negatively charged endothelial cell membranes. Conversely, RMT systems are selective for 

BBB transport and require initial binding of ligand to receptor on the BBB endothelium.
74

 

Adsorptive-mediated endocytosis is rarely used for drug targeting to the brain, because 

this process also occurs to a large extent in other organs of the body (e.g. liver, kidneys), thereby 

decreasing brain specificity.
75

 Furthermore, the cationic charge may lead to aggregate formation 

in circulation. However, significant brain targeting using adsorptive-mediated endocytosis has 

been accomplished using cationized human serum albumin(cHSA) as a transport vector coupled 

to 3H-biotin.
76

 

4.1.7 Carrier-mediated transport 

 
Carrier-mediated transporters facilitate the delivery of hydrophilic molecules and 

nutrients such as glucose, amino acids, and purine bases to the brain.
77,78

  Since carrier-mediated 

transport systems are typically small and stereospecific, they are not particularly amenable to the 

transport of large-molecule therapeutics. Carrier-mediated transport relies on molecular carriers 

present at both the apical (blood) and basolateral (brain) membranes of the BBB. Drugs may be 

modified such that they closely mimic the endogenous carrier substrates and can be taken up and 

transported into the brain. Making chemical modifications in such a way that the drug can be 

recognized by specific transporters, but still maintain therapeutic efficacy, has proven to be very 

challenging.
79

 Furthermore in carrier-mediated transport, the drug has to compete with 

endogenous substrates for the carriers. Finally the efficiency of receptor-mediated delivery is 

generally quite low, as the use of a vector in this manner results in only one molecule being 

delivered per transferrin receptor.
80
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4.1.8 Active efflux transport 

 
The transcellular brain uptake of some small lipophilic solutes is lower than expected 

given their lipophilicity. The low brain uptake of lipophilic solutes is often due to active efflux 

proteins, such as P-glycoprotein (P-gp), ABC transporters, Multidrug Resistance-Associated 

Protein (MRP), organic anion transporter (OAT) and others that remove solutes from endothelial 

cells. 
81,82

  The impact of efflux proteins on the brain uptake of CNS drugs is significant since 

these transporters have a broad range of substrates. Encoded by the multidrug resistance protein 

1 (MDR1), P-gp is localized to the luminal membrane of endothelial cells and pumps 

amphipathic organic cations or neutral compounds out into the capillaries. MRP and OAT pump 

anions out of the CNS as efflux proteins. 
83,84

 Transport across the BBB may therefore be 

increased by inhibiting certain efflux transporters. Inhibition of the Pgp-dependent multidrug 

resistance functions could improve brain permeability and maintain CNS drug concentrations. P-

gp is one of the most studied active efflux transporters. 

 

 

Figure 1-4-1. Transport mechanisms at the BBB. Abbott, N.J.; Romero, I.A. Transporting 

therapeutics across the blood-brain barrier. Mol Med Today 1996, 2,106–113. 
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5.0 NANOMEDICINE 

 

5.1 Definition and general description 

 
Nanotechnology describes materials and devices that have a functional organization in at 

least one dimension on the nanometer scale, ranging from a few to about 100 nanometers (figure 

1-5-1). 
85

 The reason for the tremendous potential of nanotechnology in biology and medicine 

stems from their ability to interact with cells at the molecular level because of their size. 
86

 

Furthermore, nanoscaled materials exhibit interesting bulk mesoscale chemical, biological and 

physical properties that are not possessed by the molecules alone. Additionally the small size and 

large surface area of nanocarriers allow them to deliver more drug molecules to disease targets 

than traditional methods.  

The past twenty years have seen a convergence of nanoengineering and biomedical 

research, giving rise to many new technologies and ideas in medicine. Nanotechnology is poised 

to drive significant improvements in disease diagnosis and treatment. Various research teams 

have demonstrated use of nanomaterials for accurate, sensitive, rapid, and often multiplexed 

detection of disease markers. 
87,88

 As well, genome and proteome knowledge gained from disease 

biology has been combined with micro- and nanotechnology in an attempt to discover accurate 

methods for diagnosis and surveillance.
89

 Nanotechnology will also allow new therapeutics to be 

developed. 
90,91

 Therapeutic biomolecules may be engineered onto a nanoparticle surface to alter 

a disease‘s molecular target. 
92

 Liposomes, solid lipid nanoparticles, nanogels, dendrimers, 

albumin nanoparticles, iron-oxide particles, and polymeric nanoparticles have been extensively 

studied for CNS drug-delivery and diagnostics. 
93

 Figure 1-5-2 summarizes the different types of 

nanoparticles used in drug delivery.       

 

5.2 Nanotechnology brain delivery  

 
Interventional methods that open the BBB to deliver drugs to the brain have their 

drawbacks. Non-specific opening of BBB by chemical agents also allows the entry of toxins and  
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unwanted molecules.
94

 Similarly, invasive techniques such as the use of intracerebral injections 

require intrusive neurosurgery. Additionally, significant diffusion of the drug away from the 

injection site occurs, rendering the therapy ineffective.  

Nanoparticle mediated drug delivery provides a superior alternative to surgery or altering 

BBB physiology. Nanoparticles remain intact as they cross the BBB and do not alter the BBB 

integrity. Also nanoparticle properties such as composition, surface charge, and particle size can 

be fine-tuned. Furthermore, targeting ligands, native carriers and receptors expressed at the BBB 

can be used for targeted delivery. For nanoparticle delivery, the drug is directly conjugated to a 

brain targeting ligand or adsorbed on the particle‘s surface through electrostatic interaction. The 

drug can also be encapsulated into nanoparticles which may then be coupled to a ligand on the 

outside of the particle, enabling BBB-impermeable compounds to enter the brain. 
95, 96 

 

5.2.1 Advances in nanoparticles CNS delivery  

 
In 2009 researchers demonstrated that iron oxide nanoparticles, when coated with 

polyethylene glycol-grafted chitosan and conjugated to chlorotoxin, crossed the BBB to target 

brain tumors in a genetically engineered mouse model. The researchers used magnetic resonance, 

biophotonic imaging and histologic analyses to show sustained retention of chlorotoxin in the 

tumors. Drug-conjugated iron oxide for diagnosis and treatment of a variety of tumor types in 

brain continues to gain attention.
97

  

Similarly, Gil et al. reported successful delivery of doxorubicin (DOX) across the BBB 

after intraveneous administration of novel quaternary ammonium beta-cyclodextrin (QAbetaCD) 

NPs. They showed that the 65-88 nm DOX-QAbetaCD NPs kill U87 cells as effectively as DOX 

alone, without destroying Bovine Brain Endothelial Cells. As a result, it has been suggested that 

QAbetaCD NPs are safe and effective brain delivery systems. 
98

 

Work carried out in the laboratory of Tosi (Modena, Italy) convincingly showed that 

poly-lactide-co-glycolide (PLGA) NPs engineered with glycopeptide (g7) was effectively 

delivered to the brain parenchyma of rats after i.v. administration.
99

 A dual-targeting drug carrier 

(PAMAM-PEG-WGA-Tf) was also recently developed based on the PEGylated fourth 

generation PAMAM dendrimer with Tf and wheat germ agglutinin (WGA) on the periphery, and 

DOX loaded in the interior. The 20 nm particles PAMAM-PEG-WGA-Tf efficiently inhibited 
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the growth rate of the C6 glioma cells, while minimizing cytotoxicity of DOX to the normal 

cells.
100

 

Over the last decade, there has been significant development involving receptor-targeted 

brain delivery with nanoparticles. Endogenous ligands like low-density lipoprotein (LDL), 

insulin, transferrin (Tf) and folic acid among others have been widely studied
101

.  Nanoparticles 

with covalently bound apolipoprotein E (apo E) or adsorbed apolipoprotein A-I (apo A-I) were 

reported to enhance brain penetration.  Tubocurarine, doxorubicin and amitriptyline when 

adsorbed onto polybutylcyano-acrylate nanoparticles coated with polysorbate-80, led to a 10-fold 

increase in its levels in brain. It is postulated that apolipoprotein-E (apo-E) adsorbs onto 

nanoparticles coated with polysorbates thereby causing endocytosis at the BBB. When the 

nanoparticles were not coated with surfactants, the particles remained in the blood vessels. 
102,103 

Despite these results, a number of weaknesses in these studies have been pointed out.   

Specifically PBCA is fairly toxic and it is well known that polysorbate-80 will cause BBB 

disturbance at intravenous doses as low as 3mg/kg.
104

 This may in fact explain the increase in 

brain drug concentration and the effect may be further enhanced when the nanoparticles are 

coated with polysorbate 80. Furthermore, the authors did not show that the integrity of BBB is 

maintained during treatment with the polysorbate 80-coated nanoparticles. 

Transferrin coupled to nanoparticles has also shown a significant increase in BBB uptake 

via the trasferrin receptor.
105

 However, the potential of OX26 (the monoclonal antibody against 

trasferrin) in crossing BBB has been presented by the Pardridge group in 1991.
106

 Monoclonal 

antibody known as OX26 recognizes an extracellular domain on the transferrin receptor that is 

distinct from the transferrin binding site, and does not interfere with endogenous transferrin 

binding. However, use of antibodies such as OX26 appears to be limited by several factors, 

including receptor saturation, low dissociation rate of the antibody, recycling of the receptor 

back to the blood, and hypersensitivity resulting in hyperimmunity against the foreign 

monoclonal antibody conjugated nanocarrier.
107
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5.3 Gold Nanoparticles 

 

5.3.1 Applications and general description 

 
Gold nanoparticles have a long history of being used in biomedical research. Perhaps 

owing to centuries-old fascination or to the variety of potential applications that can be imagined, 

gold nanoparticles have become one of the most common scientifically used nanomaterials. Gold 

nanoparticles can be synthesized by different protocols to have a variety of shapes and sizes. 

These include spheroids
108,109

, nanorods
110

, and many others.
111

 This matters because the 

properties of gold nanoparticles, that make them interesting and scientifically useful, result from 

their surface-to-volume ratio, their conductance band electron properties (surface plasmon), as 

well as interaction with their dielectric environment. All of these properties are determined by 

their size and shape. In this regard, an interesting use of gold particles is molecular sensing based 

on Raman spectroscopy, and enhancement of Raman signatures by nanoparticle surface 

plasmons.
112,113

 The striking and intense visible range absorbance resulting from their surface 

plasmon has been used in a variety of diagnostic and therapeutic applications.   

Finally, gold nanoparticles make an excellent model system for testing a wide variety of 

biological hypotheses. This is because they are chemically stable, biocompatible and easy to 

synthesize and modify. 
114,115

 As well, the breadth of sizes and shapes that can be synthesized for 

a single material make it possible to test how these design parameters impact the interaction of 

nanomaterials and biological systems.   

 

5.3.2 Relevant research 

 
Acute toxicity studies in mice injected with 2.7g/kg of 1.9nm AuNPs showed no signs of 

adverse events (LD50 was 3200mg/kg) after a year.
116

 Biodistribution studies using different 

sizes of AuNPs show that 4 nm AuNPs accumulate in brain, kidney, liver, spleen and lungs after 

oral administration to mice.
117

 In one study the 10 nm AuNPs were found in liver, spleen, 

kidney, testis, thymus, heart, lung and brain of rats following an i.v. injection, the 50 and 250 nm 

particles were only present in liver and spleen.
118

 Another study reported extensive 

biodistribution of 15nm AuNPs compared to the 50, 100 and 200nm particles.
119
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Direct comparison of these studies is difficult because of differences in the experimental 

designs. However it appears that there is a trend toward high biodistribution for smaller (4–

15nm) particles compared to their larger (>50 nm) counterparts. Interestingly, using Cysteine 

coated (CdSe)ZnS quantum dots(QDs), Choi et al. have also reported that hydrodynamic 

diameters less than 5.5 nm provide optimal renal excretion of QDs (Figure 1-5-3).
120

 The authors 

also reported that zwitterion (cysteine) or neutral (polyethylene glycol) coatings prevented liver 

uptake unlike charged particles. These findings suggest that hydrophilic, near-neutral particles of 

less than 5.5 nm represent the optimal characteristics to guanrantee minimal RES uptake and 

high renal clearance of non-biodegradable nanoparticles. This work also establishes that particle 

size, rather than charge and surface chemistry most influenced the clearance of nanoparticles. 

Interestingly in addition to BBB permeation limitation, brain microvasculature endothelia 

also present an electrostatic barrier at physiologic pH. The negative electrostatic charge is 

created by surface expression and adhesion of the glycocalyx residues: proteoglycans, sulfated 

mucopolysaccharides, and sulfated and sialic acid-containing glycoproteins and glycolipids.
121

 

The anionic nature of the endothelium repels anionic molecules, and cationic molecules have 

been shown to occupy anionic areas at the BBB endothelium. Increasing BBB permeability, 

presumably by adsorptive transport or tight junction disruption by cationic molecules has been 

described.
122

  Cationized NPs have been shown to increase distribution to the cerebral 

parenchyma compared to anionic and neutral NPs, owing to this interaction.
123

   

In vitro experiments conducted by Podsiadlo et al. found that 5nm AuNPs bearing 6-

mercaptopurine riboside (6-MPR) significantly reduced the growth of K562 leukemia cells 

compared to free 6-MPR(Figure 1-5-4a). Using laser confocal microscopy, the authors also 

found that when cells were incubated at 37ºC (Figure 1-5-4b) with fluorescein isothiocyanate 

(FITC)-6MPR-AuNPs, there was a gradual increase in fluorescence inside the cells which was 

not observed for cells incubated at 4ºC (Figure 1-5-4c).
124

 This result points to active transport or 

endocytosis of AuNPs into cells.  
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Figure 1-5-1. Structures on the nanoscale and relative scale of nanotechnology. Nanoscale 

overlaps with that of biomedically relevant classes of biomolecules, viruses and small cells. 

www.nih.gov 
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Type Definition Schematic

Liposomes
Liposomes are vesicles composed of one or more bilayers of amphiphatic lipid 

molecules enclosing one or more aqueous compartments. 

Micelles

Micelles are self -assembling nanosized colloidal particles with a hydrophobic core 

and hydrophilic shell currently used for the solubilization of various poorly soluble 

pharmaceuticals.

Nanoemulsion

Nanoemulsions are emulsions with droplet size in the nanometer scale. Emulsion 

is a thermodynamically unstable system consisting of at least two immiscible 

liquid phases, one of which is dispersed as globules, in the other liquid phase, 

stabilized by the presence of an emulsifying agent.

Dendrimers
Dendrimer is a polymer in which the atoms are arranged in many branches and 

sub-branches along a central backbone of carbon atoms.

Metal colloids 

Metal colloids refers to a state of subdivision, that the molecules or polymolecular

particles dispersed in a medium have at least in one direction a dimension 

between 1 nm and 1µm, i.e. silver, gold,and iron oxide. 

Quantum dots
Nanoparticle that exhibits size-dependent electronic and optical properties due to 

quantum confinement.

Fullerenes, 

Carbon 

nanotubes

Fullerene: Closed cage structure having more than 20 carbon atoms consisting of 

three-coordinate carbon atoms. Carbon nanotube refer to a seamless tube 

constructed from graphene than can be either a single-wall or multi-wall carbon 

nanotube compromising multiple concentric tubes .

 

Figure 1-5-2. Drug Delivery Nanoparticles (courtesy of Sadrieh, N. Office of Pharmaceutical 

Science, CDER/FDA) 
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Figure 1-5-3. (a) Compositions of CdSe/ZnS quantum dots with DHLA (anionic), cysteamine 

(cationic), cysteine (zwitterionic) and DHLA-PEG (neutral) coatings.  (b) Plasma concentration 

(%ID/g) of different sizes of  99mTc-labeled quantum dots after intravenous injection into CD-1 

mice. (c) Renal clearance (blue curve) and carcass retention (red curve) of 99mTc-QDs of 

various hydrodynamic diameters 4 h after intravenous injection into CD-1 mice (Choi, H.S.; Liu 

W. Renal clearance of quantum dots, Nat Biotechnol. 2007, 25(10), 1165-70) 
 

 

 

 
 

Figure 1-5-4.  (a) Cell count of K562 leukemia cells after 72h of incubation with 6MPR (a) Laser 

scanning confocal micrograph of K-562 cells following incubation at 37 ºC with FITC-labeled 6-

MPR/Cys-Au NPs for (b) 0 hours, (c)16 hours (FITC: green, FM 4-64 membrane dye: red) 

(Podsiadlo, P. Langmuir 2008, 24, 568-574) 
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6.0 PROBLEM STATEMENT, OBJECTIVES AND SCOPE OF THESIS 

6.1 Problem Statement 

In recent years drug development has focused on optimizing drug-target protein 

interactions. This has lead to the development of large molecules that cannot cross the BBB. 

More than 98% of all potential new CNS drugs fail because they cannot cross the BBB to gain 

access to disease targets. 
125

 Therefore achieving BBB penetration remains a significant hurdle to 

successfully prosecuting CNS targets.  

As described in earlier sections of this thesis, several CNS delivery strategies have been 

attempted. However an effective brain delivery system is still lacking. The most effective 

method to-date involves direct injection of drug into the brain. Owing to the risks associated with 

surgery or altering BBB physiology, nanoparticle mediated-targeting is gaining enormous 

interest as an effective alternative to delivering drugs to the brain.  

Nanoparticle drug delivery systems typically involve direct coupling or coating of 

targeted BBB receptor ligands to nanoparticles. However the majority of targeted receptors are 

not only expressed on brain endothelial cells, but elsewhere in the body. As a result, it is difficult 

for high quantities of nanoparticles and their payload to reach the brain. Additionally, carrier 

transporters are stereospecific and few. Therefore, only a limited number of substances can 

potentially be delivered via carrier transporters. New targeting carriers are urgently needed to 

efficiently deliver drugs to the brain.  In this thesis we describe preparation, characterization and 

multimodal testing of novel, non-toxic, excretable small gold nanoparticles that can traffic drug 

molecules across the BBB into the brain parenchyma, without the need for BBB-receptor 

ligands. The approach relies on the unique properties of small gold nanoparticles to cross the 

BBB and interact with cells.  

6.2 Objectives and scope 
 

The primary objective of this thesis is to develop and evaluate the novel use of gold 

nanoparticles as a drug vector for effective delivery of drugs into the brain. However, BBB 
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penetration of drug molecules alone does not guarantee optimum brain delivery. The optimum 

CNS drug delivery system is nearly always the best compromise among competing 

physicochemical and physiological factors. Therefore, the second objective of this thesis is to 

evaluate the effect of gold nanoparticles on drug pharmacokinetics such as half-life, clearance, 

and plasma concentrations. These parameters are important to the development of proper CNS 

drug therapy. Finally in this thesis we address the central question of whether or not gold 

nanoparticles conjugated to a drug molecule will exhibit inferior receptor binding and potency, 

compared to the naive drug molecule. Additionally, this research provides a drug-delivery tool 

for testing future CNS drug candidates that otherwise could not be evaluated due to lack of BBB 

permeability. The research provides critical conceptual data for more advanced testing of 

AuNPs.  

6.2.1 Model compounds 

 
6-Mercaptopurine riboside is an antineoplastic agent used in the treatment of 

lymphoblastic leukemia (ALL), Inflammatory Bowel Disease (IBD) and other diseases.
126

 6-

Mercaptopurine riboside was however chosen as a model compound for this study because it has 

poor brain penetration. In addition, 6-MPR has the added complication of being rapidly 

metabolized by the liver enzyme xanthine oxidase. 6-MPR is however easy to detect by UV-

detector or mass spectrometry and its thiol functional group makes it easy to conjugate to gold 

nanoparticles. Finally, 6-mercaptopurine is a well established therapy for ALL. Therefore, 

enabling brain uptake of 6-MPR has the potential of advancing novel therapeutic uses in the 

treatment of brain cancer and leukemic meningitis.
127

  

Dopamine is a neurotransmitter that helps control the brain‘s reward and pleasure centers. 

Dopamine also regulates movement, emotional responses, and a number of other important 

physiological functions. Dopamine was chosen as a model compound for the receptor binding 

experiments in this thesis, because of its poor BBB penetration and for the crucial role dopamine 

plays in many CNS disease mechanisms.
128

 Dopamine has been implicated in the mediation of 

schizophrenia, depression, Parkinson‘s disease and others. Furthermore, the existence of 

dopamine-receptor binding is well understood and allows for quantitation of receptor binding.   
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CHAPTER 2 
 

GOLD NANOPARTICLES DRASTICALLY DECREASE CLEARANCE AND INCREASE 

THE HALF-LIFE OF CHEMOTHERAPEUTIC AGENT, 6-MERCAPTOPURINE 

RIBONUCLEOSIDE 

 

2.0 INTRODUCTION 

 

Innovations in cell and molecular biology, high throughput techniques and combinatorial 

chemistry have resulted in an explosive growth in the number of new drug candidates in 

discovery pipelines. Despite these advances, the increasing molecular complexity of drugs and 

biological targets have not resulted in a corresponding increase in the number of new drug 

applications. Recent breakthroughs in nanotechnology have provided new opportunities to 

deliver new chemical entities (NCEs) to inaccessible drug targets.
1
 

Polymeric nanoparticles (NPs)
2−4

 
 
and other nanoscale organic colloids, such as  

liposomes
5
, micelles

6,7
  and dendrimers

8,9
 can increase the solubility of hydrophobic molecules, 

alter release and biodistribution of drugs, enable targeting and increase drug therapeutic indices. 

10,11 

Much of the research, to date, has focused on organic nanoparticles. However similar to 

organic NPs, AuNPs can potentially benefit from the interactions of inorganic NPs with cells
12,13

 
 

and proteins.
14,15

 While knowledge exists that the inorganic core of NPs can extensively change 

protein conformation,
16,17

 these effects are still novel in the drug delivery field.  These properties 

may affect many aspects of drug delivery, but it would be particularly interesting to see their 
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effect on the in vivo pharmacokinetics of drug-conjugated inorganic NPs, which until now has 

not been undertaken.  

Considering the dramatic effects of inorganic NPs on enzyme activity,
18

  AuNPs 

influence on pharmacokinetics could be equally dramatic. Gold nanoparticles (AuNPs) have 

attracted considerable attention as a promising drug delivery and diagnostic platform. This is 

because AuNPs are chemically stable, biocompatible, easy to functionalize for specific targeting, 

and have special plasmonic properties.
19−22

  Work has also been done on better understanding the 

toxicity 
23 

and biodistribution of AuNPs.
24−26    

Antimetabolites, 6-MP and 6-MPR (Figures 2-1-1a and 2-1-1b) are widely used in the 

clinical treatment of acute lymphoblastic leukemia (ALL) and related diseases. The mechanism 

of action of purine antimetabolites essentially involves the conversion of mercaptopurine into 

cytotoxic 6-thioguanine nucleotide (6-TGN). 6-TGN is subsequently incorporated into the DNA 

or RNA of nucleated cells by hypoxanthine-guanine phosphoribosyl transferase (HGPRT) 

instead of the naturally occurring purine bases (Figure 2-1-2). 
27  

These events ultimately lead to 

cell death and are thought to be the source of the antineoplastic effects of mercaptopurines.  

Conventional therapies with mercaptopurines are however susceptible to enzymatic 

inactivation by hepatic xanthine oxidase (XO), resulting in short plasma half-life and large 

variability in cytotoxic efficacy.
28

  Inactivation involves methyltansferase catalysis of 

mercaptopurine to 6-methylmercaptopurine, and XO conversion to 6-thiouric acid.
29

 The 

importance of optimizing 6-MP therapy to maintain high systemic exposure is therefore critical 

to effective clinical management of ALL. 

              In this paper we decided to gain a better understanding of the potential effects of gold 

NP on the pharmacokinetics of 6-MP and 6-MPR. Using 2D and 3D cell cultures, liver 
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homogenate, and animal studies, we demonstrate that AuNP carriers drastically alter the 

pharmacokinetics of 6-MPR by inhibiting hepatic xanthine oxidase (XO) activity, which has not 

been observed for other nanoscale carriers of this drug. 
30,31

 This study proposes a new and more 

effective paradigm for delivering 6-MPR using AuNPs (Figures 2-1-1c). To our knowledge, this 

is the first time such a delivery strategy to deliver 6-MPR has been proposed and evaluated. 
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Figure 2-1-1. Chemical structure of (A) 6-Mercaptopurine (B) 6-Mercaptopurine riboside  

(C) Schematic representation of 6-MPR-Au NP 
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Figure 2-1-2. Schematic of the metabolism of 6-mercaptopurine (6MP) and 6-mercaptopurine riboside 

(6MPR). 6-mercaptopurine nucleotides (6MPN); 6-thioguanine nucleotides(6TGN); 6-methyl 

mercaptopurine (6MMP); 6-methylmercaptopurine riboside (6MMPR); 6-methylmercaptopurine 

nucleotides (6MMPN); 6-thiouric acid (6TU); thiopurine methyltransferase (TPMT); hypoxanthine 

phosphoribosyltransferase (HPRT); xanthine oxidase (XO). 
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2.1 METHODS 

 

2.1.1 Materials 

 
6-Mercaptopurine riboside, 6-Mercaptopurine, trisodium citrate dihydrate, 

tetrachloroauric (III) acid trihydrate, sodium borohydride, L-cysteine and fluorescein 

isothiocyanate isomer I (FITC) were purchased from Sigma-Aldrich and utilized without further 

purification. Ultrapure water (Barnstead) with 18.2 MΩ-cm was used for all experiments.  

2.1.2 AuNPs synthesis  

 
Citrate stabilized gold nanoparticles were freshly prepared and used immediately for the 

synthesis of 6-MPR-AuNPs. Gold sol was prepared by sodium borohydride reduction of 

tetrachloroauric (III) acid solutions following previously reported methods
32−34

  with some 

modifications. Briefly, 5 mL of 1 w/w% tetrachloroauric (III) acid solution was diluted in 50 mL 

of ultrapure water and stirred for one minute. Next 2.5 mL of 3.4mM sodium citrate was added 

and the resulting solution was stirred for one minute. 5 mL of 0.075 wt% sodium borohydride 

was then added to the gold solution.  

2.1.3 6-MPR-AuNPs synthesis  

To prepare 6-MPR-AuNPs, 50 mL aqueous solution containing 12.5mg of 6-MPR was 

added to the reaction vessel containing gold sol, 30 secs after the sodium borohydride was added.  

Finally the solution containing 6-MPR-AuNPs was purified by centrifugation at 45000 rpm 

(190000 gr max) for 45 minutes. Following removal of the supernatant, the nanoparticles were 
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redispersed and the purification step repeated. The final precipitate was redispersed in 50 mL of 

sterile water for injection and stored at 4 °C until further use.  

2.1.4 Nanoparticle Characterization  

Transmission electron microscopy (FEI Tecnai, G2 Sphera) imaging was performed on  

6-MPR-AuNP solutions at 100,000 times magnification. Mean surface area and diameter of the 

particles were then determined using Image-Pro Plus software (Media Cybernetics). To prepare 

samples for TEM, 2-5 μL aliquots of the sample were placed onto carbon-coated formvar covered 

support grids and air-dried overnight in a protective environment. Representative images from 

samples at 100,000x were used to acquire sufficient (greater than 100) nanoparticle objects for 

image analysis. Images were processed to optimize particle segmentation. Statistics and frequency 

histograms were generated. The zeta potential of 6-MPR-AuNP was measured using Zetasizer 

Nano ZS, Malvern Instruments. Finally, High Pressure Liquid Chromatography (Agilent HPLC 

System) was used to determine the concentration of 6-MPR immobilized on the surface of AuNPs 

by digesting the gold colloids with potassium cyanide.  

2.1.5 Animal Studies  

Male Sprague-Dawley rats weighing on average 250-300 grams with surgically 

implanted vascular cannulas in the carotid artery and jugular vein were purchased from Charles 

River Laboratories (Willmington, MA). Rats were housed, one per cage, in an American Animal 

Association Laboratory Animal Care accredited facility and maintained under standard 

conditions of temperature (22 ± 2 ºC), relative humidity (50%) and light and dark cycles (12 

hours/12 hours). Rats were allowed to acclimate
 
to their environment for one week. Rats had 

access to food and water ad libitum throughout the study. Experiments were conducted according 
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to procedures approved by the Pfizer Global Research and Development Animal Care and Use 

Committee and complied with the NIH Guide for the Care and Use of Laboratory Animals.  

2.1.5.1 Pharmacokinetics Study 

Three male SD rats were each dosed with 6-MPR-AuNPs (5 mg/kg active) over 3 

minutes. As control, three male SD rats were each dosed with 5 mg/kg 6-MPR solution. All rats 

were dosed successfully via jugular vein cannulation (JVC) and no clinical observations were 

noted after treatment.  At 0.083, 0.167, 0.25, 0.33, 0.5, 0.75, 1, 2, 3 and 4 hours post-dose, rats 

were anesthetized and 0.25 mL whole blood was drawn via carotid artery cannula (CAC) into 

heparinized tubes (with EDTA) followed by complete exsanguination. After each blood draw, 

rats were injected with 0.25 mL normal saline (0.9% sodium chloride, USP) to maintain a 

constant blood volume. Plasma was immediately separated by centrifugation at 13000gr-max for 

5 minutes, and transferred to glass culture
 
tubes. Samples were frozen at -20°C until analysis.   

2.1.5.2 Sample Preparation 

Standard curves and quality control samples (n=3 for each concentration) were prepared 

in control rat plasma. For plasma samples, a 50 μL aliquot of sample was precipitated with 200 

μL of acetonitrile containing internal standard using a VWR Multi-Tube Vortexer (VWR, 

Bridgeport, NJ).  For brain samples, 50 μL of blank plasma was added to 50 μL of homogenized 

(4-fold dilution in 60/40 Isoproponal/Water) sample.  For brain standards and blanks, 50 μL of 

control rat brain homogenate was added to 50 μL of plasma.  The resulting 100 μL of sample 

was precipitated with 300 μL of acetonitrile containing internal standard using a VWR Multi-

Tube Vortexer.  All samples were then centrifuged at 3000 rpm for 10 minutes with a standard 
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laboratory centrifuge (Eppendorf, Westbury, NY).  The supernatant was collected in a clean 96-

well collection plate and 5 μL was injected onto the HPLC for LC/MS/MS analysis. 

2.1.5.3 6-MPR and 6-MP Bioanalysis 

LC/MS/MS analysis was performed for 6-MPR and 6-MP using a high-performance 

liquid chromatography system with CTC PAL autosampler (Leap Technologies, Carrboro, NC) 

interfaced to an API 4000 LC/MS/MS quadrupole tandem mass spectrometer (Applied 

Biosystems/ MDS Sciex Inc., Ontario, Canada). 6-MPR, 6-MP and the internal standard (CP-

628374) were separated on a Waters Atlantsi HILIC column 
 
(50 x 2.1 mm, 5μm) by isocratic 

elution.
35

 Mobile phase A consisted of 95% Acetonitrile and 5% 200 mM ammonium formate in 

water, pH 3.0.  Mobile phase B, which was used as a 0.5 minute wash step, consisted of 50% 

Acetonitrile, 45% HPLC Grade Water, and 5% 200 mM ammonium formate in water, pH 3.0.  A 

flow rate of 650 μL/min was used.  

The mass spectrometer was operated in negative ion ESI mode for the detection of                 

6-MPR and the Internal Standard (CP-628374).  Multiple reaction monitoring was performed 

with the transitions m/z 283.2  151.1 for 6-MPR, m/z 685.3  366.1 for CP-628374 (internal 

standard).  The mass spectrometer was operated in positive ESI mode for the detection of 6-MPR 

and the Internal Standard (CP-628374).  Multiple reaction monitoring was performed with the 

transitions m/z 153.1  119 for 6-MP, m/z 687.3   319.7 for CP-628374 (internal standard).  

All raw data was processed using Analyst Software v.1.4.2 (Applied Biosystems/ MDS Sciex 

Inc., Ontario, Canada).  The lower limits of quantification (LLOQ) for 6-MPR and 6-MP were 

2.44 and 9.76 ng/mL, respectively. The upper limit of quantification (ULOQ) was 1250 ng/mL. 
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2.1.5.4 Pharmacokinetic Analysis 

Mean concentrations of 6-MPR and 6-MP were used in the analysis. Paired student's t-

test was used to determine statistical significance and was assessed at the 5% level (p < 0.05). 

Pharmacokinetic analysis was performed using standard noncompartmental methods as 

implemented in Watson Kinetica™ Version 5.0 Software (Thermo Scientific, Waltham, MA). 

Linear-up/log-down method of estimation was used to calculate area under the concentration-

time curve (AUC). Total body clearance (CL) was calculated as dose divided by AUC and 

adjusted for body surface area .The steady state volume of distribution (Vdss) was calculated as 

the ratio of CL to the slope of the terminal log-linear phase – the elimination rate constant (ke). 

The terminal half-life (t½) was calculated as ln2 divided by ke. Initial concentration (Co) and 

percentage of AUC extrapolated (AUC%extra) are obtained by extrapolating the first and last 

concentrations, respectively.  

2.1.6 In Vitro Experiment – 6-MPR metabolism in rat liver homogenate  

2.1.6.1  Liver homogenate preparation 

Liver homogenates were prepared using livers obtained from male Sprague-Dawley rats 

(200-250 grams). The livers obtained were either used fresh or stored at -70°C until use. The 

liver was perfused with saline, removed and rinsed in phosphate buffer (pH 7.4). Liver, weighing 

roughly 10 grams, was homogenized in 5mL of 0.01M Tris-HCL buffer (pH 8.0), containing 

1mM EDTA for 5 minutes in a potter glass homogenizer equipped with a Teflon pestle. The 

homogenate was rapidly heated to 55°C for 5 minutes and then cooled quickly to below 10°C in 

an ice bath. The animals used in this study were those that were sacrificed as part of other 
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experiments approved by the Pfizer Global Research and Development Animal Care and Use 

Committee and complied with the NIH Guide for the Care and Use of Laboratory Animals.  

2.1.6.2 Incubation of liver homogenate with 6-MPR-AuNPs 

200 μL of 6-MPR (with and without AuNPs), 6-MPR-AuNPs (with and without AuNPs), 

and 6-MPR-AuNPs plus 6-MPR were each incubated in 3mL of liver homogenate at 37°C with 

continuous shaking (60 RPM). 6-MPR was also added to the liver homogenate in the presence of 

5mM allopurinol (xanthine oxidase inhibitor). To ensure that 6-MPR did not decompose in the 

assay buffer (Tris-HCL containing EDTA), a solution of 6-MPR in the buffer was tested under 

conditions similar to homogenate assay. As a control, a portion of rat liver homogenate was pre-

treated with citrate-stabilized AuNPs for 24 hours prior to incubation with 6-MPR. The 

concentration of 6-MPR or AuNPs in the test formulations was maintained at 0.9mM.  

100 μL aliquots were collected at 5, 30, 60, 120 and 180 minutes after incubation, and 

each aliquot was added to 75 μL of ice-cold 50% (w/v) trichloroacetic acid to quench any 

reaction.  The mixture was centrifuged for 10 min at 1500g and filtered through Acrodisc LC13 

0.2 μm filters (Gelman Sciences). The resulting samples were kept at 0 - 4°C until analyzed.  

Samples collected were assayed for 6-MPR and 6-MP by LC-MS/MS as described below.  

2.1.7 In Vitro Experiment – 6-MPR metabolism in HepG2 cell culture 

2.1.7.1 Inverted colloidal crystal hydrogel scaffold preparation 

Inverted colloidal crystal (ICC) hydrogel scaffolds were prepared following a previously 

described method.
36  

Briefly, cylindrical shape colloidal crystal templates (diameter 6 mm, height 

1 mm) were constructed with size-controlled glass beads (diameter 173 ±17µm).  
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Acrylamide hydrogel precursor solution composed of 30% w/w acrylamide, 5% w/w N,N-

methylenebisacrylamide and 0.1% v/v N,N,N,N tetramethylethylenediamine in nitrogen purged 

deionized water was infiltrated into colloidal crystals via centrifugation and radically 

polymerized upon addition of 1% w/w potassium peroxide solution. Once polymerization was 

completed, the hydrogel matrix exterior of the colloidal crystals was trimmed down and the glass 

beads were dissolved in 5% w/w hydrogen fluoride solution. The leftover 3-D hydrogel matrix 

retained an inverted structure of colloidal crystal template. ICC hydrogel scaffolds were 

subsequently washed with acidic solution (pH 2), deionized water and phosphate-buffered saline 

solution. Finally, ICC hydrogel scaffolds were freeze-dried and preserved in a -70ºC freezer until 

used.  

2.1.7.2 HepG2 spheroid cell culture 

Rehydrated ICC hydrogel scaffolds were sterilized in 70% ethanol for 15min under UV 

light and subsequently washed with PBS solution three times. HepG2 (HB-8065, ATCC) human 

hepatocarcinoma cells were expanded with William‘s E Medium supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin in a 37ºC incubator with 5% carbon dioxide.
 
The 

cells were harvested from flasks using 2.5% Trypsin-ethylenediaminetetraacetic aicd (EDTA) 

solution, once 70-80% confluence was reached. Final cell concentration was adjusted to 25x10
6
 

cells/ml. 20µl of cell suspension, containing approximately 0.5x10
6
 cells was dropped on top of a 

slightly dehydrated ICC hydrogel scaffold.  After 20-30 min, the cell-loaded scaffolds were 

transferred to a 48-well plate containing 1.5ml of culture medium. HepG2 cells formed 

homogenous spherical clusters within the scaffold after 5 days.
 37,38    
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2.1.7.3 Microscope imaging 

Morphology of colloidal crystals, ICC hydrogel scaffolds and HepG2 spheroids were 

characterized under scanning electron microscope (FEI Nova Nanolab). Cell spheroids were 

fixed with 2.5% glutaldehyde and then serially dehydrated with 50, 70, 90, 95 and 100% ethanol 

solutions.  Before imaging, completely dried samples were coated with Au (Desktop2, Venton 

Vacuume Inc.). Diffusion of a cell tracker dye molecule between 2-D flat and 3-D spheroid 

culture was characterized under laser scanning confocal microscope (Leica SP2). HepG2 cells in 

both 2-D and 3-D cultures were incubated in 5µM carboxyfluorescein diacetate succinmidyl 

ester (CFDA-SE, Invitrogen) solution for 20min and subsequently washed three times with PBS 

solution.  Fluorescent signal was detected using 490-550nm emission bands with a 457nm 

excitation laser.  

2.1.7.4 Treatment of HepG2 spheroid culture with 6-MPR-AuNPs 

Homogenous hepatic spheroids formed within ICC scaffolds placed in 48-well and 24-

well plates were used as a 3-D and 2-D culture formats, respectively. In order to directly 

compare drug effects, total cell mass and culture volume were maintained as 0.5x10
6
 cells and 

1.5mL, respectively. Half the volume of media was changed daily for 5 days. On day 6, 2-D and 

3-D culture media were each replaced with 1.5mL of 0.25mg/mL 6-MPR, 0.25mg/mL 6-MPR 

conjugated AuNPs, or 1:1 v/v of 0.25mg/mL 6-MPR and 0.25mg/mL allopurinol. The 6-MPR 

and 6-MPR-AuNPs used in these experiments were identical to those used in the animal studies. 

200µl of supernatant was collected at 15, 30, 45, 60, 90, 120 and 240 minutes after incubation 

for analysis. Triplicate samples were pulled per time-point. Collected samples were stored at -

70°C freezer until analyzed. After sample collection, the cultures were exposed to a Trypsin-
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EDTA solution to detach cells either for 2-D culture or 3-D aggregation.  Total DNA contents in 

3-D and 2-D culture were measured using PicoGreen dsDNA quantification kit (Invitrogen), 

which was used to normalize the results. Cell-scaffolds were mechanically destroyed using 

forceps and sonicated to make a cell lysate solution. Supernatant was collected from the three 

test groups for analysis.  

We calculated the area under the curve (AUC) of 6-MPR concentration-time curve to 

determine the effect of AuNPs on 6-MPR in the HepG2 cell culture.  Statistical analyses were 

done by using SPSS for Windows (version 16.0; SPSS, Inc., Chicago, Illinois, USA). A P-value 

<0.05 was considered statistically significant. 

2.1.8 Sample Preparation 

 Standard curves were prepared in control cell culture media. 50 μL aliquot of sample 

was precipitated with 200 μL of acetonitrile containing internal standard using a VWR Multi-

Tube Vortexer (VWR, Bridgeport, NJ).  All samples were then centrifuged at 3000 rpm for 10 

minutes with a standard laboratory centrifuge (Eppendorf, Westbury, NY).  The supernatant was 

collected in a clean 96-well collection plate and 5 μL was injected onto the HPLC for 

LC/MS/MS analysis. 

2.1.9 6-MPR and 6-MP Analysis 

LC/MS/MS analysis was performed for 6-MPR and 6-MP using a HPLC system with 

CTC PAL autosampler (Leap Technologies, Carrboro, NC) interfaced to an API 4000 

LC/MS/MS quadrupole tandem mass spectrometer (Applied Biosystems/MDS Sciex Inc., 

Ontario, Canada).  6-MPR, 6-MP and the internal standard (CP-628374) were separated on a 

Waters Atlantsi HILIC column
  
(50 x 2.1 mm, 5μm) by isocratic elution. The reader is advised to 
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refer to previous sections on the bioanalysis of brain, CSF and plasma samples for the detailed 

analytical method used to analyze 6-MPR and 6-MP samples. All data were processed using 

Analyst Software v.1.4.2 (Applied Biosystems/ MDS Sciex Inc., Ontario, Canada).  The lower 

limits of quantification (LLOQ) for 6-MPR and 6-MP were 2.44 and 9.76 ng/mL, respectively. 

The upper limit of quantification (ULOQ) was 425ug/mL. 
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2.2 RESULTS AND DISCUSSION 

 

2.2.1 Gold Nanoparticles  

 
Drug-loaded AuNPs were synthesized taking advantage of the ability of 6-MPR to bind 

to gold via the thiol end of the molecule. Reduction of Au(3+) by borohydride in the presence of 

6-MPR (see Method) yielded 5.12 nm ± 0.3 (Figures 2-2-3a and 2-2-3b). The electrokinetic 

potential (ξ) and surface area of 6-MPR-AuNPs were +7.2 mV and 30.59µm
2 

respectively. The 

concentration of bound 6-MPR in the resulting NP dispersion was 0.25 mg/mL. Similarly, the 

concentration of 6-MPR and allopurinol solutions used in the experiments was each 0.25mg/mL. 

 

 

 

Figure 2-2-3. Gold nanoparticle characterization: (A) Transmission electron micrograph 

of  6-MPR-AuNPs with mean size of ca.5.12 nm ± 0.30 (mean ± S.D.). (B) 6-MPR-AuNPs  

particle size histogram.   
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2.2.2 Pharmacokinetics 

 
Male Sprague-Dawley (SD) rats received 5 mg/kg intravenous injections of 6-MPR-

AuNPs and 6-MPR solution, as control. The resulting mean plasma concentration-time profiles 

are shown in Figure 2-2-4, and the pharmacokinetic parameters are provided in Table 2-1. As 

expected, markedly different pharmacokinetic profiles were observed for the two groups. The 

rats treated with the control formulation experienced a precipitous drop in systemic 6-MPR and 

6-MP levels compared to the rats treated with 6-MPR-AuNPs.  

The 6-MP plasma concentration for rats administered 6-MPR alone was well below the 

9.76 ng/mL lower limit of quantification. The initial drug concentration (C0) and area under the 

curve (AUC) of 6-MPR for rats treated with 6-MPR-AuNPs were 11,440±3860 and 3,695 ±315 

ng/mL•h, respectively. This is compared to 50.75±1.45 and 12.45±1.25 ng/mL•h for rats given 6-

MPR alone. This represents a 297-fold increase in 6-MPR exposure compared to rats treated 

with 6-MPR. Correspondingly, the nanoparticles increased the half-life of 6-MPR from 

13.8±5.94 to 44.16±1.98 minutes.  

             The steady-state volume of distribution (Vdss) of 6-MPR decreased from 25.55±13.05 

L/kg (control group) to 0.554±0.10 L/kg for rats dosed with 6-MPR-AuNPs. This decrease in 

volume of distribution could be due to the localization of nanoparticles in the systemic 

circulation and reduced tissue binding, compared to the unconjugated 6-MPR.  

The intrinsic clearance of 6-MPR and 6-MP were also significantly lower after receiving 

6-MPR-AuNPs, averaging 22.45±1.95 and 68.7±3.01 mL/min/kg, respectively. The clearance of 

the control group was 6,190±810 mL/min/kg. Since the glomerular filtration rate alone cannot 

totally account for the observed clearance and no active carrier-mediated secretory process has 

been suggested in the urinary excretion of thiopurines,
39-41  

extensive extrarenal clearance can be 
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inferred. Rather, these results are consistent with the dramatic decrease of total clearance (276-

fold), which has a more profound effect on half-life than volume of distribution. That is because 

the volume of distribution is dependent on free plasma drug, whereas both free and bound drug 

are available for clearance. The high clearance observed in this study for free drug is consistent 

with widely-reported hepatic metabolism of 6-MPR in vivo.
42   

We hypothesize that conjugation of 6-MPR to AuNPs may have inhibited the metabolic 

inactivation of 6-MPR by XO.  Alternatively, one may suggest that 6-MPR-AuNPs could avoid 

metabolism of 6-MPR by preventing diffusion of 6-MPR into intracellular spaces of liver cells 

where XO-catalyzed metabolism occurs. In order to test these hypotheses, we carried out 

metabolic studies using different in-vitro models such as rat liver homogenate, spheroid 3D cell 

culture of hepatocytes in specially designed scaffolds, and 2D liver cell cultures. Systematic 

study of 6-MPR in the free and NP-conjugated form, at various levels of cellular complexity 

allowed us to comprehensively test these hypotheses.   
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Figure 2-2-4. Mean concentration-time profiles of 6-MPR and 6-MP in Sprague Dawley  

rats following intravenous administration (5 mg/kg 6-MPR) of 5 nm 6-MPR-AuNPs or 

unconjugated 6-MPR. Each point and bar represents the mean ± S.D. (n = 3). 

 

 

 

Table 2-1. Pharmacokinetic parameters of 6-MPR and 6-MP in Sprague Dawley rats  

after intravenous administration (5 mg/kg 6-MPR) of 5nm 6-MPR-AuNPs or 

unconjugated 6-MPR. Data represents the mean ± S.D. (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        *Value below 9.76ng/mL  

                   

 

Parameters 

  6-MPR-AuNP group       6-MPR group 

     Mean ±SD                   Mean ±SD 

          (n=3)                            (n=3) 

AUC (ng/mL•h) 
6-MPR                      3695  ± 315                      12.45 ± 1.25   

6-MP                  1195  ± 55                        BLQ*  

% AUC Extrap (%) 
6-MPR        0.937 ± 0.184                   8.68 ± 2.82                          

6-MP         2.05 ± 0.1                         BLQ  

Co (ng/mL) 
6-MPR        11440 ± 3860                   50.75 ± 1.45                         

6-MP         4410 ± 2170                     BLQ* 

t1/2 (hours) 
6-MPR        0.736 ± 0.033                   0.23 ± 0.10                          

6-MP         0.466 ± 0.091                   BLQ*  

CL (mL/min/kg) 
6-MPR        22.45 ± 1.95                     6190 ± 810                          

6-MP         68.70 ± 3.10                     BLQ*  

Vdss (mL/kg) 
6-MPR        554    ± 102                      25550 ± 13050                         

6-MP         2035  ± 75                        BLQ* 
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2.2.3 Metabolism of 6-MPR-AuNPs in rat liver homogenate 

 

Free 6-MPR, 6-MPR-AuNPs and other combinations of NPs and 6-MPR were incubated 

in rat liver homogenate. Samples were collected for up to 180 min after incubation and analyzed 

for 6-MPR. Statistical significance (p-value <0.01) was achieved. The results showed that the 

concentration of 6-MPR declined precipitously within the initial 5 minutes of incubation, and fell 

below analytical detection limits within 120 minutes of incubation (Figure 2-2-5). On the 

contrary, 6-MPR-AuNPs increased the amount of 6-MPR by about 30-fold in the first 60 

minutes. We added citrate-stabilized AuNPs to the homogenate containing 6-MPR-AuNPs and 

found no change in 6-MPR concentration. Moreover, when 6-MPR was added to samples pre-

incubated with  6-MPR-AuNPs, we observed an almost exact increase in the amount of 6-MPR 

as was added to homogenate. Interestingly, when 6-MPR was not conjugated to NPs and instead 

admixed with free 6-MPR, a fair amount of inhibitory effect was still observed. This could be 

because some of the 6-MPR gets adsorbed to the surface of the NPs effectively forming 6-MPR-

AuNPs. 

             To confirm the effect of XO and the effects of NPs on XO, we investigated the 

metabolism of 6-MPR in the homogenate after incubation with allopurinol (a XO inhibitor). The 

result shows that the effect of  6-MPR-AuNPs is comparable to that of allopurinol. Moreover,  

when rat liver homogenate was pre-treated with stabilized AuNPs for 24 hours prior to 

incubation with 6-MPR,  metabolism of 6-MPR occurred as previously noted. This eliminates 

the possibility for XO poisoning or deactivation by the AuNPs.  Similarly, albeit to a lesser 

extent, we observe rapid decline in 6-MPR after incubation with mixture of 6-MPR and AuNP, 

further confirming that AuNPs do not poison XO. Chemical decomposition of 6-MPR in buffer 
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was also evaluated and the drug was found to be stable. These results, including the fact that 

adding excess 6-MPR or AuNPs did not change the 6-MPR in liver homogenate, confirm that 6-

MPR-AuNPs directly inhibit XO and thereby prolong the half-life of 6-MPR.  

By AuNPs inhibiting the oxidation of 6-MPR to 6TU, 6-MPR can be converted to the 

active metabolite 6-thioguanine (6TGN). The presence of 6TGN as was confirmed in rat plasma 

samples provides further evidence that AuNPs play an important role in preventing the 

metabolism 6-MPR. This also confirms that the biological properties of 6-MPR is conserved 

after conjugation to AuNPs and after subsequent interaction with XO. Podsiadlo and Kotov 

previously demonstrated that AuNPs do not diminish 6-MPR activity, instead they enhance the 

antitumor properties of 6-MPR.
32

 Based on the results here, we propose that the AuNPs does in 

fact prevent metabolic degradation of 6-MPR from occurring by inhibiting XO, while still 

allowing the phosphorylation necessary for the cytotoxic effects of 6-MPR to take place at the 

riboside end. 
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Figure 2-2-5. Metabolic stability of 6-MPR in rat liver homogenate monitored post-incubation. 

6-MPR concentration (Mean ± S.D; n=6) of six test groups at different time points, after 

incubation in liver homogenates obtained from male Sprague-Dawley rats.  

 

2.2.4 Characterization of HepG2 spheroid culture 

 
Standardized and functional in vitro tissue culture model is important for achieving 

faithful and reproducible drug testing results.
43 

The pore size distribution of ICC hydrogel 

scaffolds (D=173 ±17µm) made with a cell-repulsive synthetic hydrogel matrix effectively 

induces multicellular aggregate formation of HepG2 cells having narrow size distribution 

(D=99.9 ±14µm). This is important for controlled and reproducible testing results (Figure 2-2-

6.). Established 3-D hepatic spheroid culture replicates tissue-like morphology and functions, as 

well as physiological processes such as diffusional delivery of nutrients and oxygen.  
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In order to characterize delivery of drug or small molecules, we expose 2-D flat and 3-D 

spheroid culture to a cell tracker dye molecule and then used confocal microscopy to determine 

their distribution. As shown in Figure 2-2-7, morphological differences between 2-D flat and 3-D 

spheroid culture result in significantly different staining profiles. For example, in 2-D culture, all 

cells are homogenously stained. On the other hand, in 3-D culture, only cells located on the 

surface are fully stained and the inner cells are exposed to less dye molecules due to diffusion via 

cellular layer. This feature closely resembles molecular delivery in tissue cells. It is highly 

conceivable that the drug molecules or nanoparticles undergo similar transport processes in the 

body. Such diffusion limitation in 3-D spheroid culture is one of the reasons for reduced drug 

effect compared to 2-D culture.  

  

 
  

 

Figure 2-2-6. SEM images of ICC 

hydrogel scaffolds and 3D hepatic 

spheroid culture models. (A) 

Colloidal crystal templates 

prepared with 180-220 µm 

microspheres (Left) and inverted 

structure made of polyacrylamide 

hydrogel matrix (Right). The 

structure of a tightly packed 

narrow size distribution of 

microspheres was transferred to 

3D homogenous spherical pore 

arrays. (B) HepG2 spheroid 

formation after 5 days of culture 

(Left) and HepG2 spheroid under 

high magnification (Right). Cell 

repulsive nature of 

polyacrylamide hydrogel matrix 

rapidly induces   cellular 

aggregation. 
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Figure 2-2-7. Comparison of 

cell tracker dye molecule 

diffusion between 2-D and 3-D 

HepG2 cell cultures under 

confocal microscope. Left 

panel is a fluorescent image 

and right panel is a fluorescent-

transmission overlay image. 

(A) In conventional 2D flat 

culture, entire cells were 

homogenously stained with a 

dye molecule. (B) In 3D 

spheroid culture, only exterior 

regional cells were stained with 

a dye molecule due to the 

diffusion limit.   

 

 

2.2.5 Metabolism of 6-MPR-AuNPs in HepG2 spheroid assay  

 

Using standardized liver spheroid culture model we studied the potential effect of AuNPs 

on the metabolism of 6-MPR by liver XO. We measured the concentration of 6-MPR and 6-MP 

in the  2-D and 3-D HepG2 cell culture media over the course of 4 hours after incubation with 6-

MPR, a mixture of allopurinol and 6-MPR, and AuNP-6-MPR. The results show that in the 

presence of gold nanoparticles, metabolism of 6-MPR and 6-MP was significantly reduced 

(Figure 2-2-8 and Table 2-2). The 6-MP and 6-MPR concentrations in the cell cultures were 

respectively 3 and 4-fold lower than reference, when cells were exposed to free drug alone. 

However, when cells were incubated with 6-MPR-AuNPS, the concentrations of 6-MP and           

6-MPR remained unchanged. Similarly, cell cultures incubated with a mixture of 6-MPR and 
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allopurinol showed little or no change in the initial concentrations of 6-MPR and 6-MP. In this 

case the 6-MPR-AuNPs performed comparably to the mixture of 6-MPR and allopurinol.  

              When cells were treated with AuNPs, the 6-MPR concentration was comparable to cells 

treated with a mixture of 6-MPR and allopurinol. These results are consistent with previous in 

vivo observations. However, analysis of cell lysate revealed that 2D cells treated with 6-MPR-

AuNPs contained the same amount of 6-MPR as cells incubated with free 6-MPR (Table 2-3). 

Interestingly, 3D cell lysate for the 6-MPR-AuNPs group had lower amounts of 6-MPR 

compared to other treatment groups. One possible explanation for this is that the extraction of            

6-MPR-AuNPs from the cell-scaffolds matrix was incomplete, rendering the lysate assay sub-

potent. This is the so-called matrix effect and presents distinct challenges to molecular analysis 

of biological matrices.
44-46

   

           Though the effect of AuNPs on 6-MPR was similar in 2D and 3D liver culture models, the 

normalized AUCs of 6-MP and 6-MPR in 3D culture were significantly lower than in 2D culture 

(roughly two orders of magnitude). This reflects the large number of cells present in the 3D 

scaffold (701,158 ±57991 per scaffold), compared to the same culture volume of 2D well plate 

(10,832 ±1745 cells per well). Further unlike 2D cell culture models, 3D hepatic cells produced 

concentration profiles with elimination processes that are characteristic of in vivo models. In the 

3D culture, 6-MP and 6-MPR concentrations seem to decline exponentially with time.  

Though in some cases they can provide useful information, in vitro 2D cell cultures often 

do not accurately predict complex physiological processes such as would be encountered in drug 

metabolism. Cellular processes are strongly dependent on 3D organization and limit the ability of 

2D cell models to reproduce in vivo responses.
47  

3D culture restores tissue-like morphology and 

phenotypes that, in turn, significantly improve prediction of drug response compared to 
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conventional 2D flat culture. The use of liver spheroid culture model to evaluate hepatic 

clearance of drugs has significant implications on the development of drugs. 

             Several human liver in vitro assays have been developed in the past few decades. These, 

include supersomes, microsomes, cytosol, S9 fraction, cell lines, transgenic cell lines, primary 

hepatocytes, liver slices, and perfused liver. However, in vitro cell culture models have been 

primarily based on two-dimensional (2-D) monolayer of cells, which despite providing valuable 

information do not accurately predict tissue morphology and functions. This may be because key 

physiological processes are absent from cell assays.  

These limitations have prompted the development of three-dimensional (3-D) cell culture 

models. Compared to the 2-D culture of cell monolayers, 3-D models can provide a cellular 

microenvironment that more closely mimics the conditions observed in native tissues. 
48,49                

This is critical for drug testing since environmental cues can have profound effects on the 

properties, behaviors, and functions of cells. These, in turn, affect cellular responses to drugs. 

Factors such as matrix composition, cell type, cell health, cell seeding densities, and time of 

culture can influence the success of 3-D cultures.  

 

 

 

 

 

 

 



 

 58  
 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2-2-8. Normalized drug concentration-time profiles of three formulations of 6-MPR in 2-D and 3-D HepG2 

spheroid culture. (A) 6-MPR in 2-D culture, (B) 6-MP in 2-D culture, (C) 6-MPR in 3-D culture, (D) 6-MP in 3-D 

culture. Mean ± S.D. (n = 6).   

A 
 

B 
 

C 
 

D 
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Table 2-2. Normalized area under concentration-time curve of 6-MPR and 6-MP in 2D and 3D 

HepG2 culture 
 

 

Formulation 
 

      6-MPR (ng/mL/cell•h) 

         Mean ±SD (n=6)                          

            6-MP (ng/mL/cell•h)                                              

Mean ±SD (n=6) 

     2-D culture        3-D culture    2D culture                      3D culture 

      6-MPR 

 

10.132 ±0.9      0.172 ±0.06 
 

 16.837 ±1.1       0.286 ±0.1 

        6-MPR+ allopurinol 

 

66.012 ±2.1  0.747 ±0.1 
 

 61.959 ±1.5      0.700 ±0.2 

      6-MPR-AuNP   45.716 ±1.4  0.744 ±0.3  42.316 ±1.3      0.712 ±0.3 
         

 

 

 

Table 2-3: Normalized mean concentrations of 6-MPR and 6-MP in 2D and 3D HepG2 culture lysate 

 

   Formulation 
 

       6-MPR (ng/mL/cell) 

         Mean ±SD (n=6)                         

                6-MP (ng/mL/cell) 

               Mean ±SD (n=6)                          

     2-D culture       3-D culture             2-D culture                     3-D culture 

     6-MPR 

 

0.071 ±0.03     0.045 ±0.01 
 

0.087 ±0.02      0.046 ±0.02 

       6-MPR + allopurinol  

 

0.075 ±0.09     0.015 ±0.01 
 

0.078 ±0.03      0.016 ±0.01 

    6-MPR-AuNP    0.072 ±0.06     0.001 ±0.02   0.080 ±0.02      0.002 ±0.002 
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2.3 CONCLUSIONS 

 

 The BBB penetration of drug molecules alone does not guarantee optimum brain 

delivery. Therefore optimizing drug pharmacokinetics is critical to the development of drug 

therapies and particularly CNS therapies. Here, we used in vitro and in vivo pharmacokinetics 

studies to demonstrate that AuNP carriers can dramatically increase the plasma half-life of 6-

MPR, by directly inhibiting liver xanthine oxidase (XO) activity. To our knowledge, this 

phenomenon has not been previously observed for other nanoscale carriers of 6-MPR.   

These results have several important clinical implications. 6-mercaptopurine is a well 

established antineoplastic agent.  Optimizing 6-MPR therapy to maintain high systemic exposure 

is critical to effective clinical management of inflammatory diseases and malignancies, including 

potentially brain tumors.  In addition, lower dose requirements and increase drug therapeutic 

index will result.   
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CHAPTER 3 

BRAIN PENETRATION, DISTRIBUTION AND PHARMACOKINETICS                                         

OF 6-MERCAPTOPURINE RIBOSIDE CONJUGATED GOLD NANOPARTICLES 

 

3.0 INTRODUCTION 

 

Each year, approximately 14,000 people are stricken with brain cancer. Despite major 

advances in diagnostics and treatment options, the ability to treat the most aggressive and 

common form of malignant brain tumor, glioblastoma multiforme (GBM), has not improved 

since 1980.
1 

 GBM is the most frequent primary brain tumor type in adults, comprising about a quarter 

of all primary brain tumors diagnosed in the United States. The one-year survival rate for invasive 

central nervous system (CNS) cancers was 57.9 percent in 2002, and survival for GBM in 

particular was even lower.
2  

Even with aggressive multimodal therapy consisting of radiotherapy, 

chemotherapy, and surgical excision, the median survival is only 12–17 months.
3  

One reason for this is that the majority of the potent systemic chemotherapeutic agents 

are excluded from the CNS by the Blood-Brain Barrier (BBB) and Blood-Cerebrospinal Fluid 

(BCSF) Barriers.
4
 The BBB is composed of a tightly sealed layer of endothelial cells and 

astrocytes and plays a critical role in protecting the brain from toxic and infectious agents, while 

allowing the intake of nutrients, oxygen and essential molecules. Highly complex and tightly 

regulated, the BBB screens the biochemical, physicochemical and structural features of solutes in 

its periphery, thus affording barrier selectivity in the passage of molecules into the brain 

parenchyma.  

The ability to treat neurological diseases is therefore limited by the efficient function of 

BBB and BCSF barrier. In addition, BBB efflux proteins such as P-glycoprotein and ABCG2 act 

like gate keepers to keep the chemotherapeutics out of CNS. A few compounds classified as 

nitrosoureas (including carmustine and lomustine) or alkylating agents (e.g. temozolomide) have 
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partial ability to cross the BBB and have been used clinically in the recent past.
5 

 However, 

systemic delivery of these agents appears to offer modest benefit as a supplement to 

radiotherapy. 
6,7  

In effect, the BBB and BCSF act as a bottleneck to the development of effective 

brain delivery systems.  

The failure of conventional drug therapy for treating glioma has motivated extensive 

research into innovative strategies to deliver chemotherapeutics across the BBB. Over the past 

two decades, a variety of approaches to deliver CNS-excluded drugs through the BBB have been 

attempted by various research groups with mixed results. These have included hyperosmolar 

disruption of the BBB tight junctions and direct delivery of therapeutics into the brain by 

intracerebral injection into cerebral parenchyma or cerebral ventricles.
8,9  

Both approaches are 

invasive, and have severe adverse effects with a prominent disadvantage of repeated 

administration of therapeutic agents.  

With better understanding of the BBB, several targeting strategies are being tested for 

brain delivery, with some success.
10  

Receptor-mediated delivery of drugs conjugated to known 

BBB carriers such as transferrin, apotransferrin and other ligands have been tested.
11 

Liposome 

and nanoparticles with similar targeting moieties have also been evaluated. However despite the 

fact that some of these approaches have achieved increased drug delivery into the brain, the 

therapeutic efficacy decreases either due to chemical modifications or a poor drug penetration 

thus limiting their usefulness.
12 

 The ability to cross the BBB would enable a wider range of 

agents such as paclitaxel, doxorubicin, immunotoxins, and even gene therapy vectors to be 

evaluated for brain cancer treatment. 

In order to overcome the poor permeability of the BBB as well as poor pharmaceutic 

properties of currently marketed chemotherapeutic agents, we have put forward a novel drug 

delivery strategy which involves the conjugation of 6-MPR to gold nanoparticles (6-MPR-

AuNPs). The proposed research utilizes whole-body section fluorescence imaging (WBSFI) 

technique, as well as detailed brain, CSF and plasma PK analyses to study the brain uptake and 

CNS distribution of 6-MPR-AuNPs following intravenous injection of rats.  

In the recent past, gold nanoparticles have attracted considerable attention for medical 

research.  This is because AuNPs are chemically stable, biocompatible, easy to functionalize for 

specific targeting, and have special plasmonic properties.
13− 17  

The intravenous lethal dose 
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(LD50) of 1.9 nm AuNPs was found to be minimal (3.2 g/kg) in acute toxicity studies conducted 

in mice.
18 

As a contrast agent, AuNPs provide a suitable tool for diagnostics and imaging.
 19− 21  

Moreover, the luminescence of gold and its electron density allow its visualization and 

characterization by numerous techniques such as spectrophotometry, fluorescence microscopy, 

computer tomography (CT), and transmission electron microscopy (TEM). Previous experiments 

which reported the entry of citrate stabilized gold nanoparticles (AuNPs) into the brain after 

intravenous administration showed that gold nanoparticles with a diameter cut-off of 15 nm or 50 

nm could pass through the BBB efficiently.
 18,22  

Although several studies are available on the use 

of gold nanoparticles for diagnostic and therapeutic applications, detailed analysis of the 

pharmacokinetics and brain distribution of drugs conjugated to gold nanoparticles is nonexistent 

or incomplete. Further investigation of the distribution and kinetics of drug conjugated AuNPs is 

warranted, and will help shed light on the safety and efficacy of nanotherapeutics in general.  

Additionally, recent development of better fluorescent tags as well as advances in image 

computing, have sparked new interest in the use of optical imaging as a medical diagnostic. 

WBSFI is increasingly gaining popularity as a qualitative tool used in non-clinical drug research.
 

23,24   
WBSFI is similar to QWBA, but fluorescence intensity is measured instead of radioactivity. 

In WBSFI, flourophores are used to visualize disposition of tagged drug molecules in 

whole body section of small animals. Compared to other imaging methods, WBSFI is safe, fast, 

inexpensive, requires little sample preparation while maintaining high sensitivity. It was not the 

aim of the present publication to review in detail the performances of WBSFI and QWBA. 

Rather we focus on the new possibilities offered by 6MPR-AuNPs combined with WBSFI.  

Purine antimetabolites, 6-mercaptopurine (6MP) and 6-mercaptopurine riboside (6MPR) 

are antineoplastic agents widely used in the clinical treatment of Acute Lymphoblastic Leukemia 

(ALL), meningeal leukemia, other malignancies, and inflammatory bowel disease (IBD).
25 

 Short 

plasma half-life due to rapid liver metabolism has limited their clinical use. Furthermore, only 

limited published information is available on the brain distribution of 6-MPR and other purine 

analogs. Available studies suggest that 6-MPR is only marginally distributed in the CNS.
 25

   

The mechanism of action of purine antimetabolites involves the conversion of 

mercaptopurine into cytotoxic 6-thioguanine nucleotide (6-TGN), which is then incorporated 

into the DNA or RNA of nucleated cells by hypoxanthine-guanine phosphoribosyl transferase 
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(HGPRT) instead of the naturally occurring purine bases (Figure 3-1-1).
26  

These events 

ultimately lead to cell death and is thought to be the source of the antineoplastic effects of 

mercaptopurines. Conventional therapies with mercaptopurines are however susceptible to 

extensive enzymatic inactivation by hepatic xanthine oxidase, resulting in short plasma half-life 

and large variability in cytotoxic efficacy.
27, 28  

The pathway involves conversion of 

mercaptopurine to 6-thiouric acid, and thiopurine methyltansferase catalysis of S-methylation to 

6-methylmercaptopurine.
29  

The importance of optimizing 6-MP therapy to maintain high 

systemic exposure is therefore critical to effective clinical management of Acute Lymphoblastic 

Leukemia (ALL). 

In this article we present compelling animal data to show that 6-MPR-AuNPs 

significantly increased the concentrations of 6-MPR and 6-MP in brain, CSF and plasma. The 

AuNPs decreased the clearance and thereby increased the plasma half-life of 6-MPR. Finally, 

TEM and whole-body imaging analysis was used to confirm the brain uptake of 6-MPR-AuNPs.  

Considering the anatomical complexity of the blood-brain-CSF barriers and the inherent 

difficulty in delivering drugs to the brain, the significance of finding AuNPs in brain and 

cerebrospinal fluid cannot be overstated.  

To our knowledge, this is the first time a pharmacological agent has been directly 

delivered to brain parenchymal cells using gold nanoparticles as vectors. We are also unaware of 

reports of transvascular delivery of the chemotherapeutics agent (6-MPR) across the blood-brain 

using AuNPs, combined with the potential for other novel drug delivery applications. 

Furthermore, to-date, there have been no reported cases of the successful use of whole-body 

fluorescence to investigate tissue distribution of nanoparticles in lieu of whole body 

autoradioluminography as we have demonstrated in this article. Finally, drug design strategies 

for treating brain malignancies have often emerged from empirical studies with retrospective 

pharmacologic explanations, rather than prospective trials involving rational design as we have 

done here. 
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Figure 3-1-1. Schematic of the metabolism of 6-mercaptoputine (6MP) and 6-mercaptopurine 

riboside (6MPR). 6MPN, 6-mercaptopurine nucleotides; 6TGN, 6-thioguanine nucleotides; 

6MMP, 6-methylmercaptopurine; 6MMPR, 6-methylmercaptopurine riboside; 6MMPN, 6-

methylmercaptopurine nucleotides; 6TU, 6-thiouric acid; TPMT, thiopurine methyltransferase, 

HPRT, hypoxanthine phosphoribosyltransferase; XO, xanthine oxidase.  
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3.1 METHODS 

 

3.1.1 Materials 

 
6-Mercaptopurine riboside, 6-Mercaptopurine, trisodium citrate dihydrate, 

tetrachloroauric (III) acid trihydrate, sodium borohydride, L-cysteine and fluorescein 

isothiocyanate isomer I (FITC) were purchased from Sigma-Aldrich and utilized without further 

purification. Ultrapure water (Barnstead) with 18.2 MΩ-cm was used for all experiments.  

3.1.2 6-MPR-AuNPs and FITC/6-MPR-AuNPs Synthesis 

 
Citrate stabilized gold nanoparticles were freshly prepared and used immediately for the 

synthesis of 6-MPR-AuNPs and FITC/6-MPR-AuNPs (Figure 3-1-2). Gold sol was prepared by 

sodium borohydride reduction of tetrachloroauric (III) acid solutions following previously 

reported methods, 
30−32 42-44 

with some modifications. Briefly, 5 mL of 1 w/w% tetrachloroauric 

(III) acid solution was diluted in 50 mL of ultrapure water and stirred for one minute. Next 2.5 

mL of 3.4mM sodium citrate was added and the resulting solution was stirred for one minute.            

5 mL of 0.075 wt% sodium borohydride was then added to the gold solution.  

6-MPR-AuNPs were labeled with FITC via an L-cysteine linker.  50 mL aqueous 

solution containing a 2:1 molar ratio of 6-MPR and Cysteine were added to the reaction vessel 

containing gold sol 30s after sodium borohydride. The resulting solution was dialyzed against 

ultrapure water for 3 days and was further purified by ultracentrifugation at 45000 rpm (190000 

gr max) to a final volume of 20mL. To the resulting dispersion, a 1mL solution containing 

0.58umol of FITC was added and after adjusting the pH to 8, the mixture is allowed to stir 
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overnight in darkness at room temperature. Next, the solution is placed in a dialysis bag and 

allowed to purify against ultrapure water for approximately one week or until no more FITC was 

eluting. The resulting NP solution was stored in a refrigerator and protected from ambient light, 

until further use.  

 

 

 

 
 

Figure 3-1-2. Flow diagram for the chemical synthesis of 6-MPR-AuNP (route A) and FITC/6-

MPR-AuNPs (route B) 
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3.1.3 Nanoparticle Characterization  

 

3.1.3.1 TEM Imaging 

Transmission electron microscopy (FEI Tecnai, G2 Sphera) imaging was performed on 

FITC/6-MPR-AuNP and 6MPR-AuNP solutions at 100,000 times magnification. Mean surface 

area and diameter of the particles were then determined using Image-Pro Plus software (Media 

Cybernetics). To prepare samples for TEM, 2-5 μL aliquots of the sample were placed onto 

carbon-coated formvar covered support grids and air-dried overnight in a protective 

environment. Representative images from samples at 100,000x were used to acquire sufficient 

(greater than 100) nanoparticle objects for image analysis. Images were processed to optimize 

particle segmentation. Statistics and frequency histograms were generated. The zeta potential of 

6MPR-AuNP was measured using Zetasizer Nano ZS, Malvern Instruments. Finally, High 

Pressure Liquid Chromatography (Agilent HPLC System) was used to determine the 

concentration of 6MPR immobilized on the surface of AuNPs by digesting the gold colloids with 

potassium cyanide.  

3.1.3.2 AFM Imaging 

Atomic force microscopy (AFM) imaging was performed using a Nanoscope III (Digital 

Instruments/ Veeco, Santa Barbara, CA) instrument. AFM images were obtained in the tapping 

mode with standard Si/N tips. Calibration at the nanoscale, operating in Tapping Mode (TM) was 

performed using standard samples. Images were recorded by working in low voltage mode. In 

this configuration the set point was about 1 nN, and the scan rate 2 Hz. Glass slides were cleaned 

by immersion in a freshly prepared solution consisting of 30% H2O2 and 96% H2SO4 in 1:2 ratio. 
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The glass substrates were then washed with milli-Q water and dried in a stream of high-purity 

nitrogen. Subsequently, the glass surface was treated with 0.3M (3-mercaptopropyl)-

trimethoxysilane solution in chloroform for 3 minutes at room temperature. The slides were 

finally rinsed with copious chloroform and milli-Q water and dried with nitrogen gas. Gold 

colloids were deposited on silanized glass slides by spin coating. Spin speed and time were 

adjusted to ensure high density of homogeneously distributed single colloidal particles over the 

glass substrate. 

3.1.4 Animal Studies  

Male Sprague-Dawley rats weighing on average 250-300 grams with surgically 

implanted vascular cannulas in the carotid artery and jugular vein were purchased from Charles 

River Laboratories (Willmington, MA). Rats were housed one per cage in an American Animal 

Association Laboratory Animal Care accredited facility and maintained under standard 

conditions of temperature (22 ± 2 ºC), relative humidity (50%) and light and dark cycles (12 

hours /12 hours). Rats were allowed to acclimate
 
to their environment for one week. Rats had 

access to food and water ad libitum throughout the study. Experiments were conducted according 

to procedures approved by the Pfizer Global Research and Development Animal Care and Use 

Committee and complied with the NIH Guide for the Care and Use of Laboratory Animals.  

3.1.4.1 Whole-Body Imaging Experiment 

Rat whole-body fluorescence imaging studies were conducted following standard 

procedure for whole-body autoluminography. The experimental setup (Figure 3-1-3) consisted of 

a cryomicrotome, the imaging system, a robotic positioner and the computer control system.                 
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A custom application program has been developed which controls the cryostat, the robotic 

positioner, the illuminators and the camera for a fully automated sectioning and imaging session. 

A total of six rats were used in the study. Three rats (treatment groups 1-3) were intravenously 

administered FITC/6-MPR-AuNP (5 mg/kg FITC), and the remaining three rats received either 

saline, FITC or FITC + 6-MPR-AuNP as control. The saline group was included to control for 

both the drug administration and temporary restraints used. All rats were injected via the tail vein 

using 20-gauge gavage-dosing needle affixed to a 3cc disposable syringe.  
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Rats euthanized post-dosing

Euthanized animal frozen in -75oC 

chamber of dry ice and hexane for 10mins

Frozen whole-body specimens embed unto 

microtome stage using 3% CMC

25μm sagittal sections are acquired and lifted

onto 810 scotch tape at –18oC 

Sections are scanned with a Typhoon 9210 Molecular 
Dynamics Imager to acquire digitized images

Images are analyzed with a processing and visualization software that 
includes suppression algorithm to correct for background interference.

Rats injected with Saline, 

FITC, FITC/6MPR-AuNPs 

 

 

 

 

Rats were then euthanatized by CO2 asphyxiation 30 minutes following dose 

administration. Immediately following euthanasia, each rat was prepared by immersion into a 

freezing chamber (-75
o
C) containing dry ice and hexanes for 10 minutes. Next the frozen whole-

body specimen was embedded onto a microtome stage using 3% carboxy-methylcellulose. 25μm 

sagittal sections were captured on type 810 Scotch tape at –18
o
C. Sections were then freeze-dried 

at –18
o
C for a minimum of 72 hours. The cryosections were scanned with a Typhoon 9210 

Figure 3-1-3. Procedure flow diagram of rat whole-body fluorescence experiment. 
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Molecular Dynamics Phosphor Imager to acquire computerized images optimized for detecting 

FITC. Tissue sections were spotted with matrix solution to generate a linear concentration–

response relationship over a 1000-fold concentration range of FITC. Photographic registration 

was obtained by averaging fluorescence measured at different sectioning levels and from 

replicate cryosections obtained from the same sectioning level. The acquired images were 

analyzed with a processing and visualization system. Background scans acquired prior to dosing 

were fed into a suppression algorithm to correct for background interference.  

 

3.1.4.2 Brain, CSF, Plasma Distribution Study  

 
SD rats (three per timepoint) received a slow fixed bolus injection of 6MPR-AuNPs (5 

mg/kg active) via JVC, with no clinical observations. 6MPR solution was administered as a 

control. At 0.083, 0.25, 0.5 and 0.75 hours post-injection, rats were euthanized by carbon 

dioxide, and plasma, cerebral spinal fluid and brain were collected for analysis. Whole blood was 

collected via carotid artery cannula (CAC) into heparinized tubes (with EDTA) followed by 

complete exsanguination. After each blood draw, rats were injected with 0.25 mL normal saline 

(0.9% sodium chloride, USP) to maintain a constant blood volume. Plasma was immediately 

separated by centrifugation at13000 gr-max for 5 minutes, and transferred to glass culture
 
tubes. 

Samples were stored frozen at -20°C until analysis. CSF was collected via puncture of the 

cisterna magna using a 23 gauge needle attached to polyethylene tubing (internal diameter of 50 

mm) and syringe. Whole brains were harvested, rinsed in phosphate buffered saline and weighed. 

Brain samples were homogenized in 60:40 isopropanol: water immediatley after 

harvesting. All samples were immediately frozen on dry ice until analysis. Sagittal sections of rat 

brain were obtained 15 minutes post-injection for TEM imaging. The brain was removed 
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immediately from the skull, fixed in chilled 2.5% glutaraldehyde solution for 2 hours and then 

embedded into epoxy resin. The tissues were allowed to equilibrate to room temperature for 

approximately one hour before sectioning. Ultra-thin (60-80nm) sagittal sections were cut using 

an ultramicrotome with a diamond knife. The specimen was placed onto carbon-coated formvar 

covered support grids. Three adjacent brain slices from the same animal were collected. After 

being stained with uranyl acetate and lead citrate, the specimens were observed on a TEM. 

 

3.1.4.3 Sample Preparation 

Standard curves and quality control samples (n=3 for each concentration) were prepared 

in control rat plasma. For plasma samples, a 50 μL aliquot of sample was precipitated with 200 

μL of acetonitrile containing internal standard using a VWR Multi-Tube Vortexer (VWR, 

Bridgeport, NJ).  For brain samples, 50 μL of blank plasma was added to 50 μL of homogenized 

(4-fold dilution in 60/40 Isoproponal/Water) sample.  For brain standards and blanks, 50 μL of 

control rat brain homogenate was added to 50 μL of plasma.  The resulting 100 μL of sample 

was precipitated with 300 μL of acetonitrile containing internal standard using a VWR Multi-

Tube Vortexer.  All samples were then centrifuged at 3000 rpm for 10 minutes with a standard 

laboratory centrifuge (Eppendorf, Westbury, NY).  The supernatant was collected in a clean 96-

well collection plate and 5 μL was injected onto the HPLC for LC/MS/MS analysis. 

 

3.1.4.4 6-MPR and 6-MP Bioanalysis 

LC/MS/MS analysis was performed for 6MPR and 6MP using a high-performance liquid 

chromatography system with CTC PAL autosampler (Leap Technologies, Carrboro, NC) 

interfaced to an API 4000 LC/MS/MS quadrupole tandem mass spectrometer (Applied 
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Biosystems/ MDS Sciex Inc., Ontario, Canada). 6MPR, 6MP and the internal standard (CP-

628374) were separated on a Waters Atlantsi HILIC column
33 

(50 x 2.1 mm, 5μm) by isocratic 

elution.  Mobile phase A consisted of 95% Acetonitrile and 5% 200 mM ammonium formate in 

water, pH 3.0.  Mobile phase B, which was used as a 0.5 minute wash step, consisted of 50% 

Acetonitrile, 45% HPLC Grade Water, and 5% 200 mM ammonium formate in water, pH 3.0.  A 

flow rate of 650 μL/min was used.  The mass spectrometer was operated in negative ion ESI 

mode for the detection of 6MPR and the Internal Standard (CP-628374).  Multiple reaction 

monitoring was performed with the transitions m/z 283.2  151.1 for 6MPR, m/z 685.3  

366.1 for CP-628374 (internal standard).  The mass spectrometer was operated in positive ESI 

mode for the detection of 6MPR and the Internal Standard (CP-628374).  Multiple reaction 

monitoring was performed with the transitions m/z 153.1  119 for 6MP, m/z 687.3   319.7 

for CP-628374 (internal standard).  All raw data was processed using Analyst Software v.1.4.2 

(Applied Biosystems/ MDS Sciex Inc., Ontario, Canada).  The lower limits of quantification 

(LLOQ) for 6MPR and 6MP were 2.44 and 9.76 ng/mL, respectively. The upper limit of 

quantification (ULOQ) was 1250 ng/mL. 

3.1.4.5 Pharmacokinetic Analysis 

Mean concentrations of 6MPR and 6MP were used in the analysis. Paired student's t-test 

was used to determine statistical significance and was assessed at the 5% level (p < 0.05). 

Pharmacokinetic analysis was performed using standard noncompartmental methods as 

implemented in Watson Kinetica™ Version 5.0 Software (Thermo Scientific, Waltham, MA). 

Linear-up/log-down method of estimation was used to calculate area under the concentration-

time curve (AUC). Total body clearance (CL) was calculated as dose divided by AUC and 
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adjusted for body surface area .The steady state volume of distribution (Vdss) was calculated as 

the ratio of CL to the slope of the terminal log-linear phase – the elimination rate constant (ke). 

The terminal half-life (t½) was calculated as ln2 divided by ke. Initial concentration (Co) is 

obtained by extrapolating the first measured concentrations.  

3.1.4.6 Brain, CSF, and Plasma TEM Imaging 

TEM (FEI Tecnai, G2 Sphera) imaging was performed on samples of brain, cerebral 

spinal fluid (CSF) and plasma. 2µL aliquots of CSF, plasma, brain homogenate, or rat brain 

sagittal samples were placed onto carbon-coated formvar covered support grids and air-dried 

overnight in a protective environment. Due to variation in the viscosity of CSF, plasma and brain 

homogenate samples, as well as issues with electron beam penetration, additional aliquots of 

samples diluted with nuclease-free water were examined in order to facilitate visualization in the 

electron microscope. Imaging was performed on sample preparations at a 10,000 – 200,000x 

magnifications with accelerating voltages between 50 and 120kV. 
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3.2 RESULTS AND DISCUSSION 

 
In preliminary experiments conducted in our laboratory, 5nm 6-MPR-AuNPs labeled 

with fluorescein isothiocyanate (FITC) was intravenously administered into male Sprague-

Dawley (SD) rats. Imaging analyses of rat sagittal sections revealed strong fluorescence 

responses in several tissues, including cerebrum, cerebellum and spinal cord. Based on these 

results, we further conducted detailed brain distribution and pharmacokinetics studies using the 5 

nm 6MPR-AuNPs.   

3.2.1 Nanoparticles 

 

3.2.1.1 Transmission electron microscopy  

Transmission electron microscopy (TEM) imaging analysis of the FITC/6-MPR-AuNPs 

revealed mean particle size and surface area of ca.5.57 nm and 30.22 µm
2
, respectively. The 

electrokinetic potential of FITC-6-MPR-AuNPs was +8.1 mV. Similarly the particle size of         

6-MPR-AuNPs was 5.12 nm, surface area was 30.59 µm
2 
and the zeta potential was +7.4 mV. In 

contrast to FITC/6-MPR-AuNPs, 6-MPR-AuNPs had a slightly less positive surface charge. 

TEM micrographs are shown in Figure 3-2-1a and Figure 3-2-1d. Histogram (Figure 3-2-1c and 

Figure 3-2-1f) based on TEM analysis of over 125 particles revealed a monodisperse particle-

size distribution. Finally, the concentration of 6-MPR on the surface of the AuNPs was 

determined to be 0.25 mg/mL.  
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3.2.1.2 Atomic force microscopy  

Tapping mode (TM)-AFM was carried out on the glass substrates. However, before TM-

AFM analysis, samples were first tested by CM-AFM. Except for the presence of occasional            

2 nm deep holes, the surface was quite flat, exhibiting a RMS roughness ranging between 0.3 to 

0.5 nm over a 500 x 500 nm
2
 area. Single colloids appear stably bound to the MPTMS glass 

substrate, and display homogeneous lateral and vertical dimension, with no evidence of 

aggregates. Micrographs of colloids are shown in Figure 3-2-1b and Figure 3-2-1e.  

The particles had mean value of 5.3 nm with a standard deviation of 0.53 nm. The 

minimum and maximum measured heights are 4.5 and 7.2 nm, respectively. The 5.5 nm mean 

value of nanoparticle height, which provides an estimate of colloid diameter, is in agreement 

with values obtained from TEM and by the TM-AFM imaging characterization. This clearly 

indicates the absence of height artifacts. The lateral size (evaluated as the full width at half 

maximum (FWHM) of the nanoparticle cross section profile) is monodispersed and significantly 

broadened because of the well known tip convolution effect. 
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Figure 3-2-1 (a) Transmission electron micrograph of FITC/6-MPR-AuNPs  (b) TM-AFM 

topographic image of of FITC/ 6-MPR-AuNPs deposited on MPTMS treated glass  (c) Particle 

size histogram of FITC/6-MPR-AuNPs based on TEM analysis of 100 different nanoparticles 

(d) Transmission electron micrograph of 6-MPR-AuNPs  (e) TM-AFM topographic image of of 

6-MPR-AuNPs deposited on MPTMS treated glass  (f) Particle size histogram of 6-MPR-

AuNPs based on TEM analysis of 100 different nanoparticles. 

 

3.2.1.3 Whole-Body Fluorescence Imaging  

The biodistribution of 5 nm FITC/6-MPR-AuNPs following intravenous administration  

to Sprague-Dawley (SD) rats was investigated using whole-body cryosectioning combined with 

fluoroluminography (Figure 3-1-3). Across treatment groups analyzed (N=17 organs per group), 

widespread organ distribution was detected in several tissues (Figure 3-2-2) including bone 

marrow, cerebellum, cerebrum, myocardium, skeletal muscle, spinal cord, testis, salivary gland 

and liver, within 30 minutes of intravenous administration.  
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Compared to the control group, the fluorescence intensity for rats injected with FITC/           

6-MPR-AuNPs was highest in cerebrum, cerebellum, and cerebrospinal fluid followed by 

kidney, liver, spleen, lungs, bone marrow and brown adipose tissue (Table 3-1 and Figure 3-2-3).  

Image analysis suggests that substantial CNS uptake of FITC/6MPR-AuNPs (treatment groups 

1-3) occurred. Fluorescence intensity in the brain and the inner regions are high, suggesting 

penetration of the blood-brain barrier by gold nanoparticles. On the other hand, rats given saline, 

FITC, or mixture of FITC and 6-MPR-AuNPs as a control, exhibited no or poor overall spatial 

distribution with no signs of uptake into brain or CSF. This suggests poor penetration of the 

blood-brain-CSF barriers by FITC, which has been previously reported.
 34  

Extensive fluorescence in liver, kidney, bladder and lungs of rats administered 

FITC/6MPR-AuNP reflects the pivotal role of these organs in the clearance of nanoparticles after 

intravenous injection. Urinalysis was not performed, but the urine voided during the first 45 

minutes after injection was clearly green to yellow in color, confirming urinary excretion of the 

test substance. The accumulation in bone marrow is especially interesting, since it is the main 

site of cytotoxic action of 6MPR in leukemia. One way ANOVA followed by Student-Newman-

Keuls post-hoc analysis showed statistically significant difference between FITC/6-MPR-AuNPs 

compared to the vehicle treated group (p<0.05). 

Though some untreated tissues exhibited autofluorescence, whole blood produced 

fluorescence well above background levels. This observation was expected as hemoglobin is 

known to quench fluorescence of fluorophores.
 35  

To reduce the effect of autofluorescence, 

images were processed by fitting background-corrected fluorescence intensity. Using subtraction 

processing algorithm, interference from tissue components was substantially reduced.  However, 
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in the interpretation of fluorescence images, one must bear in mind that the autofluorescence of 

tissues especially in the intestines, liver and bile cannot be completely eliminated.  

The present paper describes a novel application of whole-body section fluorescence 

imaging (WBSFI) combined with FITC-6MPR-AuNPs for fast evaluation of systemic and 

central distribution of a drug candidate. Compared to other techniques, fluorescence imaging is 

inexpensive, less laborious and presents minimal safety concerns. WBSFI also has the advantage 

of having most organs available on the same section, thus permitting comparison of the test 

article in organs.  

A major improvement of the presented approach is the use of a novel read-out 

technology, which overcomes the conventional time-consuming and potentially hazardous nature 

of autoradiographic film. Due to the high sensitivity and the rapidity of fluoroluminography, the 

protocol has the potential to be used for general screening of centrally active compounds, as 

exemplified here using 6MPR-AuNPs. However, the use of fluorescent labels for bioimaging 

presents certain challenges, including photobleaching, light scattering, autofluorescence by 

tissues, and unintended release of fluorescent tag. Also densitometric analysis such as WBSFI is 

quasi-quantitative.  

Despite these limitations, WBSFI has proven to be a powerful tool for understanding 

drug disposition in early drug research. Finally, as mentioned previously, a significant finding of 

this study is the increase in fluorescence in the CNS after injection with FITC/6MPR-AuNPs 

compared to the control. The mere possibility that FITC/6MPR-AuNPs penetrated the CNS 

within 30 minutes of injection presents exciting possibilities and warrants further investigation. 

In light of these findings, detailed brain distribution and pharmacokinetic studies were also 

undertaken and the results are presented below. 
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Figure 3-2-2. Whole-body fluorograms of rats administered (a) saline solution (b) 5 mg/kg FITC 

(c) 5 mg/kg (FITC + 6-MPR-AuNPs) (d-f) 5 mg/kg FITC/6-MPR-AuNPs. Images represent average 

fluorescence intensity measured from replicate cryosections of Sprague-Dawley rats sacrificed 30 

minutes after intravenous injection.  The intrinsic autofluorescence measured in the control rats are 

subtracted to get the fluorescence intensity map.  Intensity of color corresponds to increasing 

fluorescence (red<orange<yellow < green< blue< black).  
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Tissue\Matrix 
 

Control: FITC+6MPR-AuNPs 
                MDC/mm

2
           

 
  Treatment group A               

     MDC/mm
2
 

      

     Treatment group B 
            MDC/mm

2
    

 
 Treatment group C 
       MDC/mm

2
     

    

 

      
Adrenal Gland  45238312 ±114   1569566 ± 170    1669696 ± 124   1506502 ± 113  
Blood      ----     ----      ----     ----  
Bone Marrow    5084673 ± 201 44770476 ± 189  51841127 ± 169 52061329 ± 194  
Brown Adipose  26536103 ± 214   1173443 ± 217    1473486 ± 224   1575091 ± 202  
Cerebellum      491023 ± 229 24788491 ± 211  26964974 ± 246 24244603 ± 251  
Cerebrum      702038 ± 671 23705402 ± 401  25939686 ± 241 26126285 ± 356  
Gastric 
Contents 

   4826859 ± 167   5693628 ± 219    6137381 ± 312   5366603 ± 210  

Intestinal Contents    6964151 ± 193   7286975 ± 146    6467393 ± 162   6819425 ± 211  
Kidney      894972 ± 123 12343706 ± 176  14952639 ± 182 11980845 ± 213  
Liver    6842549 ± 183   8461729 ± 146    7815999 ± 143   8526023 ± 312  
Lung      802003 ± 132   5110253 ± 146    4786501 ± 162   5450291 ± 124  
Myocardium  14671000 ± 189     404344 ± 156      449367 ± 172     490341 ± 231  
Skeletal 
muscle 

 18940032 ± 102   1613146 ± 121    2167256 ± 181   1534071 ± 123  

Spinal Cord      442786 ± 157    24297416 ± 181  20523301 ± 146 22778001 ± 231  
Spleen    1956425 ± 144   9018464 ± 152    9534925 ± 183   8898953 ± 164  
Testis  15626887 ± 119   7993181 ± 122    8290970 ± 128   8876797 ± 102  
Thymus    6108133 ± 124     548771 ± 131      520040 ± 153     610119 ± 136            
      

0

10

20

30

40

50

60

Treatment Group A Treatment Group B Treatment Group C

Cerebellum
Cerebrum
Kidney
Liver
Lung
Myocardium
Spinal Cord
Spleen

Tr
ea

tm
en

t :
 C

on
tr

ol
  r

at
io

 
 

 

Figure 3-2-3. Treatment to control fluorescence concentration ratios (Mean ± SEM) in 

select tissues of Sprague Dawley rats. Each bar represents n=10 replicates per group.  

Table 3-1. Fluorescence response of tissues in whole-body sections of Sprague Dawley rats following 

administration of vehicle control and Cys-FITC/6-MPR-AuNP 
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3.2.1.4 Brain, CSF, Plasma Distribution       

Mean brain, CSF and plasma concentrations are presented in Tables 3-2 and 3-3. Also the 

pharmacokinetic profiles of 6-MPR-AuNPs and unconjugated 6-MPR (control) are presented in 

Figure 3-2-4. The calculated pharmacokinetic parameters are summarized in Table 3-4. The 

difference in CSF and plasma 6-MPR concentrations for the control group was not statistically 

significant (p>0.05) and lower than levels found in the brain. Similarly for rats treated with 6-

MPR-AuNPs, the difference between brain and plasma 6-MP was not statistically significant 

(p>0.05). For this group, the AUC of plasma 6-MPR was higher than the corresponding plasma 

6-MP. The opposite was observed when unconjugated 6-MPR was administered. Overall these 

results revealed that brain, CSF and plasma levels of 6-MPR and 6-MP were higher in rats 

treated with AuNPs compared to the control group. 

 Specifically, the 6-MPR AUC0.083-0.75 h of brain, CSF and plasma were respectively 3, 2.3 

and 145 fold higher in the rats administered with 6-MPR-AuNPs compared to rats treated with 

6MPR alone. Similarly, the 6-MP AUC for rats dosed with 6-MPR-AuNPs was higher relative to 

the control group. The slow conversion of 6MPR to 6-MP in rats treated with 6-MPR-AuNPs led 

to reduced 6-MP penetration into brain. This in itself is not a limitation since 6-MPR (unlike 6-

MP) is itself a biologically active moiety. In general, the AuNPs provided approximately 6-times 

less conversion of 6-MPR to 6-MP in plasma. This is not unexpected and consistent with the 

high 6-MPR clearance (6076±412 mL/min/kg) in the control group, compared to the clearance 

(41.88±3.24 mL/min/kg) in rats that were given 6MPR-AuNPs. Similarly, the 6-MP clearance 

for the control group was 3149.51±354 mL/min/kg compared to 136.23±16.1 mL/min/kg for 6-

MPR-AuNPs treated rats. These results are not unremarkable considering that the surface area of 
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brain capillaries is one-tenth that of the liver and with one-fifth the blood transit time of liver. 

Furthermore, the dose of AuNPs administered in this study was less than 0.2% of the LD50 of 

1.9 nm AuNPs.
18 

Despite rapid elimination of 6-MPR and 6-MP, equilibration between plasma and CSF 

compartments after the administration of 6-MPR is achieved within one-half hour, albeit at low 

drug concentrations. Interestingly for the control group, the CSF concentration of 6-MP was 

much higher than the total plasma concentration of 6-MP. Since in general only the unbound 

fraction of drug in plasma can diffuse across the blood-brain barrier, the results suggest the 

possibility for plasma protein-binding. The free drug concentration available for brain 

penetration is influenced by processes, such as tissue binding in blood and brain, metabolism in 

the liver and brain, and active influx and efflux. Certainly on the basis of the physicochemical 

properties of 6-MP, passage into the CNS is to be expected.
36

  The results provide additional 

evidence to substantiate the potential clinical benefits of 6-MP for treating leukemic 

meningitis.
37  

The presence of 6MP in CSF after intravenous administration was first reported by 

Hamilton and Elion.
38  

However, data on its disposition to CSF has not been available until now. 

Given the extensiveness of thiopurine metabolism, conventional assessment of CNS drug 

delivery based on brain-plasma and CSF-plasma partition coefficients provided little useful 

information. Rapid conversion of 6-MPR to metabolites as well as highly exaggerated 

concentrations of 6-MPR in plasma (for rats given 6-MPR-AuNPs) prevented equilibrium from 

being reached, which is a prerequisite for performing such analyses. This study further highlights 

several important considerations when interpreting CNS data. Many investigators report brain-

plasma and CSF-plasma ratios. However, because drug entry into CNS may be delayed and the 

half-life of drug in CNS could differ significantly from that of blood, the drug brain-plasma or 
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CSF-plasma ratio could lead to erroneous conclusions. Exaggerated drug pharmacokinetics, 

typical of drug carrier systems, as well as the timing of specimen collection must be properly 

considered. Therefore a more appropriate parameter to measure in CNS studies is the absolute 

concentration of free drug relative to the therapeutic concentration.
39  

In general, tools 

traditionally used to assess the ADME properties of NCEs have not been able to adequately 

describe nanotechnology drug-delivery systems.
 40 

  

Increases in 6MPR and 6MP concentrations in the brain and CSF of rats immediately 

after the administration of 5 nm 6MPR-AuNPs is significant because of the potential implication 

on the delivery of important CNS drugs. Much like drugs which successfully cross the BBB, the 

brain uptake of 6-MPR-AuNPs raises the possibility that these particles have unique 

physicochemical properties that facilitate BBB penetration. 

 
 

Table 3-2. 6-MPR and 6-MP mean (n = 3) plasma concentrations following intravenous injection 

of 5nm 6MPR-AuNPs (5 mg/kg active) to Sprague-Dawley rats. 

 

 

Subject 

 

 

Hours 

Brain (ng/g) CSF (ng/mL) Plasma (ng/mL) 

6MPR 6MP 6MPR 6MP 6MPR 6MP 

Rat 7,   8,  9 0.083 499.5 ± 121 3870 ±1024 217.5 ±67 632 ±114 4760 ±874 2375  ±324 

Rat 10,11,12 0.25 332 ± 91 1800 ±412   69.95 ±13   226.5 ±85   3710 ±684   996.5 ±144 

Rat 13,14,15 0.50 131 ±34 505 ±132   13.49 ±87   104.5 ±41   2735 ±304   613.5 ±94 

Rat 16,17,18 0.75 123.7 ±74 342.5±87     8.45 ±2   95.85 ±24   1081 ±128   418 ±124 

    

 

Table 3-3. 6-MPR and 6-MP mean (n = 3) plasma concentrations following intravenous injection 

of 6-MPR (5 mg/kg) to Sprague-Dawley rats. 

 

 

Subject 

 

 

Hours 

Brain (ng/g) CSF (ng/mL) Plasma (ng/mL) 

6MPR 6MP 6MPR 6MP 6MPR 6MP 

Rat 19,20,21 0.083 149  ±95 1950 ±758 47.4  ±24 249 ±87 47.7 ±14  168 ±80 

Rat 22,23,24 0.25 105  ±83 593  ±169   34.4  ±14   157 ±86   24.8 ±8   24.4 ±11 

Rat 25,26,27 0.50   47  ±31 222  ±91   15  ±9*   110 ±64*   12.8 ±6   26.8 ±13 

Rat 28,29,30 0.75   49  ±39 191  ±89   8.87 ±6    99 ±47   10.9 ±5   5.15 ±2 

* Sample deactivated due to blood contamination; values are interpolated based on noncompartmental analysis.  
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 Figure 3-2-4. Mean brain, CSF and plasma concentration-time profiles of (a) 6-MPR (b) 6-MP in Sprague Dawley 

rats following single intravenous administration (5 mg/kg 6-MPR) of 5 nm 6MPR-AuNPs or unconjugated 6-MPR. 

Each point and bar represents the mean (n = 3) ± S.D. 
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*Value below 6.76ng/mL 

 ―– ―: Estimation of brain and CSF PK parameters is outside the scope of current experiments. Modeling 

experiments will be needed to determine these values 

 

 

3.2.1.5 Brain, CSF, and Plasma TEM Imaging  

TEM imaging was performed on brain, CSF and plasma samples to determine whether or 

not AuNPs were present in these tissues. Representative images of the dosing solution and 

biological samples are presented with accompanying scale bar markers (Figure 3-2-5a - 3-2-5h). 

Large numbers of particles were observed in brain, CSF and plasma samples, confirming the 

presence of AuNPs in the CNS. AuNPs can be seen in brain matrix at 5, 15, 30 and 45 minutes 

after injection of 6-MPR-AuNPs. In all cases, though to a lesser extent in plasma, the 

hydrodynamic size of the nanoparticles increased relative to the dosing solution.  

Proteins present in blood, CSF and brain matrixes may have adsorbed onto the surfaces 

of AuNPs and altered the effective hydrodynamic size.
41  

The extent of this effect is dependent 

on protein concentration and other thermodynamic factors.
 42 

 It was also observed that the 

 

  Parameters 

 

   6MPR 6-MPR-AuNPs 

Brain  

   (ng/g) 

CSF      

(ng/mL•h) 

           Plasma  

             (ng/mL•h) 

  Brain  

  (ng/g) 

CSF      

   (ng/mL•h) 

           Plasma  

             (ng/mL•h) 

     

AUC(6MPR) 0.083-0.75 h                     52 ± 9     16 ± 4         14 ± 7  159 ± 9   37 ± 7          1990 ± 23 

  Co (ng/mL)                                192 ± 35     65 ± 15       55 ± 8 422 ± 17     248 ± 12  T6        955 ± 15 

  T1/2 (hours)                 –          –    0.19 ± 0.10                                         –            –        0.71 ± 0.18                    

  CL (mL/min/kg)                 –          –   6076 ± 810                                                –            –        42 ± 19                      

  Vdss (mL/kg)                 –          –   7184 ± 305                                        –            –        87 ± 13                       

    

  AUC(6MP) 0.083-0.75 h          366 ± 18      93 ± 7        27 ± 4          868 ± 11      138 ± 16             612 ± 14 

  Co (ng/mL)   2151 ± 25    278 ± 27      178 ± 25 4599 ± 15             697 ± 12     2664 ± 75                         

  T1/2 (hours)                  –           –       BLQ*                  –                    –         0.38 ± 0.05                    

  CL (mL/min/kg)                  –           –       BLQ*                  –                    –        136 ± 31                      

  Vdss (mL/kg)                  –           –       BLQ*    

Table 3-4. Pharmacokinetic parameters of 6-MP and 6-MPR in brain, CSF and plasma of rats 

following intravenous administration (5 mg/kg 6-MPR) of 6MPR-AuNPs or 6-MPR. Each 

value represents the mean (n = 3) ± S.D.  
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number of particles in brain significantly decreased within forty-five minutes, indicating lack of 

persistence of the AuNPs in the CNS. Translocation of nanoparticle via the lymphatic system 

and microglia scavenger cells of the CNS has been previously reported.
43 

 

Ultra-thin sections of rat brain were examined by TEM to confirm that 6-MPR-AuNPs 

indeed penetrated intact BBB and were distributed into cerebral parenchyma. 6-MPR-AuNPs 

were not only found inside the cytoplasm of vascular endothelial cells and the foot processes of 

astrocytes, but more importantly were also found inside the cylindraxile of neurons which are not 

attached to cerebral vessels (Figure 3-2-6a - 3-2-6c). The presence of 6-MPR-AuNPs inside 

neurons indicates that the nanoparticles diffused through the vascular endothelial cells and the 

astrocytes at the BBB before reaching the neurons in the cerebral parenchyma. It is worth noting 

here that the nanoparticles are diluted at least 200-fold after leaving the endothelial cells.
44 

  

The mechanism of transport of nanoparticle across the BBB has been proposed 
45

 to 

involve one or a combination of the following events: (1) transcytosis of vascular endothelial 

cells, (2) opening of tight junctions due to nanoparticle disruption of BBB, solubilization of 

endothelial cell membrane, and (3) diffusion due to a high concentration gradient across the 

endothelial cell layer due to retention of the nanoparticles in the brain capillaries. In this study, 

TEM images (Figure 3-2-6) show that the integrity of tight junction and BBB function during 

treatment with AuNPs were maintained. Membrane morphology, intracellular endocytic vesicles 

and tight junctions all appear normal, demonstrating that AuNPs did not induce changes to the 

endothelial cell membrane. In addition, AuNPs were also found within the cytoplasm of vascular 

endothelial cells. The mechanism underlying the brain penetration by AuNPs is not fully 

understood but the authors propose that transcytosis of vascular endothelial cells is the most 
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likely mechanism involved. Additional studies on the mechanism by which nanoparticles cross 

the BBB are needed.   

 

 

 

    

    

 
Figure 3-2-5. TEM images of AuNPs observed in (a) 5 nm 6MPR-AuNP dosing solution (control) (b) plasma 

(c) CSF (d) brain – 5 minutes (e) brain – 5 minutes (adjacent grid from (d)) (f) brain – 15 minutes (g) brain – 

30 minutes (h) brain – 45 minutes, after intravenous injection of 5 nm 6MPR-AuNPs (5 mg/kg active). Images 

are representative of 20 different regions in each sample. 
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Figure 3-2-6. TEM images of brain sections sacrificed 15 minutes post-injection with 6-MPR-

AuNPs. Nanoparticles are indicated by arrow. (A) Sagital section showing endothelial cell (EC), 

basement membrane (BM), astrocytic endfeet (PA) dissociated from the basement membrane, 

perivascular space (PS) and degenerate synaptic contact (DS). Gold nanoparticles are dispersed 

in vascular, endothelial and neuronal tissue, scale bar is 0.5 µm. (B) Partial magnification of 

endothelial cell membrane, membranes junction, cerebral vascular. Gold nanoparticles shown 

inside the cytoplasm of vascular endothelial cells and the foot processes of astrocytes scale bar is 

0.3 µm. (C) Gold nanoparticles found inside the neurodendron and cylindraxile of neurons, scale 

bar is 0.3 µm. 
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3.3 CONCLUSIONS 

 

Collectively, the results of this study provide direct evidence that 6-MPR-AuNPs penetrated the 

BBB and diffused into cerebral parenchyma and neuronal cells. In contrast, 6-MPR was not 

found in significant amounts in the brain and CSF. The mere presence of AuNPs in brain tissues, 

minutes after intravenous administration, is a significant finding and suggests that 5nm AuNPs 

potentially provide an effective carrier for diagnosis, imaging and treatment of CNS disorders.  

In addition, enabling brain uptake of 6-MPR has the potential of advancing novel therapeutic 

uses in the treatment of brain cancer and leukemic meningitis. 
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CHAPTER 4 

GOLD NANOPARTICLES ENHANCE BRAIN PENETRATION AND CENTRAL 

DOPAMINE RECEPTOR AFFINITY 

 

4.0 INTRODUCTION 

 

Dopamine is synthesized primarily in the central nervous system (CNS) and acts as a 

neurotransmitter in the brain. Limited production also occurs in the adrenal medulla and 

nonneuronal tissues, including the pancreas and the anterior pituitary.
1
 The five subtypes of 

dopamine receptors (D1 through D5) are coexpressed at different levels in the CNS and 

peripheral tissues.
 
  

Dysfunction of dopaminergic systems is implicated in the development of defects in 

cognition, event prediction, emotion, behavior, addiction, attention deficits and 

schizophrenia.
2,3,4

 Recent findings show that the D2 and D3 receptors specifically have a diverse 

role in the pathophysiology of schizophrenia, Parkinson‘s disease and drug abuse. For instance, 

deficiency of dopamine in midbrain nigrostriatal neurons has long been recognized in the 

pathogenesis of Parkinson‘s disease 
5,6

, while over-activity of the limbic and cortical 

dopaminergic neurons has been implicated in schizophrenia and psychoses.
7 

 In the 

neuroendocrine axis, dysfunction of hypothalamic dopamine or its pituitary receptors leads to 

hyperprolactinemia and reproductive disturbances.
8,9,

  It is not surprising, therefore, that this 
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relatively simple molecule (Figure 4-1-1a) has been at the center of interest of basic scientists 

and clinicians alike for many years.  

Dopamine (DA) does not effectively penetrate the blood brain barrier (BBB); thus the 

brain and central nervous system are dependent upon endogenous dopamine synthesis.
 10

  L-

DOPA (Figure 4-1-1b) which is the precursor to catecholamines (neurotransmitters: dopamine, 

norepinephrine, and epinephrine) crosses the protective blood-brain barrier and since the 1960s 

has been used as the gold standard for treating Parkinson's disease.  L-dopa crosses the BBB 

transported by LAT-1 (L or Large amino acid transporter). This transporter moves amino acids 

like phenylalanine and tyrosine across the BBB.
11 

 Once inside the central nervous system,                

L-DOPA is converted into dopamine by the enzyme DOPA decarboxylase (DDC). However, 

Levodopa-induced motor fluctuations and dyskinesias constitute a significant proportion of 

adverse effects seen with sole L-DOPA administration.
12 

 Besides the central nervous system,                   

L-DOPA is also converted into dopamine from within the peripheral nervous system. 

The BBB segregates the CNS from the systemic circulation, and its main physiological 

functions include maintaining homeostasis at the brain parenchyma and protecting the brain from 

potentially harmful chemicals.
13 

 The BBB expresses a number of specific carrier-mediated 

transporters that ensure an adequate nutrient supply for the brain. 

 The BBB is primarily formed from capillary endothelial cells, which differ from the 

other tissues.
 
The brain capillary endothelial cells are very closely joined together by tight 

intercellular junctions that efficiently restrict the paracellular diffusion of drugs.
14 

 The high 

metabolic activity of brain capillary endothelial cells, as well as effective efflux systems that 

actively remove solutes from brain tissue and return them back to the bloodstream, create 

additional challenges for potential CNS drugs.
15 
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Measurement of total drug concentration within the brain is relatively simple to obtain. 

However it is difficult to correlate this information with CNS effect. Therefore, a more reliable 

parameter for establishing CNS efficacy of a therapeutic agent is the percent receptor occupancy 

(RO) of the molecular target, which can be determined from receptor binding studies.
16 

 This 

technique involves measuring the displacement (or receptor occupancy) of radioligand by the 

competing agent, coupled with liquid-scintillation counting and autoradiography. RO data 

generated this way has provided deep understanding of the involvement of neurotransmitters 

during the development of neurological disorders such as Parkinson‘s disease, schizophrenia and 

depression. 
17  

These methods however are not without limitations. Suitable radioligands for such 

a technique (i.e., with adequate specific binding) are not always available for every drug target 
18 

and may require extensive validation prior to experimentation.
19

  The radioligand may also have 

its own side effects, and being radioactive poses significant safety risks. Therefore, a more rapid 

and cost-effective imaging ligand for determining receptor occupancy would also be of immense 

value. We propose that gold nanoparticles could provide a more potent, safer and more cost-

effective alternative to current radioligands for preclinical and clinical imaging applications.  

Gold nanoparticles have attracted considerable attention in medical research because they 

are intrinsically biocompatible, have minimal toxicity, are easy to synthesize, and functionalize 

for specific targeting.
20, 21,22

  Also the luminescence of gold and high electron density allow it to 

be used as a diagnostic and imaging tool for applications, such as spectrophotometry, 

fluorescence microscopy, computer tomography (CT), and transmission electron microscopy 

(TEM).
23,24, 25

 
 
 
 
 More significantly, several studies (including our own) have reported the 

penetration of rat brain by small gold nanoparticles (AuNPs) with diameter cut-off of 50 nm, 

following intravenous administration.
26,27
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In the present study, we used receptor binding experiments to confirm the potential use of 

novel 5nm dopamine-AuNPs (Figure 4-1-1c)  to overcome the low BBB permeability of 

dopamine, while enhancing binding affinity and specificity (and therefore pharmacological 

properties) at dopaminergic receptors. Also, AuNPs may provide a more potent, safer and more 

cost-effective alternative to current radioligands. To date no studies have used dopamine-AuNPs 

to cross the BBB, and bind to dopamine target.  
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Figure 4-1-1. Chemical structure of (A) Dopamine (B) L-3,4-dihydroxyphenylalanine (L-DOPA) 

(C) Schematic representation of Dopamine-AuNP. L-DOPA crosses the blood brain barrier and is 

a precursor Dopamine which does not cross the blood brain barrier. 
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4.1 METHODS 
 

4.1.1 Materials 

 
Hydrogen tetrachloroaurate (HAuCl4·4H2O) and sodium citrate (C6H5Na3O7·2H2O) 

were purchased from Sigma Aldridge, USA. Solvents, nitric acid (HNO3), hydrochloric acid 

(HCl) and sodium alginate were also purchased from VWR International. Deionised water (H2O) 

was purified by a Millipore system (Milli-Q). All other chemicals and solvents were of reagent 

grade. All these chemicals were used without purification. 

Fetal calf serum was obtained from PAA Laboratories. EDTA, EGTA, Tris-HCl buffer, 

NaCl, KCl, CaCl2, MgCl2, NaH2PO4, KH2PO4, D-glucose, and N-methyl-D-glucamine 

(NMDG) were obtained from Sigma-Aldrich. PBS and Hepes were obtained from Invitrogen 

Life sciences. Complete protease inhibitor cocktail tablets were obtained from Roche 

Diagnostics. Dopamine was purchased from US Pharmacopeia (Rockville, MD). 81.4 Ci/mmol 

[3H]dopamine  ([3H]DA) and 29.2 Ci/mmol GBR12783 were purchased from Amersham, Les 

Ulis, France. The reference drugs were stored in a 1mM solution at -20 °C and diluted to the 

required concentration on ice, immediately before binding assays.  All Chemicals used were of 

chemical grade.  

4.1.2 Animals  

 

All animal experiments were conducted according to procedures approved by the Pfizer 

Global Research and Development Animal Care and Use Committee and complied with the NIH 

guidelines for the Care and Use of Laboratory Animals. Male Sprague-Dawley rats were 

purchased from Charles River Laboratories (Willmington, MA). The rats were housed one per 

cage under reversed light/dark conditions using a 12 hour on/off schedule. Room temperature 
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was maintained at 21 ± 1°C with a relative humidity of 55 to 60%. Food and water were 

available ad libitum. The animals were allowed 1 week of adaptation to laboratory conditions 

before being used in experiments.   

4.1.3 Preparation of DA-AuNPs   

 

DA-AuNPs of average particle sizes 15, 50, 100 and 200 nm were synthesized using a 

method pioneered by Turkevich,
28,29

 with certain variation. The method involved reducing 

hydrogen tetrachloroaurate with sodium citrate in the presence of dopamine. Briefly, hydrogen 

tetrachloroaurate was weighed accurately (10 mg) and dissolved in 2 mL of purified water. 

Sodium citrate (400mg) weighed and dissolved in 10 mL of purified water. Hydrogen 

tetrachloroaurate solution was then added to 48 mL of the purified water which was subsequently 

added in three neck round bottom flask attached further to reflux condenser. The solution was 

heated to 100◦C and the required quantity of the sodium citrate solution (1.54×10
−2 

M for 15 nm, 

1.74×10
−3

M for 50 nm, 1.41×10
−3

M for 100 nm and 1.15×10
−3 

for 200 nm) was added. The color 

change of hydrogen tetrachloroaurate solution following addition of sodium citrate solution was 

noticed. The solution was heated for 10 minutes and the resulting nanoparticulate suspension was 

allowed to cool at room temperature.  

To prepare DA-AuNPs, 40 mL aqueous solution containing 12.5mg of dopamine was 

brought into contact with gold sol using a process developed in our laboratory (Figure 4-1-2). 

The two solutions were fed via peristaltic pumps at 1 mL/min and are subsequently combined in 

a single tube which is either diverted to a recirculation loop controlled by valve 3, or collected at 

the outlet (valve 4). The reaction mixture was recirculated until the measured free drug 

concentration achieves steady state. The resulting gold nanoparticles were centrifuged (40,000 
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rpm for 30min) and washed three times with millipore® water. The gold nanoparticles were 

finally suspended in 0.5% (w/v) sodium alginate solution as a suspending agent. Sodium alginate 

solution was filtered through 0.22 um millipore® filter prior to use to ensure sterility. The 5nm 

DA-AuNPs were prepared as previously described; we however substitute 6-MPR with 

dopamine.
30

 

 

 

 

Dopamine
solution

AuNP 
solution

pumppump

v1

v1: inlet valve 1
v2: inlet valve 2
v3: recirculation valve
v4: discharge valve

v2

v3

v4

DA-AuNP solution 
(Pre-purification)

 
 

Figure 4-1-2. Process for preparing AuNP with high dopamine loading on the surface. Dopamine is 

brought into repeated contact with gold solution. Feed solutions are fed via peristaltic pumps and 

recirculation loop (valve 3). The process ensures maximum contact between dopamine and nanoparticles 

solutions, thereby resulting in high dopamine loading on the surface of the AuNPs.   
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4.1.4 Characterization of gold nanoparticles  

 

The particle size and morphology of the 5, 15, 50, 100 and 200 nm DA-AuNP solutions 

were examined by transmission electron microscope (FEI Tecnai, G2 Sphera). Imaging was 

performed at 100,000 times magnification. Mean surface area and diameter of the particles were 

then determined using Image-Pro Plus software (Media Cybernetics). To prepare samples for 

TEM,  2-5 μL aliquots of the sample were placed onto carbon-coated formvar covered support 

grids and air-dried overnight in a protective environment. Representative images from samples at 

100,000x were used to acquire sufficient (greater than 100) nanoparticle objects for image 

analysis. Images were processed to optimize particle segmentation. Statistics and frequency 

histograms were generated. The zeta potential of DA-AuNP was measured using Zetasizer Nano 

ZS, Malvern Instruments. Finally, High Pressure Liquid Chromatography (Agilent HPLC 

System) was used to determine the concentration of dopamine bound to the surface of AuNPs by 

digesting the gold colloids with potassium cyanide. Gold nanoparticles was resuspended in 

phosphate buffer (pH: 7.4, 0.154M) and the zeta potential was measured at 37
o
C. 

 

4.1.5 Human whole-cell dopamine receptor binding  

4.1.5.1 CHO-D2S cell growth and membrane preparation  

 
Chinese hamster ovary (CHO) cell line expressing the short isoform of the human D2 

dopamine receptor (CHO-D2S) cells were grown as monolayers in RPMI medium supplemented 

with 2 mM glutamine, 200 mg/mL active Geneticin, and 5% heat-inactivated fetal calf serum at 

37°C in a moist, 5% CO2 atmosphere. When confluency was reached, cells were washed with 

5mL of ice-cold buffer A (20 mM HEPES, 1mM EDTA (free acid) 1 mM EGTA, pH 7.4, with 
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KOH), removed from the flask by gentle shaking with 2mm diameter glass beads in 5 mL of 

buffer A, and homogenized with 30 strokes of a ThermoFisher Scientific Dounce homogenizer. 

The homogenate was centrifuged at 260 rpm, 3g for 10 minutes and the resulting supernatant 

centrifuged at 48000 rpm, 3g for 1 hour at 4°C. The membrane pellet was resuspended in ice-

cold buffer A to achieve a final protein concentration of 5–10 mg/mL (Bradford protein 

determination; Bio-Rad Laboratories, Inc.). Aliquots were stored at -70 °C.  

4.1.5.2 Competitive binding  

Binding experiments were performed by incubating 0.5mL aliquots of the membrane 

preparation containing 3 –15 mg of protein per tube, with [3H]-DA (81.4 Ci/mmol) in 0.2 mL of 

buffer at 37°C for 90 minutes. After incubation with the radioligand, 10
−3

–10
3 

M of dopamine 

(with or without selective dopamine inhibitor, GBR12783) and DA-AuNP (with or without 

GBR12783) were added. 250µl of AuNPs alone or mixed with dopamine, or with membrane 

suspension were used as controls. Each experiment was performed in triplicate and incubated at 

25 °C for 7 hours, by which time all binding ligands had reached equilibrium.  

Experiments were terminated by separation of bound and free radioligand by rapid 

filtration through Whatman GF/C glass fiber filters pretreated with 0.2% poly-L-lysine, using a 

BrandelM-24R cell harvester followed with four washes of 3 mL of ice-cold phosphate-buffered 

saline (140 mM NaCl, 10mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4). Filter discs were 

soaked in 2 mL each of Optiphase Hi-Safe 3 (Wallac) for at least 6 hour, 2.5 mL Perkin Elmer 

Ultima Gold Scintillation cocktail was added and the total radioactivity was determined by a 

liquid-scintillation counting system (LS5000 CE; Beckman Coulter, Fullerton, CA). 
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4.1.5.3 [3H]-Dopamine Autoradiography 

After experiments were terminated, tissues were mounted onto silane-coated microscope 

slides and allowed to dry at room temperature. The slides were then placed in the chamber of the 

Beta-Imager 2000 instrument (BioSpace Lab, Cambridge, MA) and data were collected from the 

brain sections for 12 hours. The levels of bound radioactivity in striatum (cpm/mm2) were 

directly determined by counting the number of beta-particles emerging from the delineated area 

using the image analysis software, BetaVision (BioSpace  Lab, Cambridge, MA). 

4.1.5.4 Data Analysis 

Data from binding experiments were analyzed using nonlinear least-squares curve-fitting 

method (Prism 5.01, GraphPad Software Inc, San Diego, CA). Bound [3H]-DA was calculated 

using the method of Golds et al 
31

, to correct for radioligand depletion. Bound radioligand 

concentration was taken as total-bound minus free concentration in the absence of competitor. 

Data were fitted to four-parameter logistic equations, and the best fit between a variable Hill 

coefficient and a Hill coefficient fixed to unity was determined using an F-test. The statistical 

significance of differences between data was determined at the 0.05 level, using ANOVA or 

Student‘s t test, as appropriate.  At p<0.05, statistical significance was considered to be achieved. 

   

4.1.6  Ex vivo dopamine receptor binding  

4.1.6.1 Animal dosing  

Twenty-seven Sprague-Dawley rats weighing 280 to 320 g were used in these studies. 

Due to lack of brain penetration of dopamine, all test articles were injected directly into the 

cerebral parenchyma. Each group (n=4 rats per group) received 8 mg/kg intracerebral injections 
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of cold dopamine (with or without the selective dopamine inhibitor GBR12783), dopamine-

AuNPs (with or without GBR12783). AuNP solution mixed with dopamine, or mixed with brain 

matrix served as control. Increasing concentrations of dopamine (ranging from 0 – 1.3uM) were 

evaluated. Representative flow diagram of receptor occupancy protocol is shown in Figure 4-1-3. 

Rats were anesthetized 50 minutes after administration. Anesthesia was induced with 5% 

isoflurane in an induction box and maintained with 2% isoflurane administered in a 50:50 air-

oxygen mixture. A total of 120ug of atropine was administered intraperitoneally immediately 

after induction. Blood oxygen saturation and heart rate were monitored throughout the procedure 

(pulseoximeter; Nellcor), and temperature was maintained at 37°C using a locally manufactured 

rectal temperature–regulated heating pad and heating lamp. Rats were then decapitated and 

striatal tissues were excised, pooled, and stored at 70°C until used.  For each rat, one striatum 

was used for binding assays, and the contralateral striatum was used for autoradiography. The 

striatum side (left and right) used for the binding assays was counterbalanced from one rat to the 

other.  

4.1.6.2 Tissue preparation  

Briefly, the tissues were thawed and homogenized in a glass Teflon homogenizer at 500 

rpm in ice-cold 50 mM Tris-HCL buffer pH 7.4 for 20 minutes. The homogenates were 

centrifuged at 20,000 g for 20 mins at 5°C. The resultant pellets were rehomogenized in the same 

buffer and centrifuged again. The supernatant was discarded and the final pellets were 

resuspended in 5 to 10 mL assay buffer (50 mM Tris preset, 120 mM NaC1,5 mM KCI, 2 

mMCaCl2 and 1mM MgCl2). The protein concentration of homogenate was determined by the 

methods of Lowry and Bradford.
 32

  The samples were stored at approximately -80°C until used.  
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4.1.6.3 Competitive binding 

 The assays were performed as described previously.
33

  Briefly, striatal membranes (50ug 

protein per well) were incubated with [3H]-DA (56 - 62 mCi/mmol specific activity) in assay 

buffer (50 mM Tris preset, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, pH 7.4). 

Incubation was for 45 minutes at 37°C. All assays were performed in duplicates. The reaction 

was terminated by rapid filtration through GF/B filter mats presoaked in 0.3% 

polyethyleneimine, followed by three 1mL washes with ice-cold 50 mM Tris –HCl buffer (pH 

7.4). Filters and incubates were dissolved in 4 mL of scintillant (Ready Solve; Beckman Coulter) 

at room temperature. Radioactivity binding was determined by a liquid-scintillation counting 

system (LS5000 CE; Beckman Coulter, Fullerton, CA). 

 

4.1.6.4 Autoradiography 

 Slide-mounted sections were allowed to equilibrate to room temperature for 

approximately one hour and encircled using a PAP Pen (Dako Denmark A/S, Glostrup, 

Denmark). Assay solutions were removed by aspiration. Slides were dipped briefly in ice-cold 

distilled water to remove buffer salts and allowed to dry at room temperature. The slides were 

then placed in the chamber of the Beta-Imager 2000 instrument (BioSpace Lab, Cambridge, MA) 

and data were collected. The levels of bound radioactivity in striatum (cpm/mm2) were directly 

determined by counting the number of β-particles emerging from the delineated area using the 

image analysis software, BetaVision (BioSpace Lab, Cambridge, MA). 
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4.1.6.5 Data analysis 

 Nonlinear least-squares fitting of the data were performed using GraphPad Prism 5.01 

(GraphPad Inc, San Diego CA) data analysis software. Competition data was fitted to four-

parameter logistic equations, and the best fit between a variable Hill coefficient and a Hill 

coefficient fixed to unity was determined using an F-test. The ratio of counts per milligram of 

tissue in the striatum provided a measure of the total number of binding sites (specific and 

nonspecific) for [3H]-DA. The ratio of counts per milligram of tissue, after rat exposure to GBR 

1278, is used to define specific binding and correct data. Percent dopamine receptor occupancy 

(D2/D3-RO) in treated samples was calculated as (binding in treatment group – binding in 

vehicle group) /(binding in vehicle group). The percentage of [3H]-DA remaining in the presence 

of the test articles was plotted against the concentrations of dopamine or AuNPs. The statistical 

significance of differences between data was determined at the 0.05 level, using ANOVA or 

Student‘s t test, as appropriate.  When, p<0.05, statistical significance was considered to be 

achieved. 

4.1.7 In vivo dopamine receptor binding 

4.1.7.1 Animal dosing  

Twenty-four (n=4 per group) Sprague-Dawley rats weighing 280 to 320 grams were used 

in these studies. Due to lack of brain penetration of dopamine, and AuNPs with article size 

greater than 5 nm, all articles were injection directly into the cerebral parenchyma.  Each group 

received 8 mg/kg injection of 5, 15, 50, 100, 200 nm DA-AuNPs, and the dopamine inhibitor 

GBR12783. One group of rats received an intravenous injection of DA-AuNPs in order to 
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confirm BBB penetration.  A representative flow diagram of receptor occupancy protocol is 

shown in Figure 4-1-3. 

4.1.7.2 Competitive binding and Tissue preparation 

Fifteen minutes after receiving test articles, each rat received 8.0 μL of [3H]-DA (56–62 

mCi/mmol specific activity) intracerebrally. The concentration of the [3H]-DA solution was 0.9 

μCi/μL, equivalent to 3μg /μL. Rats were anesthetized, decapitated and the brains were removed 

immediately from the skull. The brain for autoradiographic imaging was placed into a brain mold 

with the region of interest uppermost. This was covered thoroughly with Tissue-Tek (Sakura 

Finetek Europe, Zoeterwoude, The Netherlands) and flash frozen in isopentane (cooled to 

between -20°C and -30°C with dry ice).  

Tissues were processed as previously published.
34

 Briefly, sagittal sections containing 

striata 1–1.7 mm from bregma, were cut with a VT1000S vibratome (Leica, Nussloch, 

Germany), thaw-mounted onto silane-coated microscope slides and stored in bubbled artificial 

CSF (ACSF) with kynurenic acid (1 uM) for 30 minutes. Six adjacent brain slices from the same 

animal were collected per microscope slide. Sections were encircled using a PAP Pen (Dako 

Denmark A/S, Glostrup, Denmark). All the sections were then washed twice for 2 minutes, each 

with 200 uL of ice-cold buffer (3 mm MgCl2, 1 mm KH2PO4, pH 6.8). Slides were then dipped 

briefly in ice-cold distilled water to remove buffer salts and allowed to dry at room temperature.  

 

4.1.7.3 Autoradiographic imaging 

The slides were then placed in the chamber of the Beta-Imager 2000 instrument 

(BioSpace Lab, Cambridge, MA), and data were collected from the brain sections for 12 hours. 
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The levels of bound radioactivity in striatum (cpm/mm
2
) were directly determined by counting 

the number of beta-particles emerging from the delineated area using the image analysis 

software, BetaVision (BioSpace Lab, Cambridge, MA). The ratio of counts per milligram of 

tissue in the striatum provided a measure of the total number of binding sites (specific and 

nonspecific) for [3H]-DA. The ratio of counts per milligram of tissue after rat exposure to 

GBR1278, is used to define specific binding and correct the data. Percent dopamine receptor 

occupancy (D2-RO) in treated samples was calculated.  

4.1.7.4 TEM imaging of rat brain striata  

Striata specimens of the rats injected intravenously with 5nm DA-AuNPs were fixed in 

chilled glutaraldehyde and then embedded in sample block. 60-80 nm thin sections are cut on 

ultramicrotome using a diamond knife. Sections are then air-dried for several hours overnight in 

a protective environment and placed onto carbon-coated formvar-covered support grids. The 

specimen was examined under a transmission electron microscope (FEI Tecnai, G2 Sphera) at 

10,000 – 200,000 times magnification using accelerating voltages between 50kV and 120kV.  
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Figure 4-1-3. Flow diagram of ex vivo and in vivo receptor occupancy protocol. Diagram 

shows the differences between ex vivo and in vivo procedure.  

 

 

 

 

 

 

 

 

 



 

 114  
 

 

 

 

4.2 RESULTS AND DISCUSSION 

 

4.2.1 DA-AuNP synthesis and characterization  

 
We developed a robust process (figures 2) to prepare DA-AuNPs with particle sizes from 

5 to 200 nm (Figure 4-2-1). Efficient mixing and repeated recirculation of NP and drug solutions 

ensured maximum loading of dopamine unto AuNPs. The reaction was terminated after 2.5 

hours when free drug concentration determined by HPLC achieved steady-state (Figure 4-1-2).  

A gradual change in the color of the effluent solution from intense red to a consistent dark purple 

after 4 hours of operation, provided visual confirmation of HPLC results.  

During the chemical synthesis of gold NPs by citrate reduction of auric acid, NP size and 

stability were controlled by the negatively charged citrate ions at the freshly formed NP surface. 

The charge helps quench NP growth and accounts for the negative zeta potential of AuNPs.
35

 

Generally NPs with zeta potential above ±30mV prevents aggregation of the particles and result 

in stable suspensions.
36

 In our experiment, the size of the NPs decreased from 200 to 15 nm as 

the ratio of citrate to chloroauric acid increased. Correspondingly, the zeta potential increased 

from -29 to -36 mV suggesting that citrate molecules actively bind to the Au surface. 

Subsequent addition of dopamine to the citrate stabilized NPs changed the zeta potential 

from negative to positive (+7.9 to +9.6). This change of surface charge occurs due to 

displacement of citrate ions and association of dopamine ligands to the gold surface. Strong 

interaction between Au(3+) and the lone electron pair on the nitrogen atom of the amine group, 

is likely responsible for long term stabilization of dopamine NPs.
37, 38

 Table 4-1 summarizes the 

properties of AuNPs. 
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Figure 4-2-1. Particle size histogram(Left) and Transmission electront micrograph(Right) 

of DA-AuNPs 5 nm (A), 15nm (B),  50nm (C), 100nm (D), 200nm (E).   
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 Figure 4-2-2. Reaction solution dopamine concentration-time curve. Free dopamine  

          in solution decreases as dopamine is bound to the surface of AuNPs. 

 

 

Table 4-1. Characterization of 5, 15, 50, 100 and 200nm DA-AuNPs. 
 

 

Particle size (nm) 
 

5 ± 1.30 15 ± 2.30 50 ± 5.65 100 ± 5.56 200 ± 7.56 

Sodium citrate (mM) 
 

1.51 15.4
 
 1.74 1.41 1.15 

Polydispersity Index     
 

0.27 ± 0.05 0.24 ± 0.05 0.19 ± 0.08 0.31 ± 0.07 0.20 ± 0.06 

Zeta potential (mV) 
(Citrate-AuNP) 

-29.3 ± 0.91 
 

-32.1 ± 1.07 
 

-33.2 ± 0.71 
 

 -35.3 ± 1.01 
 

  -36.4 ± 1.21 
 

Zeta potential (mV) 
(Dopamine-AuNP) 

+7.9 ± 0.91 
 

+8.3 ± 1.07 
 

+8.8 ± 0.71 
 

  +9.4 ± 1.01 
 

   +9.6 ± 1.21 
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4.2.2 Human whole-cell dopamine receptor binding  

 

Chinese hamster ovary (CHO) cell lines expressing the short isoform of the human D2 

dopamine receptor (CHO-D2S) cells were used for competition binding experiments. The 

binding curves are presented in Figure 4-2-3, and showed dose-dependent binding of DA-AuNPs 

to D2 receptors. The radioligand (3H-DA) was displaced from receptors in the presence of a cold 

DA-AuNP challenge. The affinity of DA-AuNPs for human D2 receptor (D2R) was found to be 

10-fold greater than free dopamine. 3H-DA binding decreased dramatically as the concentration 

of dopamine increased confirming that DA-AuNPs have greater affinity for D2R than dopamine 

alone. Furthermore, in the presence of dopamine inhibitor (GBR 12783) the binding of DA-

AuNPs decreased to levels similar to those observed with free dopamine incubated with 

GBR12783. This provides direct evidence that the dopamine receptor is responsible for the 

binding with DA-AuNPs. GBR 12783 1-[2-(diphenylmethoxy) ethyl] 4-(3-phenyl-2-propenyl)-

piperazine, is the most potent and specific DA uptake inhibitor ever described.
39

 

Unconjugated gold nanoparticles failed to compete for dopamine binding sites, and 

essentially no receptor binding was observed with AuNPs alone. The mixture of dopamine and 

AuNPs exhibited at least 3 to 5-fold less binding than dopamine alone, and fifty percent less than 

DA-AuNPs. As expected, the affinity of dopamine increased with the concentration of dopamine 

in the mixture. When GBR12783 was added to the mixture, previous AuNP binding was 

reestablished.  These findings suggest that the binding of dopamine and AuNP mixture was 

essentially due to dopamine, not AuNPs. We further infer from these results that the increase in 

dopamine receptor binding (as observed with DA-AuNPs) is strongest in the bound form of 

dopamine compared to the unconjugated form. These results also confirm that drugs conjugated 
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to AuNPs do not lose their biological activity, but rather may experience an enhancement in their 

potency.  

Autoradiographic images of brain sections confirm these findings as well. In the presence 

of GBR 12783, binding of AuNPs (or mixture of dopamine and AuNPs) to DA receptors is 

turned off as shown by loss of radioactivity. DA-AuNPs also displaced dopamine radioligand, 

however as expected, the receptors retained some amount of DA binding in the presence of GBR 

12783. 
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Figure 4-2-3. (A) Binding curves illustrating CHO-human D2 receptor binding with increasing 

dose of test agents.  (B) Autoradiographic images showing [
3
H]-DA binding in CHO human D2 

receptor clone after incubation with test agents 
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4.2.3 Ex vivo dopamine receptor binding 

 

Ex vivo binding and autoradiography studies of dopamine-AuNPs were conducted in 

striatal membrane homogenate from Sprague-Dawley rats. The baseline binding of radioligand to 

D2R and the changes in radioligand binding due to DA-AuNP challenge were determined. The 

DA-AuNPs show significantly (p<0.05) high affinity to central D2R, in a dose-dependent 

manner (Figure 4-2-4A). There is gradual and complete inhibition of [3H]-DA binding with 

increasing doses of DA-AuNPs. In comparison, AuNPs and other combinations tested could only 

partially prevent [3H]-DA binding at the highest dose concentration. A correlation therefore 

exists between this ability to bind D2 receptors and dose.  Of all agents tested, DA-AuNPs 

produced the highest receptor occupancy, approaching 100% at 1uM dose. Free dopamine 

achieves only 80% occupancy at 1uM.  

The experiments were also performed in the presence of the DA uptake blocker 1 μM 

GBR 12783
40

 added to the medium 2 hours before sample collection. The receptor occupancy of 

DA-AuNP and free DA decreased in the presence of GBR 12783. However, in the presence of 

GBR12783, the affinity of DA-AuNP was slightly lower compared to dopamine. Loss of binding 

in the presence of inhibitors confirms the involvement of dopamine receptors in the binding with 

DA-AuNPs, and excludes off target binding. 

Unconjugated NPs or a mixture of dopamine and AuNPs showed marginal binding. Once 

again, we can infer that bound dopamine rather than free dopamine was responsible for the 

increase in the affinity to D2 receptor relative to free DA. The results are consistent with findings 

from binding studies using human dopamine receptor whole cells, and further confirmed by 

autoradiographic images of brain sections. [3H]-DA were bound to receptors and then displaced 
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by the more potent DA-AuNPs. Digital images, obtained with β-imager, showed complete 

inhibition of [3H]-DA at high doses of DA-AuNPs (Figure 4-2-4B). In comparison, a mixture of 

dopamine and AuNPs could only partially prevent [3H]-DA binding. [3H]-DA binding 

represents 100% D2 receptor occupancy, and was displaced from the DA receptor in the 

presence of GBR12783.  

The advantage of labeling the receptor on tissue sections (ex vivo) rather than in tissue 

homogenates (in vivo) has been already demonstrated.
41,42

 In that manner, the dissociation of the 

drug-receptor complex formed in vivo can be kept minimal by immediate freezing of the brains, 

omitting preincubations of the sections, and by using short incubations with the radioligand. The 

short incubation time is critical for ex vivo autoradiographic protocols, particularly when the 

method is used for evaluation of compounds with unknown properties.  
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Figure 4-2-4. (A) Mean binding curves illustrating the dose-dependent occupancy of D2 receptors by DA-

AuNPs and derivatives in rat brain striata. (B) [3H] Dopamine autoradiographic binding in rat brain striata 

after treatment with increasing doses of DA-AuNPs and derivatives. Digital images obtained after 

acquisition with the β-imager.  
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4.2.4 In vivo dopamine receptor binding 

 
Using dopamine (a poor brain penetrant) as the model drug, we investigated the effect of 

NP size on the binding affinity of dopamine. NPs with sizes 5, 15, 50, 100, and 200 nm were 

injected directly into cerebral parenchyma of Sprague-Dawley rats following pretreatment with 

radioligand. From the dopamine receptor occupancy curves (Figure 4-2-5A), we see that D2-RO 

increased with decreasing particle size of 5nm DA-AuNPs. The RO of 5, 15, 50nm AuNPs were 

90%, 60%, and 20%, respectively. The 100 and 200 nm NPs each registered meager occupancies 

of about 5%. 5nm DA-AuNP, administered either intracranial or intravenously, provided 5 % 

and 10% more binding affinity, respectively than dopamine alone. 

Small NPs, because of their large surface area may provide multiple sites for binding 

with receptors as well as promote stronger and more thermodynamically stable bonds. 

Furthermore, the spatial distribution of receptor binding and radioactivity in rat brain sections 

(Figure 4-2-5B) were confirmed in radiographic images. As expected, the dopamine inhibitor -

GBR 12783, displaced dopamine from the dopamine receptor and this is reflected in the loss of 

radioactivity (Figure 4-2-5B).   

Since receptor occupancy measurement is a good predictor of the drug free fraction 

available within brain interstitial space, the pharmacodynamics and efficacy after injection of 

DA-AuNPs can be inferred. It is expected that the AuNPs will enhance the dopaminergic effects 

of dopamine and potentially other CNS agents, as a result of higher brain penetration and binding 

conferred on drug molecules by AuNPs. However, it is unclear if DA retains the agonist binding, 

or switches from agonistic to antagonistic after conjugation to AuNPs. Functional assays may be 

needed to probe the mode of interaction between DA-AuNP and DA receptor. More studies are 

also needed to determine the selectivity of DA-AuNP for dopamine receptors.  
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5nm drug-NPs may provide a simple, inexpensive and safer alternative to radioligands 

for evaluating the potency of CNS drug candidate. Together these studies also show that the 

conjugation of dopamine to AuNPs does not diminish dopamine binding affinity. Rather, affinity 

and consequently pharmacological activity increased. To date, no studies have demonstrated the 

ability of dopamine conjugated NP to cross the BBB. This is also the first time that receptor 

binding studies involving NPs have been undertaken.  
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Figure 4-2-5 (A)DA receptor binding of 5-200nm DA-AuNPs in rat brain striata (B)Autoradiographic 

images of rat brain sagittal sections showing spatial distribution of different sizes of DA-AuNP.  
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4.2.5 TEM imaging of rat brain striata  

 

The BBB penetration and distribution of DA-AuNPs in rat brain were investigated at the 

subcellular level using transmission electron microscopy (TEM). TEM imaging on ultra-thin 

sections of rat brain was used to confirm BBB penetration of DA-AuNPs after intravenous 

injection. The resulting TEM images showed NPs in brain parenchyma. Specifically DA-AuNPs 

were found inside the cytoplasm of vascular endothelial cells as well as inside neurons, which 

are not attached to cerebral vessels (Figure 4-2-6). The presence of DA-AuNPs inside neurons 

indicates that the nanoparticles diffused through the vascular endothelial cells at the BBB before 

reaching the cerebral parenchyma. The results provide direct evidence that in addition to 

effective D2R binding, DA-AuNPs penetrated the BBB and spread into the brain parenchyma. 

Similarly we previously demonstrated that 6-MPR-AuNPs unlike free 6-MPR could cross the 

BBB.
43
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Figure 4-2-6. Electron microscopy (TEM) images of rat brain section showing gold 

nanoparticles inside brain parenchyma after intravenous  injection with 5nm dopamine-AuNPs. 

AuNPs (red arrows) are shown inside the cerebral vascular lumen(LU), cytoplasm of 

endothelial cells (EC)and neuronal tissues. Also shown are lumen (LU), endothelial cell (EC), 

neuron (NEU), tight junction (TJ), basal lamina(BL), and astrocytic end-feet (AS). A and B are 

different views of EM slides. 
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4.3 CONCLUSIONS 

 
 

This study was designed to answer the central question of whether conjugation of 

dopamine to AuNPs might enhance its brain penetration and dopamine-binding affinity to D2R. 

To this end, we are the first to describe the use of novel dopamine-conjugated AuNPs to 

overcome the low BBB permeability of dopamine, while enhancing dopaminergic receptor 

binding (and therefore pharmacological activity). The study shows that AuNPs enabled BBB 

penetration of dopamine, while maintaining dopamine efficacy.  Furthermore, the AuNPs 

increased the binding affinity of dopamine to doparminergic receptors in the brain. 

 In addition to potentially enabling unique therapies for dopamine, AuNPs may also offer 

a safer, more potent and inexpensive alternative to radioligands for preclinical and clinical 

receptor binding studies. This research also provides a drug-delivery tool for testing potential 

CNS drug candidates that otherwise cannot be evaluated due to lack of BBB permeability. 
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CHAPTER 5 

THESIS CONCLUSION 

5.0 FUTURE RESEARCH AND PERSPECTIVES  

5.1.1 Central nervous system nanonotherapeutics 

 
Application of nanotechnology to neuroscience is already having significant effects, 

which will only continue for the foreseeable future. In the coming years, nanoparticles will 

provide simultaneous brain imaging, diagnostics and therapy (so-called theranostic). Similarly, 

intelligent molecular ―trojan horse‖ will someday be able to effectively ferry drugs and non-viral 

plasmid DNA into the brain. Nanoparticles can facilitate this by binding to an exofacial epitope 

that is spatially removed from the binding site of the endogenous ligand on the BBB receptor. 

This will allow drug nanoparticles to ―piggy back‖ across the BBB via receptor-mediated 

transytosis without interfering with endogenous transport systems. In the next decade it is 

expected that new multifunctional therapeutics consisting of a homing device for targeting, 

imaging moiety for sensing/imaging, and drug therapy will translate into clinical use.  

Future brain targeting studies involving nanoparticles will need to determine the extent, 

rate, and effect of drug and nanoparticle uptake into the brain. Parameters like administration 

route, sampling time points, and the way in which the data are presented should be taken into 

account. Furthermore, the intracellular fate of nanoparticles, remains unclear. There is limited 

information on the effect of the physicochemical properties of nanoparticles on their distribution, 

cellular uptake, metabolism, accumulation and elimination. Also, though several mechanisms 
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including receptor mediated endocytosis have been proposed to explain nanoparticle transport 

across the BBB, more investigations are still needed to fully elucidate the binding, brain uptake 

and transport mechanism of gold nanoparticles.  Finally, faster and more sensitive detection 

methods are needed to study uptake and trafficking of nanoparticles in biological systems. 

Current static imaging techniques for studying the biodistribution of nanoparticles cannot detect 

small fractions of nanoparticles in vascular beds, blood stream, and inner organs of the body.  

5.1.2. Nanotoxicity  

 
One significant benefit of nanoparticles as a drug carrier is the prolonged mean residence 

time in the body. While this may desirably increase the exposure of drugs to disease targets, it 

can also increase toxicity. This is especially true for nanoparticles because of their large surface 

area, and therefore unique physicochemical and biological properties.
 1,2

  Nanoparticles may also 

have the potential for generating free radicals and exhibit oxidative tendency depending on their 

surface characteristics. There are only a few long term toxicology studies on nanomaterials, 

primarily SiO2, CNT, and TiO2. The available information indicates that certain nanoparticles 

may be genotoxic or phototoxic. However, the toxicokinetics and metabolism of nanomaterials 

have not been studied in detail. In particular, there is limited information about how the 

physicochemical parameters of nanoparticles affect absorption and transport across barriers of 

skin, gut, lungs and eyes. Additionally, the accumulation, metabolism and excretion from 

secondary target organs require further research.  

Current studies with 6MPR-conjugated AuNPs or dopamine-conjugated AuNPs were 

well-tolerated with no adverse events observed. However, there is still a need for data-extensive 
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toxicological evaluation of AuNPs and other metal nanoparticles with respect to their systemic 

and CNS effects.  These questions are well outside the scope of this thesis.  
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5.2 CONCLUDING REMARKS  

 
 

The vast majority of small molecule drugs (>98%) do not cross the BBB, and therefore 

cannot treat CNS diseases. As discussed in chapter one, several strategies to get drugs across the 

BBB have been attempted, with limited success. These involve direct injection of drugs into the 

brain, transport via the olfactory and trigeminal nerves innervating the nasal passages, or opening 

of BBB tight-junctions by means of osmotic agents, as well as exploiting  endogenous transport 

systems within the BBB using medicinal chemistry strategies.  

Several studies are available on the utility of AuNPs for diagnostic and therapeutic 

applications. However, there are no reported cases of using AuNPs to enhance the brain 

penetration and pharmacological activity of CNS drugs. Therefore, in this thesis, we describe the 

successful use of a novel CNS drug delivery system involving conjugating drugs to 5nm AuNPs. 

We combined detailed in vitro and in vivo experiments with imaging and bioanalytical 

techniques to investigate the pharmacokinetics, BBB penetration, and receptor binding of drugs 

conjugated to AuNPs. Specifically, we demonstrated that 6-MPR and dopamine conjugated to 

AuNP are able to cross the BBB into brain parenchyma.  

Our findings also show that AuNPs significantly inhibit xanthine oxidase metabolism of 

6-MPR. Finally, based on receptor binding experiments with dopamine-AuNPs, it is observed 

that the AuNPs not only enabled brain penetration of dopamine, but they also increased the 

binding affinity of dopamine to dopaminergic receptors in the brain. To our knowledge, this is 

the first time transvascular delivery of a therapeutic agent across the BBB (with the possibility of 

also enhancing drug receptor-binding potential) has been achieved using small AuNPs.  
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Even though the present study primarily focused on the brain uptake of model 

compounds (6-MPR and dopamine), the strategy described here is applicable to a wide range of 

drug candidates with low BBB permeability. Future advances in CNS biology, neuroimaging and 

bioanalytical techniques, specifically as they pertain to nanoscale systems, will provide further 

insights into the design, performance and toxicity of drug delivery systems involving 

nanomaterials.  
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