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ABSTRACT

Microbial production of cellulosic isobutanol: integrating ecology and evolutionary
approaches with engineering

by

Jeremy J. Minty

Chair: Xiaoxia Nina Lin

Biofuels derived from lignocellulosic feedstocks are widely considered to be among the most
promising renewable fuels that can be produced at a large scale and in a sustainable manner. How-
ever, many challenges exist. In this work, we aim to address two of them, which are interconnected
under an overall goal of achieving efficient microbial conversion of lignocellulosic feedstocks
to isobutanol, an advanced biofuel: i) enabling consolidated bioprocessing of lignocellulosic
feedstocks to biofuels, through engineering synthetic microbial consortia; and ii) improving
microbial stress tolerance, through genome evolution and engineering.

Inspired by the versatility and robustness of ubiquitous natural microbial ecosystems, the
first part of our work explores engineering synthetic multispecies microbial communities for
cellulosic biofuel production. The required biochemical functions are divided between two
specialist organisms: the fungus Trichoderma reesei, which secretes cellulases to hydrolyze
lignocellulose into soluble saccharides, and the bacterium Escherichia coli, which metabolizes
soluble saccharides into isobutanol. We developed and experimentally validated a comprehensive
modeling framework, allowing us to elucidate key ecological interactions and develop mechanisms
for stabilizing and tuning population composition. To illustrate bioprocessing applications, we
demonstrate direct conversion of cellulosic feedstocks to isobutanol, achieving titers up to 1.86
g/L and 62% of theoretical yield.

In the second part, we leverage recent advances in DNA sequencing and genome engineering
technologies to decode and refactor microbial tolerance to isobutanol, a complex phenotype
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with a poorly understood genetic basis. We experimentally evolved isobutanol tolerant E. coli

strains, and then used genome re-sequencing and functional dissection studies to reverse engineer
mechanisms and genetic bases of tolerance. Next, we exploited our initial results to select genetic
loci for targeted mutagenesis using Multiplex Automated Genome Engineering (MAGE), allowing
us to refactor isobutanol tolerance and explore large genotype spaces for hyper-tolerant variants.

In summary, we have integrated ecology and evolutionary approaches with engineering to de-
velop novel microbial systems for biofuel production. Our synthetic microbial consortium ap-
proach provides key advantages over the conventional paradigm of engineering a single microbe
(“super-bug”); in parallel, our genome evolution and engineering work has generated new insights
into genetic and biochemical mechanisms underlying microbial tolerance to toxic chemicals.
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CHAPTER 1

Background and motivation

1.1 Microbial production of cellulosic biofuels

With shrinking fossil fuel supplies, accelerating climate change, and intensifying geopolitical
concerns, the need for renewable energy sources is becoming evermore apparent. Renewable
transportation fuels are crucial for developing a sustainable energy portfolio; in the United States,
transportation accounts for 28% of total energy consumption and 71% of total petroleum consump-
tion [4]. Biofuels produced through microbial conversion of biomass feedstocks could sustainably
replace a substantial fraction of the petroleum presently consumed by the transportation sector, and
are considered to be among the most promising alternative fuels [5]. Numerous microbial species
produce biofuel molecules as part of their natural metabolism. Many anaerobic microbes produce
short-chain alcohols as terminal metabolites (such as ethanol and butanol, which can serve as
gasoline substitutes), while other species are capable of accumulating lipids (possible precursors
for biodiesel and other fuels) [6]. To date, most commercial efforts in biofuels have focused on
microbial ethanol production from sugarcane or starch-based feedstocks such as corn. However,
ethanol production has recently come under scrutiny for various reasons. Criticisms include
the current reliance on food crop feedstocks (creating competition between food supplies and
energy production), low ethanol yields per unit area of crop, and concerns about sustainability and
environmental impacts (e.g. potentially unfavorable overall energy balance, excessive fresh water
usage in the production process, etc.) [7]. Additionally, some of the physicochemical properties
of ethanol are suboptimal for motor fuel use. The energy density of ethanol is approximately 2/3

that of gasoline, leading to reduced fuel efficiency [7]. Ethanol is also hygroscopic, limiting it’s
use in existing fuel infrastructure [7].
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1.1.1 Advanced non-ethanol biofuels

Motivated in part by the drawbacks of ethanol, recent metabolic engineering efforts have dra-
matically expanded the portfolio of fuel molecules that be produced biologically (Figure 1.1).
Examples of next-generation biofuel molecules include isoprenoid derived hydrocarbons, fatty
acid derived hydrocarbons, and non-fermentative medium chain-length alcohols (Figure 1.1). Iso-
prenoids are derived from an isomeric five-carbon unit called IPP (isopentenyl pyrophosphate) or
DMAP (dimethyl-allyl pyrophosphate) using either the mevalonate or deoxyxylulose-5-phosphate
pathways (Figure 1.1) [8]. The molecular weight ranges and branch/ring structures of isoprenoids
make them promising substitutes for gasoline, as well as diesel and jet fuels [8]. Fatty acid derived
biofuels include fatty alcohols, fatty acid alkyl esters, fatty acid-derived alkanes, and alkenes,
which represent favorable substitutes for diesel or gasoline (Figure 1.1) [8]. Isoprenoid and fatty
acid derived biofuels have many favorable fuel properties, including high energy density, low
aqueous solubility (facilitating separation processes and making them compatible with existing
fuel infrastructure), and combustion properties similar to petroleum based fuels. However, low
titers and yields for isoprenoid and fatty acid derived biofuels have hindered commercialization
[8]. To date, the highest titers and yields reported for next-generation biofuels have been achieved
with non-fermentative medium chain-length alcohols, which are produced via decarboxylation
and subsequent reduction of 2-keto acids (Figure 1.2). Most notably, E. coli has been successfully
engineered to produce isobutanol in high yield (86% of theoretical maximum) and titer (22 g/L)
from glucose [1]. Isobutanol has higher energy density, lower hygroscopicity, and better combus-
tion properties than ethanol, making it a favorable gasoline substitute. Isobutanol production is
presently being commercialized by Gevo Inc. and Butamax LLC.
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Figure 1.1: Metabolic pathways to microbial biofuels. Central metabolism is colored black. Short-chain alcohols
produced by fermentative pathways are colored purple. 2-Keto acid pathways and the corresponding alcohol fuels are
colored blue. Isoprenoid pathways and terpene-based fuels are colored green. Fatty acid pathway and corresponding
fuels are colored red. Adapted from [8].
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Figure 1.2: Production of alcohol biofuels from 2-keto acids (endogenous amino acid precursors) via decarboxylation
and subsequent reduction. Adapted from [1].

1.1.2 Cellulosic biofuels

In parallel with metabolic engineering work to produce higher quality fuel molecules, efforts
are underway to switch from sugarcane/starch based biofuel feedstocks to more sustainable
lignocellulosic feedstocks. As a product of photosynthesis, lignocellulosic biomass is an abundant
and renewable resource. Over half of the carbon in the biosphere is present in the form of
cellulose, with approximately one trillion tons of cellulose synthesized and degraded each year
globally [9]. Unlike sugarcane or starch based feedstocks, it is possible to produce and utilize
lignocellulosic biomass without affecting food supplies. For example, marginal lands unsuitable
for food production can provide lignocellulosic biomass via harvesting wild vegetation [10],
or through intentional cultivation of robust bioenergy crops such as switchgrass (Miscanthus

sp). Land use for producing cellulosic biofuels could be dramatically reduced by switching to
carbohydrate rich microalgae as a feedstock [11] [12], though challenges remain in developing
scalable methods for algae culture. In addition to bioenergy crops, many underutilized waste
streams are rich in cellulose (such as crop residues and municipal solid waste) and could serve
as potential feedstocks for biofuel production. It is estimated that the United States is capable of
sustainably producing 1.4 billion tons of lignocellulosic biomass annually, enough to replace 30%
or more of our current petroleum consumption [13].
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Figure 1.3: Bioprocessing lignocellulosic feedstocks into biofuels. Portions of figure adapted from http://www.
biomassmagazine.com and [14].

Cellulose and related compound hemicellulose are polysaccharides which, along with lignin,
are primary structural components of plant cell walls [5]. Cellulose is a polysaccharide of
glucose monomers linked by β-1,4 glucosidic bonds, while hemicellulose is a polysaccharide
of mixed composition and structure, containing a large proportion of pentose sugars linked
by β-1,4 bonds [5]. Lignin has a complex structure, and tends to be hydrophobic with a high
proportion of aromatic groups [5]. Bioprocessing of lignocellulose into fuels typically comprises
four main steps: pre-treatment, saccharification (usually via enzymatic hydrolysis), fermentation
of soluble hexose (C6) and pentose (C5) saccharides, and downstream processing (e.g. product
separation) (Figure 1.3). In the first step, lignocellulosic biomass is subjected to mechanical
and/or thermochemical treatments to improve digestibility. Pre-treatment alters the microstructure
of lignocellulosic biomass, often via redistribution or removal of lignin and reduction of cellulose
crystallinity, leading to improved hydrolysis rates [14]. Pre-treatment contributes substantially
to overall processing costs. Cellulolytic microbes produce sophisticated and synergistic enzyme
systems called cellulases and hemicellulases that effectively hydrolyze cellulose and hemicel-
lulose, respectively [14]. In the saccharification step, cellulases and hemicellulases are used to
hydrolyze insoluble cellulose and hemicellulose into soluble C6 and C5 saccharides, respectively
[15]. Cellulose is a structurally complex material that is highly recalcitrant to degradation, making
enzymatic hydrolysis a limiting step in microbial biofuel production [14]. In the fermentation
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step, mono and oligosaccharide hydrolysis products are metabolized by microbes into biofuel
molecules, such as ethanol [15]. Many microbes are unable to metabolize pentose sugars, and
microbes that are capable of pentose metabolism generally consume these sugars diauxically, with
hexoses consumed in preference to pentoses [16]. Additionally, the toxicity of biofuel products
and inhibitory compounds present in the feedstock often limits fermentation productivity and
titers. Achieving cost-effective pre-treatment and lignin removal, efficient cellulose hydrolysis,
co-utilization of hexose/pentose saccharides, and mitigating the the toxic effects of biofuel prod-
ucts on microbes are all vital requirements for economically viable cellulosic biofuel production
[16] [14].

1.1.3 Consolidated bioprocessing

Process configurations for cellulosic biofuel production can be categorized based on the extent
to which the biologically mediated steps (cellulase production, enzymatic saccharification,
and fermentation of soluble saccharides) are consolidated (Figure 1.4A) [14]. Most cellulosic
biofuel processes presently under commercial development use process configurations known
as simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and
co-fermentation (SSCF) [15]. SSF features a dedicated step for enzyme production (Figure 1.4A).
Cellulases and hemicellulases produced in the enzyme production step are then combined with
pre-treated biomass and microbes for simultaneous saccharification and fermentation to biofuel
(Figure 1.4A). Hexose and pentose saccharides are co-fermented in a single step for SSCF, while
in SSF hexose and pentose conversions occur in separate bioreactors (Figure 1.4A). Having a
dedicated step for enzyme production contributes substantially to total processing costs (example
cost analysis for ethanol production shown in Figure 1.4B). Consolidated Bioprocessing (CBP)
is a promising process configuration that integrates all biochemical transformations - cellu-
lase/hemicellulase production, saccharification, hexose fermentation, and pentose fermentation -
into a single step, and may thus significantly improve process economics (Figure 1.4B)[15]. In
addition to reducing processing costs via consolidation, CBP may provide other benefits such as
increased hydrolysis rates due to synergy between microbes and enzymes during fermentation [15].
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A

B

Figure 1.4: Process configurations and cost analysis for cellulosic biofuel production (A) Process configurations:
separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), simultaneous sac-
charification and co-fermentation of hexose and pentose saccharides (SSCF), and consolidated bioprocessing (CBP).
Each box represents a separate bioreactor. Adapted from [14]. (B) Comparative cost analysis for ethanol production
by CBP vs. SSCF. Adapted from [15]; see reference for assumptions made in cost calculations.

The prevailing trend in present CBP research entails engineering microbes that incorporate all
required biological functionalities into a single host (Figure 1.5). Two broad approaches are being
pursued: the native cellulolytic strategy, and the recombinant cellulolytic strategy (Figure 1.5).
In the native cellulolytic strategy, anaerobic cellulolytic microbes (which naturally ferment
cellulose to alcohols and mixed organic acids) are engineered to improve alcohol production [15].
Most natively cellulolytic species under consideration for CBP development produce ethanol,
although species producing n-butanol have recently been isolated [17]. Cellulolytic Clostridia

species, including C. phytofermentans, C. cellulolyticum, and C. thermocellum are the among
the best developed native hosts [18]. The native cellulolytic strategy is hindered by limited
molecular biology tools for candidate microbes, substantially restricting genetic engineering
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efforts [18]. Strain improvement approaches have therefore generally been limited to small-scale
metabolic engineering efforts to improve ethanol yields (i.e. knocking out competing pathways
to direct metabolism towards ethanol production) and developing strains with improved ethanol
tolerance through adaptive evolution [18]. C. thermocellum was recently engineered to produce
ethanol with high titer (38 g/L) and yield (82% of theoretical) from microcrystalline cellulose (in
co-culture with T. saccharolyticum) [19]. These results represent the current state-of-the-art and
are very close to projected performance targets for economically viable ethanol production (50
g/L titer and 90% theoretical yield) [18]. However, this study did not utilize real lignocellulosic
biomass or industrially relevant culture conditions. Additionally, the paucity of genetic tools
for C. thermocellum will make it difficult to use this species as a platform for production of
non-ethanol biofuels. While the native cellulolytic approach has mostly focused on ethanol
production, C. cellulolyticum was recently engineered to produce isobutanol via a heterologous
pathway [20]. This study represents an important proof-of-concept for producing next-generation
biofuels using the native cellulolytic strategy, however the reported isobutanol titer was low (660
mg/L) and C. cellulolyticum has limited potential as a CBP host due to poor cellulose utilization
[21].

Lignocellulose

C6 Sugars C5 Sugars

Biofuel

cellulases
hemicellulases

Microbes with superior
substrate utilization capabilities

Cellulase production, utilization of C5/C6 sugars
 and oligosaccharides

Microbes with superior biofuel 
production capabilities

High product titers, yields, and tolerance
Production of next-generation fuels

Native cellulolytic strategy
Metabolic engineering to improve 

titers, yields, and tolerance

Recombinant cellulolytic strategy
Expression of heterologous cellulases

Figure 1.5: Organism development strategies for consolidated bioprocessing (CBP). Adapted from [15].

In the recombinant cellulolytic strategy, microbes that are amenable to genetic manipula-
tion and have good biofuel production properties (e.g. biofuel production strains of E. coli,
S. cerevisiae, B. subtilis, etc.) are engineered to produce cellulases/hemicellulases [15]. Since
E. coli and S. cerevisiae have been metabolically engineered to produce a variety of biofuel
molecules [16], the recombinant cellulolytic strategy could be used to produce non-ethanol fuel
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molecules with desirable properties. However, engineering heterologous cellulase/hemicellulase
production is extremely difficult since typical cellulase systems are comprised of dozens of
different synergistically acting enzymes, which need to be co-expressed and secreted from
non-native hosts. Numerous proof-of-concept demonstrations of the recombinant cellulolytic
approach have been reported, however to date cellulose conversion and product titers/yields
remain low [18]. The most significant advances in expressing heterologous cellulases have been
with S. cerevisiae. Several examples of S. cerevisiae strains engineered to secrete cellulases and
produce ethanol from cellulose have been reported, though most of these studies use amorphous
cellulose (easily digestible model substrate that is much less recalcitrant than real lignocellulose)
and have achieved ethanol titers in the range of only 1 to 10 g/L [18]. Beyond the work done with
S. cerevisiae, another notable advancement is the development of a B. subtilis strain engineered to
secrete cellulase and produce lactate as a fermentation product, with titers up to 3.1 g/L and yields
64% of the theoretical maximum. In addition to model organisms, there is interest in engineering
other biofuel producing microbes to express cellulases. For example, the highly ethanologenic
bacterium Z. mobilis has been engineered to secrete cellulases, with recent work demonstrating
ethanol titers up to 4 % (v/v) using NaOH pre-treated sugarcane bagasse as a substrate [22].
There has also been progress in engineering butanologenic Clostridium acetobutylicum to produce
extracellular cellulases, although to date none of the resulting strains are able to grow on cellulose
as the sole carbon source [23].

Due to inherent challenges in both the recombinant and native cellulolytic strategies, the
present CBP approach of trying to incorporate all required biological functionalities into a single
super-organism has hitherto proven to be difficult. Despite intensive research efforts spanning
several decades, there have been few reports of achieving commercially viable product yields
and titers [15]. As an alternative approach to engineering microbes for CBP applications, it may
be more tractable to compartmentalize the required biochemical functions (cellulase production
and hexose/pentose fermentation) into different hosts which when co-cultured together form a
synthetic microbial consortium capable of single-step conversion of cellulose to desired products.
In the next section, microbial consortia are discussed from a perspective of possible bioprocessing
applications.

1.2 Microbial consortia and applications in bioprocessing

In contrast to the CBP paradigm of integrating many functions into a single host, in natural envi-
ronments microorganisms often live in synergistic multi-species communities in which individual

9



species with specialized roles cooperate to survive and thrive together [24]. Microbial consortia
play many important roles in nature, ranging from participating in global biogeochemical cycles
to assisting animals with food digestion [25]. Natural microbial consortia have a number of prop-
erties that are appealing in the context of bioprocessing, such the ability to perform complex tasks
that would be difficult to achieve with a single species, and robustness to fluctuations in resources
and environmental conditions [24]. As an example relevant to bioenergy production, natural
methanogenic consortia are often utilized in anaerobic bioreactors to convert organic wastes of
complex and variable composition (e.g. mixtures of polysaccharides, peptides, lipids, etc.) to
CH4 (Figure 1.6A) [26]. The conversion of complex organic substrates to CH4 involves several
distinct trophic stages, and some of the reactions are thermodynamically unfavorable and require
low H2 partial pressures [26]. As a result, methanogenic consortia often grow as highly structured
aggregates in order to ensure efficient transfer of H2 and other intermediates between species
(Figure 1.6B) [26]. Methanogenic communities thus exemplify the ability of consortia to perform
complex tasks, as methanogenesis requires both metabolic cooperation and spatial organization
between different microbial species and would be difficult to achieve in a single unstructured
microbe (Figure 1.6) [26]. In addition to their ability to perform complex tasks, long-term studies
of methanogenic consortia in bioreactors have revealed that these communities are remarkably
stable [27]. Community function (in terms of methane yield, substrate removal, and by-product
composition in bioreactor effluent) is generally resilient to fluctuations in process temperature,
pH, feed rates, and microbial populations [27]. Additionally, population composition itself tends
to be highly stable, with populations rebounding to previous levels following disturbances [27].

A B

Figure 1.6: Methanogenic consortia used in anaerobic digestion. (A) Schematic of consortia in upflow anaerobic
sludge bed (UASB) reactors. Trophic steps: 1, fermentative bacteria; 2 obligate hydrogen producing acetogenic bacte-
ria; 3, hydrogen-oxidizing acetogens; 4, carbon dioxide reducing, hydrogen-oxidizing methanogens and 5, aceticlastic
methanogens. Adapted from [26]. (B) Structure of typical sludge granule. Adapted from [28].
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Beyond methanogenic consortia, there have been numerous efforts to isolate lignocellulose
degrading consortia from natural environments with consideration towards potential CBP applica-
tions. For instance, in a recent study, enrichment of household compost on cellulose containing
media yielded an aerotolerant microbial community capable of degrading cellulose to acetate and
ethanol [29]. Subsequent analysis of the community revealed a diversity of species, including both
facultative and strict anaerobes, with Clostridia species being particularly prevalent [29]. There
are numerous other examples of natural cellulolytic communities in the literature; for a review,
see [30]. While natural anaerobic celluloytic consortia are appealing due to their superb ability
to degrade lingocellulosic biomass and metabolic capability for producing biofuel molecules
(e.g. alcohols), adaptation and deployment of such consortia to industrial bioprocesses faces
several key challenges. These natural consortia tend to produce mixed fermentation products,
with relatively low yields of fuel molecules such as ethanol. In principle, it may be possible
to engineer or otherwise manipulate these consortia to improve specificity and yield of desired
products. However, these communities are often highly complex, featuring intricate interaction
networks between large numbers of species, many of which are uncharacterized [30]. Lack
of genetic tools and detailed knowledge of community dynamics and function thus limits our
ability to engineer and improve these systems. While further study of natural microbial consortia
will likely improve our understanding of the underlying interactions and design principles of
these complex communities, a promising complementary approach is also possible: engineering
synthetic microbial consortia.

1.2.1 Engineered microbial consortia for bioprocessing

Pentoses (C5)

C6 specialist

Hexoses (C6)

C5 specialist

Biofuel

Figure 1.7: General scheme of consortia for co-fermentation of pentose (C5) and hexose (C6) sugars. Adapted from
[31].
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Inspired in part by the powerful and interesting features of natural consortia, there is rapidly
growing interest in engineering synthetic microbial consortia for both fundamental research
and biotechnology applications. Synthetic microbial consortia for consolidated bioprocessing of
cellulosic feedstocks to fuels have been investigated in numerous studies. In a notable recent study,
Bayer et al. engineered S. cerevisiae to aerobically produce CH3I (which can be converted to
hydrocarbons with zeolite catalysts) from acetate and ethanol [32]. By combining the engineered
S. cerevisiae with Actinotalea fermentans, which aerobically ferments cellulose to acetate and
ethanol, a co-culture capable of converting cellulose to CH3I was created [32]. Engineering hexose
and pentose specialized microbes, each exclusively metabolizing it’s respective carbon source, is
another emerging trend in engineering microbial consortia for biofuel applications (Figure 1.7).
Co-cultures of hexose and pentose specialists would be expected to utilize both types of sugar
simultaneously (in contrast to sequential utilization, observed in most natural species), thus
improving the conversion rate of mixed sugars derived from lignocellulosic biomass (Figure 1.7).
This approach was reported by Trinh et al. 2008 [33], Eiteman et al. 2008 [34], Eiteman et

al. 2009 [35], Xia et al. 2012 [36], and was also pursued in our research independently during the
same time period (results not yet published; [31]), all using E. coli as a base species. Eiteman et

al. demonstrated that co-cultures of hexose and pentose specialized E. coli gave higher rates of
fermentation and more complete utilization of glucose/xylose mixtures compared to fermentation
by a single diauxic E. coli strain [35]. Furthermore, the hexose/pentose specialist co-culture was
able to adapt to fluctuations in feed composition [35].
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Figure 1.8: Cellulase producing consortia for CBP. (A) S. cerevisiae consortium for assembly of synthetic extracellular
cellulosome complexes. SC cells surface display scaffold proteins and EC/CB, AT, and BF cells secrete cellulases.
Adapted from [37]. (B) E. coli consortium for simultaneous conversion of cellulose and hemicellulose into pinene,
n-butanol, or fatty acid ethyl esters (FAEE). Cells harbor plasmids containing oligosaccharide transporters (cel3A or
gly43F) and secretable hydrolases (osmY-cel or osmY-xyn10B) for either cellulose (pCellulose) or xylan (pXylan). By
integrating pCellulose or pXylan into hosts containing heterologous pathways for biofuel production, direct conversion
of lingocellulosic biomass into biofuels can be achieved. Adapted from [38].

Another emerging approach in developing consortia for biofuel production entails engineering
specialist strains to secrete different synergistically acting cellulases and/or hemicellulases
(examples shown in Figure 1.8). Such an approach was pursued by Arai et al. 2007 [39], Tsai
et al. 2010 [37], Goyal et al. 2011 [40], and Bokinsky et al. 2011 [38]. Tsai et al. engineered
S. cerevisiae strains to secrete three different cellulases and a scaffold protein, respectively, which
were then combined to form a synthetic consortium (Figure 1.8A) [37]. The secreted cellulases
assembled extracellularly on the scaffold protein, forming a synergistic cellulosome complex
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(Figure 1.8A) [37]. Through the production of extracellular cellulosomes, the consortium was
able to convert phosphoric acid swollen cellulose (PASC) to ethanol at yield of up to 0.475 g/g
(93% theoretical) and titer of 1.87 g/L, using an optimized strain ratio (SC:AT:CB:BF) of 7:2:4:2
(Figure 1.8A) [37]. In contrast, a monoculture employing a similar enzyme system achieved much
lower ethanol yields and titers, possibly due to the burden of expressing and secreting multiple
heterologous proteins in a single host [37]. As another example, Bokinsky et al. engineered
E. coli strains to produce cellulases or xyalanases, respectively, which could then be co-cultured to
accomplish simultaneous conversion of both hemicellulose and cellulose [38] (Figure 1.8B). By
integrating heterologous pathways for butanol, pinene, or fatty acid ethyl esters (FAEE), consortia
of xyalanase/cellulase producing E. coli strains were able to directly convert ionic liquid (IL)
pre-treated switchgrass to these respective biofuels (Figure 1.8B) [38]. While the titers and yields
achieved in this study are very low, it serves as an important proof-of-concept of using microbial
consortia for CBP production of next-generation biofuels.

1.2.2 Synthetic microbial consortia: design and population coordination

The above examples illustrate a broader trend of utilizing synthetic microbial consortia to
compartmentalize pathways into different hosts for individual optimization, and/or demonstrate
that consortia may be engineered for division of labor to accomplish complex tasks proven
difficult to achieve with monocultures. Another broad approach to engineering microbial consortia
involves using a bottom-up strategy of programming specific interactions between microbes
[24]. These approaches have been used to construct several canonical ecological and logic
systems for proof-of-concept and fundamental study. For example, Balagaddé et al. constructed
a synthetic predator-prey system in E. coli, in which the predator and prey strains communicate
bi-directionally through quorum sensing and regulate each other’s gene expression and survival via
synthetic genetic circuits (Figure 1.9A) [41]. Predator cells kill the prey by inducing transcription
of a toxic protein in the prey, while the prey rescue predator cells by inducing transcription of
an anti-toxin protein in the predator (Figure 1.9A) [41]. The synthetic ecosystem mimics natural
predator-prey systems in terms of logic and long-range dynamics [41]. As another noteworthy
example, Shou et al. engineered a synthetic symbiosis between two S. cerevisiae auxotrophs
(Figure 1.9B) [42]. In minimal media, the auxotrophs cross-feed each other and are mutually
dependent on one another for growth (Figure 1.9B) [42]. The populations stably coexist over long
time periods, and exhibit complex oscillatory dynamics that occur due to delay in nutrient release
until cell death, among other factors (Figure 1.9B) [42].
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Figure 1.9: Programming synthetic consortia with genetic circuits and intercellular communication (A) Synthetic
predator-prey system. Predator cells produce quorum sensing (QS) molecule 30C12HSL, activating transcription
of toxic protein ccdB in prey cells. Prey cells rescue predator cells by producing QS 3OC6HSL, which activates
transcription of anti-toxin protein ccdA, thus rescuing cells from endogenously produced ccdB. Adapted from [41].
(B) Synthetic cooperation. Engineered S. cerevisiae strains auxotrophic for Lys (Y) and Ade (R) cross-feed each other,
forming a stable mutualism. Population dynamics of live R (red), live Y (green), dead (gray), and total (black) cells are
shown to the left. Adapted from [42]. (C) Example of an engineered multicellular NAND gate using three S. cerevisae
strains and two extracellular inputs. Doxycycline and 2% glucose are added to the culture as shown in the table, and
the resulting output GFP expression is shown to the right. Adapted from [43].

In a final example, Regot et al. constructed Boolean logic gates through the use of com-
binations of different engineered S. cerevisiae strains [43]. The cells can either respond to an
exogenous signal (i.e. an added inducer) and/or an output from another S. cerevisae strain (i.e. α
factor, a S. cerevisiae pheromone) and then release either another signal or the final output, in
this case green fluorescent protein (GFP) (Figure 1.9C) [43]. Different strains can be combined
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to yield Boolean operators such as AND, NAND, OR, NOR, NIMPLIES, IDENTITY, and NOT
gates, and the overall computation is determined by the number of cells involved and the types of
each engineered cell. An example of a three-strain combination yielding a NAND gate is shown
in Figure 1.9C [43]. Using only three inputs and three cell types, the authors predict that over 100
different functions can be created [43].

All three of the above studies follow a bottom-up synthetic biology approach of combining
relatively simple modular parts to build systems with complex behaviors and functions. These
examples highlight the use of synthetic genetic circuits and intercellular communication to
coordinate populations in microbial consortia. Population coordination is of key importance
in both natural and synthetic microbial consortia, and will be further discussed in Chapter 3.
While bottom-up design and programmed interactions have been used to construct a number
of interesting proof-of-concept consortia, there have been few demonstrations of this approach
for biotechnology applications, despite much tantalizing potential [24]. As a notable exception,
Prindle et al. recently developed a microbial Arsenic detection system by engineering an os-
cillatory circuit synchronized across an entire cell population in which the oscillatory period is
modulated as a function of Arsenic concentration [44].

Although great progress has been made in engineering synthetic microbial consortia, many
challenges remain. In stark contrast to their natural counterparts, synthetic microbial consortia
are often fragile and unstable, limiting their utility in real-world applications like industrial
bioprocessing. In mixed cultures created by arbitrarily combining different species, population
compositions are often unstable [45]. Single competitors may dominate the population and
drive other consortium members to extinction, and in other cases, the entire consortium may
collapse [45]. These instabilities often arise due to mismatches between growth rates and
rates of resource production/consumption between different species [45]. Beyond ecological
stability, consortia featuring programmed interactions between microbes are subject to evolu-
tionary pressures, with mutational inactivation of synthetic genetic circuits often occurring in
relatively few generations of growth, depending on the size and host burden of the circuit [46].
Evolutionary and ecology theory provides a framework to understand the stability of social
interactions in microbial consortia, and indeed some of these theories have been empirically tested
with synthetic microbial consortia [47]. Despite this, many efforts towards engineering micro-
bial consortia are undertaken with reductionist perspectives that fail to consider long-term stability.

In the first part of this dissertation, we seek to integrate evolutionary and ecology theory
with engineering principles to design and construct stable and tunable microbial consortia for
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consolidated bioprocessing of cellulosic feedstocks to biofuels, focusing on isobutanol as a
proof-of-concept. In addition to achieving direct cellulose conversion, another key difficulty in
microbial biofuel production is the toxicity of biofuel products and inhibitors present in pre-treated
lignocellulose, which will be reviewed in the next section along with methods for engineering
improved tolerance.

1.3 Toxicity issues in microbial biofuel production and
genome-scale phenotype improvement methods

1.3.1 Microbial chemical toxicity

Toxicity of biofuel products and feedstock inhibitors limits final titer and volumetric productivity
in fermentations, thus motivating efforts to engineer microbes with improved tolerance [48].
Numerous investigations have elucidated mechanisms of toxicity, proximal cellular responses,
and possible mechanisms of tolerance to biofuel molecules and feedstock inhibitors [49] (see
Figure 1.10 for overview). Biofuel molecules, like other organic solvents, intercalate into the mem-
brane lipid bilayer, perturbing the physicochemical properties of the membrane [49]. Membrane
fluidity and permeability are altered, and membrane proteins may be denatured; these changes
can ultimately lead to cytosolic leakage, dissipation of membrane electrochemical potential and
proton gradient, and disruption of membrane based processes such as substrate transport and
respiration [49]. For many biofuel molecules, toxicity is correlated to the octanol-water partition
coefficient Pow,; this reflects increasing tendency for more hydrophobic molecules to partition
into the lipid bilayer [49]. In addition to affecting cell membranes, biofuel molecules can damage
or denature other biological molecules [49]. Biofuel molecules can exert chaotropic effects,
leading to protein and RNA denaturation. Biofuel molecules can also lead to increased genera-
tion of reactive oxygen species (ROS), causing oxidative damage of proteins, DNA, and lipids [49].

17



Efflux Pump

Solvent extrusion

Membrane Modification

Lipid Composition

Saturated-Unsaturated

Transport & Respiration

General Stress Response Heat Shock Proteins

Energy Metabolism

Protective Metabolites Biofuels

Generation of ROS

Less Toxic Metabolites

Feedstock Inhibitors

Metabolic Conversion

NADPH Depletions

Pyrimidine Synthesis

Non-oxidative PPP
Amino Acids

& Polyols

O2
-, H2O2, .OH, NO, 1O2

GroESL

&Glycolysis

Figure 1.10: Mechanisms of toxicity and microbial tolerance to biofuels and feedstock inhibitors. Adapted from [49].

General mechanisms of biofuel molecule toxicity and tolerance have been extensively stud-
ied for short and medium chain-length alcohols (such ethanol and n-butanol) in model organisms
(E. coli and S. cerevisiae), as well as natural producers (e.g. solventogenic Clostridia species).
In addition to biofuel molecules, toxic chemical species may be generated during pre-treatment
and hydrolysis of lingocellulosic feedstocks. These feedstock inhibitors comprise a wide range
of different compounds, including furans, weak acids, and phenolics [50]. Furans are thought
to disrupt energy metabolism through inhibition of key enzymes and depletion of cofactor pools
[49]. Weak acids perturb energy metabolism as well, via disruption of membrane electrochemi-
cal potential [49]. The phenolics present in biomass hydrolysates constitute a very broad range
of compounds and thus mechanisms of toxicity are difficult to generalize; however, it is believed
that the cell membrane is a primary target of toxicity, similar to other organic solvents [49]. Feed-
stock inhibitors are known to increase generation of ROS, and may also inhibit certain metabolic
enzymes [49]. Numerous cellular responses to biofuel molecule and feedstock inhibitor toxicity
have been observed, including induction of general stress response (such as upregulation of heat

18



shock proteins), upregulation of efflux pumps, synthesis of protective metabolites, alteration of
membrane and cell surface properties (e.g. by altering composition of peptidoglycan, lipopolysac-
charides, membrane proteins, and lipids), adaptations in energy metabolism, changes in cellular
morphology, and metabolic degradation of toxic species (Figure 1.10); some or all of these re-
sponses may be present in a given organism [49]. Due to broad mechanisms of toxicity, tolerance
to biofuel molecules and feedstock inhibitors is a complex trait that involves a diversity of cellular
adaptations and responses that probably contribute synergistically to the overall phenotype [50].

1.3.2 Phenotype improvement methods

The inherent biological complexity of chemical tolerance has generally precluded the use of
rational engineering for phenotype improvement, thus most strategies are combinatorial in
nature, following a paradigm of generating genotypic and phenotypic diversity in a population,
then characterizing isolates with the desired properties (see Figure 1.11 for examples) [51]. A
number of effective genome-scale approaches to improving stress tolerance phenotypes have been
developed following this paradigm, but present methods are intrinsically limited to exploring
small genotype search spaces. For example, knockout libraries (Figure 1.11A) have been
screened for stress tolerant isolates, but this only identifies single loss-of-function mutations that
contribute to improved tolerance [50]. Similarly, plasmid-based genomic library enrichment
studies (Figure 1.11B) have been used to investigate genetic bases of stress tolerance, but these
libraries are restricted to examining gene overexpression and cannot readily capture interactions
between multiple distal genes due limitations on insert size [50]. Targeted mutagenesis of master
transcriptional regulators (Figure 1.11C) has been used to generate libraries of mutants with global
perturbations in gene expression, from which highly tolerant clones have been selected, but this
approach inherently explores a very restricted genotype space [50, 52, 53].
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Figure 1.11: Overview of commonly used phenotype improvement methods. Adapted from [54].

1.3.3 Next-generation genome-scale phenotype improvement methods

There is a great need for phenotype improvement methods that expand accessible genotype
search spaces and which can account for the multigenic nature of complex stress tolerance
phenotypes. In recognition of this need, genome-scale methods that can capture interactions
between distal genetic loci have recently been developed (Figure 1.12). An improved genomic
library method, Coexisting/Coexpressing Genomic Libraries (CoGels), features plasmid-plasmid
or plasmid-fosmid libraries that can coexist in a single cell, thus enabling detection of epistatic
interactions between distal genetic loci (Figure 1.12B) [55]. Several combinations of genetic
loci underlying the complex acid-tolerance phenotype of E. coli were identified by CoGels
screeing, including the well know combination of gadBC and adiC, and the novel combination
of arcZ and recA that remarkably increased acid tolerance by 9000-fold [55]. Another method,
Trackable Multiplex Recombineering (TRMR), incorporates parallel DNA synthesis, homologous
recombination, and molecular barcode technology to rapidly create and evaluate thousands of
specific genetic modifications concurrently (Figure 1.12A) [56]. TRMR employs synthetic DNA
cassettes containing a selectable marker, barcode sequences for tracking, a functional region for
producing mutations or genetic modifications of interest, and targeting sequences for chromoso-
mal integration via homologous recombination (Figure 1.12A) [56]. In a demonstration study,
TRMR was applied to introduce approximately 4,000 upregulation and 4,000 downregulation
gene mutations into a population of E. coli cells which were then subject to selection on corn
stover hydroyslate, allowing for identification of mutations which improve tolerance. By using
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excisable selection markers, TRMR could be executed recursively and thus may be capable of
detecting interactions between distal mutations, though results from this approach have not yet
been reported (Figure 1.12A) [56].

Background: Improving Complex Microbial Phenotypes 
• New generation of methods needed to allow elucidation and 

improvement of multigenic phenotypes 
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Figure 1.12: Examples of genome-scale phenotype improvement methods that are capable of capturing interactions
between distal genetic loci. (A) Trackable Recursive Multiplex Recombineering (TRMR). Adapted from [56]. (B)
Coexisting/Coexpressing Genomic Libraries (CoGels). Adapted from [55].

Recent advances in DNA sequencing technology and genome engineering have dramatically
increased our ability to read and write genetic information, offering unprecedented opportunities
for genome-scale research and engineering. An intriguing corollary to advances in DNA se-
quencing technology is the prospect of using whole genome resequencing to characterize genetic
adaptations in evolved microbes. Experimental evolution of microbes has long been used as a
tool for both fundamental studies of adaptation and for phenotype improvement in biotechnology
applications [51, 57]. Resequencing the genomes of evolved microbes has proven to be extremely
valuable for determining underlying mechanisms and genetic bases of adaptation, and has been
applied to range selectable phenotypes [58]. In parallel with advances in DNA sequencing, new
technologies have recently been developed for large-scale genome engineering, allowing for
vastly expanded combinatorial mutation search spaces. Multiplex automated genome engineering
(MAGE) is a key breakthrough in this area, allowing for rapid generation of combinatorial
libraries of point mutations. MAGE entails subjecting a population of E. coli cells to repeated
cycles of high efficiency homologous recombination with large libraries of mutagenic ssDNA
oligonucleotides, generating up to ≈ 109 genetic variants per day [59]. In their demonstration
study, Wang et al. used MAGE to optimize a heterologous lycopene biosynthesis pathway in
E. coli, generating 1.5x109 different genetic variants in 35 MAGE cycles (about 4 days time)
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from which variants with record-breaking lycopene yields were isolated, demonstrating the
power of this technique [59]. The scale of MAGE has recently been extended through the
development of conjugative assembly genome engineering (CAGE), enabling chromosomal
regions modified in separate cells to be merged together in a single host [60]. MAGE has also been
modified to permit construction of longer mutations (i.e. insertions > 10 bp) via the co-selection
MAGE (CoS-MAGE) method [61] and for selection of highly modified cells via co-operative
oligonucleotide co-selection [62]. While MAGE and related methods afford genome-scale
modification of existing genetic material, recent advances in DNA synthesis technologies have
enabled de novo synthesis and assembly of multigene constructs, chromosomes, and even
entire microbial genomes [63]. These new synthesis technologies will allow for bottom up de-
sign and construction of large-scale synthetic gene networks and perhaps even synthetic organisms.

A B

Figure 1.13: Multiplex Automated Genome Engineering (MAGE). (A) MAGE entails repeated cycles of high effi-
ciency multiplexed oligonucleotide recombination, enabling iterative and rapid generation of combinatorial mutation
libraries. Adapted from [59]. (B) Oligonucleotide recombination. Short oligonucleotides are targeted to the lagging
strand of replicating DNA (with the aid single-strand binding proteins; SSB) and are integrated into daughter chromo-
somes. Under ideal conditions, allelic replacement efficiencies can be >25% (fraction recombinant cells out of total
population) without selection. Adapted from [64].

Integrating approaches for both decoding and programming genomes offers much potential for
elucidating and improving the genetic bases of complex stress tolerance phenotypes. In the second
part of this dissertation, we will explore such an integrated approach for engineering isobutanol
tolerant microbes.
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1.4 Dissertation overview

The ultimate goal of this dissertation is to advance the development of cost-effective, efficient
microbial systems for conversion of cellulosic feedstocks into high-quality biofuels. Tremendous
research efforts are still needed to enable scalable and economically viable biofuel production,
and engineering of microbes with desired properties (e.g. high efficiency and robustness) remains
one of the biggest challenges [65], among others. We seek to address two major challenges in
microbial biofuel production: achieving direct microbial conversion of lignocellulosic feedstocks
to biofuel products, and improving microbial stress tolerance phenotypes to generate more robust
biofuel production hosts. In both of these areas, the underlying biochemical complexity creates
formidable obstacles for traditional engineering approaches. Ecology and evolutionary theory pro-
vide valuable frameworks for understanding complex biological systems. In this work, we weave
design principles and tools derived from ecology and evolutionary theory into powerful methodolo-
gies for engineering novel microbial systems for biofuel production. Our approaches are general
enough to be applied to a variety of organisms and biofuel products, but for proof-of-concept we
specifically focus on production of and tolerance to isobutanol, widely considered to be one of the
most promising next-generation biofuels.
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Figure 1.14: Dissertation overview. (A) Synthetic fungal-bacterial consortia for cellulosic isobutanol production. (B)
Evolutionary-genomics approach for elucidating and improve microbial stress tolerance phenotypes.

Inspired by the ubiquity and power of natural microbial consortia, the first part of this
dissertation explores a novel alternative direction for microbial biofuel production: the design
and construction of robust and tunable microbial consortia consisting of multiple specialized
species which work together to directly convert cellulose into biofuels (Figure 1.14A). The
required biological functions are divided between two specialists: a cellulolytic specialist, which
secretes cellulase enzymes to hydrolyze lignocellulosic biomass into soluble saccharides, and a
fermentation specialist, which ferments soluble saccharides into biofuel products (Figure 1.14A).
The modularity of the consortium platform offers several key advantages over the more conven-
tional approach of using a single microbe, or “super-bug”, which will be discussed in subsequent
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chapters. As a proof-of-concept, we designed, modeled, and experimentally validated a synthetic
microbial consortium for direct conversion of cellulose to isobutanol, using the fungus Tricho-

derma reesei RUTC30 as the cellulolytic specialist and isobutanol production strain Escherichia

coli NV3 pSA55/69 as the fermentation specialist (Figure 1.14A) (Chapter 2). We also identified
and characterized ecological mechanisms that permit stable and tunable consortium population
compositions, enhancing the utility of this platform for real-world bioprocessing applications
(Chapter 3).

In the second part of this dissertation, we leverage recent advances in DNA sequencing
and genome engineering technologies to decode, improve, and refactor complex microbial
stress tolerance phenotypes (Figure 1.14B). Our approach integrates experimental evolution of
stress tolerance (Chapter 4), genome re-sequencing to identify acquired mutations (Chapter 4),
genomic and functional dissection to reverse engineer mechanisms of tolerance (Chapter 4),
and multiplex genome engineering to explore a large combinatorial genotype space for further
improved variants (Chapter 5) (Figure 1.14B). We applied this methodology to study and improve
isobutanol tolerance in E. coli. We evolved multiple E. coli lineages on isobutanol spiked media
and then re-sequenced the genomes of highly tolerant isolates (Chapter 4). Through our genome
resequencing efforts and subsequent followup studies, we identified a set of synergistic genetic
loci correlated with isobutanol tolerance (Chapter 4). We also discovered a range of novel
mechanisms of tolerance, most notably remodeling of the cell envelope to counteract deleterious
effects of isobutanol and adaptations involving the E. coli stress response (Chapter 4). In the final
stage of this project, we used multiplex genome engineering to perform targeted mutagenesis of
candidate genetic loci, enabling rapid exploration of vast genotype spaces for improved variants
(Chapter 5). Highly tolerant strains were isolated from mutant libraries and further characterized
via detailed phenotype and genotype analysis, providing valuable insights into biochemical and
genetic mechanisms of isobutanol tolerance, as well as generating highly tolerant E. coli strains
that may be immediately useful for isobutanol production (Chapter 5).
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for production of cellulosic biofuels and

commodity chemicals

25



CHAPTER 2

Design and construction of synthetic T. reesei / E. coli
consortia for direct conversion of cellulose to

isobutanol

2.1 Summary

In nature microbes usually live in synergistic communities in which individual species with
specialized roles cooperate to perform complex tasks. The powerful features of natural consortia
have inspired great interest in engineering synthetic consortia for biotechnology applications.
However, there are few reports of synthetic consortia being deployed in real-world applications.
In this work, we bridge ecology and evolutionary theory with engineering principles to develop
robust synthetic fungi-bacteria consortia for flexible biosynthesis of valuable products from
lignocellulosic feedstocks. The required biological functions are divided between two specialists:
the fungus Trichoderma reesei, which secretes cellulase enzymes to hydrolyze lignocellulosic
biomass into soluble saccharides, and the bacterium Escherichia coli, which metabolizes soluble
saccharides into desired products. We developed and experimentally validated a comprehensive
mathematical model for T. reesei / E. coli (TrEc) consortia, providing insights on key determinants
of performance. To illustrate bioprocessing applications, we demonstrate direct conversion
of microcrystalline cellulose and ammonia fiber expansion (AFEX) pre-treated corn stover to
isobutanol with the consortium, with titers up to 1.88 g/L and 62% of theoretical yield.

The majority of the work presented in this chapter has been submitted for publication to the
Proceedings of the National Academy of Sciences and is currently in revision: J. Minty, M. Singer,
S. Scholz, C.H. Bae, J. Ahn, C. Foster, J.C. Liao, and X. Lin. “Design and characterization of
synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass”.
In revision (PNAS), 2013.
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2.2 Introduction and background

In contrast to the CBP “superbug” paradigm, in almost all natural environments microbes live
in synergistic communities in which individual species with specialized roles cooperate to survive
and thrive together [25]. Natural microbial consortia hold many appealing properties in the context
of bioprocessing, such as stability, functional robustness, and the ability to perform complex tasks
[66, 30]. Inspired by the powerful features of natural consortia, there is rapidly growing interest in
engineering synthetic consortia for biotechnology applications [66]. Examples include co-cultures
of genetically modified E. coli for co-fermentation of hexose and pentose sugars [33, 35, 36] or
direct conversion of lignocellulosic biomass to advanced biofuels [38], synthetic S. cerevisiae con-
sortia for assembly of extracellular minicellulosomes and direct production of cellulosic ethanol
[40], and a co-culture of A. fermentans and genetically engineered S. cerevisiae for converting lig-
nocellulose to methyl halides [32], as reviewed in Chapter 1. These examples illustrate a broader
trend of utilizing synthetic microbial consortia to compartmentalize pathways into different hosts
for individual optimization and/or demonstrate that consortia may be engineered for division of
labor to accomplish complex tasks proven difficult to achieve with monocultures.

Carbohydrate

Sacch. sp.

Ferm. sp.

Valuable chemical products

Soluble saccharides

Saccharolytic 

enzymes 

Valuab

Bioreactor

Figure 2.1: Proposed design of two-member saccharolytic/fermentation (S/F) consortia for consolidated bioprocessing
of carbohydrates into fuels or other valuable chemical products. The saccharolytic specialist produces saccharifying
enzymes that hydrolyze insoluble biomass polysaccharides into soluble mono and oligosaccharides, which are then
metabolized by the fermentation specialist into desired products.

As an alternative to conventional approaches for engineering microbes for biofuel production,
we will explore a promising new direction: engineering synthetic microbial consortia in which
different species, each specialized for a specific task, work together to convert biomass feedstocks
to fuels or other valuable products. We propose a general scheme in which the required biological
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functions are divided between two microbial specialists: a saccharolytic specialist, which produces
saccharifying enzymes to hydrolyze biomass carbohydrates into soluble saccharides, and a fermen-
tation specialist, which metabolizes soluble saccharides into desired products (Figure 2.1). From
an engineering standpoint, pursuing a microbial consortium approach of compartmentalizing each
of these functionalities into separate organisms appears to be much more tractable than attempting
to integrate all of them into a single host. The notion of using mixed microbial cultures to convert
biomass carbohydrates into fuels or other products is not new, and has come in and out of vogue
in bioprocessing research multiple times over the past few decades. Thus the general approach
of using two-member saccharolytic/fermentation (S/F) mixed cultures (Figure 2.1) has been tried
a number of times; various examples are given in Table 2.1. While these studies provide valu-
able proof-of-concept demonstrations, numerous barriers remain to utilizing synthetic consortia
for CBP applications.

Product Saccharolytic sp. Fermentation sp. Substrate Yield∗

(g/g)
Titer
(g/L) Notes and source

Ethanol Kluyveromyces fragilis
LOCK 0027

Zymomonas mobilis
3881

Jerusalem artichoke
(inulin) 0.48 99 [67]

Fusarium oxysporum F3 Saccharomyces
cerevisiae 2541

Sweet sorghum
(glucose, sucrose,

lignocellulose)
0.46 49 [68]

Clostridium thermocellum
M1570

Thermoanaerobacterium
saccharolyticum ALK2 Avicel (cellulose) 0.41 38.1 Rich media; [19]

Acremonium cellulolyticus
C-1

Saccharomyces
cerevisiae ATCC 4126 Solka Floc (cellulose) 0.18 46.3 Rich media; [69]

Trichoderma reesei
RUTC30

Saccharomyces
cerevisiae Y1

Glucose and Solka
Floc (cellulose) 0.27 40 Rich media with

added glucose; [70]

Butanol Bacillus subtilis WD 161 Clostridium butylicum
TISTR 1032 Cassava starch 0.17 6.7 Rich media; [71]

Clostridium thermocellum
ATCC 27405

Clostridium saccha-
roperbutylacetonicum

N1-4
Avicel (cellulose) 0.2 7.9 Rich media; [72]

Table 2.1: Examples of two-member saccharolytic/fermentation (S/F) consortia for producing biofuels from carbohy-
drates. ∗Yields given as g product / g estimated total carbohydrates consumed.

Most of the studies listed in Table 2.1 employ culture conditions and methods that are neither
practical nor economical for industrial biofuel or chemical production. For instance, many of
these studies use rich media containing costly supplements (e.g. yeast extract, peptone, amino
acids, etc.), very high (>10% v/v) inoculation volumes, and in the case of cellulose, utilize
model substrates instead of real biomass. Furthermore, many these prior works employ sequential
inoculation schemes in which the saccharolytic specialist is cultured on the feedstock for a period
of time before inoculating with the fermentation specialist; frequently the culture conditions
are chosen to favor the saccharolytic organism at the beginning of the fermentation and then
later modulated to favor the fermentation specialist. Such sequential inoculation strategies are
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advantageous when the saccharolytic and fermentation specialists have different physiological
and environmental preferences, and work well in bench-scale systems. However, sequential
inoculation poses drawbacks for process scale-up. For batch fermentations, sequential inoculation
requires preparation of inoculum cultures for each new batch, as opposed to the more cost-effective
approach of recycling a fraction of the previous batch as inoculum for new batches (known as
cell-recycling or repeated-batch fermentation). Additionally, sequential inoculation would be
difficult to deploy in a continuous process, and would most likely require separate sequential
bioreactors for the saccharolytic and fermentation specialists, respectively. This configuration
would result in substantially increased costs compared to a single bioreactor CBP scheme (indeed,
such a sequential bioreactor setup closely resembles an SSF or SSCF process). Finally, it is well
known that mixed cultures created by arbitrarily combining different species are often unstable
[45]; very few prior studies of S/F consortia have investigated the stability of these systems.

In addition to the above practical considerations, at a more fundamental level our limited
understanding of the dynamics and interactions of microbial populations impedes the deployment
of synthetic consortia for real-world applications. Evolutionary and ecology theory provides a
framework to understand the population dynamics and stability of microbial consortia [47]. In
this work, we bridge evolutionary and ecology theory with engineering principles to conduct
an in-depth theoretical and experimental analysis of two-member S/F consortia for consolidated
bioprocessing of lignocellulosic feedstocks. As a model system, we implemented a consortium
for lignocellulose CBP consisting of the cellulolytic fungus Trichoderma reesei RUTC30 and
Escherichia coli as a fermentation specialist. We developed a comprehensive mathematical model
for T. reesei-E. coli (TrEc) consortia, semi-mechanistically capturing salient features and allowing
us to elucidate key behaviors and ecological interactions. To illustrate the bioprocessing potential
of this consortium, we demonstrate direct conversion of microcrystalline cellulose and pretreated
corn stover to isobutanol by deploying an isobutanol producing E. coli strain as the fermentation
specialist. Without costly nutrient supplementation, we achieved titers up to 1.86 g/L and yields
up to 62% of the theoretical maximum, which represent the highest reported to date for conversion
of cellulosic substrates to next-generation biofuels. While we offer isobutanol production as a
proof-of-concept application, the modularity of our system allows it to be readily adapted to the
large portfolio of existing metabolically engineered E. coli strains to produce a wide range of
biofuels or commodity chemicals.

In the next three sections, we provide a brief background on microbial cellulose hydrolysis and
cellulolytic microbes, and discuss the selection of our model T. reesei-E. coli (TrEc) system.
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2.2.1 Microbial cellulose hydrolysis

Lignocellulose is highly recalcitrant to degradation, hindering biological utilization. Natural cel-
lulolytic microbes produce sophisticated enzyme systems called cellulases and hemicellulases that
effectively hydrolyze cellulose and hemicellulose, respectively [14]. Microbial cellulase systems
are complex, and exhibit a great deal of variation between different organisms [14]. In all cases,
cellulase systems consist of a set of enzymes that work cooperatively to hydrolyze cellulose and/or
hemicellulose [14]. The most important enzyme components of cellulase systems are endoglu-
canases, exoglucanases, and β-glucosidases (Figure 2.2). Endoglucanases bind to insoluble cellu-
lose (> 4 glucose units for crystalline cellulose) and hydrolyze internal β(1→ 4) bonds, liberating
two shorter cellulose fragments [14] (Figure 2.2). Exoglucanases processively hydrolyze sugar
units (usually glucose or cellobiose, a β(1→ 4) disaccharide) from the ends of cellulose polymers
[14] (Figure 2.2). β-glucosidases hydrolyze soluble cellulose oligosaccharides to yield glucose
[14] (Figure 2.2). Organisms usually produce many different variants of each enzyme type. There
is a great deal of synergy and cooperativity between the individual components of cellulase sys-
tems, and oftentimes the overall hydrolysis rate depends on the ratio of each component in the
system (i.e. maximum hydrolysis rate is achieved at an optimal ratio)[14].

Figure 2.2: Microbial cellulase systems. Generalized depiction of (A) non-complexed and (B) complexed cellulase
systems. The solid squares represent reducing ends, and the open squares represent non-reducing ends. Adapted from
[14].
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Microbial cellulase systems can be broadly classified as either non-complexed (Figure 2.2A)
or complexed (Figure 2.2B) systems. In non-complexed cellulase systems, which are common
among aerobic cellulolytic organisms, free cellulase enzymes are secreted from the cell into the
external environment [14]. In complexed cellulase systems, cellulase enzymes are linked together
via a scaffolding protein that remains attached to the cell surface, forming a complex known as a
cellulosome [14]. In general, complexed cellulase systems have a higher specific activity (rate con-
stant per unit mass protein) than non-complexed cellulase systems [14]. Microbes with complexed
cellulase systems are thought to have selective access to cellulose hydrolysis products, due to the
proximity of the cell to the substrate surface (Figure 2.2B) [14]. The mechanisms and kinetics of
cellulase systems are not yet fully resolved, and still represent an active area of research. There
is yet more uncertainty in the understanding of cellulose hydrolysis at the microbial level vs. the
enzymatic level [15]. It is widely observed that cellulose hydrolysis rates are much higher in the
presence of cellulolytic microbes compared to hydrolysis rates observed with isolated cellulase
components, especially for organisms with complexed cellulase systems [14]. Furthermore, al-
though complexed cellulase systems have a higher specific activity than non-complexed systems,
organisms producing complexed cellulase systems are not generally superior cellulose utilizers.
Complexed cellulase systems are typically produced by anaerobic organisms, and protein pro-
duction is limited in such organisms due to the low energy conversion efficiency of anaerobic
metabolism (i.e. ATP production via substrate level phosphorylation) [14]. In contrast, aerobic
metabolism affords much higher energy yield (ATP production via oxidative phosphorylation),
and consequently protein yield from substrate is much higher for aerobic metabolism [14, 9]. The
higher production rates and yields of cellulase enzymes in aerobic organisms probably compen-
sates for the lower specific activity of non-complexed cellulase systems. Indeed, at an ecological
level, it has been repeatedly observed that cellulose hydrolysis proceeds much more rapidly in
aerobic environments compared to anaerobic conditions [73].

2.2.2 Selection of the cellulolytic consortium member

Due to the inherent difficulties in expressing and secreting complex cellulase systems in non-native
hosts (reviewed in Chapter 1), we propose selecting a native cellulase producing organism as the
base strain for a cellulolytic consortium member. Selection of a base species for the cellulolytic
consortium member requires careful consideration of organism physiology as well as engineering
requirements. A primary criterion is efficient cellulase production and overall rapid cellulose
degradation with minimal nutrition requirements. Other important criteria that need to be ac-
counted for include physiological and ecological compatibility with the fermentation consortium
member, and availability of genome sequences and molecular biology tools to facilitate further
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engineering of the cellulolytic specialist (which may be necessary in later development stages
of the consortium technology). Physiological compatibility is a key determinant in the overall
consortium design - the consortium members need to grow well and perform their specialized
tasks in the same environment, and therefore must be compatible in terms of preferences for
pH, environmental redox state, temperature, nutrients, etc. The specialist organisms must also
be compatible from an ecological standpoint (e.g. neutral or symbiotic interactions with minimal
antagonism). Ideally, both consortium members should be tolerant to anticipated environmental
stresses (including inhibitors present in the feedstock, and accumulation of toxic biofuel products,
such as isobutanol). The ideal cellulolytic consortium member would meet all of the above
criteria for productivity, compatibility, and stress tolerance requirements, however such an
ideal organism may not exist in nature. For the cellulolytic specialist, we will therefore focus
on selecting a relatively well-characterized organism (with available molecular biology tools),
which meets our productivity/compatibility criteria to the greatest extent possible; if needed, such
an organism could be engineered for further improvement of other properties (e.g. stress tolerance).

Energy metabolism, a key issue concerning the consortium culture environment, merits
further discussion. Broadly speaking, microbial energy metabolism can be divided into anaerobic
metabolism, aerobic metabolism, and microaerobic metabolism [9]. Anaerobic metabolism
involves the production of ATP via substrate level phosphorylation, resulting in low ATP yield
per unit substrate and the concomitant production of reduced terminal metabolites (anaerobic
oxidative phosphorylation utilizing alternative electron acceptors, such as nitrate, is also possible
but less relevant to the proposed microbial system) [9]. In contrast, aerobic metabolism is
characterized by ATP generation via oxidative phosphorylation (utilizing oxygen as a terminal
electron acceptor), resulting in high ATP and biomass yield from substrates and production of
CO2 and H2O as metabolic byproducts [9]. Microaerobic metabolism varies between organisms
and often exists as a superposition of aerobic and anaerobic metabolic states.

Many biofuels are produced via anaerobic metabolic pathways. For instance, ethanol is
produced as the terminal metabolite of glucose fermentation via the Embden-Meyerhof-Parnas
pathway of S. cerevisiae [9]. It is tempting to conclude that an anaerobic environment will be
essential for the proposed microbial consortium to work efficiently. However, many promising
next-generation biofuels and commodity chemicals (such as isoprenoids and fatty-acid derived
hydrocarbons) are produced through biosynthetic non-fermentative pathways with substantial
ATP and NADPH requirements, and thus it may actually be more efficient to produce these
products aerobically. Furthermore, a strictly anaerobic consortium may have some fundamental
disadvantages regarding cellulose hydrolysis and product yields. The low energy efficiency of
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anaerobic metabolism limits protein production (and thus production of cellulase/cellulosomes)
from substrates. In contrast, cellulase yield from substrate is much higher under aerobic conditions
due to the high ATP yield from oxidative phosphorylation. The analysis of anaerobic vs. aerobic
cellulose hydrolysis is obfuscated by the fact that complexed cellulase systems typical of anaerobic
organisms usually have a much higher specific activity than the non-complexed cellulase systems
of aerobic organisms [14]; this factor can potentially ameliorate the effects of decreased protein
yield under anaerobic conditions. There are conflicting opinions in literature as to whether there
are differences in aerobic or anaerobic microbial cellulose hydrolysis rates [14, 15, 73]; however,
as discussed previously, it is widely observed in nature that cellulose degradation proceeds
more rapidly in aerobic environments compared to anaerobic environments. In principle, the
highest microbial cellulose hydrolysis rates could be achieved by maximizing both production
of cellulases and maximizing the catalytic activity of cellulase systems. Such an approach could
involve heterologous expression, secretion, and assembly of a highly active anaerobic cellulosome
by an aerobic organism, or protein engineering of aerobic cellulase systems to maximize specific
activity; this strategy may be feasible in the long term, but there has been only limited progress to
date.

1-F
aerobic

F
aerobic

F
anaerobic

F
aerobic 

< F
anaerobic

A BS/F consortia

Aerobic cellulolytic specialist

Anaerobic

 cellulolytic specialist

Y
P/S

Y
E/S (aerobic)

Y
E/S (anaerobic)

kY
E/S (aerobic) 

> kY
E/S (anaerobic) 

 

k
aerobic

k
anaerobic

Figure 2.3: Summary of material flows and bioenergetics for CBP with (A) saccharolytic/fermentation (S/F) consortia
with an aerobic cellulolytic specialist or (B) with anaerobic cellulolytic specialist. The term F denotes the fraction
of feedstock consumed by the cellulolytic specialist, YE/S is the cellulase-substrate yield coefficient (g-enzyme/g-
substrate consumed), YP/S is the product-substrate yield coefficient (g-product/g-substrate consumed), and k is the
cellulase specific rate constant (IU/g-enzyme). Adapted from [14].
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In addition to potentially lower cellulose hydrolysis rates, the lower cell/protein yields of
anaerobic metabolism could also reduce biofuel/chemical product yields relative to an aerobic
consortium. In S/F consortia, a certain fraction of the feedstock will ultimately be consumed by the
saccharolytic specialist and used to produce cellulases with a yield of YE/S (g-enzyme/g-substrate
consumed), while the remainder will be consumed by the fermentation specialist and converted
into desired biofuel or chemical products with a yield of YP/S (g-product/g-substrate consumed)
(Figure 2.3). To create an approximate basis for comparison, let us assume that a certain minimum
mean cellulase activity level will be required for economically viable CBP (e.g. to achieve a target
cellulose hydrolysis rate). The cellulase activity produced per unit mass of substrate consumed
by the cellulolytic specialist is then kYE/S , where YE/S is as described previously and k is the
cellulase specific rate constant (IU/g-enzyme). k is usually higher for complexed cellulase systems
of anaerobic organisms compared to non-complexed cellulase systems of aerobic microbes;
however YE/S is much lower for anaerobic metabolism, and as a result kYE/S is typically lower
for anaerobic cellulolytic microbes compared to aerobic microbes. For example, kYE/S for the
well-known anaerobic cellulolytic microbe C. thermocellum is approximately 85% lower than
that of T. reesei (values calculated from [15, 74]); thus to achieve the same cellulase activity,
the fraction F of feedstock consumed by C. thermocellum would be approximately 6.7 times
that of T. reesei (Figure 2.3). Product yields from the fermentation specialist are thus expected
to be lower in an anaerobic S/F consortium relative to an aerobic system, due to the increased
fraction of feedstock that needs to be consumed by the cellulolytic specialist. However, since
the saccharolytic and fermentation specialists are competing for soluble hydrolysis products, the
partition of substrate flow between the two organisms will ultimately depend on the substrate
uptake kinetics for each microbe. Finally, we wish to note that in a CBP scheme using a
single anaerobic cellulolytic “super-bug” (e.g. ethanol production with C. phytofermentans or
C. thermocellum), substrate partition is not an issue since the desired biofuel or chemical products
are produced by the cellulolytic organism itself [14].

While an aerobic consortium has potential advantages in terms of cellulose hydrolysis
rates and partition of substrate flow between cellulolytic and fermentation specialists, aerobic
bioprocessing may incur higher operating costs compared to an anaerobic process due to the
requirement for aeration and agitation. These increased costs may be fully or partially offset
by improved productivity and yields, although a detailed technoeconomic analysis needs to be
done to fully evaluate these different bioprocessing options. Another major caveat is that the use
of an aerobic organism for the cellulolytic consortium member conflicts with the requirement
of fundamentally anaerobic metabolism for many biofuel and chemical products of interest.
We wish to point out that there possible solutions to this dilemma, namely engineering biofuel
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producing organisms to express an anaerobic metabolic phenotype under aerobic conditions.
As an example, this could be implemented by removing key steps in the respiratory chain of
a facultative anaerobe, thus disabling aerobic metabolism [75]. This approach was recently
demonstrated in E. coli by knocking out the terminal cytochrome oxidases of the respiratory
chain, and the resulting strains exhibited fermentative metabolism under aerobic conditions
[75]. Overall, based on the considerations discussed in the preceding paragraphs, we think that
utilizing an aerobic cellulolytic consortium member is a promising approach to maximizing
cellulose hydrolysis and and achieving optimal productivity. However, as a contingency to the
proposed aerobic bioprocessing platform, we will also consider anaerobic organisms as candidates.

For the fermentation specialist, we proposed using Escherichia coli as it is a well charac-
terized model organism that has been metabolically engineered to produce a wide spectrum of
biofuels and other valuable chemical products. E. coli grows well over a range reasonable of
pH and temperature values, and can be feasibly adapted to pH/temperature conditions outside
the wild-type optimal range; therefore use of this organism does not pose overly stringent
environmental constraints on the selection of the cellulolytic consortium member. After our
extensive considerations and a thorough literature review, the following organisms were identified
as prime candidates for the cellulolytic consortium specialist: Trichoderma reesei RUT-C30
(aerobic), Cytophaga hutchinsonii (aerobic), and Clostridium cellulolyticum (anaerobic).

Each of the proposed organisms meets the criteria of being a productive and prototrophic
cellulase producer, having a sequenced genome, available molecular biology tools, and anticipated
environmental compatibility with E. coli. T. reesei is a mesophilic aerobic fungus originally
isolated from decomposing organic matter in the South Pacific [14, 76]. T. reesei is notable for its
aggressive growth characteristics and native ability to secrete large quantities of non-complexed
cellulases, and is the most commonly used organism for industrial production of cellulases [14].
T. reesei is a model organism for cellulase production and has been subject to intense study for
over 50 years [14]. The RUTC30 variant is a hypercellulolytic mutant capable of producing up to
0.25 g cellulase/g substrate consumed [77]. C. hutchinsonii is a gram-negative aerobic bacterium
isolated from soil that reportedly rapidly degrades cellulose [78]. C. hutchinonii possesses
interesting mechanisms of motility that aid in colonizing insoluble lignocellulosic substrates and
may have a novel cellulase system [78]. C. cellulolyticum is a gram positive anaerobic mesophilic
soil organism [21]. The C. cellulolyticum cellulosome has been intensely investigated and serves
as a model system for mesophilic clostridial cellulosomes [21]. Clostridium cellulolyticum
produces organic acids, ethanol, and hydrogen as fermentation products [21].
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Out of the enumerated candidates, T. reesei RUTC30 appears to be the most promising
candidate. This organism is well known for its cellulolytic abilities, and has the most extensively
investigated cellulase system of all model organisms [76, 79]. T. reesei RUTC30 has increased
resistance to alcohol toxicity compared to the WT strain, which will be of great benefit for the
production of alcohol biofuels (e.g. isobutanol) [77]. The optimal temperature for T. reesei is
between 25◦C and 30◦C, fully compatible with E. coli. T. reesei grows best at pH 4 to 5.5, which
is lower than the optimal pH for E. coli (approximately 7); however, given that the pH preferences
of these organisms are not too far apart, it is quite probable that co-cultures of T. reesei and E. coli

could grow well at a consensus pH between the two optima (e.g. pH 6). Both T. reesei and E. coli

are prototrophic, requiring only mineral salts, a nitrogen source, phosphorus source, and carbon
source for growth; based on typical media recipes for these organisms, a low-cost fermentation
medium suitable for both microbes could easily be devised. In terms of ecological compatibility,
it is somewhat unorthodox to attempt co-culturing filamentous fungi and bacteria, given that many
fungi are known to produce anti-bacterial metabolites. However, it has been demonstrated that
T. reesei RUTC30 is not antagonistic towards gram negative bacteria [80].

Having discussed the selection of T. reesei RUTC30 as the cellulolytic consortium member, in
the next section we provide a brief background on isobutanol production with E. coli, the selected
fermentation specialist.

2.2.3 Isobutanol production with recombinant E. coli strains

For the fermentation specialist, we proposed using Escherichia coli since it is a well characterized
model organism that has been metabolically engineered to produce a wide range of biofuels
and other valuable chemical products. As a proof-of-concept demonstration, we will deploy
the TrEc consortium with E. coli strains metabolically engineered to produce isobutanol, which
is considered among the most promising next-generation biofuels. We will utilize isobutanol
producing E. coli strains JCL260, NV3, and NV3r1 for the TrEc consortium, which are described
briefly in this section. The James Liao lab at UCLA has recently engineered E. coli for isobutanol
production via decarboxylation and reduction of 2-ketoisovalerate, an endogenous intermediate in
valine biosynthesis [1, 3] (Figure 2.4). This was accomplished through heterologous expression of
a branched chain 2-keto acid decarboxylase (kivd from Lactococcus lactis) and a broad substrate
specificity alcohol dehydrogenase (ADH2 from S. cerevisiae) (Figure 2.4) [1] . To maximize
isobutanol yield, genetic manipulations were carried out to increase metabolic flux towards
2-ketoisovalerate, including overexpression of highly specific acetolactate synthase alsS from
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Bacillus subtilis (representing the first step in valine biosynthesis), overexpression of the valine
biosynthesis genes ilvCD, and gene deletions (∆adhE, ∆ldhA, ∆frdAB, ∆fnr, ∆pta, and ∆pflB)
to eliminate flux to competing pathways (Figure 2.4) [1]. The resulting strain, JCL260 pSA55/69,
is capable of converting glucose to isobutanol at high yield (86% of theoretical maximum) and
titer (22 g/L).
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Figure 2.4: Engineering E. coli for isobutanol production. Metabolic pathway for isobutanol production and genetic
manipulations used to create isobutanol producing strain JCL260 pSA55/69 [1].

In more recent work, the Liao lab used an evolutionary method as opposed to a rational
design strategy to develop isobutanol producing strains of E. coli [3]. By applying repeated
iterations random mutagenesis and selecting mutants with the ability to grow on glucose media
with norvaline (a toxic valine analog), strains with enhanced isobutanol production (relative to
the parental strain) were isolated [3]. The best-performing isolate, strain NV3, had a higher
growth rate and reached a higher final cell concentration than other isobutanol producing strains,
including JCL260 [3]. However, isobutanol titers for NV3 were much lower compared to JCL260
(13.6 g/L vs. 22g/L) [3]. Genome re-sequencing of NV3 was performed to investigate the
genetic basis of isobutanol production in this evolved strain. Sequencing revealed a total 208
mutations, of which 62 were synonymous single nucleotide polymorphisms (SNPs) in open
reading frames (ORFs). Mutations were distributed across many different genes and genetic
loci, representing a wide array of cellular processes including metabolism and gene regulation
[3]. A putative loss-of-function mutation was identified in master stress response regulator rpoS

[3]. Repair of the rpoS mutation (strain NV3r1) increased isobutanol titer from 13.6 g/L to 21.2
g/L, comparable to rationally engineered strain JCL260 [3]. Since isobutanol is the product of
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non-fermentative metabolism it can be produced in in the presence of oxygen, and for all three
of the strains discussed here (JCL260, NV3, NV3r1), production is optimal under microaerobic
conditions. Thus isobutanol production should be fully compatible (though not necessarily opti-
mal) with the aerobic growth requirements of T. reeesei RUTC30, the selected cellulolytic member.

Having provided background and discussion on the selection of our model T. reesei-E. coli

(TrEc) consortium, in the next section we present the results of theoretical and experimental
studies of the TrEc consortium, beginning with an overview of our modeling framework.

2.3 Results

2.3.1 Model summary

To gain insights into the behavior and ecology of the T. reesei / E. coli (TrEc) consortium,
we developed a comprehensive ordinary differential equation (ODE) modeling framework that
captures salient features of the system. We derived rate expressions for microbial growth, uptake
of soluble saccharides, production of cellulase enzymes (endoglucanase, exoglucanase, and
β-glucosidase) by T. reesei, cellulose hydrolysis based on novel mechanistic models for each
cellulase, isobutanol production by E. coli, and isobutanol toxicity (Figure 2.5A). An impor-
tant subtlety is that soluble oligosaccharides are hydrolyzed to glucose via cell-wall localized
β-glucosidases of T. reesei (Figure 2.5A) [81]. This leads to higher glucose concentration at
the T. reesei cell surface compared to the bulk media, which we estimate using a mass transfer
analysis (Figure 2.5A). The model was developed by writing differential mole/mass balances for
each species of interest (for a batch reactor), including microbial biomass (T. reesei and E. coli),
cellulase enzymes, insoluble cellulose polysaccharides, soluble oligo and monosaccharides, and
isobutanol. Our model explicitly accounts for each possible cellulose saccharide SGi

, where i is
the number of glucose monomers. Thus the total number of ODEs will depend on the degree of
polymerization (DP) distribution of SGi

, which varies between different cellulosic substrates. For
a given SGi

distribution, a total of 5 +DPmax ODEs are required, where DPmax is the maximum
DP of the cellulosic substrate. Parameter values were obtained from literature, with certain values
experimentally measured in-house (See Tables B.1 to B.3).

We provide a brief summary of our modeling framework in this section. See Appendix A for
a full description of our model, including mass transfer analysis of the T. reesei cell surface,
rate law expressions and derivations, and discussion of semi-mechanistic enzymatic cellulose
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hydrolysis models. For details regarding implementation of the model in MATLAB, see section
2.5.1.1. Note: equations numbers in this section correspond to those in Appendix A.

2.3.1.1 T. reesei model

T. reesei growth T. reesei is a multicellular filamentous fungus that has different mycelial growth
states. Vegetative growth and enzyme secretion are highly active at hyphal tips, while senescent
mycelium is relatively dormant [82]. Assuming that growth at hyphal tips follows Monod kinetics
and that T. reesei is capable of simultaneous utilization of multiple soluble sugars (i.e. glucose and
soluble glucose oligosaccharides), T. reesei growth in the presence of isobutanol can be described
with a segregated kinetic model:

dCTr,v

dt
= µTrCTr,v − kv→sCTr,v (A.40)

dCTr,s

dt
= kv→sCTr,v − kTr,dCTr,s (A.41)

In the first expression, CTr,v is the vegetative mycelium concentration (g/L), µTr is a generalized
Monod function (1/h) depending on isobutanol concentration I (g/L) and concentration of soluble
glucose saccharides SGi

(g/L; i is the degree of polymerization), and kv→s is the specific rate of
conversion of vegetative mycelium to senescent mycelium (1/h). In the second expression, CTr,s

is the concentration of senescent mycelium (g/L) and kTr,d is the specific death rate of the senes-
cent mycelium (1/h). Our formulation of µTr accounts for isobutanol toxicity and incorporates
models for maintenance substrate uptake at low concentrations (derived in section A.2.1) and in-
creased soluble saccharide concentrations at the T. reesei cell surface due to cell-wall localized
β-glucosidase (derived in section A.2.2):

KI
Tr =


(
1− I

I∗Tr

)nTr

if I ≤ I∗Tr

0 if I > I∗Tr

(A.42)
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(A.43)

with pSGi
=

SGi∑
j

SGj
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Where KI
Tr is an empirical inhibition function (dimensionless) [83], I is isobutanol concentration

(g/L), I∗Tr is the growth inhibiting concentration of isobutanol (g/L) for T. reesei, nTr is an empiri-
cally determined exponent, µmax,Tr,SGi

is maximum specific growth rate on substrate i (1/h), pSGi

is the proportion of substrate i in the total substrate concentration (SGi
/
∑

SGk
), SGi

is substrate i

concentration (g/L), KTr,SGi
is substrate i affinity (g/L), the coefficients θk→i reflect increased sol-

uble saccharide concentrations at the cell surface due cell-wall localized β-glucosidase (described
in section A.2.2), mTr is the maintenance coefficient (g-substrate/g-biomass/h), and YSGi

/CTr
is

the substrate/biomass yield coefficient for substrate i (g-substrate/g-biomass). We assume that
growth occurs via utilization of multiple substrates simultaneously, as opposed to diauxic substrate
utilization. Available experimental data suggests that this is a reasonable assumption for T. reesei,
especially the RUTC30 strain, which contains a loss-of-function mutation in catabolite repression
gene cre1 [84]. Our model assumes a total substrate maintenance requirement mTr rather than
an individual maintenance term for each substrate i; this is reasonable for substrates with similar
metabolism / energy yields (e.g. glucose and cellobiose), but could be revised for more diverse
substrates.

T. reesei enzyme secretion Assuming that enzyme secretion is stoichiometrically coupled to
growth and that composition of secreted enzymes is constant, the following expression can be
derived for cellulase production:

dET

dt
= YET /CTr

µTrCTr,v + kET
CTr,s (A.44)

dEi

dt
= xEi

dET

dt
= xEi

[
YET /CTr

µTrCTr,v + kET
CTr,s

]
(A.45)

Where ET is the total concentration of secreted enzymes (g/L), YET /CTr
is the enzyme/biomass

yield coefficient (g-protein/g-biomass), kET
is the specific enzyme production rate of senescent

mycelium (g-protein/g-biomass/h), Ei is concentration of enzyme i (g/L), xEi
is the fraction of

enzyme i in the total secretome (Ei/ET ), and the other terms are as described in previous sections.
T. reesei produces a large suite of biomass degrading enzymes, but for the purpose of our cellulose
hydrolysis model, we consider the most important enzymes [14]:

• cellobiohydrolase 1 (CBH1) and 2 (CBH2)

• endoglucanase 1 (EG1)

• β-glucosidase 1 (BGL)
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T. reesei saccharide uptake Assuming that saccharide uptake is stoichiometrically coupled to
growth of vegetative mycelium and that both vegetative and senescent mycelia consume saccha-
rides for maintenance, the following expression for saccharide uptake by T. reesei can be derived:

rTr
SGi

=
[
YSGi

/CTr
KI

TrpSGi
µmax,Tr,SGi

+mTr

] SGi

KTr,SGi
+ Si

CTr,v +mTrpSGi

SGi

KTr,SGi
+ SGi

CTr,s

(A.46)
Where rTr

SGi
is the total rate of saccharide i uptake by T. reesei (g/L/h), and all other terms are as

described previously.

2.3.1.2 E. coli model

E. coli growth We model E. coli growth with Monod kinetics [83], assuming that only glucose
is utilized for growth (i.e. glucose oligosaccharides cannot be metabolized):

dCEc

dt
= (µEc − kEc,d)CEc (A.47)

Where CEc is E. coli concentration (g/L), µEc is specific growth rate (1/h), and kEc,d is the specific
cell death rate (1/h). Our expression for µEc accounts for inhibition from isobutanol and incorpo-
rates a model for maintenance substrate uptake at low concentrations (derived in section A.2.1):

KI
Ec,SG1

=


(
1− I

I∗Ec,SG1

)nEc,SG1

if I ≤ I∗Ec,SG1

0 if I > I∗Ec,SG1

(A.48)

µEc = KI
Ec,SG1

[(
µmax,Ec,SG1

+
mEc,SG1

YSG1
/CEc

)
SG1

KEc,SG1
+ SG1

−
mEc,SG1

YSG1
/CEc

]
(A.49)

Where KI
Ec,SG1

is an empirical inhibition function (dimensionless) [83], I is isobutanol concen-
tration (g/L), I∗Ec,SG1

is the growth inhibiting concentration of isobutanol (g/L) for E. coli, nEc,SG1

is an empirically determined exponent, µmax,Ec,SG1
is maximum specific growth rate of E. coli on

glucose (1/h), KEc,SG1
is glucose affinity (g/L), YSG1

/CEc
is the glucose/biomass yield coefficient

(g-substrate/g-biomass), and mEc,SG1
is the maintenance coefficient (g-substrate/g-biomass/h).

E. coli saccharide uptake Substrate uptake is assumed to be stoichiometrically coupled to
growth. Additionally, experimental data for E. coli demonstrates non-growth associated substrate
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uptake (i.e. during stationary phase) for maintenance / isobutanol production [1]. We then model
uptake of glucose as follows:

rEc
SG1

= YSG1
/CEc

KI
Ec,SG1

µmax,Ec,SG1
SG1

KEc,SG1
+ SG1

CEc +mEc,SG1

SG1

KEc,SG1
+ SG1

CEc (A.50)

Where rEc
SG1

is the rate of total glucose uptake by E. coli (g/L/h), and the other terms are as
described previously.

E. coli isobutanol production Unlike many metabolic products, isobutanol production is not
stoichiometrically coupled to growth, since substantial isobutanol production is observed during
stationary phase [1]. To account for this, all consumed substrates, both for growth and mainte-
nance, will be assumed to be converted to isobutanol. For generality, we allow yield coefficients to
vary between growth and non-growth associated substrate uptake:

dI

dt
= Y growth

I/SG1
KI

Ec,SG1

µmax,Ec,SG1
SG1

KEc,SG1
+ SG1

CEc + Y maint
I/SG1

mEc,SG1

SG1

KEc,SG1
+ SG1

CEc (A.51)

Where Y growth
I/SG1

is the growth associated isobutanol/glucose yield coefficient (g-iBtOH/g-substrate)
and Y maint

I/SG1
is the non-growth (maintenance) isobutanol/glucose yield coefficient (g-iBtOH/g-

substrate). In the case of E. coli K12, both yield coefficients would be 0 (i.e. no isobutanol produc-
tion).

2.3.1.3 Enzymatic cellulose hydrolysis: general framework

There are numerous models reported in literature for microbial growth on cellulose [14]. However,
few of these models accounts for the hydrolysis of cellulose to soluble saccharides. Competition
between the E. coli and T. reesei for soluble saccharides is a crucial ecological interaction that
needs to be accounted for to accurately predict population dynamics, behavior, and isobutanol
production in the TrEc consortium. As a starting point for developing mechanistic models of
cellulose hydrolysis, we utilize the general framework for enzymatic cellulose hydrolysis proposed
by [14] and [85], which we describe in the following sections. Additionally, we also include
generalized soluble saccharide mole balances that describe rates of production/consumption due
to enzymatic hydrolysis and microbial uptake.
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Endoglucanase Endoglucanases adsorb at random to cellulose molecules and cleave them to
release two shorter chain polysaccharides [85]. This mechanism can be represented as [85]:

SGi
+ EEGm

KEGm
dis←−−→ SGi

· EEGm
kEGm−−−→ EEGm + SGi−j

+ SGj
(A.52)

Where EEGm is endoglucanase m, KEGm
dis is the dissociation constant for endoglucanase m (mM

bonds), kEGm is the rate constant of adsorbed EEGm (mmol bonds/g-EGm·SGi
/h), i and j are

cellulose chain lengths, with 1 ≤ j < i, SGi
· EEGm is adsorbed EEGm, and other terms are as

previously described. The rate of hydrolysis of saccharide SGi
by endoglucanase m is then [85]:

rEGm
SGi

= −kEGm [SGi
· EEGm] (A.53)

Where rEGm
SGi

is hydrolysis rate (mM bonds/h) and [SGi
· EEGm] is the mass concentration of EEGm

adsorbed to SGi
(g/L). Cellulose saccharides SGi

can be formed from endoglucanase hydrolysis of
longer cellulose molecules SGk

, with k > i. The rate of hydrolysis of SGk
to SGi

is equal to
the overall rate of hydrolysis of SGk

times the fraction of hydrolysis events that lead to a chain
length SGi

, fGk→Gi
. If all glycosidic bonds are cleaved at an equal rate, then fGk→Gi

= 2/ (k − 1),
leading to the following [85]:

rEGm
SGk

→SGi
= fGk→Gi

rEGm
SGk

= − 2

k − 1
kEGm [SGk

· EEGm] (A.54)

The overall rate of formation of SGi
by endoglucanase is then the sum of the rate of hydrolysis of

SGi
and the rate of formation of SGi

from SGk
with k > i [85]:

rEGm
SGi

= −kEGm [SGi
· EEGm]−

∑
k>i

fGk→Gi
rEGm
SGk

(A.55)

= −kEGm [SGi
· EEGm] +

∑
k>i

2

k − 1
kEGm [SGk

· EEGm] (A.56)

Where the upper limit of the summation is implicitly understood as DPmax (maximum polysac-
charide length i for given type of cellulose) and other terms are as described previously. We
developed expressions for [SGi

· EEGm] in terms of measurable variables by incorporating enzyme
mass balances and substrate binding site balances with the endoglucanase adsorption equilibria.
See section A.6.1 for derivation and final rate law expression.

Exoglucanase In contrast to endoglucanases, exoglucanases (often referred to as cellobiohydro-
lases) bind to the ends of cellulose chains and processively hydrolyze cellobiose units. Mechanis-
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tically, this can be represented as [85]:

SGi
+ ECBHm

KCBHm
dis←−−−→ SGi

· ECBHm
kCBHm−−−−→ ECBHm + SGi−2

+ SG2 (A.57)

Where ECBHm represents cellobiohydrolase m, KCBHm
dis is the dissociation constant for cel-

lobiohydrolase m (mM bonds), kCBHm is the rate constant of adsorbed ECBHm (mmol bonds/g-
CBHm·SGi

/h), SGi
· ECBHm is adsorbed EEGm, and the other terms are as described previously.

The rate of hydrolysis of saccharide SGi
by cellobiohydrolase is then [85]:

rCBHm
SGi

→SG2
= −kCBHm [SGi

· ECBHm] (A.58)

Where terms are similar to those described for endoglucanase. SGi
can also be formed from cel-

lobiohydrolase hydrolysis of i+2 chain length cellulose molecules. The overall rate of formation of
SGi

by cellobiohydrolase is then the sum of the rate of hydrolysis of SGi
and the rate of formation

of SGi
from i+ 2 saccharides [85]:

rCBHm
SGi

= −kCBHm [SGi
· ECBHm] + kCBHm

[
SGi+2

· ECBHm

]
(A.59)

Where terms are as described previously. The overall rate of formation of SG2 is the sum of
cellobiohydrolase hydrolysis rates for all saccharides SGi

for i ≥ 3 :

rCBHm
SG2

= kCBHm

∑
i≥3

[SGi
· ECBHm] (A.60)

Where the upper limit of the summation is implicitly understood as DPmax and other terms are
as described previously. Analogous to our endoglucanase deriviation, we developed expressions
for [SGi

· ECBHm] in terms of measurable variables by incorporating enzyme mass balances and
substrate binding site balances with exoglucanase adsorption equilibria. See section A.6.2 for
derivation and final rate law expression.

β-glucosidase β-glucosidase hydrolyzes cellobiose and other soluble cellulose oligosaccharides
to glucose [86]. For soluble saccharides of DP i = 2..4 this can be mechanistically represented as:

SGi
+ EBGLm

KBGLm
Gi,dis←−−−→ SGi

· EBGLm

kBGLm,Gi−−−−−−→ EBGLm + SGi−1
+ SG1 (A.61)

Where EBGLm represents β-glucosidase m, KBGLm
Gi,dis

is the dissocation constant for β-glucosidase
m (mM substrate), kBGLm,Gi

is the rate constant of adsorbed EBGLm (mmol/g-BGLm·SGi
/h), SGi

·
EBGLm is the β-glucosidase / substrate complex, and the other terms are as described previously.
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The rate of hydrolysis of SGi
or formation of SG1 is then:

rBGLm
SGi

= −rBGLm
SG1

= −kBGLm,Gi
[SGi
· EBGLm] (A.62)

For cellobiose, the coefficient before rBGLm
SG1

would be −2 instead −1 since two glucoses are
produced per cellobiose. We adopt a multi-substrate Michaelis-Menten rate law, which has been
previously shown to satisfactorily describe β-glucosidase kinetics [86]:

rBGLm
SGi

= − kBGLm,Gi
EBGLmSGi

KBGLm
M,Gi

(
1 +

SG1

KBGLm
G1

4∑
i=2

SGi

KBGLm
M,Gi

) (2.1)

Where KBGLm
M,Gi

is the Michaelis constant for SGi
(mM), KBGLm

G1
is the glucose inhibition term

(mM), and other terms are as described in previous sections. The total rate of glucose production
via β-glucosidase is then:

rBGLm
SG1

= −2rBGLm
SG2

−
4∑

i=2

rBGLm
SGi

(2.2)

2.3.1.4 Saccharide mass balances

In general, saccharide mass balances must account for both enzymatic cellulose hydrolysis and
microbial saccharide uptake. However, insoluble cellulose molecules (chain length i > 4) are not
utilized biologically. Thus for chain length i > 4 cellulose molecules, net rates of formation from
endoglucanase and cellobiohydrolase need only be considered. Writing a mass balance for each
cellulose molecule of chain length i with i > 4 yields [85]:

dSGi

dt
=
∑
m

rEGm
SGi

+
∑
n

rCBHn
SGi

for i > 4 (A.63)

Where all terms are as described previously. For the case of the T. reesei cellulase system, consist-
ing of endoglucanase 1 (EG1), cellobiohydrolase 1 (CBH1), and cellobiohydrolase 2 (CBH2),
the mass balances reduce to:

dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
for i > 4 (A.64)

Where all terms are as described previously. For soluble saccharides, microbial saccharide uptake
and β-glucosidase hydrolysis must also be considered. For a co-culture of T. reesei and E. coli,
writing a mass balance on cellulose molecules of chain length 1 ≤ i ≤ 4 yields:
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dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
+ rBGL

SGi
− 1

MWSGi

(
rTr
SGi

+ rEc
SGi

)
for 1 ≤ i ≤ 4 (A.65)

Where MWSGi
is the molecular weight of SGi

(g/mmol), and all other terms are as described
previously. Most E. coli strains cannot metabolize cellulose oligosaccharides and are thus only able
to use SG1; additionally, while it seems biologically plausible, there is little evidence to support
significant uptake and metabolism of i > 2 glucose saccharides by T. reesei. We thus reduce the
i ≤ 4 saccharide balances to:

dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
+ rBGL

SGi
for 3 ≤ i ≤ 4 (A.66)

dSG2

dt
= rEG1

SG2
+ rCBH1

SG2
+ rCBH2

SG2
+ rBGL

SG2
− 1

MWSG2

rTr
SG2

(A.67)

dSG1

dt
= rEG1

SG1
+ rCBH1

SG1
+ rCBH2

SG1
+ rBGL

SG1
− 1

MWSG1

(
rTr
SG1

+ rEc
SG1

)
(A.68)

Where all terms are as described previously.

2.3.2 Theoretical analysis of a synthetic T. reesei / E. coli consortium

Our model contains 50 parameters and includes variables for concentration of microbial biomass
(vegetative and senescent T. reesei mycelium, and E. coli), enzymes, isobutanol, soluble oligosac-
charides (one to four glucose monomers in size), and each possible cellulose polysaccharide from
degree-of-polymerization (DP) = 5 up to the maximum DP of the substrate. We performed a
global sensitivity analysis to dissect this functionally complex model and identify key parameters
controlling consortium behavior (see section 2.5.1.2). The ODEs were numerically integrated
with 1000 sets of parameter values and initial conditions (ICs) sampled from appropriate
statistical distributions (Table B.1), with latin hypercube [87] selection. For each parameter
or IC, partial rank correlation coefficients (PRCC) [87] were calculated with a set of output
metrics. The most significant parameters and ICs (p > 0.05 and |PRCC| > 0.1) are shown in
Figure 2.5B, with the same parameters/ICs labeled in Figure 2.5A; full results shown in Figure C.2.

Hierarchical clustering reveals three important sets of parameters/ICs (Figure 2.5B, colored
dendrograms). Two of the parameter/IC clusters control partition of carbon flow between T. reesei

and E. coli; parameters/ICs in cluster #1 (light blue dendrograms, Figure 2.5B) tend to be
correlated with increased proportion of carbon channeled to E. coli (positive PRCC for PC−>Ec),
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while cluster #3 (green dendrogram, Figure 2.5B) tends to be correlated with increased proportion
to T. reesei (negative PRCC for PC−>Ec). Parameters/ICs controlling PC−>Ec also influence
population composition (XEc) and isobutanol production (YI/S and QI), as would be intuitively
expected. The parameters/ICs in cluster #2 (orange dendrograms, Figure 2.5B) primarily control
the overall rates of enzymatic hydrolysis (and subsequently microbial growth), but have less
influence on PC−>Ec. Initial population composition (quantified as E. coli population fraction,
XEc(t0)) and parameters associated with microbial growth and saccharide uptake have the
strongest effect on PC−>Ec. Substrate hydrolysis rate, the limiting step for microbial growth and
isobutanol production, is highly correlated with Fa (fraction of substrate accessible to enzymes),
various initial conditions (such as initial cellulose and microbial biomass concentrations), and
enzyme kinetic parameters. In addition to parameters/ICs, we also clustered the output metrics.
The similarity between Rcel and RTr reflects the dependence of cellulose hydrolysis rate on
cellulase production by T. reesei, while the other cluster contains output metrics trivially related to
E. coli.

Isobutanol yield YI/S and productivity QI correlate the most strongly with initial population
composition XEc(t0) (Figure 2.5B; topmost row). To further investigate the effect of XEc(t0) on
isobutanol production, we examined solutions over a range of XEc(t0) (Figure 2.5C). YI/S and
QI increase with XEc(t0) while Rcel decreases with XEc(t0). These trends illustrate an inherent
tradeoff between Rcel and YI/S which arises from the competitive nature of the TrEc consortium.
Our model predicts that increasing XEc(t0) increases carbon flow to E. coli leading to increased
YI/S , while growth and subsequently cellulase synthesis by T. reesei are reduced, leading to
lower Rcel and increased fermentation times (see Figure C.1C for Rcel vs. YI/S over sensitivity
analysis sampling points). In addition to the tradeoff between Rcel and YI/S , all three output
metrics show asymptotic trends with respect to XEc(t0), approaching saturation values when
XEc(t0) ≳ 0.01 (Figure 2.5C). We note that this behavior is consistent with the reported XEc(t0)

PRCC values, since rank transformation linearizes all monotonic relationships (example shown
in Figure C.1A and B). The predicted asymptotic effect is due in part to the kinetics of microbial
saccharide uptake; the locally increased glucose concentration at the T. reesei cell surface affords
higher uptake by T. reesei compared to E. coli under conditions of low glucose concentration,
thus limiting substrate flow to E. coli. Co-culture dynamics in a sample numerical solution
(Figure 2.5D) demonstrate this effect, with E. coli reaching saturation long before T. reesei.
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Figure 2.5: Design and theoretical analysis of the T. reesei / E. coli (TrEc) consortium. (A) Schematic of TrEc con-
sortium. Key parameters, identified via sensitivity analysis (panel B), are labeled (see Appendix A and Table B.1 for
details). T. reesei produces cellulases (endoglucanase I, EGI; cellobiohydrolase I, CBHI; cellobiohydrolase II, CB-
HII) which hydrolyze cellulose to soluble oligosaccharides. Oligosaccharides are further hydrolyzed to glucose via
cell-wall localized β-glucosidase (BGL). Soluble saccharides serve as growth substrates for the microbes (cellobiose
and glucose for T. reesei; glucose only for E. coli). E. coli ferments glucose into isobutanol, which inhibits microbial
growth due to toxicity. (B) Global sensitivity analysis of TrEc consortium model. Partial rank correlation coefficients
(PRCC) between model parameters and output metrics are shown with hierarchical clustering (Ward’s method; Pear-
son correlation distance). Parameters are labeled in panel A. Output metrics: mean T. reesei growth rate (RTr; g/L/h),
mean E. coli growth rate (REc; g/L/h), mean cellulose hydrolysis rate (Rcel; g/L/h), E. coli population fraction at fer-
mentation endpoint (XEc; g/g-total microbial biomass), fraction of substrate carbon consumed by E. coli (PC−>Ec;
g/g-total), isobutanol yield (YI/S ; g/g-cellulose), and isobutanol productivity (QI ; g/g-cellulose/h). The most signifi-
cant PRCCs (p > 0.05 and |PRCC| > 0.1) are shown here; for full results see Figure C.2. (C) Theoretical analysis
of isobutanol production with the TrEc consortium. Numerical solutions were calculated over a range of XEc(t0)
values, as described in section 2.5.1. Key fermentation metrics shown (Rcel, YI/S , and QI ; as described for panel
B). Initial conditions: 20 g/L microcrystalline cellulose and 0.1 g/L T. reesei biomass. (D) Sample numerical solution
(XEC(t0) = 0.01) from the analysis in panel C, showing dynamics of total cellulose (

∑
i>4

SGi ; g/L), isobutanol (I;

g/L), total T. reesei biomass (CTr = CTr,s + CTr,v; g/L) and E. coli biomass (CEc; g/L).
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2.3.3 Comparison of experimental and modeling results for RUTC30 mono-
culture and K12/RUTC30 biculture

To study consortium ecology and validate our theoretical framework, we experimentally charac-
terized a monoculture of T. reesei and bi-culture of T. reesei / E. coli in minimal media with model
cellulose substrate. Since cellulose is insoluble and T. reesei is a multicellular organism, it is
technically challenging to independently quantify cellulose, T. reesei biomass, and E. coli biomass
in co-cultures. We ultimately developed a set of novel analytical methods to measure carbohydrate
composition and microbial biomass, which are described in section 2.5.11. E. coli K12 was used
in these co-culture studies since it is well characterized (i.e. model parameters readily available)
and is a common chassis strain. To assess the model of T. reesei growth and enzymatic cellulose
hydrolysis, we first performed a batch monoculture of T. reesei RUT30 on 20 g/L microcrystalline
cellulose (MCC) and fit the model to experimental data via a simple regression (Figure 2.6A;
regression described in section 2.5.1.4). Experimental T. reesei growth and cellulose degradation
agree with model predictions, with only minor parameter adjustments required to achieve good
fit (Figure 2.6A; section 2.5.1.4; parameter values listed in Table B.3). T. reesei growth rate
is approximately exponential until 100 hours, and then decelerates (Figure 2.6A). Our model
suggests that this growth pattern is due to changes in relative rates of cellulose hydrolysis and
T. reesei saccharide uptake over the course of the culture. Initially, cellulose hydrolysis rate is
predicted to exceed saccharide consumption by T. reesei, leading to accumulation of soluble
saccharides and saturation of T. reesei growth rate. During later stages, enzymatic saccharide
production is balanced by T. reesei uptake, with very low soluble saccharide concentrations (10−4

to 10−3 g/L) and non-exponential T. reesei growth; at this stage cellulose hydrolysis becomes the
rate-limiting step.
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Figure 2.6: Comparison of experimental and modeling results for T. reesei RUTC30 monoculture and T. reesei
RUTC30 / E. coli K12 biculture. Modeling results shown as smooth curves; experimental results shown as points.
(A) T. reesei RUTC30 monoculture on 20 g/L microcystalline cellulose (MCC). (B) T. reesei RUTC30 / E. coli K12
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The full TrEc consortium model was validated with a batch biculture of T. reesei RUTC30 /
E. coli K12 (hereafter referred to as “RUTC30/K12”) on 10 g/L MCC (Figure 2.6B). Achieving
good model fit required substantial adjustment of E. coli parameters from monoculture baseline
values (section 2.5.1.4; parameter values listed in Table B.3), suggesting major physiological dif-
ferences between biculture and monoculture growth for E. coli. Nonetheless, after regression, ex-
perimentally observed microbial growth and cellulose degradation agree with model predictions,
affirming our modeling framework (Figure 2.6B). Our model predicts that co-culturing E. coli

K12 with T. reesei RUTC30 will decrease T. reesei RUTC30 growth and cellulase production due
to competition for soluble saccharides, resulting in lower Rcel and longer fermentation time rela-
tive to a T. reesei monoculture. This predicted ecological interaction appears to be recapitulated
experimentally, with Rcel = 0.13 g/L/h and fermentation end-point time (defined as 90% cellu-
lose conversion) of 161 h for a T. reesei RUTC30 monoculture, compared to Rcel = 0.035 g/L/h
and fermentation end-point time of 216 h for a RUTC30/K12 biculture. In addition to microbial
biomass and cellulose, we also measured total protein, β-glucosidase, endoglucanase, exoglu-
canase, cellobiose, and glucose concentrations in the RUTC30/K12 biculture (Figure 2.6C&D).
Model predictions agree qualitatively well with experimentally measured enzyme concentrations
during the early phases of the biculture, but diverge later (Figure 2.6C). In contrast to model pre-
dictions, glucose accumulates as microbial growth decelerates, reaching 0.085 g/L by the end of
the culture (Figure 2.6D). Accumulation of soluble saccharides is commonly observed in batch
cultures of cellulolytic microbes [14]; this phenomena may be due to cellulose hydrolysis rate
exceeding saccharide uptake as microbial growth declines and ceases.

2.3.4 Isobutanol production with the TrEc consortium

2.3.4.1 Evaluation of different E. coli strains for isobutanol production

The studies described in the previous section establish the feasibility of co-culturing T. reesei

and E. coli and provide a partial validation of our modeling framework. As a proof-of-concept
application for the TrEc consortium, we demonstrate isobutanol production with bicultures of
T. reesei RUTC30 and isobutanol producing E. coli strains. As described in section 2.2.3, the
James Liao lab at UCLA has engineered various E. coli strains for isobutanol production, using
both rational [1] and evolutionary [3] engineering strategies. For our initial investigations, we
utilized strains JCL260 (rationally engineered; [1]), NV3 (evolved via norvaline selection; [3]),
and NV3r1 (NV3 with WT rpoS; [3]) with plasmids pSA55 and pSA69 [1]. To assess isobutanol
production under co-culture conditions, the aforementioned E. coli strains were bicultured with
T. reesei RUTC30 in screw-cap flasks with minimal media and MCC as a cellulosic substrate
(Figure 2.7A). Since our theoretical analysis suggests the initial population composition XEc(t0) is
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a key determinant of isobutanol production (Figure 2.5B), we performed co-cultures over a range
of inoculation ratios (Figure 2.7A). Co-culture isobutanol titers were relatively low and extremely
variable compared to reported performance of E. coli monocultures on glucose, especially for
strain JCL260. Strains NV3 and NV3r1 performed somewhat more consistently than JCL260,
with NV3 reaching the highest mean isobutanol titers (Figure 2.7A). Isobutanol titer tended to
increase with inoculation ratio, reaching a maximum at 0.1 or 1 Ec:Tr (gDW:gDW), depending on
the strain; however, it is difficult to identify maxima due to high variance. To further investigate
variance in isobutanol production, we performed a large number of replicate co-cultures (25 total)
with JCL260 at 0.1 Ec:Tr (gDW:gDW) inoculation fraction (Figure 2.7A). Titers varied from 0 to
1700 mg/L, with most replicates falling in a range of 0 and 400 mg/L. The co-culture environment
differs markedly from the monoculture conditions under which these isobutanol producing E. coli

strains are typically utilized, and thus there are many possible reasons for the reduced titers and
increased variance.
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Figure 2.7: Performance of JCL260, NV3, and NV3r1 in biculture with RUTC30 on MCC. (A) Meta-summary of
isobutanol titers at various inoculation ratios. Each point corresponds to a single culture. (B) Stability of plasmids
pSA55 and pSA69 in E. coli JCL260 under co-culture conditions. Fraction of cells resistant to both ampicillin (AmpR;
pSA55) and kanamycin (kanR; pSA69) was measured at each time point. Each series corresponds to single culture.
Two of the cultures (green series) were periodically supplemented with ampicillin (pSA55) and kanamycin (pSA69)
(as indicated by antibiotic bioassays) to maintain selective pressure while the other two cultures (red series) were
unsupplemented controls. (C) Stability of plasmids pSA55 and pSA69 in E. coli NV3 under co-culture conditions.
Each series corresponds to a single culture.

Plasmid instability represents a likely source of variation and reduced isobutanol titers. While
we include appropriate concentrations of ampicillin (pSA55) and kanamycin (pSA69) in our
culture media, antibiotic degradation is likely due to long culture times (i.e. >10 days). Further-
more, plasmid burden is probably higher under co-culture conditions due to low growth rates and
isobutanol toxicity, potentially increasing selective pressure for plasmid loss. We investigated
the dynamics of plasmid maintenance in JCL260 (Figure 2.7B) and NV3 (Figure 2.7C). For
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both strains, plasmid loss follows an approximately asymptotic decay pattern, with residual
plasmid maintenance levels between 20% and 50% (Figure 2.7B&C). We reasoned that antibiotic
degradation may be the primary contributor to plasmid loss, and attempted to compensate for this
by periodically supplementing ampicillin and kanamycin as indicated by a qualitative bioassay
for antibiotic activity (Figure 2.7B). However, there was no difference in plasmid maintenance
between supplemented and unsupplemented JCL260 cultures (Figure 2.7B) . Plasmid maintenance
may be higher in NV3 compared to JCL260, however we cannot assert that these differences are
statistically significant due to our limited data and high noise/error in our measurements. While
plasmid maintenance is not substantially better in NV3 compared to JCL260, NV3 co-cultures
produce higher average isobutanol titers than either JCL260 or NV3r1 co-cultures. Based on these
results, NV3 was selected for use in all subsequent experiments. It is interesting to note that the
only difference between NV3 and NV3r1 is the presence of a functional rpoS gene in NV3r1;
thus rpoS loss-of-function may contribute to improved isobutanol production in co-culture, while
conversely reducing isobutanol production in monoculture [3]. Since RpoS regulates a large
number of genes related to stress tolerance and stationary phase, the link to isobutanol production
in the co-culture environment is not immediately obvious.

In addition to plasmid stability, media composition is another factor that may affect co-culture
isobutanol production. In our early exploratory co-culture studies, we discovered that T. reesei

grows very poorly on E. coli minimal media, while conversely T. reesei minimal media (TMM)
supports reasonable E. coli growth. Therefore we use T. reesei minimal media (pH 6.0, 10 to 20
g/L substrate) for TrEc co-culture experiments. In contrast, isobutanol producing E. coli strains
are typically cultured on M9 media supplemented with trace nutrients and yeast extract (M9IP/YE
media), with glucose as a substrate. To increase titers, feeding schemes are often used wherein
cultures are periodically supplemented with concentrated feed solutions to replenish consumed
glucose and nutrients. Thus media composition differs considerably in our co-culture studies
compared to typical monoculture studies with isobutanol producing E. coli strains. TMM media
has higher Mg, Ca, and SO4 concentrations and lower Cl and PO4 concentrations relative to
M9IP/YE media. We typically perform co-culture experiments at pH 6.0 (midway between the
optima of 5.0 for T. reesei and 7.0 for E. coli), while M9IP/YE media has pH 7.0. Furthermore, we
eschew the use yeast extract or other costly nutrient supplements. While such supplements may
dramatically improve growth and isobutanol production, it would not be economically feasible
to use them in commercial production, and we think that our co-culture system should be tested
under conditions representative of actual industrial fermentations. Finally, we typically use 10 to
20 g/L carbohydrate in our co-culture studies (for sake of minimizing total culture times), while
the feeding schemes commonly used for isobutanol producing E. coli supply an equivalent of 100
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g/L or more of glucose.
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Figure 2.8: Performance of JCL260, NV3, and NV3r1 monocultures on different media. (A) Final concentrations
of major fermentation products (isobutanol, ethanol, acetate, and succinate) for NV3 on T. reesei minimal media
(TMM) with 20 g/L glucose and NV3, NV3r1, and JCL260 on M9 glucose media with trace nutrients and yeast
extract (M9IP/YE); data for M9IP/YE cultures was obtained from [3]. (B) Relative proportions of major fermentation
products for cultures from panel A. (C) Isobutanol yield for cultures from panel A.

To establish a reasonable reference for evaluating the performance of TrEc co-cultures, we
characterized the production of isobutanol and other fermentation products by NV3 on TMM
media with 20 g/L glucose as substrate (Figure 2.8A). The final isobutanol titer in TMM media
was 3.5±0.1 g/L vs. 13.6 g/L reported for NV3 on M9IP/YE with glucose feeding [3]. Titers of
other major fermentation products (ethanol, acetate, and succinate) are also lower in TMM media
compared to M9IP/YE media with glucose feeding (Figure 2.8A). As would be expected, glucose
consumption was reduced in TMM media, with approximately 14 g/L glucose consumed in 10
days compared to 57 g/L glucose in 4 days on M9IP/YE media. Interestingly, even though glucose
consumption and product titers are reduced in TMM media, relative proportion of fermentation
products (Figure 2.8B) and isobutanol yield (Figure 2.8C) are comparable between both media.
These results suggest that NV3 has a similar metabolic phenotype in both TMM and M9IP/YE
media, although substrate utilization is much lower for TMM media.

2.3.4.2 Isobutanol production with RUTC30/NV3 bicultures

To further investigate isobutanol production with the TrEc consortium, we conducted
RUTC30/NV3 bicultures on both MCC and ammonia fiber expansion [88] pre-treated corn
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stover (AFEX CS), representing model substrate and industrially relevant lignocellulosic feed-
stock, respectively. Bicultures were conducted over a series of inoculation ratios, ranging from
0.01 to 5 NV3:RUTC30 (g/g), with 20 g/L cellulosic substrate. All of the bicultures produced
isobutanol; titers varied from 0.62 to 0.79 g/L for MCC bicultures, and from 1.46 to 1.86 g/L
for AFEX CS bicultures (Figure 2.9A&C). Despite the wide range of inoculation ratios tested,
titer ranges were relatively narrow for each cellulosic substrate, supporting asymptotic behavior
predicted by the model (predicted titers shown in Figure C.1A).
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Figure 2.9: Isobutanol production with T. reesei RUTC30 and E. coli NV3 pSA55/69 bicultures (RUTC30/NV3) on
microcrystalline cellulose (MCC) and ammonia fiber expansion [88] pre-treated corn stover (AFEX CS). Bicultures
were conducted over a series of inoculation ratios, ranging from 0.01 to 5 NV3:RUTC30 (g/g), with 20 g/L cellulosic
substrate. (A) Isobutanol production in RUTC30/NV3 bicultures on AFEX CS. (B) Conversion (% carbohydrate
consumed) and isobutanol yield for major AFEX CS carbohydrates. Abbreviations: arabinose, ara; xylose, xyl;
hemicellulose derived glucose, glc; crystalline cellulose, cry cel. For reference, relative proportions of AFEX CS
major carbohydrates are shown in the stacked bar plot to right; see Table B.4 for precise composition.(C) Isobutanol
production in RUTC30/NV3 bicultures on MCC. (D) Conversion (% carbohydrate consumed) and isobutanol yield for
MCC bicultures.

In addition to assessing isobutanol production, we also characterized carbohydrate conversion
(% carbohydrate consumed) and yield YI/S . AFEX CS carbohydrates include both hemicellulose
(consisting primarily of mixed arabinose, xylose, and glucose polysaccharides) and crystalline cel-
lulose; precise composition is given in Table B.4, with relative proportions of major carbohydrates
shown in Figure 2.9B. RUTC30/NV3 bicultures achieved uniform and relatively high conversion
of AFEX CS hemicellulose carbohydrates over all inoculation ratios tested (Figure 2.9B), while
crystalline cellulose conversion was lower and tended to decline with increasing inoculation ratio
(Figure 2.9B); since crystalline cellulose makes up a large proportion of AFEX CS carbohydrates
(Figure 2.9B), total carbohydrate conversion trended with crystalline cellulose. YI/S in AFEX CS
bicultures tended to increase with inoculation ratio, due to declining conversion with relatively
constant titer (Figure 2.9B). MCC bicultures followed similar trends to AFEX CS bicultures, with
conversion declining and YI/S increasing with NV3:RUTC30 inoculation ratio (Figure 2.9D).
Carbohydrate conversion of RUTC30/NV3 bicultures was lower compared to that of the
RUTC30/K12 biculture (Figure 2.9B&D vs. Figure 2.6B), suggesting that microbial substrate
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uptake and isobutanol production stopped prematurely. Possible reasons for incomplete conver-
sion include nutrient depletion or combined toxicity of E. coli fermentation products (Figure 2.10).
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Figure 2.10: Endpoint concentrations and relative proportions of major fermentation products in T. reesei RUTC30
and E. coli NV3 pSA55/69 bicultures on AFEX pre-treated corn stover or MCC. Endpoint concentrations: (A) 20 g/L
AFEX pre-treated corn stover bicultures and (B) 20 g/L MCC bicultures. Relative proportions: (C) 20 g/L AFEX
pre-treated corn stover bicultures and (D) 20 g/L MCC bicultures.

In addition to isobutanol, we measured the end-point concentrations of other fermentation
co-products (Figure 2.10). There are considerable differences between fermentation product
distributions of RUTC30/NV3 bicultures (Figure 2.10) vs. NV3 monocultures on TMM glucose
media (Figure 2.8B). Compared to monoculture, the relative proportion of isobutanol is substan-
tially reduced while proportions of succinate, ethanol, and acetate are higher in NV3/RUTC30
bicultures, indicating an overall decline in isobutanol selectivity under co-culture conditions. In
addition to differences between monoculture and co-culture, concentrations and proportions of
fermentation products for RUTC30/NV3 bicultures varied between substrates. The concentrations
and relative proportions of succinate were notably higher in AFEX CS bicultures compared to
MCC bicultures, while the concentrations and relative proportions of ethanol and acetate were
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higher in MCC bicultures (Figure 2.10). Interestingly, the distribution of fermentation products
also varied with inoculation ratio. In MCC bicultures, the concentration and relative proportion
of succinate increases with Ec:Tr inoculation ratio, while ethanol concentrations and relative
proportions decrease (Figure 2.10B&D). For AFEX CS bicultures, the relative proportion of
isobutanol increases with Ec:Tr inoculation ratio while ethanol concentrations and relative pro-
portions decrease (Figure 2.10A&C); however the differences are slight and may not be significant.

2.4 Discussion and conclusion

2.4.1 Isobutanol production with the TrEc consortium: perspectives and fu-
ture directions

To illustrate CBP applications of the TrEc consortium, we demonstrated isobutanol production
from microcrystalline cellulose and AFEX pretreated corn stover with a biculture of T. reesei

RUTC30 and E. coli NV3 pSA55/69. Overall, the highest isobutanol titer and yield (1.86 g/L and
62% theoretical, respectively) were produced on AFEX CS with an Ec:Tr ratio of 1 gDW:gDW
(Figure 2.9A&B). These results illustrate the tremendous bioprocessing potential of the TrEc
consortium (and S/F consortia in general), as the isobutanol titers and yields obtained are the
highest reported to date for conversion of cellulosic substrates to next-generation biofuels and
were achieved without detailed optimization of culture conditions or nutrient supplementation
beyond minimal salts. Though these preliminary results are promising, isobutanol production by
the consortium is lower than model predictions, and much additional work would be needed to
achieve economically viable isobutanol titers, yields, and volumetric productivities with the TrEc
consortium.

Our model predicts that RUTC30/NV3 bicultures with XEc(t0) ≥ 0.1 and 20 g/L MCC will
reach an isobutanol titer of 2.2 g/L, corresponding to a yield of 0.11 g/g-MCC (27% theoretical;
all MCC consumed) (Figure C.1A and Figure 2.5C&D). The experimentally observed values are
lower than predicted; for RUTC30/NV3 bicultures with 0.01 ≤ XEc(t0) ≤ 5, isobutanol titers
varied from 0.62 to 0.79 g/L isobutanol, with yields of 10±2% to 18±5% of theoretical and
MCC conversions of 45±15% to 70±14% (Figure 2.9C&D). As discussed above, incomplete
MCC utilization may be due to nutrient limitations or toxicity effects. The lower than expected
isobutanol titers/yields are due in large part to reduced isobutanol selectivity of E. coli NV3
pSA55/69 under biculture conditions vs. monoculture (Figure 2.10B vs. Figure 2.8B). Based on a
mass balance of primary fermentation products, we predict that if NV3 product distributions in
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co-culture matched those in monoculture then isobutanol titers and yields would be approximately
doubled, and thus closer values predicted by our model (Figure 2.11).
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Figure 2.11: Analysis of isobutanol titers and yields in RUTC30/NV3 bicultures on 20 g/L MCC. Experimentally
observed values (i.e. from Figure 2.9C&D) are denoted by “experiment”, with model predictions as “model”. Values
denoted by “monocult dist (pred)” represent the expected titers/yields if NV3 product distributions in co-culture hypo-
thetically matched those in monoculture, and were calculated from a mass balance on primary fermentation products
(isobutanol, ethanol, acetate, and succinate). For each fermentation product j, the glucose G consumed to form prod-
uct j was calculated based on the theoretical yield coefficient Yj/G (g-product j / g-glucose): CG,j = Cj/Yj/G, where
CG,j and Cj are glucose and product concentrations, respectively. The total substrate consumed to form fermentation
products was then calculated as

∑
CG,j , and isobutanol titer was predicted as Y mono

iBtOH/G

∑
CG,j , where Y mono

iBtOH/G

is the isobutanol yield (0.25 g/g-glucose) for NV3 in monocultures. Yield was calculated by dividing the predicted
titer by the amount substrate consumed (Figure 2.9D). (A) Isobutanol titers. (B) Isobutanol yields (% theoretical, with
theoretical yield of 0.41 g-isobutanol/g-glucose).

We have not yet elucidated the reason for different NV3 product distributions between
co-culture and monoculture. The relative decrease in isobutanol may be due in part to plasmid
loss, but there are numerous other possible explanations for the observed product distributions.
We suspect that the NV3 metabolic phenotype in co-culture may differ greatly from the mono-
culture environment. For example, substrate concentrations and growth rates are much lower
under co-culture conditions compared to monoculture. Previous studies have demonstrated that
metabolite concentrations [89] and metabolic fluxes [90] in E. coli change with growth rate, thus
E. coli metabolism may be quite different under co-culture conditions. Additionally, there may be
unidentified interactions between E. coli and T. reesei that alter E. coli physiology and metabolism.
Ultimately more investigation into E. coli metabolism under co-culture conditions is needed.
We suggest that isobutanol selectivity of E. coli NV3 could be further improved via metabolic
engineering to reduce flux down competing pathways (i.e. succinate, acetate, and ethanol).
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Beyond increasing isobutanol selectivity, further development of the TrEc consortium for
isobutanol production will likely require other significant improvements to E. coli, including
investigating/improving isobutanol yields from pentose sugars (released from hemicellulose
hydrolysis), stabilizing or chromosomally integrating plasmids, and improving tolerance to
isobutanol and pretreatment inhibitors. In addition to E. coli, the performance of T. reesei will
need to be improved as well. Increasing volumetric productivity (i.e. cellulose hydrolysis rate)
and achieving complete substrate conversion will likely require increasing tolerance of T. reesei

to isobutanol and pretreatment inhibitors, and possibly increasing the catalytic efficiency of
cellulases. Once isobutanol titers are improved to >10 g/L, isobutanol toxicity is likely to
become a key factor limiting further improvements in titer and productivity. Motivated by this
issue, we investigate and improve isobutanol tolerance of E. coli in Part 2 of this dissertation.
In conjunction with organism-level improvements, conditions for co-culture fermentations will
also need to be optimized, including media composition, pH, temperature, and dissolved O2

levels. Finally, to be useful for process design, our modeling framework would need to be
expanded to include hydrolysis and microbial utilization of hemicellulose, and further refinements
are needed to improve predictive accuracy for enzyme and soluble saccharide concentrations.
Beyond the obvious improvements enumerated here, our theoretical analysis of TrEc consortium
ecology suggests other strategies for controlling and enhancing performance, which will be briefly
discussed in section 2.4.2.

2.4.2 Design and analysis of synthetic microbial consortia with ecology the-
ory

Synthetic microbial consortia are valuable model systems for fundamental biological study and
offer a plethora of potential biotechnology applications. However, our limited understanding of the
dynamics and interactions of microbial populations hinders the deployment of synthetic consortia
for real-world applications. In this work, we conducted an in-depth theoretical and experimental
analysis of synthetic Trichoderma reesei RUTC30 and Escherichia coli (TrEc) consortia and
demonstrated that the TrEc consortium could serve as a flexible system for consolidated biopro-
cessing of lignocellulosic biomass, using isobutanol production as a proof-of-concept application.
While the general concept of using two-member saccharolytic/fermentation (S/F) consortia
for consolidated bioprocessing of lignocellulosic feedstocks has been considered previously
(Table 2.1), our theoretical and experimental studies elucidated important underlying ecological
interactions and provide novel insights about the properties of the TrEc consortium. Aside
from being of fundamental interest, such insights also suggest strategies to control consortium
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performance via manipulation of ecological parameters. For instance, we demonstrate that carbon
flow partition between T. reesei and E. coli determines the tradeoff between cellulose hydrolysis
rate and product yield. Model sensitivity analysis identified key parameters controlling carbon
flow partition, which could be adjusted via genetic or environmental manipulation to optimize rate
and yield of the TrEc consortium. For example, substrate uptake kinetics of E. coli and T. reesei

play a major role in determining carbon flow partition (Figure 2.5A&B). Product yield/titer
can thus be increased by increasing the competitiveness of E. coli for glucose, for instance by
increasing growth rate, substrate affinity, the biomass-substrate yield coefficient (YSG1/CEc

), and
isobutanol tolerance, or conversely by decreasing the competitiveness of T. reesei. Volumetric
productivity can be improved by simultaneously increasing the growth rates of both T. reesei and
E. coli. While our investigation focused on the TrEc consortium as a model system, our insights
and the theoretical framework that we developed could be readily extended to S/F consortia
composed of different species and/or targeting different feedstocks (e.g. starch or inulin).

It is widely acknowledged that stability, robustness, and control of population composition
remain key challenges in engineering synthetic consortia [66, 30, 24, 47]. In the next chapter,
we identify and characterized ecological mechanisms that permit stable and tunable population
compositions in the TrEc consortium, enhancing the utility of this platform for real-world
bioprocessing applications.

2.5 Materials and methods

2.5.1 Model implementation and analysis

2.5.1.1 Implementation and numerical solutions of TrEc consortium model

The ODE modeling framework described in section 2.3.1 and Appendix A was implemented in
MATLAB (MathWorks Inc) and solved numerically using the ode15s solver. Since we write mole
balances for each possible saccharide SGi

, the total number of ODEs depends on the degree of
polymerization (DP) distribution of SGi

. For a given SGi
distribution, a total of 5 +DPmax ODEs

are required, where DPmax is the maximum DP of a given cellulosic substrate. Parameters listed
in Table B.1 and Table B.2 were used for initial modeling work; at later stages we experimentally
measured certain parameters, and also performed a simple regression analysis to estimate param-
eters from experimental data (Table B.3). Initial conditions (CEc, CTr,v, CTr,s, I , and SGi

at t0)
were chosen to be representative of typical experimental conditions. We approximate SGi

(t0) with
a log-normal distribution, which agrees qualitatively well with experimental data (e.g. see [91]):
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SGi
(t0) = Cf

(
log i;DP, σ2

DP

)
(2.3)

=
C

cv,DPDP
√
2π

e
− 1

2

(
log i−DP

cv,DPDP

)2

(2.4)

Where f
(
log i;DP, σ2

DP

)
is the probability density function of the normal distribution,

C =
∑
i>4

SGi
is total cellulose (mM), i is DP (number of glucose monomers), DP is mean DP, and

cv,DP is the coefficient of variation of DP (with σDP = cv,DPDP ).

We empirically discovered that the functions for isobutanol toxicity (KI
Ec,SG1

and KI
Tr;

equations A.48 and A.42, respectively) resulted in excessively long execution times for ode15s

and other MATLAB ODE solvers. To make model analysis tractable, we tested the effect of
different isobutanol toxicity functions on execution time. Exponential models were found to
dramatically improve execution time:

KI
Ec,SG1

= e
− I

IEc,∗ (2.5)

and

KI
Tr = e

− I
ITr,∗ (2.6)

Where IEc,∗ and ITr,∗ are isobutanol inhibition constants (g-isobutanol/L) for E. coli and T. reesei,
respectively, and other terms are as described previously. The prior models for KI

Ec,SG1
and KI

Tr

offer a better fit to experimental toxicity data, however the exponential models are still suitable
for qualitative model analysis, as they reflect monotonically declining growth rate with isobutanol
concentration.

2.5.1.2 Global sensitivity analysis of TrEc consortium model

We performed a global sensitivity analysis on the TrEc consortium model to map parameter space
to consortium performance metrics, identify key parameters controlling consortium behavior, and
quantify how parameter uncertainty affects model outputs. We applied the sensitivity analysis
strategy proposed in [87], which we describe here briefly. The TrEc consortium model was
numerically integrated with 1000 different sets of parameter values and initial conditions (ICs)
sampled from appropriate statistical distributions using latin hypercube selection (LHS) [87].
We calculated partial rank correlation coefficients (PRCC) [87] between each parameter or IC
and a set of output metrics, including mean T. reesei growth rate (RTr; g/L/h), T. reesei titer
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(CTr(tf ); g/L), mean E. coli growth rate (REc; g/L/h), E. coli titer (CEc(tf ); g/L), mean cellulose
hydrolysis rate (RCel; g/L/h), E. coli population fraction at fermentation endpoint (XEc(tf );
g/g-total microbial biomass), fraction of substrate carbon consumed by E. coli (PC→Ec; g/g-total),
isobutanol yield (YI/S; g/g-cellulose), isobutanol titer (I(tf ); g/L), and isobutanol productivity
(QI ; g/g-cellulose/h).

LHS is a stratified sampling-without-replacement technique, where random parameter dis-
tributions are divided into N equally probable intervals, which are then sampled [87]. To explore
the entire parameter range, each interval for each parameter is sampled exactly once without
replacement [87]. A matrix is generated that consists of N rows corresponding to the sample
size (i.e. total number of parameter sets), and of k columns corresponding to the total number of
varied parameters [87]. Parameter and IC values were sampled from either a normal distribution
or uniform distribution. For a normal distribution:

ai,j = F−1 (pi,j;µj, (cv,jµj)) (2.7)

Where ai,j is the value of parameter j in LHS sample i, F−1 (pi,j;µj, (cv,jµj)) is the normal inverse
cumulative distribution function, pi,j is the LHS probability for parameter j in sample i, µj is the
mean value of parameter j, and cv,j is the coefficient of variation for parameter j (with σ = cv,jµj).
For a uniform distribution:

ai,j = aj,min + pi,j (aj,max − aj,min) (2.8)

Where aj,min is the lower bound on parameter j, aj,max is the upper bound of parameter j, and
other terms are as described above.

For parameters that can be arbitrarily varied (i.e. ICs) or that have a wide range of equally
probable values, we sampled from a uniform distribution; all other parameters were sampled
from a normal distribution. Table B.1 contains a list of all investigated parameters, sampling
distribution (normal or uniform) for each parameter, and values of µj / cv,j or aj,min / aj,max.

The TrEc consortium model was numerically integrated with each set of sampled parameter
values, and the above output metrics (RTr, CTr(tf ), REc, CEc(tf ), RCel, XEc, PC−>Ec, YI/S ,
I(tf ), and QI) were calculated. LHS sampling and numerical integration were performed with
MATLAB. We performed this analysis on a high-performance computing cluster (4 cores total;
2.67 GHz Intel Xeon X5650 processors; 4 GB RAM/core). Partial Rank Correlation Coefficients
(PRCC) were calculated by rank transforming parameters and outputs, and then calculating partial
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correlation coefficients between each parameter and model output [87]. PRCC represents a robust
correlation metric for nonlinear but monotonic relationships between model inputs (parameters)
and outputs, as long as minimal correlation exists between the inputs [87]. Parameter PRCCs are
shown with hierarchical clustering (Wards method; Euclidean distance) in Figure C.2; statistically
insignificant PRCCs (p < 0.05) are set to 0.

2.5.1.3 Theoretical analysis of isobutanol production with TrEc consortium model

To simulate and analyze isobutanol production by the TrEc consortium, we numerically solved the
TrEc consortium model over a range XEc(t0) values using E. coli parameter values corresponding
to isobutanol production strains JCL260 pSA55/69 [1] or NV3 pSA55/69 [3]. YSG1

/CEc
, Y growth

I/SG1
,

Y maint
I/SG1

, kEc,d, KEc,SG1
, and mEc,SG1

values for E. coli JCL260 pSA55/69 were estimated from
data presented in [1], [2], and [3]; values for E. coli NV3 pSA55/69 were estimated from [3].
µmax,Ec,SG1

in glucose TMM media was experimentally determined for each strain (Table B.3). A
complete set of parameter values for E. coli NV3 pSA55/69 and E. coli JCL260 pSA55/69 can be
found in Table B.2.

2.5.1.4 Regression of model to experimental data

We performed a simple regression of the TrEc consortium model to experimental data obtained
from a T. reesei RUTC30 monoculture on 20 g/L Avicel and a T. reesei RUTC30 / E. coli K12
biculture on 10 g/L Avicel. We attempted to fit experimentally measured insoluble cellulose con-
centration (gDW/L), T. reesei RUTC30 biomass concentration (gDW/L), and E. coli K12 biomass
concentration (gDW/L) to model predictions. For each variable, a crude fit was evaluated as the

residual sum of squares over all time points: RSS =
tf∑

t=t0

(yexp(t)− ymodel(t))
2, where yexp(t) the

is experimental value at time t and ymodel(t) is the predicted value. Starting with the parameter
values listed in Table B.1, regression was performed by manually adjusting model parameters to
minimize RSS for each variable. For the T. reesei RUTC30 monoculture, a reasonable fit be-
tween experimental data and modeling predictions was obtained by adjusting a single parameter,
YSG1

/CTr
(Table B.3). Obtaining reasonable fits for the RUTC30/K12 biculture required adjusting

µmax,Tr,SG1
, KTr,SG1

, and YSG1
/CTr for T. reesei and µmax,Ec,SG1

, kEc,d, KEc,SG1
, YSG1

/CEc, and
mEc,SG1

for E. coli (Table B.3). In addition to cellulose and microbial biomass, we also quantified
total protein, exoglucanase, endoglucanase, β-glucosidase, glucose, and cellobiose concentrations
in the RUTC30/K12 biculture and attempted to fit our model to experimentally measured values;
attaining reasonable fit required adjusting YET /CTr

, kET
, kEG1, kCBHI , kCBH2, kBGL,G2 , kBGL,G3 ,

and kBGL,G4 (Table B.3).
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2.5.2 Strains and media

Trichoderma reesei RUTC30 was used as the cellulolytic specialist for this study. Escherichia

coli K12 MG1655 was used in T. reesei / E. coli biculture experiments for model validation and
testing cooperator-cheater dynamics. Isobutanol production experiments were conducted with
Escherichia coli JCL260 [1], NV3 [3], or NV3r1 [3] with plasmids pSA55 (ColE1 ori; AmpR;
PLlacO1::kivd-ADH2) and pSA69 (p15A ori; KanR; PLlacO1::alsS-ilvCD) [1]. E. coli strains were
propagated in NG50 media (described in Chapter 4), supplemented with antibiotics for strains
harboring pSA55/69 (100 µg/mL ampicillin and 30 µg/mL kanamycin). T. reesei monocultures,
E. coli monocultures, and T. reesei / E. coli bicultures were grown in Trichoderma minimal
media (TMM) formulated as follows (all concentrations in g/L unless otherwise noted): urea,
1; (NH4)2SO4, 4; KH2PO4, 6.59; K2HPO4, 1.15; FeSO4*7H2O, 0.005; MnSO4*H2O, 0.0016;
ZnSO4*7H2O, 0.0014; CoCl2*6H2O, 0.002; MgSO4, 0.6; CaCl2, 0.6; Tween-80, 0.0186% (v/v);
carbon source (glucose, microcrystalline cellulose, or AFEX pre-treated corn stover) as indicated.
For cultures with isobutanol-producing E. coli strains harboring plasmids pSA55/69, antibiotics
were added as described above with 0.1 mM IPTG was added for induction. For flask culture
experiments, TMM was buffered with 0.1 M maleate-NaOH at indicated pH [92]; K2HPO4 was
eliminated and KH2PO4 reduced to 1.2 g/L. LB agar [93] was used for E. coli cell counting.

2.5.3 Preparation of inoculum cultures

E. coli was inoculated from cryostock into NG50 medium (with appropriate antibiotics) and incu-
bated at 30◦C with agitation until saturated. Cultures were then inoculated 1:100 (by volume) into
TMM with 20 g/L glucose and incubated for a further 48 hours at 30◦C with agitation. To remove
residual glucose, cultures were washed by centrifuging at 12,000 rpm x 2 minutes, resuspending
in TMM without carbon source, and then repeating centrifugation/resuspension.
T. reesei RUTC30 cryopreserved conidia were inoculated into TMM with 20 g/L glucose and in-
cubated at 30◦C with agitation for 48 hours. Cultures were then inoculated 1:50 (by volume) into
TMM with indicated carbon source (microcrystalline cellulose or AFEX pre-treated corn stover)
and incubated for a further 48 hours at 30◦C with agitation.

2.5.4 Experimental measurement of µmax

µmax (maximum specific growth rate; 1/h) was measured for E. coli K12, E. coli NV3 pSA55/69,
E. coli JCL260 pSA55/69, and T. reesei RUTC30, under conditions representative of co-culture
experiments (glucose TMM media; growth temperature 30◦C). µmax was determined by fitting
growth data to an exponential model (lnC = lnC0 + µmaxt; C is cell density at time t and
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C0 is initial density). E. coli cell density was determined by measuring optical density at 600
nm (OD600); T. reesei cell density was determined via gravimetric analysis (described in section
2.5.11.1; gDW/L). Growth data was obtained by inoculating cultures in 20 g/L glucose TMM and
measuring cell density over time intervals corresponding to the exponential growth phase. E. coli

growth studies were conducted in microplates. Standard 96-well microplates were filled with 200
µL medium per well and seeded with 2 µL of prepared inoculum culture (described in preceding
section) per well. OD600 was measured every 10 minutes for 48 to 96 hours using a Spectramax
M5 or Versamax plate reader (Molecular Devices, LLC), with 30 ◦C incubation temperature and
agitation between reads. For T. reesei, we conducted growth studies using 1 L flask cultures. Flasks
were filled with 200 mL medium, seeded with 2 mL prepared inoculum culture, and then incubated
at 30 ◦C with agitation. Triplicate 10 mL samples were taken for gravimetric dry mass analysis 12,
28, 21, 24, and 27 hours after inoculation. Experimentally measured µmax values are reported in
Table B.3.

2.5.5 Characterization of isobutanol toxicity

To characterize isobutanol toxicity in E. coli and T. reesei, µmax was measured in 20 g/L glu-
cose TMM media spiked with isobutanol at various concentrations, using procedure described
in preceding section. To prevent evaporation of isobutanol from cultures, microplates (E. coli)
were sealed with an impermeable and optically clear adhesive film; flasks (T. reesei) were tightly
wrapped with parafilm (sterilized with 70% v/v ethanol). µmax values for E. coli and T. reesei at
various isobutanol concentrations are reported in Table B.3.

2.5.6 Experimental measurement of KS , YS/C , and m

2.5.6.1 Theory

Modeling and experimental results demonstrate that both growth rates and soluble saccharide (i.e.
glucose and cellodextrin) concentrations are low in T. reesei / E. coli bicultures on cellulosic sub-
strates, in contrast to saturated growth rates and high glucose concentrations in batch monocul-
ture experiments. Since KSG1

(Monod glucose affinity; g/L) is considered an extant kinetic pa-
rameter [94], it should be measured under conditions similar to the co-culture environment. We
thus chose to measure KSG1

, YSG1
/C (glucose/biomass yield coefficient; g-glucose/g-biomass), and

mSG1
(maintenance coefficient; g-glucose/g-biomass/h) with chemostat experiments; growth rate

and substrate concentrations can be precisely controlled via dilution rate, allowing us to simu-
late biculture conditions. Chemostat cultures can reach a steady state in which cell densities and
substrate concentrations are constant [83]:
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dC

dt
= 0 (2.9)

dSG1

dt
= 0 (2.10)

µ = D (2.11)

Where C is cell density, µ is specific growth rate (1/h) and D is dilution rate (media flow rate /
culture volume), and other terms are similar to those described above. For single substrate (i.e.
glucose) growth, we model µ as

µ =

((
µ,max, SG1 +

mSG1

YSG1
/C

)
SG1

KSG1
+ SG1

−
mSG1

YSG1
/C

)
(2.12)

Where all terms are similar to those described in section 2.3.1. We can then apply the above
steady-state criteria to derive relations for expressions for KSG1

, YSG1
/C , and mSG1

in chemostat
cultures:

KSG1
=

(
µmax,SG1

−D
)
SG1

D
(2.13)

and

Y app
SG1

/C =
SG1,0 − SG1

C
(2.14)

= YSG1
/C +

mSG1

D
(2.15)

Where Y app
SG1

/C is the apparent yield coefficient (g-glucose/g-cells), SG1,0 is glucose concentration
in the chemostat feed (g/L) and other terms are as described previously.

2.5.6.2 Chemostat experiments

Chemostat studies were conducted in a BioFlo 3000 bioreactor (New Brunswick Scientific), using
1.5 L, 2 L, or 2.5 L culture volumes. Glucose TMM media was used in all studies, with 4 g/L
glucose for T. reesei cultures and 0.3 g/L glucose for E. coli cultures; concentrations were chosen
to guarantee that glucose would be the sole limiting nutrient (estimated from data collected dur-
ing µmax characterization experiments). Bioreactor was maintained at pH 6, temperature 30◦C,
agitation 200 rpm, and air flow at 2 vvm (volume air per volume culture per minute) for all stud-
ies. Chemostat studies for E. coli were performed at dilution rates of D = 0.04, 0.063, 0.069,
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0.116, 0.174, 0.25, and 0.35 1/h; for T. reesei, experiments were performed at D = 0.019 and
0.04 1/h. Chemostat studies were initiated by adding prepared inoculum to bioreactor at 1:100
(E. coli) or 1:50 (T. reesei) volume ratio, and pre-culturing in batch mode for 48 hours. After 48
hours, chemostat mode was started by setting the media feed pump to produce desired dilution
rate D; a level probe was used to control the harvest pump rate and thus maintain constant culture
volume. Sigma antifoam 204 was added as needed, with 0.02% (v/v) added per supplementation.
Samples were taken in triplicate one to two times per turnover period (D−1; h). E. coli cultures
were analyzed for OD600, viable cell concentration (cells/L), total dry biomass (gravimetric anal-
ysis; gDW/L), and glucose (g/L), as per procedures described in section 2.5.11; T. reesei cultures
were analyzed for total dry biomass (gravimetric analysis; gDW/L) and glucose (g/L). Glucose
analysis samples were prepared by dispensing culture directly from the bioreactor into syringes
filled with steel beads chilled at -20◦C and then filtering through 0.22 µm membranes to sterilize;
this procedure quenches microbial metabolism, ensuring accurate measurement of low residual
glucose concentrations [95]. Steady state was assumed when biomass and glucose concentrations
stabilized to constant values (within error limits) for two to three consecutive samples. After tak-
ing steady-state samples, feed pump was adjusted to next desired dilution rate and sampling was
continued. To avoid adaptive evolution, chemostat experiments were run for < 15 turnovers. KSG1

was calculated from D, glucose concentration (SG1), and µmax. To determine YSG1
/C and mSG1

,
we collected data at various values of D and performed a linear regression of 1/D against Y app

SG1
/C ,

taking YSG1
/C as the y-intercept and mSG1

as the slope. Values of KSG1
, YSG1

/C , and mSG1
deter-

mined from chemostat studies are reported in Table B.3.

2.5.7 Bioreactor batch cultures

Batch cultures were conducted in a BioFlo 3000 bioreactor (New Brunswick Scientific) with 3 L
TMM media buffered with phosphate. Bioreactor was maintained at pH 6, temperature 30◦C, agi-
tation 200 rpm, and air flow 6.0 L/min (2 vvm). Cultures were sampled periodically and analyzed
as described in section 2.5.11 for total dry mass, carbohydrate composition, E. coli cell counts (if
applicable), total protein, β-glucosidase activity, exoglucanase activity, and endoglucanase activity.

2.5.8 Isobutanol production with E. coli monocultures

Duplicate cultures of E. coli JCL260 NV3 pSA55/69 were inoculated in 10 mL TMM media (pH
6) with 20 g/L glucose as growth substrate. All cultures were supplemented with 100 µg/mL
ampicillin, 30 µg/mL kanamycin, and 0.1 mM IPTG. Cultures were incubated in 50 mL Falcon
tubes at 30◦C with agitation. 0.1 mM IPTG was added every five days to compensate for degra-
dation. Samples were taken every two days for analysis of fermentation products, described in
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section 2.5.11.

2.5.9 Isobutanol production with RUTC30/NV3 bicultures

Duplicate T. reesei RUTC30 / E. coli NV3 pSA55/69 bicultures were inoculated in 50 mL TMM
media (pH 6) with 20 g/L microcrystalline cellulose or 20 g/L AFEX pre-treated corn stover
as growth substrate. All cultures were supplemented with 100 µg/mL ampicillin, 30 µg/mL
kanamycin, and 0.1 mM IPTG. Cultures were incubated in 250 mL screw-cap flasks at 30◦C with
agitation. 0.1 mM IPTG was added every five days to compensate for degradation. Samples were
taken every three days for analysis of fermentation products, described in section 2.5.11. Substrate
conversion and isobutanol yield were estimated via carbohydrate analysis of endpoint samples,
described in section 2.5.11.

2.5.10 Characterization of pSA55/69 stability

Four replicate T. reesei RUTC30 / E. coli JCL260 pSA55/69 co-cultures were inoculated on 10
g/L microcrystalline cellulose TMM media buffered with 0.1 M maleate-NaOH (pH 6), at a ratio
of 0.1 JCL260:RUTC30 (g/g), and cultured as described in above sections. Two cultures served
as controls, while the other two were assayed for antibiotic degradation and supplemented with
ampicillin (to 100 µg/mL) or kanamycin (to 30 µg/mL) as needed; these cultures were also sup-
plemented with IPTG (to 0.1 mM) every 5 days to compensate for degradation. Samples were
taken every 24 hours. Isobutanol concentration was determined as described in section 2.5.11,
and plasmid maintenance was assayed by performing serial dilution plating and cell counting on
non-selective LB media and LB media supplemented with 100 µg/mL ampicillin and 30 µg/mL
kanamycin; fraction of cells retaining pSA55/69 was taken as fraction of ampR / kanR cells out of
total. We devised a bioassay to assess antibiotic degradation. Co-culture supernatants were sterile
filtered and supplemented with 5x LB / 50 g/L glucose (final concentration of 1x LB / 5 g/L glu-
cose) to ensure that nutrients were not growth limiting, then incoculated with E. coli DH5α, E. coli

DH5α pSA55 (ampR), E. coli DH5α pSA56 (kanR), or E. coli JCL260 pSA55 pSA69 (ampR

/ kanR) and incubated overnight at 37 ◦C. Growth of non-resistant strains was taken to indicate
antibiotic degradation, and co-cultures were supplemented with depleted antibiotics as indicated.

2.5.11 Analytical techniques

2.5.11.1 Gravimetric analysis: flask culture samples

8 to 10 mL culture samples were washed by centrifuging at 12,000 rpm x 15 minutes, resuspend-
ing in 45 mL dH2O, and repeating centrifugation. Cell pellets were transferred to pre-weighed
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aluminum boats and dried for 24 hours at 70◦C; total dry mass was taken as the difference between
boat with cell pellet and empty boat weight.

2.5.11.2 Gravimetric analysis: bioreactor samples

Culture samples (40 mL for batch and E. coli chemostat cultures; 20 mL for T. reesei chemostat
cultures) were centrifuged at 12,000 rpm x 15 minutes and resuspended in 45 mL 20% (w/v) citric
acid. Samples were then vortexed for 1 minute and incubated at room temperature for 10 minutes
to dissolve phosphate and carbonate precipitates [19]. Samples were washed by centrifuging at
12,000 rpm x 15 minutes, resuspending in 45 mL dH2O, and repeating centrifugation. Cell pellets
were lyophilized at 0.02 millibar / -45◦C in pre-weighed tubes; total dry mass was taken as the
difference between tube with cell pellet and empty tube weight.

2.5.11.3 Total secreted protein assay

Total protein concentration in culture supernatant was measured using the Bradford assay as de-
scribed in [96], with bovine serum albumin (BSA) as a calibration standard. Undiluted, 1:10, 1:102,
and 1:103 diluted samples (in 0.15 M NaCl) were analyzed; BSA calibration standards ranged from
0 to 10 µg/mL in assay mix.

2.5.11.4 β-glucosidase assay

β-glucosidase activity was assayed using p-nitrophenyl-β-D-glucopyranoside (pNPG) as a sub-
strate, using a previously described procedure [97] with modifications. Undiluted, 1:10, and 1:102

diluted culture samples in 50 mM citrate buffer (pH 4.8) were pre-incubated at 50◦C for 5 min-
utes. Reactions were initiated by adding pNPG to 2.5 mM and incubating for 10 minutes at 50◦C
. Reactions were quenched and color developed by adding NaOH-glycine buffer (pH 10.8) to 0.2
M. Concentration of released p-nitrophenol was determined by measuring absorbance at 405 nm;
p-nitrophenol calibration standards ranged from 0 to 0.25 mM in assay mix. One international
unit (IU) of enzyme activity was defined as the amount of enzyme required to produce 1 µmol of
p-nitrophenol per minute.

2.5.11.5 Endoglucanase assay

Endoglucanase activity was assayed using carboxymethylcellulose (CMC) as a substrate, using
a previously described procedure [98] with modifications. Undiluted, 1:10, 1:102, and 1:103 di-
luted culture samples in 50 mM citrate buffer (pH 4.8) were pre-incubated at 50◦C for 5 minutes.
Reactions were initiated by adding CMC to 1% (w/v) and incubating for 30 minutes at 50◦C.
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Reactions were quenched and analyzed for reducing sugars by adding one equivalent volume of
3,5-dinitrosalicylic acid (DNS) reagent mix [98] and incubating at 95◦C for 5 minutes. Concen-
tration of 3-amino,5-nitrosalicylic acid (produced stoichiometrically from reducing sugars) was
determined by measuring absorbance at 540 nm; glucose was used as a calibration standard with 0
to 1.67 mM in assay mix. One international unit (IU) of enzyme activity was defined as the amount
of enzyme required to produce 1 µmol glucose-equivalent per minute.

2.5.11.6 Exoglucanase assay

Exoglucanase activity was assayed using microcrystalline cellulose as a substrate [99], with the
procedure otherwise identical to the endoglucanase assay.

2.5.11.7 Carbohydrate analysis

Carbohydrate analysis of co-culture samples was performed by the Great Lakes Bioenergy Re-
search Center (GLBRC); procedures are described in detail in [100]. Briefly, co-culture sam-
ples were washed and lyophilized as described in preceding sections for gravimetric analysis.
Lyophilized co-culture material was finely ground and treated with trifluoroacetic acid (TFA) to
hydrolyze the hemicellulose / matrix polysaccharide fraction [100]. The resulting soluble saccha-
rides were derivatized to alditol acetates and analyzed via GC/MS [100]. The insoluble fraction
remaining after TFA hydrolysis (consisting of crystalline cellulose, lignin, and other recalcitrant
components) was analyzed for crystalline cellulose using the Updegraff procedure [100]. Our
analysis methods cannot distinguish between carbohydrates originating in lignocellulose and those
from microbial biomass (i.e. T. reesei and E. coli ). To account for microbial carbohydrate con-
tributions, we analyzed carbohydrate composition of pure microbial biomass samples (T. reesei

RUTC30 grown on 20 g/L Avicel TMM media; E. coli K12 grown on 20 g/L glucose TMM me-
dia). Composition data for detectable carbohydrates in microbial biomass and AFEX pre-treated
corn stover (AFEX CS) are shown in Table B.4. After determining microbial biomass concentra-
tions (described below), we subtracted the microbial contribution to each measured carbohydrate:

Si,actual = Si,meas − xi,EcCEc − xi,T rCTr (2.16)

Where Si,meas is the measured concentration of carbohydrate i (arabinose, xylose, mannose, galac-
tose, hemicellulose dervied glucan, and crystalline cellulose; g/L), xi,Ec is the fraction of i in E.

coli biomass (g-i/g-Ec), xi,T r is the fraction of i in T. reesei biomass (g-i/g-Tr), Si,actual is the cor-
rected carbohydrate concentration (g/L), and other terms are as described previously. Uncultivated
media samples (Avicel or AFEX CS TMM media) were analyzed to determine initial concentra-
tion of major carbohydrates, Si|t0 (g/L); Si,actual and Si|t0 were used in calculation of conversions,
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yields, etc.

2.5.11.8 Estimation of T. reesei biomass

Mannose was selected as a biomarker for T. reesei biomass; mannose makes up a substantial frac-
tion of total T. reesei biomass while being a relatively minor component of E. coli and AFEX CS
(Table B.4). To develop a correlation between T. reesei biomass and mannose, T. reesei RUTC30
was cultured on 20 g/L Avicel TMM media and samples were taken periodically for carbohydrate
analysis. T. reesei fraction of total dry mass (XTr; g/g-total) was found to be linear with man-
nose fraction of total mass (Xmann; g/g-total), with XTr = 15.02Xmann + 0.1173 (R2 = 0.88;
σest = 0.07); results shown in Figure 2.12. T. reesei biomass concentration (g/L) is calculated as
CTr = XTrCTot, where terms are as described above.
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Figure 2.12: Correlation between T. reesei RUTC30 biomass and mannose. T. reesei RUTC30 was cultured on 20 g/L
Avicel TMM media and samples were taken periodically for carbohydrate analysis. T. reesei mass fraction (i.e. non-
cellulose fraction; g/g-total) shown as a function of mannose mass fraction (g/g-total); R2 = 0.88 and σest = 0.07 for
linear regression.
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2.5.11.9 Estimation of E. coli biomass

E. coli biomass was estimated by cell counting (direct measurement of viable cell concentration) or
via subtractive mass balance (indirect measurement of total cell concentration). For cell counting,
10 fold serial dilutions of culture samples were prepared and 100 µL aliquots plated onto LB agar;
to determine pSA55/69 cell counts, LB agar was supplemented with 100 µg/mL ampicillin and 30
µg/mL kanamycin. Plates were incubated at 37◦C overnight and counted. An estimated cell mass
of 1.5x10−13 g/cell (determined from chemostat experimental data) was used to convert cells/L to
gDW/L. To estimate E. coli biomass via mass balance, we write a total mass balance on insoluble
co-culture components and solve for E. coli biomass concentration:

CEc =
CTot −

∑
Si,meas − (1−

∑
xi,T r)CTr − Cres

1−
∑

xi,Ec

(2.17)

Where CTot is the total dry mass concentration (gDW/L), Cres is the residual insoluble fraction
(i.e. undegraded lignin, etc; g/L), and the other terms are as defined previously.

2.5.11.10 Quantification of soluble saccharides and fermentation products

Isobutanol and soluble saccharide concentrations (> 50 mg/L) were quantified using high perfor-
mance liquid chromatography (HPLC). Culture samples were incubated at 99◦C for 10 minutes to
thermally denature enzymes, and then filtered through a 0.22 µm membrane. Samples were then
analyzed on an Agilent 1100 HPLC equipped with a Rezex ROA ion-exchange column, using 5 µL
injection volume, 60◦C column temperature, 0.005N H2SO4 mobile phase at 0.5 mL/min, and a
refractive index detector (RID) for analyte quantification. Soluble saccharide concentrations in the
range from 5 to 50 mg/L were quantified using hexokinase-based assays. Glucose was quantified
with a D-Glucose HK kit (Megazyme Internatonal, cat #K-GLUHK) following manufacturer’s
protocol, but with reagent and sample volumes scaled down by a factor of 10. Oligosaccharide
concentrations were measured via enzymatic hydrolysis to glucose and subsequent glucose quan-
tification. Oligosaccharides were hydrolyzed by combining samples with an equivalent volume
of 2 IU/mL A. niger β-glucosidase (Megazyme International) in 0.1 M acetate buffer (pH 4) and
incubating at 49◦C for 20 minutes. Samples were neutralized with 1 M NaOH and then assayed
for glucose as described above. For chemostat studies, where glucose concentrations ranged < 5

mg/L, glucose was quantified using a fluorometric glucose assay kit (BioVision, cat #K606) fol-
lowing manufacturers protocol; depleted chemostat media was used as a blank and for preparation
of calibration standards.
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2.5.11.11 Identification of unknown fermentation products

HPLC analysis of T. reesei RUTC30 / E. coli NV3 pSA55/69 bicultures revealed numerous fer-
mentation products. The four most abundant products have retention times (RT) of 15.4, 19.1,
26.3, and 39 minutes, collectively representing > 75% of the total peak area. We identified and
quantified these products by running calibration standards for candidate compounds; candidates
were selected on basis of expected fermentation products and a manufacturer-supplied RT index
for the Aminex HPX-87H column (equivalent to Rezex ROA column; US/EG Bulletin 1847, Bio-
rad) . The RT 15.4, 19.1, 26.3, and 39 min peaks were subsequently identified as succinate, acetate,
ethanol, and isobutanol, respectively.
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CHAPTER 3

Exploiting cooperator-cheater dynamics to develop
novel mechanisms for stabilizing and tuning T. reesei

/ E. coli consortia

3.1 Summary

Synthetic microbial consortia with tunable and stable populations are highly desirable for biotech-
nology applications, but it has proven challenging to engineer consortia with these properties. In
the previous chapter, we developed a synthetic T. reesei / E. coli (TrEc) consortium for consoli-
dated bioprocessing of lignocellulosic biomass. As a continuation of this work, we identify and
characterize ecological mechanisms that permit stable and tunable population compositions in the
TrEc consortium, enhancing the utility of this platform for real-world bioprocessing applications.
We show that cooperator-cheater dynamics within the TrEc consortium lead to stable coexistence
between T. reesei and E. coli, and provide mechanisms for tuning population composition. More
broadly, we suggest that cooperator-cheater dynamics could be applied as a general tool for
designing and implementing stable and tunable synthetic consortia.

The majority of the work presented in this chapter has been submitted for publication to the
Proceedings of the National Academy of Sciences and is currently in revision: J. Minty, M. Singer,
S. Scholz, C.H. Bae, J. Ahn, C. Foster, J.C. Liao, and X. Lin. “Design and characterization of
synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass”.
In revision (PNAS), 2013.

3.2 Introduction and background

Microbial consortia have tremendous potential for biotechnology applications, particularly in
the area of bioprocessing. Microbial consortia with stable population compositions and function
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would be highly advantageous for industrial bioprocessing (as well as other applications) and
could enable lower-cost process configurations. For instance, stable microbial consortia could
be used in repeated batch fermentations (in which a fraction of the previous batch is used as
inoculum for new batches) or in continuous processes; operating costs for these configurations are
generally lower compared to standard batch fermentation. In contrast, microbial consortia with
unstable population compositions could at best only be used in standard batch processes, and each
batch would require preparation of individual inoculum cultures for each organism utilized. In
addition to stability, tunable population composition is also a highly desirable feature, as it would
allow consortia performance to be optimized and adjusted for different products, feedstocks,
and/or processing conditions. For example, in TrEc consortia the carbon flow partition between
T. reesei and E. coli determines the tradeoff between cellulose hydrolysis rate and product yield
(as discussed in section 2.3.2), and so population composition can potentially be tuned to achieve
optimal rate and yield.

Synthetic biology frequently employs a reductionist approach of “bottom-up” engineering
of biological devices from well characterized genetic parts. This powerful strategy has been
successfully extended to engineering microbial consortia. Still, it is widely acknowledged that
stability, robustness, and control of population composition remain key challenges in engineering
synthetic consortia [24, 30, 47, 66]. Addressing the aforementioned challenges requires additional
consideration of the stability of ecological interactions within engineered consortia. Evolutionary
and ecology theory provides a framework to understand the stability of social interactions in
microbial consortia, and indeed some of these theories have been empirically tested with synthetic
microbial consortia [47]. Despite this, many efforts towards engineering synthetic consortia do
not consider long-term stability. In this chapter, we seek to investigate the TrEc consortium from
an ecology and evolutionary perspective in order to identify and design mechanisms that enable
stable and tunable population compositions. In the next section, we provide a brief background on
the current state-of-the-art in population regulation in synthetic consortia.

3.2.1 Population control and coordination in synthetic consortia

3.2.1.1 Synthetic cell-cell signaling

In nature, many microbial species communicate via specific signaling compounds, often for the
purpose of sensing population levels and synchronizing behavior. Although these communication
systems may serve different functions, they are generally referred to as quorum sensing (QS)
systems [101]. A classic example is the use of N-acyl-homoserine lactone (AHL) QS signals
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by the squid symbiont Vibrio fischeri to coordinate expression of bioluminescence genes after
colonization of squid light organs [101]. V. fischeri cells produce and secrete AHLs, and once
concentrations reach a threshold level, transcription of bioluminescence lux operon is induced
[101]. Thus V. fischeri uses AHLs to coordinate population-dependent expression of the lux

operon, which is only induced after a threshold population (and thus AHL level) is reached [101].
The V. fischeri QS system ensures that bioluminescence is only induced at the high cell densities
that occur inside the squid symbiont and prevents planktonic low-density populations from
wasting cellular resources on bioluminescence [101]. Numerous other examples of QS systems in
nature abound, including both intra-species as well as inter-species signaling [101].

Several natural signaling systems have been co-opted for use in engineered genetic circuits,
thus enabling synthetic intercellular communication. Some noteworthy examples were given
in Chapter 1, including a synthetic predator-prey system (AHL signaling; Figure 1.9A) [41],
multicellular Boolean logic gates (S. cerevisiae α factor signaling; Figure 1.9C) [43], and an
oscillatory circuit synchronized across an entire cell population (AHL and H2O2 signaling) [44].
Synthetic intercellular communication has even been extended to inter-species and inter-kingdom
signaling; for example, Weber et al. employed acetaldehyde-based signaling between and among
mammalian, bacteria, yeast, and plant cells to engineer several demonstration synthetic ecosystems
[102]. Synthetic cell-cell signaling represents a valuable tool for engineering synthetic microbial
consortia. To date synthetic intercellular communication has been used to construct canonical
ecological and logic systems for proof-of-concept and fundamental study, but there are few reports
of using synthetic signaling in consortia for biotechnology applications, despite much interesting
potential. One key challenge is that synthetic genetic circuits are subject to mutational inactivation,
which often occurs in relatively few generations of growth depending on the size and host burden
of the circuit [46]. As a result, consortia with programmed intercellular communication are
frequently highly unstable and oftentimes cannot be cultivated outside of microfluidic devices,
since larger cell populations increase the probability of competitive loss-of-function mutants
[66, 103]. These stability issues need to be addressed before consortia with synthetic intercellular
communication can be developed for bioprocessing applications.
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3.2.1.2 Synthetic ecologies

Figure 3.1: Symbiotic interaction schemes for designing biofuel producing consortia. (A) Energy balance for single
biofuel producing microbe. (B) Interdependencies that could give rise to stable consortia (dual cultures shown for
simplicity). Inhibitors and activators are generalized representations of various types of molecules such as quorum
sensing (QS) signals and exchanged metabolites. Adapted from [30].

As a complement to synthetic genetic circuits and signaling, it is possible to engineer synthetic
microbial consortia wherein populations interact via ecologically stable motifs. By incorporating
designs with ecological and evolutionary stability, such systems may stably persist over long
time scales. Furthermore, in principle it should be possible to tune population composition by
modulating ecological interaction parameters (e.g. genetically or through environmental manipu-
lation). One broad means of achieving ecological stability is to engineer mutualistic interactions
between consortia members, wherein the different consortia members are interdependent on one
another. There are a number of symbiotic interaction topologies that could be used to design
synthetic consortia. Some examples relevant to consolidated bioprocessing applications include
sequential substrate utilization, co-utilization of substrate, substrate transformation, and product
transformation (Figure 3.1) [30]. We note that while the examples to be discussed in this section in-
volve two-species consortia, these general interaction patterns could be extended to more members.

In sequential substrate utilization, one species metabolizes substrate to waste products that
serve as substrate for a second species; in product transformation, the second species co-utilizes
both the primary substrate and waste products (Figure 3.1B) [30]. Sequential utilization and
product transformation interactions can be mutualistic if the waste products produced by the first
species are toxic, since the first species provides substrate for the second while the second species
aids the community by removing toxins. The product transformation approach was demonstrated
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by Bayer et al. in engineering a consortium for production of methyl halides from cellulose; the
cellulolytic microbe Actinotalea fermentans ferments cellulose to toxic waste products ethanol
and acetate, which are in turn converted to methyl halides by an engineered S. cerevisiae strain
that also presumably co-utilizes cellulose hydrolysis products (Figure 3.2A) [32]. Bernstein et

al. employed the sequential utilization scheme in engineering a two-member synthetic E. coli

consortium for serial degradation of glucose (Figure 3.2B) [104]. A primary producer metabolizes
glucose to acetate and other waste products, while a glucose-negative E. coli strain consumes
the products of the primary producer (Figure 3.2B) [104]. The consortium has higher biomass
productivity compared to monocultures of either member strain, illustrating the mutualistic nature
of the system [104]. While the product transformation and sequential substrate utilization motifs
employed in these two examples are expected to be stable, neither of these studies examined
population dynamics over long time scales.
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cellulose hydrolysis products

A
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Figure 3.2: Synthetic consortia based on mutualistic interactions. (A) Product transformation system for conversion
of cellulose to methyl halides. Actinotalea fermentans ferments cellulose to ethanol and acetate, which are in turn
converted to methyl halides by an engineered S. cerevisiae (co-utilization of cellulose hydrolysis products is also in-
ferred). Consumption of ethanol/acetate ameliorates toxicity effects on Actinotalea fermentans. Adapted from [32].
(B) Two-member synthetic E. coli consortium for sequential degradation of glucose. The primary producer metabo-
lizes glucose to acetate and other waste products, while a glucose-negative E. coli strain consumes the products of the
primary producer, alleviating inhibition and thus enhancing biomass productivity. Adapted from [105]. (C) Tunable
symbiosis between two E. coli strains auxotrophic for Trp (strain W3) and Tyr (strain Y3). Equilibrium population
composition depends on the growth requirements and export rates for each amino acid; by controlling amino acid
export rates (via transcriptional regulation of plasmid-based exporters or pathways), population composition can be
tuned. Adapted from [106].

In addition to the interaction topologies shown in Figure 3.1, cross-feeding, wherein species
are obligately interdependent on one another for nutrients or growth substrates, represents another
important class of ecologically stable interactions; substrate transformation (Figure 3.1B) is a
specific instance of this general topology. An example of cross-feeding was previously discussed
in Chapter 1, where Shou et al. engineered a synthetic cross-feeding symbiosis between two
S. cerevisiae strains (Figure 1.9B) [42]. In another noteworthy example, Kerner et al. engineered
a tunable symbiosis between two E. coli strains (Figure 3.2C) [106]. Each strain is auxotrophic
for a different amino acid, and when co-cultured the strains cross-feed each other (Figure 3.2C)
[106]. In minimal media the strains are mutually dependent on one another for survival, and the
equilibrium population composition depends on the growth requirements and export rates for each
amino acid [106]. By modulating amino acid export rates, Kerner et al. were able to tune the
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co-culture composition [106]. This study demonstrates that ecological parameters can be adjusted
to tune the population composition of a synthetic consortium. Furthermore, the cross-feeding
scheme used in this work was shown to be stable over time-scales on the order of hundreds of
generations (N. Lin, personal communication).

The synthetic consortia discussed above are all based on cooperative interactions between
different species or strains. However, other stable interaction topologies are possible, and we
have only begun to explore the full range of possible ecological designs for synthetic consortia.
Furthermore, mechanisms for population coordination have not yet been applied to biofuel
producing consortia, despite the apparent importance of this design parameter. In the next section,
we examine the TrEc consortium from an evolutionary game theory perspective and discuss
possible ecological mechanisms that may permit stable and tunable population compositions.

3.2.2 TrEc consortia: an evolutionary game theory perspective

Evolutionary and ecology theory provide a framework for understanding and predicting the
outcomes of social interactions in microbial consortia. We can apply evolutionary game theory
models from this framework to identify or design mechanisms that enable stable and tunable
population compositions in the TrEc consortium. In the context of game theory, T. reesei acts as
a cooperator and E. coli as an obligate cheater within the TrEc consortium. Cellulase secretion
by T. reesei is a cooperative behavior since cellulase production is metabolically expensive
and T. reesei does not have exclusive access to cellulose hydrolysis products. E. coli behaves
as a cheater by utilizing cellulose hydrolysis products without bearing the burden of cellulase
production. Game theory suggests that cooperators and cheaters can stably coexist provided
that cooperators receive high enough net benefits in their interactions with cheaters, a defining
feature of the so-called “Snowdrift game” [107]. Cooperator-cheater coexistance was recently
demonstrated in S. cerevisiae populations growing on sucrose (Figure 3.3) [107]. For S. cerevisiae

to utilize sucrose, this disaccharide must first be hydrolyzed by invertase [107]. Sucrose hydrolysis
occurs in the periplasmic space and 99% of the hydrolysis products diffuse before they can be
imported by the cell, thus making invertase production in S. cerevisiae a cooperative behavior
(Figure 3.3A) [107]. Experimental and theoretical studies with cooperating (invertase secreting)
and cheating (invertase negative) S. cerevisiae demonstrated that cooperator-cheater coexistance
is possible if i) cooperators have privileged access to hydrolysis products and ii) fitness benefits
are a concave function of substrate concentration [107] (Figure 3.3B&C). Furthermore, it was
demonstrated that equilibrium population composition depended on the relative the costs and
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benefits of cooperation (Figure 3.3C) [107].

A

B C

Cellobiose

Oligosaccharides

Biofuel

Cellulases

Lignocellulose

Glucose

E. coli

T. reesei

Cooperator

Cheater

D

Figure 3.3: Cooperater-cheater coexistence. Panels A, B, and C adapted from [107]. (A) Sucrose metabolism in
S. cerevisiae. Cooperator strains produce periplasmic invertase, which hydrolyzes sucrose to glucose and fructose.
99% of the hydrolysis products diffuse before they can be imported by the cell, however periplasmic localization
of invertase leads to increased glucose/fructose concentrations near cooperator cells thus affording them privileged
access. Cheater cells are invertase negative, and thus consume glucose/fructose without bearing the burden of invertase
production. (B) Defection (cheating) and cooperation payouts, PD and PC respectively, and fraction of cooperators f
at equilibrium for a linear model in which cooperation has cost c and leads to total benefits of unity that are captured
with an efficiency ϵ. This model leads to a mutually beneficial (MB) game (i.e. fixation of cooperators, f = 1) at
ϵ > c, while ϵ < c leads to a prisoner’s dilemma (PD) game (i.e. fixation of defectors). (C) A modified model with
concave benefits (α < 1; α = 0.15 in figure) yields a central region of parameter space that is a Snowdrift (SG) game
(i.e. stable coexistence of cooperators and cheaters, 0 < f < 1). (D) Characteristics of the TrEc consortium that may
give rise to cooperator-cheater dynamics.

The TrEc consortium will likely satisfy the requirements for cooperator-cheater coexistence
discussed above (Figure 3.3D). T. reesei produces cell wall associated β-glucosidases [81], which
probably afford privileged access to glucose in a manner similar to periplasmic invertase in
S. cerevisiae sucrose metabolism (Figure 3.3D). Additionally, T. reesei forms biofilms on cellulose
substrate surfaces under certain culture conditions, which could provide an additional means for
privileged access to hydrolysis products [108]. For both T. reesei and E. coli, growth rates on
soluble saccharides are approximately concave functions of concentration (e.g. Monod kinetics),
and thus the requirement for concave fitness benefits is automatically satisfied. Since equilibrium
population composition has been shown to depend on relative cooperation/cheating benefits [107],
it may be possible to modulate these parameters to tune composition. The TrEc consortium
has numerous complexities not present in the S. cerevisiae system, such as complex substrate
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hydrolysis kinetics, isobutanol production and toxicity, extremely low growth rates and soluble
saccharide concentrations, and potential unidentified interactions between T. reesei and E. coli.
In this chapter, we investigate cooperator-cheater dynamics in the TrEc consortium and explore
tuning population composition via modulation of relative cooperation/cheating benefits.

3.3 Results

3.3.1 Simplified TrEc consortium model for stability analysis

We developed an abridged model of the TrEc consortium to facilitate stability analysis and inves-
tigation of cooperator-cheater dynamics within the TrEc consortium. We model organism growth
and substrate uptake with Monod kinetics; for simplicity we neglect maintenance substrate uptake.
To reduce model complexity, we simplified cellulase kinetics to a single Michaelis-Menten rate
law in terms of total cellulose concentration and total cellulase concentration; we assume cellu-
lose is hydrolyzed to cellobiose, which is then hydrolyzed to glucose via β-glucosidase; all other
polysaccharide intermediates are lumped into the cellulose term. A description of the model is
given in the following sections.

3.3.1.1 T. reesei growth and substrate uptake

We model T. reesei growth and substrate uptake using Monod kinetics. For simplicity we neglect
different mycelium types and assume that glucose is the sole growth substrate. An important sub-
tlety is that cellobiose is hydrolyzed to glucose via cell-wall localized β-glucosidase of T. reesei

[81], as depicted in Figure 3.3. This leads to locally increased concentration of glucose at the cell
surface relative to the bulk media, thus affording privileged access to T. reesei. We performed
a mass-transfer analysis to estimate the concentration of glucose at the cell surface; see sec-
tion A.2.2 for derivation.

dCTr

dt
=

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr (3.1)

rTr
SG1

= YSG1
/CTr

µTrCTr (3.2)

= YSG1
/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr (3.3)

Where all terms are analogous to those defined in section 2.3.1.
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3.3.1.2 E. coli growth and substrate uptake

We model E. coli growth and substrate uptake using Monod kinetics:

dCEc

dt
=

µmax,EcSG1

KS,Ec + SG1

CEc (3.4)

rEc
SG1

= YSG1
/CEc

µEcCEc (3.5)

= YSG1
/CEc

µmax,EcSG1

KS,Ec + SG1

CEc (3.6)

Where all terms are analogous to those defined in section 2.3.1.

3.3.1.3 Enzyme production by T. reesei

We assume that enzyme secretion by T. reesei is directly coupled to growth:

dEcel

dt
= YEcel/CTr

µTrCTr (3.7)

= YEcel/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr (3.8)

and

dEBGL

dt
= YEBGL/CTr

µTrCTr (3.9)

= YEBGL/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr (3.10)

Where Ecel is total cellulase (i.e. endoglucanase and exoglucanase) concentration (g/L), EBGL

is total β-glucosidase concentration (g/L), YEcel/CTr
is the cellulase / biomass yield coeffi-

cient (g-cellulase/g-biomass), YEBGL/CTr
is the β-glucosidase / biomass yield coefficient (g-β-

glucosidase/g-biomass) and other terms are as defined in section 2.3.1. Due to the direct coupling
between T. reesei growth and enzyme production, we can write enzyme concentration as:

Ecel = YEcel/CTr
CTr (3.11)

EBGL = YEBGL/CTr
CTr (3.12)
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3.3.1.4 Cellulose hydrolysis

We describe cellulase kinetics using a Michaelis-Menten rate law. For simplicity we neglect dif-
ferent types of cellulases, declining reactivity with conversion, and product inhibition, and lump
all polysaccharides into a single cellulose concentration variable:

rcelSG2
= −rcelC =

kcelEcelSC

KM,cel + SC

(3.13)

Where rcelSG2
is cellobiose production rate (g/L/h), rcelC is cellulose hydrolysis rate (g/L/h), kcel is

the rate constant (g/g-cellulase/h), SC is total cellulose concentration (all polysaccharides with
DP > 2; g/L), and KM,cel is cellulase affinity (g/L).

3.3.1.5 Cellobiose hydrolysis

We describe β-glucosidase kinetics using a Michaelis-Menten rate law:

rBGL
SG1

= −rBGL
SG2

=
kBGLEBGLSG2

KM,BGL + SG2

(3.14)

Where rBGL
SG1

is glucose production rate (g/L/h), kBGL is the rate constant (g/g-β-glucosidase/h),
KM,BGL is β-glucosidase affinity (g/L), and other terms are as described in section 2.3.1.

3.3.1.6 Cellobiose mass balance

We write a mass balance on cellobiose accounting for production via cellulose hydrolysis and
consumption via β-glucosidase hydrolysis:

dSG2

dt
= rcelSG2

− rBGL
SG2

(3.15)

=
kcelEcelSC

KM,cel + SC

− kBGLEBGLSG2

KM,BGL + SG2

(3.16)

Where all terms are as described in section 2.3.1.

3.3.1.7 Glucose mass balance

We write a mass balance on glucose accounting for production via cellobiose hydrolysis and mi-
crobial consumption:
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dSG1

dt
= rBGL

SG1
− rEc

SG1
− rTr

SG1
(3.17)

=
kBGLEBGLSG2

KM,BGL + SG2

− YSG1
/CEc

µmax,EcSG1

KS,Ec + SG1

CEc (3.18)

− YSG1
/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr

Where all terms are as described in section 2.3.1.

3.3.2 Steady state analysis of simplified TrEc model

3.3.2.1 Criteria for steady state population composition

The system of ODEs for the simplified TrEc consortium model does not have a non-trivial steady-
state. However, we can consider the case of a pseudo-steady state in which microbial population
composition is fixed:

d

dt

(
CEc

CTr

)
= 0 (3.19)

Simplifying and rearranging:

1

CEc

dCEc

dt
− 1

CTr

dCTr

dt
= 0 (3.20)

...

µmax,EcSG1

KS,Ec + SG1

=
µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

(3.21)

This pseudo-steady state can be satisfied if SG2 and SG1 are constant:

dSG2

dt
= rcelSG2

− rBGL
SG2

= 0 (3.22)

=
kcelEcelSC

KM,cel + SC

− kBGLEBGLSG2

KM,BGL + SG2

= 0 (3.23)

and
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dSG1

dt
=rBGL

SG1
− rEc

SG1
− rTr

SG1
= 0 (3.24)

=
kBGLEBGLSG2

KM,BGL + SG2

− YSG1
/CEc

µmax,EcSG1

KS,Ec + SG1

CEc

− YSG1
/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

CTr = 0 (3.25)

The above expressions cannot be satisfied since CEc , CTr, Ecel, EBGL, and SC are all potentially
changing with time. We can make a simplifying assumption that for all times SC ≫ KM,cel, mak-
ing it possible for the system to reach a pseudo-steady state. Physically, this could be interpreted
as having an unlimited cellulose supply, or alternately that the TrEc consortium is serial passaged
before cellulose becomes limiting. Assuming SC ≫ KM,cel, substituting Ecel = YEcel/CTr

CTr,
EBGL = YEBGL/CTr

CTr, CEc = X (CEc + CTr), and CTr = (1−X) (CEc + CTr) (where X is E.

coli population fraction; g-E. coli/g-total), we can further simplify:

dSG2

dt
= kcelYEcel/CTr

(1−X)−
kBGLYEBGL/CTr

(1−X)SG2

KM,BGL + SG2

= 0 (3.26)

and

dSG1

dt
=
kBGLYEBGL/CTr

(1−X)SG2

KM,BGL + SG2

− YSG1
/CEc

µmax,EcSG1

KS,Ec + SG1

X

− YSG1
/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

(1−X) = 0 (3.27)

Note that d
dt

(
CEc

CTr

)
= 0 implies that X is constant. The three criteria for steady-state population

composition are then:

Criterion 1: Constant population fraction

µmax,EcSG1

KS,Ec + SG1

=
µmax,Tr (SG1 + θSG2)

KS,Tr + SG1 + θSG2

(3.28)

Criterion 2: Constant cellobiose concentration

kcelYEcel/CTr
−

kBGLYEBGL/CTr
SG2

KM,BGL + SG2

= 0 (3.29)
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Criterion 3: Constant glucose concentration

kBGLYEBGL/CTr
(1−X)SG2

KM,BGL + SG2

− YSG1
/CEc

µmax,EcSG1

KS,Ec + SG1

X

−YSG1
/CTr

µmax,Tr (SG1 + θG2→G1SG2)

KS,Tr + SG1 + θG2→G1SG2

(1−X) = 0 (3.30)

The steady-state criteria constitute a system of three equations with three unknown variables (X ,
SG2 , SG1) that can be solved with analytical or numerical methods.

3.3.2.2 Non-dimensionalization and analytical solution

To facilitate analysis, we can simplify the above steady-state criteria by non-dimensionalizing the
variables. We start with criterion 2, the simplest of the above expressions. Applying KS,Tr as the
characteristic cellobiose concentration scale:

kcelYEcel/CTr
−

kBGLYEBGL/CTr
S∗
2

K∗
BGL + S∗

2

= 0 (3.31)

Where S∗
2 = SG2/KS,Tr and K∗

BGL = KM,BGL/KS,Tr. This expression can be readily solved for
S∗
2 :

S∗
2 =

K∗
BGL

α− 1
(3.32)

α = YBGL/cel
kBGL

kcel
(3.33)

YBGL/cel = YEBGL/CTr
/YEcel/CTr

(3.34)

As would be intuitively expected, the steady-state cellobiose concentration is thus purely a
function of cellulase and β-glucosidase kinetics and the relative proportion of these two enzymes.
The dimensionless term α describes the relative ratio of β-glucosidase activity to cellulase activity.

Applying KS,Tr as the characteristic glucose and cellobiose concentration scale and µmax,Tr

as the characteristic time scale to criterion 1 yields:

µ∗
Ec =

µ∗S1

K∗
S + S∗

1

= µ∗
Tr =

S∗
1 + θG2→G1S

∗
2

1 + S∗
1 + θG2→G1S

∗
2

(3.35)

Where S∗
1 = SG1/KS,Tr, K∗

S = KS,Ec/KS,Tr, µ∗ = µmax,Ec/µmax,Tr, and other terms are as
described previously. Solving for S∗

1 yields:
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S∗
1 =
−b±

√
b2 − 4ac

2a
(3.36)

Where a = µ∗ − 1, b = µ∗ (1 + θG2→G1S
∗
2) − θG2→G1S

∗
2 − K∗

S , c = −θG2→G1S
∗
2K

∗
S , and other

terms are as described previously. The physically meaningful root(s) of the above equation satisfy
0 ≤ S∗

1 < ∞. With expressions for S∗
1 and S∗

2 , we can solve criterion 3 for X . We first apply the
above dimensional scalings to criterion 3 and divide by YSG1

/CTr
to yield:

kBGLYEBGL/SG1
S∗
2

µmax,Tr (K∗
BGL + S∗

2)
(1−X)− YTr/Ec

µ∗S∗
1

K∗
S + S∗

1

X

− S∗
1 + θG2→G1S

∗
2

1 + S∗
1 + θG2→G1S

∗
2

(1−X) = 0 (3.37)

Where YEBGL/SG1
= YEBGL/CTr

/YSG1
/CTr

and YTr/Ec = YSG1
/CEc

/YSG1
/CTr

. Solving for X and
simplifying yields:

X =
µ∗
Tr − βr∗BGL

µ∗
Tr − YTr/Ecµ∗

Ec − βr∗BGL

(3.38)

Where:

µ∗
Tr =

S∗
1 + θG2→G1S

∗
2

1 + S∗
1 + θG2→G1S

∗
2

(3.39)

µ∗
Ec =

µ∗S∗
1

K∗
S + S∗

1

(3.40)

r∗BGL =
S∗
2

K∗
BGL + S∗

2

(3.41)

β =
kBGLYBGL/SG1

µmax,Tr

(3.42)

The µ∗
Tr term represents dimensionless T. reesei growth rate, µ∗

Ec is dimensionless E. coli

growth rate, and βr∗BGL is a dimensionless ratio of cellobiose hydrolysis rate to glucose uptake
rate by T. reesei. X > 0 requires that µ∗ > YTr/Ecµ

∗ + βr∗BGL.

Steady state carbon flow partition can be calculated as:

PC→Ec =
YTr/Ecµ

∗
EcX

YTr/Ecµ
∗
EcX + µ∗

Tr (1−X)
(3.43)

Where PC→Ec is the ratio of glucose uptake by E. coli to total microbial glucose uptake.
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3.3.3 Theoretical analysis of cooperator-cheater dynamics in TrEc consortia

We used the modeling framework developed in the previous section to explore cooperator-cheater
dynamics in TrEc consortia. We analyzed RUTC30/K12 bicultures as a reference cases, as well
as a modified model for NV3/RUTC30 bicultures that includes isobutanol production and toxicity
effects.

3.3.3.1 RUTC30/K12 bicultures

For the dimensionless pseudo-steady state TrEc consortium model, equilibrium population com-
position (in terms of E. coli fraction XEc) is a function of 7 different parameter values. Parameter
definitions and descriptions are summarized in Table 3.1, while baseline parameter values (corre-
sponding to T. reesei RUTC30 and E. coli K12) are given in Table D.1. It may be possible to mod-
ulate some or all of these parameters to tune the population composition of the TrEc consortium.
To explore the cooperator-cheater tuning concept, we used the dimensionless TrEc consortium
model to examine population dynamics/equilibria and carbon flow partition over a design space of
plausible parameter values.

Parameter Definition Description

µ∗ µmax,Ec

µmax,Tr
Ec:Tr growth rate ratio (cheater benefits)

K∗
S

KS,Ec

KS,Tr
Ec:Tr glucose affinity ratio (inverse cheater benefits)

θG2→G1

∆SG1
SG2

Increase in glucose concentration relative to the bulk medium at
the T. reesei cell surface due to cellobiose hydrolysis (cooperator
privileged access)

YTr/Ec

YSG1
/CEc

YSG1
/CTr

T. reesei biomass-substrate yield coefficient to E. coli yield coef-
ficient ratio (relative resource utilization efficiency of cooperator)

β
kBGLYBGL/SG1

µmax,Tr
Glucose production rate to T. reesei uptake rate ratio (relative re-
source production/consumption by cooperator)

α YBGL/cel
kBGL
kcel

Cellobiose hydrolysis rate to cellulose hydrolysis rate ratio (rela-
tive consumption/production of intermediate substrate)

K∗
BGL

KM,BGL

KS,Tr
Dimensionless β-glucosidase cellobiose affinity

Table 3.1: Summary of dimensionless parameters in TrEc consortium model. All terms are as described in sec-
tion 3.3.1. See Table D.1 for baseline values for T. reesei RUTC30 and E. coli K12.

Our analysis suggests that a wide range of equilibrium population compositions can be
achieved by tuning µ∗, K∗

S , θG2→G1 , and/or β (Figure 3.4); for sake of simplicity, we held YTr/Ec,
α, and K∗

BGL constant, though in principle these parameters could be tuned as well. Carbon
flow partition (fraction of substrate carbon consumed by E. coli; PC→Ec) is proportional to
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population composition, underscoring that population tuning could be used to directly control
biosynthesis of desired products (Figure D.1). Equilibrium XEc increases with β, reflecting that
growth substrate available to the cheater increases as relative substrate production (compared
to substrate consumption) by the cooperator increases (Figure 3.4). Furthermore, for a given
parameter set there is likely a minimum β value below which stable coexistence is not possible
and E. coli becomes extinct (Figure 3.4). Parameters associated with relative cooperation/cheating
benefits affect population equilibria in an intuitive manner; increasing cooperator privileged
access θG2→G1 tends to decrease equilibrium XEc, while equilibrium XEc tends to increase with
increasing cheating benefits (increasing µ∗ or decreasing K∗

S) (Figure 3.4). Equilibrium XEc may
be asymptotic with µ∗, and furthermore µ∗ has little effect on population equilibria at extreme
values of K∗

S (i.e. when K∗
S is the dominant term) (Figure 3.4).
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Figure 3.4: Steady state analysis of simplified RUTC30/K12 TrEc consortium model. XEc (E. coli population fraction;
g/g-total) as a function of β, K∗

S , µ∗, and θG2→G1 over biologically reasonable ranges for each parameter. Parameter
values are as follows: α = 8.7, K∗

BGL = 23.25, YTr/Ec = 1.5; β = 3, 10, 17, K∗
S = 0.1, 1, 10, µ∗ = 1.05...4.05, and

θG2→G1 = 0.05...2.05. For explanation of parameters see section 3.3.1 and Table 3.1.
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In addition to equilibria, we also used our modeling framework to explore population stability
and dynamics. In principle, stability can be determined from the eigenvalues of an ODE system
linearized around fixed points. However, due to the complexity of our model these calculations
are intractable. Instead, we conducted a numerical analysis of the ODE system presented in
section 3.3.1, with a simplifying assumption that for all times SC ≫ KM,cel (see section 3.3.2.1
for discussion). In dynamic simulations over the µ∗ and θG2→G1 space (holding other parameters
constant), equilibria were reached within 12 to 60 doubling times regardless of initial conditions,
suggesting that equilibrium states are both stable and readily accessible (sample trajectories shown
in Figure 3.5). Population trajectories tended to undergo damped oscillations as they converged
to equilibrium (possibly due to feedback delay between cellulose hydrolysis, soluble saccharide
concentrations, and microbial growth), with equilibration time increasing as µ∗ → 1 (Figure 3.5).
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Figure 3.5: Population dynamics in simplified RUTC30/K12 TrEc consortium model. (A) Steady state population
composition (E. coli population fraction XEc; g/g-total) as a function of µ∗ and θG2→G1

, with α = 8.7, K∗
BGL =

23.25, YTr/Ec = 1.5, and β = 10. (B) Numerical ODE solutions corresponding to µ∗ and θG2→G1 values at each
labeled point in A. For each µ∗, θG2→G1

point, ODEs were solved with various initial XEc values. For explanation of
parameters see section 3.3.1, Table 3.1, and Table D.1.

3.3.3.2 RUTC30/NV3 bicultures: isobutanol production/toxicity effects

The above theoretical analysis does not account for isobutanol production/toxicity effects. Since
these effects could impact population stability/dynamics, we extended our modeling framework
to account for isobutanol production and toxicity. We will assume growth-coupled production
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of isobutanol by E. coli. For sake of simplicity, the reduced version of model does not include
maintenance substrate uptake or isobutanol production. Isobutanol production rate is then given
by:

dI

dt
= YI/SG1

rEc
SG1

(3.44)

Where I is isobutanol concentration (g/L), YI/SG1
is the isobutanol yield coefficient (g-isobutanol

/ g-glucose), and rEc
SG1

is the E. coli glucose uptake rate (g/L/h). For E. coli NV3 pSA55/69,
YI/SG1

= 0.25 g-isobutanol/g-glucose. We model isobutanol toxicity with empirical growth inhi-
bition functions similar to Equations A.42 & A.48:

KI
Sp =


(
1− I

I∗Sp

)nSp

if I ≤ I∗Sp

0 if I > I∗Sp

(3.45)

Where Sp is species (E. coli or T. reesei), I is isobutanol concentration (g/L), I∗Sp is the growth
inhibiting isobutanol concentration (g/L) for Sp, and nSp is an empirical exponent for species Sp.
Overall growth rates are given by:

dCSp

dt
= KI

SpµSpCSp (3.46)

Where CSp is concentration of species Sp and µSp is the growth rate (i.e. Monod function, see
Equations 3.1 & 3.4 in section 3.3.1). I∗Sp and nSp values for E. coli NV3 pSA55/69 and T. reesei

RUTC30 are given in Table 3.2.

Parameter NV3 pSA55/69 RUTC30

I∗Sp 10 g/L 6 g/L

nSp 1.5 1.5

Table 3.2: Isobutanol toxicity parameters used in modified cooperator-cheater model. Estimated from data in Table B.3
and Chapter 4.

Other parameter values for NV3 pSA55/69 are given in Table B.2; for remaining model
parameters, we used the same values as in the previous section (Table D.1). Adding isobutanol
production (Equation 3.44) to our modeling framework makes it impossible for batch cultures to
reach non-trivial pseudo-steady states, due to accumulation of isobutanol in the system. Thus we
can cannot apply the steady state analysis described in section 3.3.2.1. Instead, we conducted a
numerical analysis of the ODE model wherein we simulated iterative serial cultures. This scheme
is analogous to repeated batch fermentation, where a fraction of the previous batch is used as
inoculum for new batches (Figure 3.6A, inset). For our theoretical analysis, this was simulated by
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Figure 3.6: Population dynamics in simplified RUTC30/NV3 TrEc consortium model. (A) Numerical ODE solutions
for NV3/RUTC30 cooperator-cheater model over a range of XEc(t0) (initial E. coli population fraction; g/g-total)
values with YI/SG1

= 0 (i.e. no isobutanol production/toxicity). All solutions converge to XEc ≈ 0.07. Inset
depicts serial culturing scheme used in numerical simulations, with “+” indicating passaging points. (B) Numerical
ODE solutions for NV3/RUTC30 cooperator-cheater model over a range of XEc(t0) values, with YI/SG1

= 0.25
g-isobutanol/g-glucose and isobutanol toxicity parameters given in Table 3.2. All solutions converge to XEc ≈ 0.12

numerically integrating the ODE system to a fixed endpoint, dividing end-point variable values by
a dilution factor (typically 50 fold), and using these values as initial conditions (ICs) for the next
iteration (Figure 3.6A, inset).

To examine the effects of isobutanol production/toxicity, we compare numerical solutions
for NV3/RUTC30 bicultures without isobutanol production/toxicity (i.e. YI/SG1

= 0, but with
remaining parameters otherwise the same) and with isobutanol production (Figure 3.6A&B,
respectively). Models without and with production/toxicity effects both converge to stable equi-
libria (Figure 3.6). However, dynamics and equilibrium XEc values are distinctly different, with
isobutanol production/toxicity effects leading to steady oscillations and approximately doubling
the equilibrium XEc (Figure 3.6). As isobutanol accumulates in a culture, relative growth rates
(i.e. µ∗) change due to tolerance differences between E. coli and T. reesei (see Table 3.2) leading
to varying population fraction and preventing the system from reaching a steady state. However,
imposing serial passaging at fixed endpoints creates a “seasonality” effect wherein isobutanol
concentrations are periodically diluted, thus reseting isobutanol inhibition in the system. At
steady state, oscillatory population dynamics are such that XEc declines at the beginning of the
culture, reaches a minimum, and then begins to increase due to isobutanol accumulation and
increased µ∗; the end-point XEc then becomes the initial XEc for the next iteration (Figure 3.6B).
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Thus seasonality of isobutanol concentration is the driving force responsible for the observed
oscillations. Interestingly, despite initial divergences, all of the population composition trajecto-
ries become synchronized, likely due to the fixed passaging points (Figure 3.6B). In addition to
inducing oscillations, isobutanol production/toxicity also increases equilibrium XEc (Figure 3.6).
The relative increase in XEc is simply due to the higher isobutanol tolerance of E. coli compared
to T. reesei (Table 3.2), which substantially improves the mean relative fitness of E. coli in the
co-culture.

3.3.4 Experimental validation of cooperator-cheater dynamics in TrEc con-
sortia

We experimentally investigated population dynamics and equilibria in TrEc consortia by conduct-
ing serial passaging studies with T. reesei / E. coli bicultures. To simplify our measurements of
microbial composition, we used 10 g/L cellobiose (a soluble cellulose disaccharide) as growth
substrate instead of cellulose. We note that our mass transfer model for oligosaccharide hydrolysis
at the T. reesei cell wall (section A.2.2) was derived with an assumption of low oligosaccharide
concentrations (typical of growth on cellulosic substrates). For the simplified model presented in
this section, glucose concentration at the T. reesei cell surface is modeled as SG1 + θG2→G1SG2;
in the limit of saturating SG2 concentrations (i.e. SG2 ≫ KM,BGL), our derivation reduces to
θG2→G1SG2 → δ, where δ is a constant. Population equilibria will thus differ with cellobiose as
the primary growth substrate compared to cellulose; however the substitution of cellobiose for
cellulose retains requisite features for cooperator-cheater coexistence (concave fitness benefits
and cooperator privileged access) and should yield dynamics qualitatively similar to cellulose.
To explore the cooperator-cheater tuning concept, we conducted bicultures over several different
µ∗ (Ec:Tr µmax ratio) values. This parameter was chosen as it is relatively straightforward to
manipulate experimentally via modulation of environmental conditions or by selection of strains
with different intrinsic growth rates. T. reesei and E. coli have different optimal pH ranges
(T. reesei optimum: pH 5 [109]; E. coli optimum: pH 7 [110]), allowing us to modulate µ∗ by
varying culture pH. Experimentally measured µ∗ for RUTC30/K12 as a function of pH can be
found in Table B.5. We can also adjust µ∗ by selecting strains with different intrinsic growth
rates; for instance in pH 6.0 TMM media, E. coli K12 has µmax,SG1

= 0.41± 0.02 while for NV3
pSA55/69 has µmax,SG1

= 0.14± 0.02 (Table B.3).

Experimental results for T. reesei / E. coli bicultures at different µ∗ values are shown in
Figure 3.7. As predicted, T. reesei / E. coli bicultures inoculated at different initial XEc all
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Figure 3.7: Experimental investigation of cooperator-cheater coexistence in the TrEc consortium. Replicate T. reesei /
E. coli cultures were inoculated at different population compositions, corresponding to high (0.9) or low (0.01 or 0.001)
initial XEc (red or green points/lines, respectively) and serial passaged on 10 g/L cellobiose media. (A) Experimentally
observed population trajectories for RUTC30/K12 bicultures at pH=6.0 (µ∗ ≈ 4). Equilibrium XEc = 0.24 ± 0.04
(B) Experimentally observed population trajectories for RUTC30/NV3 bicultures (µ∗ ≈ 1.5). Equilibrium XEc =
0.1 ± 0.2. (C) Experimentally observed population trajectories for RUTC30/K12 bicultures at pH=5.3 (µ∗ ≈ 1).
Equilibrium XEc = 0.007± 0.003.

converge to stable equilibria (Figure 3.7). Furthermore, equilibrium XEc increases with cheating
benefits: bicultures at µ∗ ≈ 4 (K12/RUTC30 pH 6, Figure 3.7A) converge to XEc = 0.24± 0.04,
bicultures at µ∗ ≈ 1.5 (NV3/RUTC30 pH 6, Figure 3.7B) converge to XEc = 0.1 ± 0.2, and
bicultures with µ∗ ≈ 1 (K12/RUTC30 pH 5.3, Figure 3.7C) converge to XEc = 0.007 ± 0.003.
Consistent with our theoretical analysis (Figure 3.5B), equilibration time appears to increase as
µ∗ → 1 (Figure 3.7). Population convergence is rapid for µ∗ ≈ 4 cultures (Figure 3.7A), occurring
within a single passage (approximately 6 population doublings). Convergence is comparatively
slower for µ∗ ≈ 1.5 and µ∗ ≈ 1 bicultures, requiring 3 to 4 passages (approximately 18 to 24
population doublings) (Figure 3.7B&C). Results with NV3/RUTC30 bicultures (Figure 3.7B)
demonstrate that cooperator-cheater dynamics are preserved when isobutanol production/toxicity
effects are present. Our model predicts oscillating population compositions for NV3/RUTC30
bicultures (Figure 3.6B). However, in our experiments XEc was measured only once per passage,
and thus our measurements do not have sufficient resolution to detect the predicted oscillations.

3.4 Discussion and conclusion

Overall, our experimental results support theoretical predictions of cooperator-cheater dynam-
ics within TrEc consortia, and illustrate the feasibility of tuning population composition via
modulation of ecological parameters. Beyond TrEc consortia, cooperator-cheater dynamics
could be applied as a general tool for designing and programming stable and tunable synthetic
consortia. The most obvious application would be to extend cooperator-cheater tuning to other S/F
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consortia (e.g. Table 2.1). By selecting saccharolytic specialists with cell-wall localized hydrolytic
enzymes, cooperator-cheater tuning could be utilized in S/F consortia for a variety of products and
feedstocks (lignocellulose, starch, inulin, etc.). Since many saccharolytic microbes have cell-wall
localized hydrolytic enzymes (e.g. the ubiquitous cellulosomes of anaerobic microbes), there
are numerous possible microbe combinations for creating S/F consortia with cooperator-cheater
dynamics. Furthermore, the use of saccharolytic specialists with different intrinsic ecological
parameter values (i.e. Table 3.1) represents a possible means of tuning/optimization. In addition
to S/F consortia, cooperator-cheater dynamics could be applied in other ways to engineer
consortia for bioprocessing. For example, cooperator-cheater dynamics could be applied to
tune bicultures of invertase positive/negative strains of S. cerevisiae metabolically engineered
to produce different biofuel/chemical products, such that products can be made at a precisely
defined, pre-programmed ratio. In contrast to previous studies of cooperator-cheater coexistence
[107], our theoretical analysis suggests that oscillatory population dynamics may occur when
product (e.g. biofuel/chemical) toxicity effects are present. From an applied standpoint, these
oscillatory dynamics may be undesirable in industrial bioprocessing. However, our analysis
suggests that consortia can maintain a “repeatable” population structure in the sense that os-
cillations reach a steady period/amplitude synchronized with serial passaging points; thus it
may still be feasible to deploy consortia with these dynamics in repeated batch fermentations
or other bioprocesses. For future work, we suggest conducting more detailed studies of pop-
ulation dynamics in isobutanol-producing TrEc consortia to further explore theoretical predictions.

In addition to population dynamics, selection of parameters for tuning is another important
factor to examine for potential bioprocessing applications. In our experimental studies, we used
µ∗ to tune population composition since this parameter is straightforward to manipulate. However,
other parameters could potentially be adjusted to tune population composition. For instance,
α, β and θG2→G1 could be modulated by genetically engineering T. reesei to alter expression of
β-glucosidase genes (and/or other cellulases in the case of α). As another example, K∗

S could be
adjusted by changing organism substrate affinity, for instance by genetically engineering E. coli or
T. reesei to express alternative substrate transporters with different KM values. Ultimately, desired
performance characteristics and accessible parameter ranges will determine the optimal parameter
to use for tuning. For example, there are parameter ranges over which µ∗ has little effect on
population equilibria (e.g. K∗

S < 1; Figure 3.4), thus it may be beneficial to select a different
parameter for tuning in these cases (e.g. β or K∗

S). As an interesting corollary, we propose that
parameter ranges over which population equilibria are insensitive to µ∗ may actually be desirable
in bioprocessing applications, as population equilibria would potentially be buffered against
variations in µ∗ (for instance, due to fluctuations in environmental conditions like temperature,
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pH, etc.). Finally, as a caveat we note that our parameter set is not dimensionally independent;
parameter subsets with overlap include α, β and θG2→G1 , which all depend on kBGL as described
above, K∗

S and K∗
BGL, which both depend of KS,Tr, and β and µ∗, which both depend on µmax,Tr.

Thus it may be difficult to adjust certain parameter combinations independently. We suggest
exploring the effects of parameters beyond µ∗ in future work with TrEc consortia or other S/F
consortia employing cooperator-cheater dynamics.

Beyond population dynamics and selection of parameters for tuning, it is also important to
consider the long-term evolutionary stability of cooperator-cheater systems. While ecological
motifs such as metabolic cross-feeding [42, 106] and cooperator-cheater dynamics may exhibit
stable short-term behavior, these systems may not necessarily be stable over long evolutionary
timescales, especially in homogenous environments. A more detailed discussion about future
directions for improving the stability of TrEc consortia through engineered spatial structure and/or
mutualisms will be given in Chapter 6.

3.5 Materials and methods

3.5.1 Model analysis

For dynamic analysis, the ODEs described in section 3.3.1 were implemented in MATLAB and
solved numerically using ode15s. All other details regarding model analysis (equations, parameter
values, etc.) can be found in sections 3.3.1, 3.3.2.1, and 3.3.3.

3.5.2 Cooperator-cheater coexistence experiments

Duplicate T. reesei / E. coli bicultures were inoculated at high XEc(t0) (= 0.9 g/g-total) or low
XEc(t0) (= 0.01 or 0.001 g/g-total) in 10 g/L cellobiose TMM media (described in section 2.5.2)
buffered with maleate-NaOH at indicated pH, with approximately 0.05 gDW/L total initial micro-
bial biomass. Cultures were incubated at 30◦C with agitation for 48 hours, then inoculated 1:50 (by
volume) into fresh media; serial culturing was repeated for five to ten passages. At each passage,
cultures were analyzed for total dry mass and E. coli cell counts, described in section 2.5.11. 10
mL cultures in 50 mL Falcon tubes were used for RUTC30/K12 co-cultures, while 50 mL cultures
in 250 mL screw-cap flasks were used for RUTC3/NV3 bicultures. RUTC30/NV3 bicultures were
supplemented with 100 µg/mL ampicillin, 30 µg/mL kanamycin, and 0.1 mM IPTG for mainte-
nance/induction of plasmids pSA55/69 in E. coli NV3.
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Part II: Genome evolution and engineering
for elucidating the genetic architecture of
isobutanol tolerance in Escherichia coli
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CHAPTER 4

Evolution combined with genomic study elucidates
genetic bases of isobutanol tolerance in Escherichia

coli

4.1 Summary

In the second part of this dissertation, we seek to develop novel evolutionary-genomics based
methods for elucidating and improving complex stress tolerance phenotypes. Understanding
the genetic architecture underlying complex phenotypes is of great fundamental interest and
also has important ramifications in bioprocessing, since product toxicity frequently limits titers
and volumetric productivity. Microbial stress tolerance is a complex multigenic trait that is
intractable to traditional genetic study and rational engineering efforts. In this work, we exper-
imentally evolve isobutanol tolerant E. coli strains and then use whole genome resequencing
and followup functional dissection studies to reverse engineer genetic bases and mechanisms
of tolerance. Consistent with the complex, multigenic nature of solvent tolerance, we observe
adaptations in a diversity of cellular processes. Many adaptations appear to involve epistasis
between different mutations, implying a rugged fitness landscape for isobutanol tolerance. We
observe a trend of evolution targeting post-transcriptional regulation and high centrality nodes of
biochemical networks. Collectively, the adaptations we observe suggest mechanisms of isobu-
tanol tolerance based on remodeling the cell envelope and surprisingly, stress response attenuation.

The majority of the work presented in this chapter was published in Microbial Cell Factories as
follows: J. Minty, A. Lesnefsky, F. Lin, Y. Chen, T. Zaroff, A. Veloso, B. Xie, C. McConnell,
R. Ward, D. Schwartz, J.M. Rouillard, Y. Gao, E. Gulari, and X. Lin. Evolution combined with
genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microbial Cell

Factories, 10:18, 2011. doi:10.1186/1475-2859-10-18

99



4.2 Introduction and background

4.2.1 Experimental evolution with microbes

Experimental evolution has emerged as a powerful tool for studying adaptation in microbes.
Experimental evolution provides a valuable means for investigating fundamental dynamics
and bases of adaptation, as well as testing theories about the evolutionary process [57]. As a
pioneering example, Lenski and colleagues began a long term evolution experiment (LTEE) in
1988 consisting of 12 replicate E. coli lineages evolving in glucose minimal media [111]. The
Lenski LTEE continues as of this writing (April 2013) and has surpassed 58,000 generations.
The LTEE has been used to study and test numerous important theories in evolutionary biology,
and provides experimental evidence for key questions such as how rates of evolution vary over
time, the extent to which evolutionary trajectories are repeatable, and the relationship between
evolution at the phenotypic and genotypic levels [111]. In the decades since the founding of the
LTEE, there has been tremendous growth in the use of experimental evolution with microbes for
fundamental and applied studies [111]. Recent advances in DNA sequencing technology have led
to dramatically increased throughput, enabling rapid and relatively inexpensive resequencing of
microbial genomes [112]. An intriguing corollary to the development of next-generation sequenc-
ing methods is the prospect of using whole genome resequencing to characterize the genetic bases
of adaptation in evolved microbes. This approach was employed in several foundational studies
to investigate adaptations in experimentally evolved E. coli populations, including short-term
evolution on glycerol [113, 114] or lactate [115] minimal media, and genome evolution over
40,000 generations of the LTEE experiment [116] (examples of mutations found in these studies
shown in Figure 4.1A).

These studies have provided numerous valuable and intriguing insights into genotypic and
phenotypic adaptation. In the glycerol adaptation study, sequenced isolates from five separate
populations all acquired mutations in glycerol kinase glpK early in evolution [113]. Phenotypic
and functional analysis suggest that glpK mutations provide substantial fitness benefits by
increasing GlpK activity [113]. These results indicate that glycerol kinase is a rate limiting
step in glycerol metabolism for WT E. coli, and thus increasing GlpK activity constitutes a key
mechanism of adaptation. In addition to elucidating mechanisms of adaptation, these studies
also provide information on the modes and dynamics of evolution. For example, genomic study
of E. coli isolates evolved on glycerol [113, 114] or lactate [115] minimal media revealed that
epistatic interactions between mutations were common under these conditions. In particular,
several mutations had neutral or deleterious effects individually, but confer fitness benefits when
combined with other mutations [58]. Additionally, diversity of genotypic outcomes may depend on
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Figure 4.1: Mutations identified in selected E. coli experimental evolution studies. Adapted from [58]. (A) Chromo-
some map of point mutations found in open reading frames in multiple experimental evolution studies ([113], [116],
[115], [118], [119], and [120]). (B) Enrichment analysis (based on gene ontology categories) for loci shown in panel
A. Protruding wedges represent statistically enriched categories (see [58] for further details). (C) Genes mutated in
multiple studies. 20K= Lenski Long Term Evolution Experiment (LTEE) at 20,000 generations [116], 45A=evolution
at high temperature [119], ETM=evolution of ethanol tolerance [121], Glyc=evolution on glycerol minimal medium
[113], Lact=growth on lactate minimal media [115], and PGI=evolution on glucose minimal media following the
deletion of pgi [118].

selective pressures and environment; for example, genotypic adaptations in replicate lineages were
more diverse in lactate evolved populations compared to glycerol evolved populations, hinting
at different fitness landscapes for these two phenotypes [115]. The LTEE genome resequencing
study examined evolution over time in a single lineage, providing information on long-term
evolutionary dynamics [116]. Surprisingly, discordances in evolutionary rates were observed,
wherein genome evolution proceeded at a nearly linear rate while fitness improvement decelerated
over time [116]. While this rate discordance suggests a preponderance of neutral mutations, there
is evidence that most of the mutations acquired up 20,000 generations are in fact beneficial [116].
The mechanisms that underlie the observed rate discordance are probably complex, may include
effects from clonal interference [116] and/or negative epistasis between beneficial mutations [117].

A particularly striking finding observed in many experimental evolution studies is that
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mutations in genes with global regulatory functions (including global transcriptional and post-
transcriptional regulators, and genes controlling DNA supercoiling) often provide large fitness
benefits and constitute an important mode of adaptation (Figure 4.1B) [57, 122, 113, 115]. Muta-
tions in global regulators can result in large-scale expression changes and have profound fitness
effects [58]. Most randomly occurring mutations in global regulators are probably deleterious,
but the centrality of these regulators creates potential for mutations with high fitness benefits.
Global regulators with high mutation frequencies in experimental evolution studies include
RNA polymerase subunits rpoB/rpoC, transcriptional terminator rho, σS master stress response
regulator rpoS, and stringent response regulator spoT (Figure 4.1C). Studies with reconstructed
single mutants have demonstrated that global regulatory mutations frequently make the greatest
single contribution to fitness out of acquired mutations [113, 115]. Global regulatory mutations
generally exhibit pleiotropic effects; while the net sum of fitness effects arising from expression
changes across many genes may be beneficial, some of the specific expression changes elicited by
global regulatory mutations may be maladaptive [123]. This creates the potential for subsequent
mutations that reduce maladaptive side effects of global regulatory mutations, and thus epistatic
compensatory mutations are likely to occur in populations that fix global regulatory mutations
[123].

In addition to providing valuable contributions to the fundamental understanding of evolution-
ary biology, studies of mechanisms, modes, and dynamics of genotypic adaptation are of great
utility in applied fields such as biological engineering or medicine. For example, the observation
of ubiquitous adaptations in global regulators may have inspired the highly successful strain
improvement strategy of mutagenizing global transcription factors to generate libraries with a
diversity of global gene expression patterns, from which variants with substantially improved
phenotypes can be isolated (as discussed in Chapter 1). Beyond the fundamental studies described
above, experimental evolution and subsequent genome resequencing could be used to explore
the genetic basis of more complex microbial phenotypes of medical or industrial relevance,
such as resistance to antibiotics or product tolerance in biofuel fermentations. In this work,
we comprehensively investigate adaptations to exogenous isobutanol stress in E. coli through
experimental evolution followed by genome resequencing and functional dissection studies. An
overview of this work in the broader context of this dissertation is given in the following section.
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4.2.2 Overview

Toxicity of alcohol biofuels limits final titer and volumetric productivity in fermentations,
motivating efforts to engineer microbes with improved tolerance [48]. Due to broad mechanisms
of toxicity, alcohol tolerance is a complex trait that involves a diversity of cellular adaptations
and responses that probably contribute synergistically to the overall phenotype [50]. The inherent
biological complexity of alcohol and other chemical tolerance phenotypes precludes the use
of rational engineering for tolerance improvement, thus most strategies are combinatorial in
nature, following a paradigm of generating genotypic and phenotypic diversity in a population,
then characterizing isolates with desired properties (as discussed in Chapter 1). However, most
currently used methods explore relatively small subsets of the possible genotype space and
often cannot capture interactions between distal genetic loci (Chapter 1). Advances in DNA
sequencing, DNA synthesis, and genome-scale genetic manipulation techniques have greatly
expanded our ability to read and write genetic information. Integrating methods for identifying
genes/mutations conferring desired phenotypes with genome-scale combinatorial engineering
represents a promising strategy for improving microbial chemical tolerance phenotypes. In the
second part of this dissertation, we develop a novel integrated approach that entails experimental
evolution of stress tolerance followed by genome resequencing to identify acquired mutations,
genomic and functional dissection to reverse engineer mechanisms of tolerance, and targeted
genome engineering for further phenotype improvement (Figure 4.2). The proposed methodology
transcends many limitations in previous approaches by dramatically expanding accessible geno-
type space and allowing for the identification of synergistic interactions between genetic loci.
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Figure 4.2: Overview of evolutionary-genomics approach for tolerance phenotype elucidation and engineering.

In Part I of this dissertation, we demonstrated direct conversion of lignocellulosic feedstocks
to isobutanol using the TrEc consortium (Chapter 2). While isobutanol is widely regarded as
one of the most promising next-generation biofuels, it is highly toxic to microbes. Motivated by
this, we apply our proposed evolutionary-genomics methodology to study and improve isobutanol
tolerance in E. coli. Improving the isobutanol tolerance of T. reesei will also be crucial to
our efforts to engineer a robust and efficient consortium for cellulosic isobutanol production.
However, it will be difficult to fully apply the approach outlined above to T. reesei, as there are
fewer available molecular genetics tools for this organism. Instead we have focused on improving
isobutanol tolerance in T. reesei through classical strain improvement techniques (evolution,
breeding, and genome shuffling), which will not be discussed in this dissertation.

In this chapter, we comprehensively investigate adaptations to exogenous isobutanol stress
in E. coli through experimental evolution followed by genome resequencing and and followup
genetic, phenotypic, and biochemical studies. Using this approach, we have identified key loci
involved in isobutanol tolerance. Consistent with the complex, multigenic nature of isobutanol
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tolerance, we find diverse and often surprising genetic adaptations to isobutanol stress that were
not obvious from other approaches to investigating tolerance. The divergent growth phenotypes of
the end populations and studies with single and multiple mutation reconstructions suggest a rugged
fitness landscape with many epistatic interactions. This work was conducted from June 2008
to March 2011. In this time period, numerous other studies employing experimental evolution
of stress tolerance followed by genome resequencing were initiated in parallel with our work.
Some examples closely related to our studies include Atsumi et al. 2010 (isobutanol adaptation
in E. coli) [124], Reyes et al. 2012 (n-butanol adaptation in E. coli) [125], and Dragosits et al.
2013 (n-butanol adaptation in E. coli) [126]. The emergence of many such studies in parallel
is a testament to the utility and power of this approach, and provides a large set of additional
experimental data with which to compare and interpret our results.

4.3 Results

4.3.1 Experimental evolution and phenotypic characterization of end popu-
lations

E. coli EcNR1, a derivative of E. coli K12 MG1655 harboring a λ Red prophage integrated at
the bio locus, was evolved by serial passaging of six independent populations for approximately
500 generations on isobutanol spiked NG50 media (M9 minimal medium supplemented with 50
g/L carbon source and 0.25 mg/L biotin). An initial isobutanol concentration of 0.75% (w/v)
(corresponding to approximately 75% growth inhibition) was used for all populations, providing
strong selective pressure. Isobutanol concentration was gradually increased during evolution to
maintain approximately constant selective pressure.
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Figure 4.3: Isobutanol tolerance of evolution end populations was evaluated by measuring growth rate at various
isobutanol concentrations, with the parent E. coli EcNR1 included as a reference. Populations were phenotyped with
the same carbon source they were evolved in. (A) populations evolved on glucose as sole carbon sources (three
lineages, G1, G2, G3), (B) populations evolved on xylose as sole carbon sources (three lineages, X1, X2, X3), (C)
selected clonal isolates obtained from G3 population, (D) selected clonal isolates obtained from X3 population.

Populations were evolved on two different carbon sources, with three populations evolved
with 50 g/L glucose as the sole carbon source (designated glucose #1, glucose #2, and glucose
#3, abbreviated G1, G2, G3) and another three populations evolved with 50 g/L xylose as the
sole carbon source (designated xylose #1, xylose #2, and xylose #3, abbreviated X1, X2, X3).
Glucose and xylose are important constituents of lignocellulosic feedstocks and are metabolized
by different pathways; thus we explore adaptations in different metabolic contexts relevant to
biofuel production [50]. Cultures from each evolving population were periodically archived by
cryopreservation, and phenotyped by measuring maximum specific growth rate (µmax; 1/h) at
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various isobutanol concentrations using a microplate spectrophotometer.

All of the evolved populations show significantly improved fitness at high isobutanol con-
centrations relative to the parent E. coli EcNR1 strain (WT) (Figure 4.3A and B). Interestingly,
the populations show divergent growth phenotypes. Clonal isolates from two highly tolerant
populations, G3 (glucose #3 population) and X3 (xylose #3 population), were further phenotyped,
revealing significant heterogeneity within these populations (Figure 4.3C and D). Three clones
from G3 were capable of growth at 2% isobutanol in glucose media and two clones from X3
grew at 1.75% isobutanol in xylose media, representing 60% and 40% improvements in tolerance
respectively, compared to WT (Figure 4.3C and D). Two representative clones with high fitness,
G3.2 and X3.5, were chosen for further characterization.

Evolution often produces adaptations that show tradeoffs in relative fitness across different
environments [57]. To investigate specificity of adaptation, the fitness (relative to WT) of clones
G3.2 and X3.5 at 0% and 1% (w/v) isobutanol was assessed on minimal glucose, minimal xylose,
and rich LB media (Figure 4.4A and B). At 0% (w/v) isobutanol both G3.2 and X3.5 show
improved fitness on xylose minimal medium and decreased fitness on LB medium, relative to WT
(Figure 4.4A). At 1% (w/v) isobutanol, G3.2 and X3.5 show markedly improved relative fitness on
both glucose and xylose minimal media, and decreased fitness in LB medium (Figure 4.4B). These
results suggest that the two isolates characterized have accumulated adaptations to isobutanol
stress specific to minimal media, and these adaptations appear to exhibit antagonistic pleiotropy
in rich medium. This minimal-rich medium antagonisitic pleiotropy we observed underscores
the importance of carefully selecting evolution conditions. On the other hand, although G3.2 and
X3.5 were evolved on glucose and xylose media respectively, neither of these strains appears to
have developed carbon-source specific adaptations in 0% and 1% isobutanol environments. We
further assayed fitness in glucose and xylose minimal media at higher isobutanol concentrations
(Figure 4.4C). At 1.5% (w/v) isobutanol, we observed relative fitness trends suggesting greater
specificity of adaptation for G3.2 and X3.5 to their respective carbon sources, but we could not
substantiate that these differences were statistically significant due to the error bars in our measure-
ments (Figure 4.4C). Interestingly, at 0% isobutanol X3.5 appears to have higher relative fitness
than G3.2 in all media types tested (Figure 4.4A). ATP yield from xylose metabolism is lower
compared to glucose metabolism, and we speculate that low ATP yield increases selective pressure
for more energy efficient use of carbon sources [127]. This may explain how adaptations to
a low ATP yield substrate such as xylose could also be beneficial to growth on other carbon sources.
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Figure 4.4: Specificity of adaptation with different carbon sources and alcohols. Specificity of adaptation of clones
G3.2 (isolated from G3 evolution end population) and X3.5 (isolated from X3 evolution end population) was examined
by assessing isobutanol tolerance of each clone and the parent E. coli EcNR1 on glucose minimal medium, xylose
minimal medium, and LB medium. Tolerance to ethanol, isopropanol, and n-hexanol was also determined for these
strains and the parent E. coli EcNR1. (A) Fitness (relative to parent E. coli EcNR1) of G3.2 and X3.5 on glucose,
xylose, and LB medium with 0% (w/v) isobutanol. (B) Fitness (relative to parent E. coli EcNR1) of G3.2 and X3.5
on glucose, xylose, and LB medium with 1% (w/v) isobutanol, (C) Fitness of G3.2 and X3.5 (in glucose vs. xylose)
at 0%, 1%, and 1.5% (w/v) isobutanol, (D) Percent relative inhibition of E. coli EcNR1 compared to G3.2 and X3.5
(defined as 1 − µWT /µMUT , where µWT is the maximum specific growth rate of E. coli EcNR1, and µMUT is the
maximum specific growth rate of G3.2 or X3.5) on ethanol (3.5% v/v), isopropanol (2.5% v/v), isobutanol (0.5%
w/v), and hexanol (0.25% v/v). The alcohol concentrations correspond to approximately 1/2 the minimum growth
inhibiting concentration (MIC) for the parent E. coli EcNR1 strain.

In addition to investigating specificity of adaptation to different carbon sources, we also
examined the tolerance of G3.2 and X3.5 to various alcohols with potential for microbial biofuel
production, including ethanol, isopropanol, and n-hexanol (Figure 4.4D). While all alcohols share
the same general mechanisms of toxicity via chaotropic effects and interactions with membrane
lipid bilayers, specific biophysical effects are known to vary with alcohol chain length [128].
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Molecular dynamics simulations and experiments with model lipid bilayers have demonstrated that
long chain alcohols (≥C8) tend to condense and stiffen lipid bilayers, while short chain alcohols
(≤C2) have opposite effects [128]; lipid bilayer interactions with intermediate length and branched
alcohols (such as isobutanol) have not been well characterized. We examined the percent relative
inhibition of WT compared to G3.2 and X3.5 (defined as 1 − µWT/µMUT , where µWT is the
maximum specific growth rate of E. coli EcNR1, and µMUT is the maximum specific growth rate
of G3.2 or X3.5) at 3.5% (v/v) ethanol, 2.5% (v/v) isopropanol, 0.5% (w/v) isobutanol, and 0.25%
(v/v) n-hexanol; concentrations were chosen to correspond to approximately 50% of the minimum
growth inhibiting concentration (MIC) on glucose minimal medium at 30◦C. For all alcohols
assayed, G3.2 and X3.5 displayed higher tolerance than WT; interestingly, the relative inhibition
of WT increased with increasing chain length (hexanol > isobutanol≥ isopropanol≥ ethanol), in-
dicating the adaptations to isobutanol stress may be selective to the effects of longer chain alcohols.

4.3.2 Genome resequencing of isobutanol tolerant clones

To identify the genetic bases of adaptation to isobutanol stress, we resequenced the genomes of
highly tolerant clones from our evolved populations with the Illumina Solexa platform, using
36 base pair single-end or paired-end read configurations. 612 to 756 million base pairs (MB)
of raw sequence was generated for each sequenced genome with single-end read configuration,
with approximately four times as much sequence generated with paired-end reads. Coverage
averaged approximately 125x and 500x for the 4.65 MB E. coli EcNR1 genome, using single-end
and paired-end reads, respectively. Reads were mapped to the E. coli EcNR1 reference genome
sequence using Novoalign v2.04.02 and MAQ v0.7; single nucleotide polymorphisms (SNPs) and
short insertion/deletions (indels) were called from the consensus sequence [129, 130]. Larger
indels were detected by examining coverage distribution. Unmapped reads were collected and de
novo assembled using Velvet v0.7.51 to detect breakpoints near sites of structural variation (SV)
[131].

We resequenced the genomes of G3.2, G3.6, and X3.5, three highly isobutanol tolerant
clones from the evolution end populations (discovered mutations summarized in Figure 4.5 and
Table E.1; full mutation lists available in Additional file 1 and the reference genome sequence in
Additional file 2). It was discovered that the G3 lineage had acquired a 19 bp deletion in mutL,
a component of the methyl-directed mismatch repair system (MMR). MMR loss-of-function
mutations lead to an approximately 100-fold increase in mutation rate, giving rise to the so-called
mutator phenotypes [57]. Subsequently G3.2 and G3.6 were highly mutated, having 48 and 64
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mutations respectively, with 20 mutations in common between these two clones (Figure 4.5B and
Table E.1). To narrow down candidate mechanisms of genetic adaptation, we resequenced the
genome of a non-mutator clonal isolate from generation 266 of the G3 lineage (G3.266.7) and
identified 8 mutations in this clone (Figure 4.5B and Table E.1). For X3.5, 11 mutations were
revealed (Figure 4.5A and Table E.1).

A B

Figure 4.5: Chromosome maps of mutations discovered through whole genome resequencing of isobutanol tolerant
clones. Genome resequencing of clones G3.2 and G3.6 (from G3 end population), X3.5 (from X3 end population), and
G3.266.7 (from G3 lineage, generation 266) was done using the Illumina Solexa platform. SNPs (single nucleotide
polymorphisms) and short indels (nucleotide insertions or deletions) were detected by mapping reads were onto the
reference E. coli EcNR1 genome sequence. Structural Variation (SV) breakpoints were detected by de novo assem-
bly of unmapped reads for single-end sequence data or with BreakDancer v0.0.1 for paired-end sequence data. (A)
Chromosome map of mutations detected in X3.5; (B) Chromosome map of overlapping mutations in G3.2/G3.6 and
G3.266.7. Mutations in G3.2/G3.6 are shown on the outer ring, while mutations in G3.266.7 are shown on the inner
ring. All mutations in G3.266.7 except for the gltB-yhcE 10kb deletion and ycfK 1688 bp deletion are on the same line
of descent as G3.2 and G3.6 clones.

A total of 131 mutations were discovered across clones X3.5, G3.2, G3.6, and G3.266.7 (full
list available in Additional file 1). 96 mutations were SNPs, 25 mutations were short indels, and
10 mutations were SVs. Most mutations occurred in the coding region of genes. The detected
SVs consisted of transposon insertions (marC::IS1 in all sequenced isolates, glnE::IS186 in the
G3 clones, and mdtJ::IS5::tqsA in X3.5), an approximately 10kb deletion between gltB and yhcE

in G3.266.7, and a 1688 bp deletion in the ycfK gene of the e14 prophage in G3.266.7. Mutations
were found in diverse genetic loci representing many cellular processes. BiNGO (Biological
Network Gene Ontology tool) was used to assess any overrepresented Gene Ontology (GO)
terms in the full mutation set, but the only statistically significant finding was an enrichment of
membrane proteins (corrected p-value = 7.23x10−3), with a borderline significant enrichment of
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RNA helicases (corrected p-value = 7.22x10−2) [132].

4.3.3 Parallel evolution

Comparison of the genotypes of X3.5, G3.2, G3.6, and G3.266.7 reveals a number of parallel
genotypic adaptations. In particular, mutations in rph, acrAB, marC, mdh, and the gatYZABCD

operon were found in all of these clones (Table E.1). E. coli K12 MG1655 (the parent strain
of E. coli EcNR1) has a 1 bp deletion in the rph-pyrE operon, resulting in reduced levels of
orotate phosphoribosyltransferase (the product of pyrE) and subsequently suboptimal pyrimidine
biosynthesis levels [115]. Thus restorative mutations are commonly observed in rph-pyrE during
experimental evolution studies with E. coli K12 MG1655, and are general adaptations to growth
on minimal media (e.g. see Figure 4.1). The AcrAB proteins are components of the AcrAB-TolC
multidrug efflux pump, a membrane transporter which translocates a wide range of substrates out
of the cytoplasmic membrane and periplasmic space; efflux via the AcrAB-TolC complex has been
previously identified as an important mechanism of tolerance to organic solvents such as toluene,
immediately suggesting a possible role for acrAB-tolC in isobutanol tolerance [50]. Possible links
to isobutanol tolerance are not as obvious for marC (a predicted membrane protein of unknown
function), mdh (NADH dependent malate dehydrogenase), and the gatYZABCD operon, which
encodes proteins involved in galactitol transport and catabolism.

To investigate possible parallel genotypic adaptations in our other evolved lineages, the acrAB

operon, tolC, and mdh were sequenced in 8 clonal isolates from each of the evolved endpoint
populations (Table 4.1). The marC locus was also sequenced in each endpoint population;
examination of PCR products revealed indel mutations (discernable by product size) at near 100%
allele frequency, allowing for whole population samples to be sequenced (Table 4.1). We also
sequenced the post-transcriptional regulator hfq in our endpoint populations since an hfq mutation
was found in G3, and modulation of hfq has been observed as a common mechanism of adaptation
in other experimental evolution studies. rph and gatYZABCD were not investigated further since
rph-pyrE adaptations have been characterized in previous works, while the relatively large size of
the gatYZABCD operon was prohibitive for Sanger sequencing.

acrAB mutations were discovered in X1, X2, X3, G1, and G3 populations (Table 4.1). Each
population fixed only a single mutation in acrA or acrB, and allele frequency was near 100% (8/8
clones) except for G1, which had an allele frequency of approximately 25% (2/8 clones) and X3,
with an approximate 50% allele frequency (4/8 clones). We did not detect acrAB mutations in
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Gene

Population acrA acrB tolC mdh hfq marC

X1 -
481310
A→C
(V773G)

- -
4407590
T→G
(I24M)

1625925
IS1 insertion
(Disruption)

X2
484383
T→G
(N154T)

- -
3390659
+4:GATT
(Frameshift)

-
1626084
IS5 insertion
(Disruption)

X3
483735
+1:A
(Frameshift)

- -
3390936
+5:AACCT
(Frameshift)

-
1626081
IS1 insertion
(Disruption)

G1
484669
G→T
(R59S)

- - - -
1625925
IS1 insertion
(Disruption)

G2 - - - - -
1626100
-6:CCACCA
(V13,V14 Deletion)

G3 -
480665
G→A
(P988L)

-
3390726
-1:C
(Frameshift)

4407505
-7:AGGAAAA
(RBS deletion)

1625925
IS1 insertion
(Disruption)

Table 4.1: Parallel genotypic adaptation in isobutanol tolerant E. coli EcNR1 endpoint populations was investigated by
direct sequencing of loci of interest in sets of clonal isolates from each population. Each entry is formatted as follows:
mutation position first line, nucleotide changes second line, and protein effect third line. Mutation positions are given
as absolute genomic coordinates in the E. coli EcNR1 reference sequence (Additional file 2). SNPs are indicated by
base transition/transversion. Small insertions are indicated by a “+”, with the size (number of bp) of the insertion and
sequence of inserted bases. Small deletions are designated by “-” with a format similar to that for small insertions.
Ribosome binding site is abbreviated as RBS.

the G2 population, which intriguingly had the lowest fitness out of the six endpoint populations.
tolC mutations were not detected in any of the populations. The fixation of acrAB mutations in
five out of six independent populations suggests strong selective pressure and parallel evolution
at this locus. Mutations affected amino residues at a variety of positions in the protein structure
(Figure 4.6A). The acrAB mutations acquired in the isobutanol tolerant lineages bear noteworthy
similarities to mutations reported to affect substrate specificity in acrA and mexB, a Pseudomonas

aerogenosa structural homolog to acrB (Figure 4.6B) [133]. Mutations N154T and R59S of
AcrA are spatially proximal to D111N and V244M AcrA mutations reported to affect substrate
specificity of AcrA-MexB (Figure 4.6). Mutation V773 of AcrB is in the vicinity of the TolC
docking region of MexB / AcrB, where mutation A802V of MexB is known to affect substrate
specificity (Figure 4.6). Mutation P988L of AcrB is located in a turn between transmembrane
α-helices; several MexB mutations associated with changes in substrate specificity (T329I, T557I,
and T489I) also occur in turns between transmembrane α-helices (Figure 4.6).
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acrA

N154T

R59S

frameshift

residues 
not shown

P988L

V773G

acrB trimeracrA

A

B

acrA mexB trimer
Figure 4.6: AcrAB mutations detected in end populations. The acrAB locus was sequenced in clonal isolates from
each end population (G1, G2, G3, X1, X2, X3). (A) Discovered mutations mapped onto AcrA and AcrB protein
structures, (B) Mutations in AcrA and MexB (an AcrB homolog in Pseudomonas aerogenosa) associated with changes
in substrate specificity or AcrA-MexB assembly.

marC mutations were detected in all endpoint populations, providing strong evidence of
parallel adaptation at this locus (Table 4.1). All detected marC mutations were transposon (IS1 or
IS5) insertions, with the exception of an in-frame six bp deletion in G2 (Table 4.1). Transpositions
occurred at positions 1625925 and 1626081/1626084, suggesting that these sites are insertion
hotspots. Transpositions into marC likely cause loss-of-function from disruption, and could also
affect expression of the divergently transcribed marRAB operon. Functional effects of the marC

six bp deletion in G2 are not immediately obvious; this mutation results in deletion of two residues
(V13 and V14) from a transmembrane helix.
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Mutations in mdh were also common in the evolved populations, with mutations detected
in X2, X3, and G3 at approximately 100% allele frequency (8/8 clones) (Table 4.1). All mdh

mutations were insertions or deletions resulting in frameshifts. Since substantial numbers of
amino acid residues are affected in each case, these mutations are likely to cause loss-of-function
of mdh. hfq mutations were less common in the endpoint populations, with mutations detected
in X1 and G3 only. The X1 Hfq mutation I24M is located in the 3-proximal purine nucleotide
selectivity pocket (R-site) [134]. The R-site is involved in binding polyA RNA, but possible
functional effects of the I24M mutation are not immediately obvious [134]. In G3, the ribosome
binding site of hfq is partially deleted, potentially leading to lower intracellular Hfq protein levels
through reduced translation initiation rate of hfq mRNA.

4.3.4 Genotypic evolutionary dynamics

We investigated the dynamics of genotypic adaptation in the G3 and X3 lineages by phenotyping
and genotyping population samples from intermediate generations (Figure 4.7, Additional file
3). Phenotyping was done by assessing growth rate at various isobutanol concentrations, while
intermediate generation genotyping was conducted by screening whole-population samples for
mutations identified in sequenced clones, using Sanger sequencing of PCR amplified loci of
interest or allele specific PCR. Due to the large number of mutations in the G3 end population
clones, we screened only for those mutations identified in G3.266.7 and the acrB and gatZ loci
(Figure 4.7A). All mutations detected in X3.5 were screened in the intermediate generations
(Figure 4.7B).
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Figure 4.7: Fitness trajectories and temporal order of mutations. Intermediate generations of the G3 and X3 lineages
were phenotyped and genotyped. Phenotyping was done by measuring growth rate at various isobutanol concentra-
tions, while genotyping was done via allele specific PCR or direct Sanger sequencing of PCR products from whole
population samples. Green arrows denote intermediate generations that were genotyped. Mutations are listed above
the first generation in which they were detected. (A) Mutations in G3.266.7 and gatZ and acrB mutations (detected
in G3.26/G3.6) were traced through various evolutionary time points. (B) All mutations detected in X3.5 were traced
through various evolutionary time points.

The phenotype/genotype trajectories reveal that genotypic adaptations in each lineage had
pleiotropic effects across different isobutanol concentrations. In both the X3 and G3 lineages,
the first mutations acquired (marC/miaA-hfq in G3 and marC/gatC/hrpA/yfgO in X3) appear to
drastically increase growth rates at intermediate isobutanol concentrations (1% and 0.75% w/v for
G3 and X3, respectively), while having neutral or negative effects at 0% isobutanol (Figure 4.7).
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The initial marC/miaA-hfq mutations fixed in the G3 lineage appear to have a slightly negative
effect on growth rate at 0% isobutanol (Figure 4.7A). Subsequent mutations in the G3 lineage
(rph, mdh, groL, glnE, gltD, and gatZ) appear to monotonically increase the growth rate at 1%
(w/v) isobutanol while gradually restoring growth rate at 0% isobutanol (Figure 4.7A). In the G3
lineage, the 0% and 1% (w/v) isobutanol growth rate trajectories appear to plateau after about
260 generations, while growth rate at 2% (w/v) isobutanol increases to the endpoint population
(Figure 4.7A). In contrast, the growth rate trajectories at 0% and 0.75% (w/v) isobutanol in X3
increase to the end of the evolution, while the growth rate at 1.5% (w/v) isobutanol is relatively
constant after generation 266 (Figure 4.7B). Interestingly, in X3 there was a period during the
evolution between generations 150 and 266 where growth rate changes at 0% and 0.75% (w/v)
isobutanol were flat, while there was a rapid increase in the growth rate at 1.5% (w/v) isobutanol.
The growth rate increase in 1.5% (w/v) isobutanol is correlated with an mdtJ::IS5::tqsA mutation
appearing at generation 180 and a mdh/deaD/plsX mutation cluster appearing in generation 266.

4.3.5 DNA microarray study of gene expression changes in G3.2

To gain insights into potential regulatory adaptations to isobutanol stress, we performed a gene
expression study with G3.2, a highly isobutanol tolerant sequenced clone. We examined gene
expression in G3.2 and the parent E. coli EcNR1 (WT) in 0% and 0.5% (w/v) isobutanol glucose
minimal medium. For each strain/culture condition (G3.2/0% isobutanol, G3.2/0.5% isobutanol,
WT/0% isobutanol, WT/0.5% isobutanol), three biological replicates were employed. Cultures
were inoculated in media containing respective amounts of isobutanol, grown to mid log phase and
harvested for transcriptome measurement. RNA samples were labelled and hybridized to a custom
E. coli microarray as described in the Materials and methods section. A total of 4280 genes
were included on the microarrays. After a pre-processing procedure that included background
adjustment and normalization, 4235 genes with acceptable signals were subject to further analysis.
Two filters were first employed to select genes with notable changes across the conditions, which
resulted in a list of 2026 genes. Two-sample students t-test was then conducted to determine statis-
tically significant differences in gene expression. The full set of microarray results is included in
Additional file 4. As illustrated in Figure 4.8A, 326 and 381 genes were differentially regulated by
isobutanol stress in WT and G3.2 respectively. Differential transcriptional response between WT
and G3.2 to isobutanol stress was observed for 223 genes, with the most significantly perturbed
genes (ranked by p-value) shown in Figure 4.8B (see Additional file 4 for full results). Real
time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate
two genes with large expression changes (gadA and fimI) and two genes with subtle expression
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changes (fabA and rfaJ) (Figure E.1). Target expression levels were determined by fitting a MAK2
model to qRT-PCR data, and expression was normalized to housekeeping gene rpoD, which was
found to be invariant across all strains/conditions in our microarray data set and has been used in
other studies to normalize gene expression data in gram negative bacteria [135, 136]. Expression
levels measured by qRT-PCR correlated well with microarray data (Figure E.1).
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Figure 4.8: Microarray study of gene expression changes in G3.2. DNA microarray study was conducted to study
changes in gene expression between isobutanol tolerant clone G3.2 and the parent E. coli EcNR1. G3.2 and E. coli
EcNR1 (WT) were grown to mid-exponential phase in both 0% and 0.5% (w/v) isobutanol spiked minimal media.
(A) Summary of genes expression changes. (B) Top 30 genes with the most significant differences in transcriptional
response between G3.2 and WT. (C) Top 40 genes with the most significant differences in transcriptional response be-
tween G3.2 and WT, and controlling transcription factors. (D) Activities of transcription factors predicted by Network
Component Analysis (NCA).

BiNGO was used to assess any overrepresented Gene Ontology (GO) in the full set of
genes with differential transcriptional response, using p = 0.05 as a cutoff for significance.
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Overrepresented ontologies included transition metal ion transport, amine transport, amino acid
metabolic processes, glutamine family amino acid metabolic processes, chemical homeostasis,
and various cell envelope related components and processes (including flagella and fimbriae,
polysaccharide biosynthesis, and lipid metabolism); a full list of overrepresented gene ontologies
and related genes is available in Additional file 4. We further investigated changes in regulation
by examining transcription factors known to control genes differentially regulated between WT
and G3.2. Acid fitness island genes (gadA, gadE, gadB, gadC, slp, hdeD, yhiD, hdeB, and
hdeA), regulated by GadE, GadX, and GadW, are strongly repressed at both 0% and 0.5% (w/v)
isobutanol in G3.2 (Figure 4.8B and C, Additional file 4) . Fimbrial biogenesis genes (fimF,
fimH, fimA, fimI, fimC), regulated by IHF, Lrp, and HNS, are strongly repressed in G3.2 by isobu-
tanol; genes associated with iron acquisition (entA, entC, fepA, and cirA), regulated by Fur and
CRP, are found to be repressed by isobutanol in G3.2 as well (Figure 4.8B and C, Additional file 4).

To dissect the apparently complex regulatory changes evolved in G3.2, we applied Network
Component Analysis (NCA) to the microarray data to identify transcription factors with sig-
nificant activity changes in G3.2 compared to WT (Figure 4.8D, Additional file 4). Based on
previous study of isobutanol response network in E. coli [137] and preliminary examination of
our microarray data, we selected 16 transcription factors (TFs) that are potentially involved in
isobutanol tolerance (ArcA, PdhR, Fnr, Fur, FlhDC, OmpR, CRP, GadE, MarA, Nac, LexA,
PurR, Fis, IHF, PhoB and PhoP) for this analysis. Due to limited data (i.e. four strain/isobutanol
conditions), we used a subset of four TFs in each NCA analysis and repeated the analysis for
different combinations of TFs. Only TFs with consistent and significant predicted activity changes
across different combinations of TFs and different replicates were retained for further analysis.
GadE, PhoP, FlhDC, and MarA were subsequently found to be the most significantly perturbed
TFs in G3.2 compared to WT (Figure 4.8D).

NCA reveals constitutively reduced activity in G3.2 of GadE, a regulator of the acid fitness
island genes, and PhoP, a regulator of genes involved in Mg2+ homeostasis, resistance to
antimicrobial peptides, acid resistance (including acid fitness island genes), and LPS modification
(Figure 4.8D). FlhDC, a master regulator of flagellum biosynthesis, has increased activity in
G3.2 and is not repressed by isobutanol, as in WT (Figure 4.8D). MarA, which regulates genes
associated with response to oxidative stress, organic solvents, and heavy metals, shows increased
activity at 0% isobutanol in G3.2 relative to WT, and reduced upregulation in response to isobu-
tanol. In a previous study of the isobutanol response network in E. coli [137], it was concluded
that activities of ArcA, PhoB, and Fur were significantly increased by isobutanol stress due to
isobutanol induced quinone/quinol malfunction. We performed NCA for various combinations of
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ArcA, PhoB, and Fur with FlhDC, GadE, MarA, and PhoP to determine whether these results are
recapitulated in our study. We found that for most tested TF combinations, ArcA, PhoB, and Fur
activities are increased by isobutanol in WT EcNR1, consistent with previous results (Additional
file 4 and [137]). Responses of ArcA, PhoB, and Fur in G3.2 differ from WT, suggesting that these
transcriptional responses to isobutanol stress may have changed during evolution (Additional file
4). Especially notable is the differential response of Fur to isobutanol, with upregulation in WT
versus downregulation in G3.2 observed for many tested TF combinations (Additional file 4).
Many of the top differentially expressed genes identified in our microarray study are regulated
by IHF, HNS, Fis, and CRP (which were incidentally identified as being significantly perturbed
by isobutanol in [137]), suggesting that these TFs may also be involved in the differential
transcriptional response between WT and G3.2 (Figure 4.8C).

Integrated examination of genotype and microarray expression data yields insights into the
genetic basis of gene expression and transcription factor activity patterns in G3.2. One of the first
mutations fixed in the G3 lineage is miaA-hfq 4407505 -7:AGGAAAA, a partial ribosome binding
site deletion that is likely to reduce hfq mRNA translation. Hfq is a global regulator that functions
by mediating binding between a variety of sRNAs and their target mRNAs, which can alter target
protein levels via effects on translation initiation or mRNA degradation [138]. Hfq is required for
translation of rpoS (σ38) mRNA, the master transcriptional regulator for general stress response;
thus G3.2 is expected to have lower RpoS activity [138]. Previous work indicates that in minimal
medium, flhDC is strongly repressed by RpoS, while gadE is strongly upregulated by RpoS; the
activity changes observed for these transcription factors are consistent with reduced RpoS activity
in G3.2 [139]. Many other gene expression changes in G3.2 are also consistent with reduced RpoS
activity (see Additional file 4). In addition to rpoS, hfq regulates numerous other genes involved
in a variety of cellular processes, however since hfq regulation is post-transcriptional, many of
these effects cannot be captured in a DNA microarray study [138]. Besides possible changes in
post-transcriptional regulation, microarray data indicates that rpoS is differentially regulated at
the transcriptional level in G3.2 compared to WT. rpoS is upregulated in WT by isobutanol stress,
consistent with previous gene expression studies [137] (Additional file 4). In contrast, in G3.2
rpoS expression appears to be slightly repressed by isobutanol; furthermore the basal expression
level of rpoS in G3.2 is lower compared to WT, providing additional evidence of reduced RpoS
activity in G3.2.

NCA analysis revealed constitutively reduced activity of the PhoP and GadE transcriptional
regulators. PhoP is part of a Mg2+ responsive two-component signal transduction system,
with sensor kinase PhoQ phosphorlyating (and thus activating) PhoP in response to low Mg2+
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levels [140, 141]. Interestingly, G3.2 has a phoQ 1197581 A→G mutation, causing L209P in
transmembrane region 2 in the PhoQ protein, which may lead to reduced activity of the PhoPQ
system. Transcriptional changes caused by PhoPQ perturbation are potentially adaptive, since
PhoP is involved in stress response and regulates genes related to Mg2+ homeostasis, resistance
to antimicrobial peptides, acid resistance, and LPS modification [140, 141]. In a previous NCA
study [137], GadE activity was found to be strongly repressed by isobutanol. This finding
was recapitulated in our NCA results for WT, while in G3.2 GadE is constitutively repressed
(Figure 4.8D). The evolution of constitutive GadE repression in G3.2 hints that the GadE regulon
(comprised of the major acid resistance genes) may be maladaptive to isobutanol stress. There is
substantial overlap between the PhoP, GadE, Hfq, and RpoS regulons, pointing towards possible
co-evolution between these different regulators.

4.3.6 Investigating phenotypic and functional effects of mutations

Previous investigations have identified the cell envelope as a primary target of solvent toxicity.
G3.2 contains mutations in numerous genes and regulators associated with the cell envelope,
including secA and lepB (components of the Sec apparatus, which translocates periplasmic and
membrane targeted proteins from the cytosol), hfq (involved in sRNA mediated regulation of
many membrane proteins), fepE and yjgQ (involved in LPS biosynthesis), and phoPQ (regulator
of various LPS modification genes). Additionally, the DNA microarray study revealed that
many genes related to cell envelope components and processes were differentially expressed
in G3.2. We investigated possible cell envelope adaptations by profiling cellular fatty acid
composition and cell envelope proteins in the parent E. coli EcNR1 strain and G3.2 during growth
at 0.5% isobutanol (Figure 4.9A and B). Cellular fatty acid composition was determined using
gas chromatography-flame ionization detector (GC-FID) quantification, and was found to differ
considerably between G3.2 and WT EcNR1 (Figure 4.9A). The cyclopropane fatty acid fraction
is significantly reduced in G3.2, probably as a result of downregulation of cfa (cyclopropane fatty
acyl phospholipid synthase) in this strain (Figure 4.9A; see Additional file 4 for cfa expression
data from the DNA microarray study). Additionally, the overall unsaturated:saturated fatty acid
ratio is increased in G3.2 (Figure 4.9A), due mainly to an increase in the proportion of C16:1 and
C18:1 fatty acids relative to C16:0 (data not shown).
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Figure 4.9: Cell envelope composition of G3.2 compared to WT EcNR1. Possible cell envelope adaptations in G3.2
were investigated by profiling cellular fatty acid composition and cell envelope proteins in G3.2 and the parent E. coli
EcNR1 during growth at 0.5% (w/v) isobutanol. (A) Fatty acid composition of G3.2 and WT EcNR1. Relative
proportions of cyclopropane, unsaturated, and saturated fatty acids were determined by GC-FID analysis. (B) SDS-
PAGE profile of cell envelope proteins in G3.2 and WT EcNR1. Cell envelopes were isolated from 5x109 cells and
analyzed by SDS-PAGE. For comparison, 20 µg total cellular proteins (TP) from each strain (WT and G3.2) were
analyzed alongside the isolated cell envelopes (EP). As a reference, bands corresponding to outer membrane proteins
OmpA and OmpC/OmpF are indicated with arrows. Experiment was repeated to verify results (not shown).

To determine cell envelope protein profiles, cell envelopes were isolated from 5x109 cells
by sonication and differential centrifugation and then analyzed with sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 4.9B). SDS-PAGE analysis reveals
an overall increase in cell envelope proteins (on a per cell basis) in G3.2 compared to WT.
(Figure 4.9B). To examine changes in relative protein abundance between G3.2 and WT, protein
bands were quantified by densitometry analysis (using ImageJ software) and normalized to the
sum of intensities of the major protein bands. The 72 kDa, 55 kDa, and OmpC/OmpF bands were
found to be notably upregulated in G3.2 relative to WT, with relative increases of 1.2, 2.2, and 1.3
fold, respectively (Figure 4.9B). Upregulation of OmpC/OmpF is consistent with DNA microarray
results, which show upregulation of ompF in G3.2 (Additional file 4).

In addition to characterizing possible cell envelope adaptations in G3.2, we conducted detailed
investigations of phenotypic and functional effects of key mutations identified in isobutanol
tolerant clones. Selected mutations were reconstructed in E. coli EcHW24 (EcNR1 ∆mutS)
singly and in various combinations using ssDNA mediated recombination [59]. We focused on
characterizing parallel genotypic adaptations, including marC, acrAB, mdh, and rph mutations
identified in G3.2 and X3.5, as well as the first five mutations to appear in the G3 lineage, marC,
miaA-hfq, rph, mdh, and groL, which are associated with monotonically increasing isobutanol
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tolerance (Figure 4.6A). marC, acrAB, mdh, and rph single mutants were constructed to study
the phenotypic and functional effects of these mutations in isolation, while marC, miaA-hfq, rph,
mdh, and groL mutations were constructed singly and in various combinations to study fitness
benefits and investigate possible epistatic interactions among these mutations. Phenotypic effects
were investigated by measuring growth of mutants in isobutanol spiked minimal medium, and
functional assays were performed for acrAB and mdh. The parent E. coli EcNR1 and E. coli

EcNR1 single gene knockouts (∆acrA::kan, ∆acrB::kan, ∆mdh::kan) were employed as controls
in phenotype and functional assays.

marC mutations were detected in every evolution endpoint population. All detected marC

mutations were transposon (IS1 or IS5) insertions, with the exception of an in-frame six bp
deletion in G2. marC transposon insertions could not be produced with ssDNA mutagenesis, so
we instead approximated the effect of transposon insertions by knocking out marC, reasoning that
this could mimic effects of gene disruption caused by transposon insertion; additionally, deletion
of marC was found to improve isobutanol tolerance in an independent study (James C. Liao,
UCLA personal communications). Consistent with our expectations, ∆marC::kan was found to
significantly improve maximum specific growth rates and final densities in 0.5% (w/v) isobutanol
minimal medium relative to the parent E. coli EcNR1 (Table 4.2). Growth rate improvement of
∆marC::kan was higher in xylose medium (39±2% above WT growth rate) compared to glucose
medium (20±5% above WT growth rate) at 0.5% (w/v) isobutanol (Table 4.2). In contrast,
∆marC::kan improved final cell densities more in glucose medium compared to xylose medium
(40±10% vs. 7.6±0.5% improvement over WT; Table 4.2). ∆marC::kan had a slight negative
effect on maximum specific growth rate and final cell densities at 0% (w/v) isobutanol in both
xylose and glucose media (Table 4.2).

acrAB mutations were identified in five out of six independent evolved populations, suggesting
that mutations at this locus are likely to have positive adaptive effects. Consistent with this
expectation, acrA 483735 +1:A (identified in X3.5) and acrB 480665 G→A (identified in the
G3 lineage) dramatically increased maximum specific growth rates and final cell densities in
0.5% (w/v) isobutanol minimal medium relative to the parent E. coli EcNR1, while having more
subtle effects on growth in 0% isobutanol (Table 4.2). ∆acrA::kan and ∆acrB::kan produced
fitness benefits of similar or greater magnitude, implying that loss-of-function of acrAB is
associated with improved isobutanol tolerance (Table 4.2). This result is surprising given that
the AcrAB-TolC efflux pump is an important mechanism of tolerance to other organic solvents
and antibiotics. AcrAB-TolC efflux pump activity was measured via ethidium bromide (EtBr)
accumulation in reconstructed single mutants and clonal isolates harbouring acrAB mutations
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0% i-BtOH 0.5% i-BtOH

Locus Gene/mutation Clone ∆µmax ∆ODmax ∆µmax ∆ODmax Functional Effect

marC ∆marC::kan
(xylose
media)

X1,X2,X3
(IS1/IS5
insertion)

-5.0 ±0.5% -2.4±0.1% 39±2% 7.6±0.5% -

∆marC::kan
(glucose
media)

G1,G3
(IS1 inser-
tion)

-3.2 ±0.2% -7.8±0.3% 20±5% 40±10% -

acrAB acrA
483735
+1:A

X3.5 14±1% 3.3±0.1% 49±9% 72.4±0.8% Reduced EtBR efflux;
188±7% increase in in-
tracellular EtBr

∆acrA::kan N/A
(control)

6.5±0.6% 7.6±0.5% 32±5% 103±1% Reduced EtBR efflux;
210±10% increase in
intracellular EtBr

acrB
480665
G→A

G3.2 11.2±0.9% 2.1±0.1% 22±3% 31±1% Reduced EtBR efflux;
21±8% increase in in-
tracellular EtBr

∆acrB::kan N/A (con-
trol)

5.7±0.6% -3.6±0.1% 8.2±1.1% 64±2% Reduced EtBR efflux;
340±20% increase in
intracellular EtBr

mdh mdh
3390936
+5:AACCT

X3.5 -3.7±0.3% -1±0.1% 0.4±0.1% 13±2% Loss of function; no de-
tectable Mdh activity

mdh
3390726
-1:C

G3.2 2.3±0.1% 4.4±0.1% -8.1±3% -1.2±0.1% Loss of function; no de-
tectable Mdh activity

∆mdh::kan N/A
(control)

-1.6±0.2% 4±0.1% 10.8±1.6% 10±1% Loss of function; no de-
tectable Mdh activity

rph rph
3823220
+4:GTCG

G3.2 39±2% 11.9±0.1% 49±16% -12.9±0.1% -

Table 4.2: Phenotypic and functional effects of selected marC, acrAB, mdh, and rph mutations. Selected point muta-
tions in acrAB, mdh, and rph identified in isobutanol tolerant clones were reconstructed in the parent E. coli EcNR1
strain using ssDNA mediated mutagenesis. marC transposon insertions could not be produced with ssDNA mutagen-
esis; instead, we approximated the effect of transposon insertions by knocking out marC. Reconstructed mutants were
phenotyped by measuring specific growth rate in minimal media with 0% and 0.5% (w/v) isobutanol; percent change
in growth rate and maximum OD600 relative to the parent E. coli EcNR1 are reported. Functional effects of acrAB
mutations were assessed with an in vivo ethidium bromide accumulation assay and mdh mutations were assessed by
directly measuring malate dehydrogenase enzyme activity in cell lysates.

from evolution end populations [142]. Since AcrAB-TolC is the primary efflux pump for EtBr,
mutations altering AcrAB-TolC activity or substrate specificity would be expected to affect the
accumulation of intracellular EtBr [142]. Increased EtBr accumulation (consistent with reduced
AcrAB-TolC activity) was observed in all examined end population clonal isolates harbouring
acrAB mutations (full data set in Figure E.2). The acrA 483735 +1:A single mutant had an EtBr
accumulation profile similar to ∆acrA::kan and X3.5. In contrast, the EtBr accumulation profile
in G3.2 was similar to ∆acrB::kan, but acrB 480665 G→A (identified in the G3.2) showed only
modest changes in EtBR accumulation relative to the parent strain, implying that G3.2 may have
additional mutations affecting efflux pump activity.
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The AcrAB-TolC multidrug efflux pump has been well characterized in its role for antibiotic
and solvent tolerance, but a recent study suggests that AcrAB-TolC may also function as an
exporter for a hitherto unidentified quorum sensing signal (QSS) [143]. There is strong evidence
that the QSS exported by AcrAB-TolC is associated with upregulation of rpoS transcription;
∆acrAB mutants have reduced rpoS expression and altered temporal patterns of expression
[143]. Our gene expression study of G3.2 provides evidence of reduced RpoS activity in this
strain. Interestingly, two evolved populations, X1 and G3, were found to have mutations in hfq,
which is required for translation of rpoS mRNA, suggesting that RpoS modulation might be a
common adaptive effect of these different mutations. We assayed RpoS activity via iodine staining
in the parent E. coli EcNR1 strain, each evolution endpoint population (G1, G2, G3, X1, X2,
X3), a ∆acrA::kan mutant, and a constructed single mutant containing the miaA-hfq mutation
found in the G3 lineage (miaA-hfq 4407505 -7:AGGAAAA). RpoS positively regulates glycogen
biosynthesis, which can be measured by staining cells with iodine cells with higher glycogen
levels stain darker [144]. While this assay is an indirect measure of RpoS activity and is subject
to many confounding factors (such as other regulation of glycogen biosynthesis), it is commonly
used in literature and has been demonstrated to be well correlated with RpoS activity [144].
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Figure 4.10: Survey of RpoS activity in evolved populations and phenotype study of a ∆rpoS mutant. RpoS activity
was assayed in evolved populations and selected single mutants using an I2 staining assay and Western blot analysis.
(A) I2 staining assay. Overnight cultures were streaked on glucose minimal medium agar spiked with 0.35% (w/v)
isobutanol, incubated at 30◦C for 48 hours, and then stained with USP tincture of iodine. Samples are as follows (from
top left, to bottom right): E. coli EcNR1 ∆acrA::kan (∆acrA), E. coli EcHW24 miaA-hfq 4407505 -7:AGGAAAA
(hfq*), E. coli EcNR1 (WT), Xylose #1 end population (X1), Xylose #2 end population (X2), Xylose #3 end population
(X3), Glucose #1 end population (G1), Glucose #2 end population (G2), Glucose #3 end population (G3). (B) Western
blot analysis of RpoS in total cellular protein extracted from cultures of E. coli EcNR1 (WT), G3.2, and E. coli
EcHW24 miaA-hfq 4407505 -7:AGGAAAA (hfq*) grown to early exponential phase either with (+) or without (-
) 0.5% (w/v) isobutanol in NG50 medium. Experiment was repeated several times to verify results; representative
Western blot shown. Purified E. coli RpoS (NeoClone) was used as a positive control (ctrl). (C) Phenotype study of a
∆rpoS mutant. E. coli BW25113 ∆rpoS::kan (obtained from the Keio collection [145]; strain # JW5437-1) and parent
strain E. coli BW25113 were grown in 0%, 0.5%, and 1% (w/v) isobutanol glucose media. To facilitate comparison,
we report normalized relative fitness (RF/RF0 %), defined as relative fitness divided by relative fitness at 0% (w/v)
isobutanol; relative fitness (RF) was calculated as µ∆rpoS/µWT where µ∆rpoS is the maximum specific growth rate
(1/h) of E. coli BW25113 ∆rpoS::kan and µWT is the maximum specific growth rate (1/h) of E. coli BW25113.

Iodine staining results are show in Figure 4.10A. Single mutant miaA-hfq 4407505 -
7:AGGAAAA (hfq* in Figure 4.10A) stains lighter than the parent E. coli EcNR1 strain (WT in
Figure 4.10A), consistent with the expected reduction of Hfq and RpoS activity in this mutant.
Both of the end populations harbouring hfq mutations, X1 and G3, stain much lighter than
WT suggesting reduced Hfq activity and subsequently RpoS levels in both end populations
(Figure 4.10A). G1 and X2 also show significantly lighter staining than WT, suggesting reduced
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RpoS activity in these strains as well (Figure 4.10A). Staining in X3 is only slightly lighter
than WT, while G2 and ∆acrA::kan (unexpectedly) stain very similarly to WT. Curiously, the
association between ∆acrAB and reduced RpoS reported in the literature was not evidenced in
our iodine staining assay. We suspect that this discrepancy may be due to differences in assay
techniques. Previous studies of RpoS activity of ∆acrAB mutants were done with liquid cultures,
with RpoS activity assayed by real-time PCR or Western blotting, while our assay was done on
solid medium using iodine staining to measure intracellular glycogen levels, which are directly
controlled by RpoS [143]. Concentrations of the QSS exported by AcrAB-TolC are likely to vary
dramatically between liquid and solid cultures due to cell density differences, and could thus
confound assay results.

As a follow up to the I2 staining assay, we directly checked RpoS expression by Western
blot analysis of RpoS in the parent strain (WT), G3.2, and single mutant miaA-hfq 4407505
-7:AGGAAAA (hfq*) grown with and without 0.5% (w/v) isobutanol (Figure 4.10B). RpoS
Western blot analysis was repeated several times to verify results; Figure 4.10B shows a represen-
tative Western blot. RpoS expression is evident in the parent EcNR1 strain (WT) at both 0% and
0.5% (w/v) isobutanol, while RpoS expression was not detected in G3.2 under either condition
(Figure 4.10B). Interestingly, in hfq* RpoS is detectable at 0% isobutanol, but not at 0.5% (w/v)
isobutanol. These results directly demonstrate reduced RpoS expression at 0.5% (w/v) isobutanol
in G3.2 and the miaA-hfq single mutant relative to the parent EcNR1 strain, consistent with I2
staining results (Figure 4.10A). We attempted Western blot analysis of RpoS in other strains
(including evolution endpoint populations G1, G2, G3, X1, X2, and X3; sequenced isobutanol
tolerant clone X3.5; and ∆acrA::kan single mutant); however, due to inconsistent outcomes
between experiments, we are unable to draw conclusions about RpoS expression levels in these
other strains (results not shown). To ascertain whether reduced RpoS activity is indeed adaptive
to isobutanol stress, we examined the isobutanol tolerance phenotype of a ∆rpoS::kan mutant
(Figure 4.10C). ∆rpoS::kan caused a growth defect at 0% and 0.5% (w/v) isobutanol relative to
the WT strain, while at 1% (w/v) isobutanol the relative fitness of ∆rpoS::kan is slightly higher
than WT; to facilitate comparison, we report normalized relative fitness (calculated by dividing
relative fitness by relative fitness at 0% w/v isobutanol). These results suggest that attenuated RpoS
activity may indeed be adaptive to isobutanol stress, since normalized relative fitness is increased
at 0.5% and 1% (w/v) isobutanol (Figure 4.10C). However, complete loss-of-function of rpoS

appears to incur significant costs that overshadow adaptive effects at isobutanol concentrations
below 1% (w/v) (Figure 4.10C).

mdh mutations appear in three out of six evolution end populations, suggesting that these
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mutations may be adaptive. However, in 0% and 0.5% (w/v) isobutanol spiked minimal medium,
we found relatively minor differences in growth between the parent E. coli EcNR1 strain, mdh

3390726 -1:C (found in G3.2) single mutant, mdh 3390936 +5:AACCT (found in X3.5) single
mutant, and ∆mdh::kan (Table 4.2). Thus mdh mutations do not appear to improve isobutanol
tolerance in isolation, hinting that fitness benefits may come via epistatic interactions with other
mutations. All of the mdh mutations identified in evolution end populations were indels causing
frameshifts, suggesting that these mutations lead to loss-of-function. To assess functional effects
of mdh mutations, NADH dependent malate dehydrogenase activity was measured in crude cell
lysates of G3.2, mdh 3390726 -1:C single mutant, X3.5, mdh 3390936 +5:AACCT single mutant,
∆mdh::kan, and the parent E. coli EcNR1. NADH dependent malate dehydrogenase activity
was not detectable in G3.2, mdh 3390726 -1:C single mutant, X3.5, mdh 3390936 +5:AACCT
single mutant, or ∆mdh::kan, while assay of the parent E. coli EcNR1 yielded enzyme activity
of 3.8±0.2 U/mg-wet-cells, consistent with our expectation that 3390726 -1:C and 3390936
+5:AACCT lead to loss-of-function of mdh.

Restorative mutations are commonly observed in rph-pyrE during experimental evolution
studies with E. coli K12 MG1655 [115], and indeed all sequenced clonal isolates from our
evolution end populations had rph mutations. We investigated the adaptive benefits of the rph

3823220 +4:GTCG mutation acquired in the G3 lineage. This mutation was found to substantially
improve maximum specific growth rate in both 0% and 0.5% (w/v) isobutanol spiked glucose
minimal medium, consistent with the notion that rph mutations are a general adaptation to growth
on minimal media (Table 4.2).

Genotypic adaptation to isobutanol stress is complex and involves diverse genetic loci, as
revealed in our genome resequencing results. The apparent multigenic nature of isobutanol
tolerance suggests that epistasis, interactions between different genes, is probably an important
factor in many of the evolved genetic adaptations. To study fitness benefits and investigate
possible epistasis, the first five mutations fixed in the G3 lineage (Figure 4.7A), marC, miaA-hfq,
rph, mdh, and groL, were reconstructed singly and in various combinations in E. coli EcHW24,
using multiplex recursive ssDNA mediated mutagenesis [59]. As explained above, the marC::IS1

mutation could not be created using ssDNA recombination, so instead we knocked out marC

(marC::kan) to approximate gene disruption effects caused by IS1 insertion. The resulting mutant
set was phenotyped by measuring the maximum specific growth rate in 0%, 0.5%, and 1% (w/v)
isobutanol glucose minimal media; results are presented as relative fitness, defined as mutant
maximum specific growth rate divided by maximum specific growth rate of the parent E. coli
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EcHW24. Epistasis is assumed to follow a simple multiplicative fitness model w = ε
n∏
i

wi, where

w = relative fitness of a particular mutation combination, ε = total epistatic interaction parameter,

and wi =relative fitness of single mutants; log epistasis is calculated as log ε = logw −
n∑
i

logwi

(Figure 4.11) [146].
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Figure 4.11: Fitness effects of first five mutations fixed in G3 lineage. The first five mutations fixed in the G3 lineage
(marC, miaA-hfq, rph, mdh, and groL) were constructed singly and in various combinations in E. coli EcHW24
(EcNR1 ∆mutS) using ssDNA mediated recombination; the marC::IS1 mutation was approximated by knocking out
marC. The constructed mutants and E. coli EcHW24 were phenotyped by measuring the maximum specific growth
rate in 0%, 0.5%, and 1% (w/v) isobutanol spiked minimal glucose media; relative fitness was calculated as mutant
maximum specific growth rate (1/h) divided by E. coli EcHW24 maximum specific growth rate (1/h). Mutation
combinations corresponding to the order of appearance in G3 are highlighted. Epistasis is assumed to follow a simple

multiplicative fitness model w = ε
n∏
i

wi, where w = relative fitness of a particular mutation combination, ε =

total epistatic interaction parameter, and wi =relative fitness of single mutants; log epistasis is calculated as log ε =

logw −
n∑
i

logwi

As would be expected, there is a general trend of improved relative fitness with increasing
numbers of mutations (Figure 4.11; miaA-hfq abbreviated hfq and marC::kan abbreviated
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marC). Relative fitness improvements at 1% (w/v) isobutanol are the most dramatic, with the
miaA-hfq/rph/mdh/groL and marC/rph/mdh/groL quadruple mutants having a 3.8 fold increase
in growth rate compared to E. coli EcHW24; fitness changes at 0% and 0.5% (w/v) isobutanol
are much smaller, and appear to plateau with introduction of an rph mutation (Figure 4.11).
Individually, the marC, miaA-hfq, rph, mdh, and groL mutations have relatively modest effects.
mdh and groL single mutants have fitness essentially identical to the parent E. coli EcHW24 at
all tested isobutanol concentrations (Figure 4.11). The rph single mutant has improved relative
fitness at 0% and 0.5% isobutanol, while the marC and miaA-hfq single mutants have improved
relative fitness at 0.5% and 1% isobutanol (Figure 4.11). Notable improvements in relative fitness
in 1% (w/v) isobutanol were observed for some double mutants, in particular, miaA-hfq/rph,
miaA-hfq/mdh, marC/mdh, and miaA-hfq/groL (Figure 4.11). We suspect that there may be
positive epistasis between miaA-hfq and each of mdh, rph, and groL; however due to limited
growth rate measurement precision, we can assert statistically significant epistasis only for
miaA-hfq and mdh (Figure 4.11). Likewise, positive epistasis between marC and each of mdh

and groL seems plausible (Figure 4.11), but cannot be ascertained due to limited measurement
precision. Interestingly, marC and miaA-hfq demonstrate significant negative epistasis at 1%
isobutanol (Figure 4.11).

Many higher order mutation combinations show substantial relative fitness improvements
at 1% (w/v) isobutanol (Figure 4.11). The quadruple mutants miaA-hfq/rph/mdh/groL and
marC/rph/mdh/groL have the greatest relative fitness, with a 3.8 fold improvement in growth rate,
followed by the marC/miaA-hfq/rph/mdh/groL pentuple mutant and hfq/rph/mdh triple mutant,
each having a 3.3 fold improvement in growth rate (Figure 4.11). Results for the reconstructed
marC/hfq/rph/mdh quadruple mutant and full pentuple mutant are approximately consistent with
the evolution trajectory (Figure 4.7A). Epistasis analysis reveals significant positive epistatic inter-
actions for miaA-hfq/rph/mdh, rph/mdh/groL, miaA-hfq/rph/mdh/groL, and marC/rph/mdh/groL

(Figure 4.11). Comparison of fitness effects of rph/mdh/groL vs. miaA-hfq/rph/mdh/groL and
marC/rph/mdh/groL provides compelling evidence that an miaA-hfq or marC genetic background
exhibits positive epistasis with rph/mdh/groL (Figure 4.11).

4.4 Discussion

Due to broad mechanisms of toxicity, microbial solvent tolerance is a complex phenotype,
involving adaptations in diverse cellular processes [50]. This inherent complexity suggests that
genotypic adaptation to solvent stress will involve a rugged fitness landscape with many epistatic

130



interactions between genes [147]. Fitness landscape topology and epistasis have important
ramifications for efforts towards engineering complex phenotypes. Many of the approaches
previously employed to investigate genetic bases of adaptation to solvent stress are inherently
limited to exploring restricted regions of the fitness landscape and often fail to capture interactions
between distal genes; thus these approaches may fail to uncover many important adaptations [50].
In our study, we used experimental evolution of multiple lineages of E. coli under isobutanol stress
followed by genome resequencing and phenotypic characterization, allowing us to investigate
the full bases of adaptation in our evolved lineages. Our results reveal many novel patterns
of genotypic adaptation and suggest several important tolerance mechanisms, informing future
efforts towards engineering more robust strains of E. coli for isobutanol production and also
providing general insights into the evolution of complex stress tolerance phenotypes.

4.4.1 Genotypic patterns of adaptation: epistasis, global effect mutations,
and parallel evolution

Consistent with the complex nature of solvent tolerance, our genome resequencing results reveal
genetic adaptations in a diversity of cellular processes (Table 4.2). The apparent multigenic nature
of isobutanol tolerance suggests that epistatic interactions and coevolution between different
genetic loci are probably important factors in many of the evolved adaptations. Examining
the genotypes of X3.5 and G3.2 reveals several possible examples of epistasis and coevolution
between genes that encode interacting proteins or that participate in functionally related cellular
processes. G3.2 has mutations in secA and lepB, two components of the Sec protein translocation
apparatus that exports periplasmic and membrane proteins from the cytosol (Table E.1, Figure 4.5)
[148]. The SecA S233P mutation is in the preprotein binding domain of SecA, which recognizes
and binds nascent cytosolic peptides targeted for export, while LepB is a signal peptidase that
cleaves the N-terminal leader peptide proteins after secretion; these mutations may collectively
alter the peptide specificity of the Sec complex [148, 149]. Both clones sequenced from the
G3 lineage (G3.2 and G3.266.7) have a probable loss-of-function mutation (indel leading to
frameshift) in gltD, a subunit of glutamate synthase, and glnE, a regulator of glutamine synthase
activity; these mutations suggest a rewiring of nitrogen metabolism towards increased glutamine
synthesis [150]. The X3 lineage acquired mutations in rpsB, the 30S ribosomal subunit S2, and
deaD (csdA), an RNA helicase involved in ribosome biogenesis that is known to be a multicopy
suppressor of temperature-sensitive rpsB mutants [151]. The rpsB mutation, which occurs before
deaD in the X3 lineage, is associated with improved growth at 0% and 0.75% (w/v) isobutanol,
while the appearance of a mdh/deaD/plsX mutation cluster is associated with improved growth
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at 1.5% (w/v) isobutanol (Figure 4.7B). Possible functional effects of the rpsB/deaD mutations
are not clear. However, recent studies have identified alterations in rRNA processing that
contribute to acid tolerance in Clostridium acetobutylicum and mutations in ribosomal machinery
in Pseudomonas putida that contribute to chemical tolerance, setting a precedent for ribosomal
mechanisms of complex stress tolerance [152, 153].

Epistasis can also occur though more cryptic mechanisms. The evolution trajectory (Fig-
ure 4.7A) showed that fitness at 1% (w/v) isobutanol increases monotonically as marC, miaA-hfq,
rph, mdh, and groL were acquired in the G3 lineage, yet rph, mdh, and groL single mutants did not
have significant fitness effects at 1% (w/v) isobutanol (Figure 4.11). Our mutation reconstruction
analysis demonstrates that significant positive epistasis is correlated with an miaA-hfq or marC

genetic background (Figure 4.11). Curiously, we detected significant negative epistasis between
miaA-hfq and marC. Negative epistasis often occurs between genes with overlapping functions
[154], suggesting that miaA-hfq and marC could have a shared mechanism for improving isobu-
tanol tolerance; this interpretation is further supported by the fact that miaA-hfq and marC each
show positive epistasis with subsequent mutations in the G3 lineage (i.e. rph/mdh/groL). Since
marC is a poorly characterized gene of unknown function, possible mechanistic links between
miaA-hfq and marC or between marC and rph/mdh/groL are not apparent. One possibility is
that marC mutations (such as deletion or transposon insertions) could affect expression of the
divergently transcribed marRAB locus, which is involved in regulation of genes associated with
response to oxidative stress, organic solvents, and heavy metals; some of the genes in the marRAB

regulon are coregulated by hfq, including acrAB [155]. Indeed, our gene expression study of G3.2
reveals slightly reduced levels of marA and marB transcripts, and NCA identified transcription
factor MarA as having significantly perturbed activity (Figure 4.8D and Additional file 4). An
independent study of isobutanol tolerance in E. coli reported that fitness benefits of ∆marRAB

and ∆marC were comparable, but deletion of the full marCRAB locus yielded the greatest
improvement in isobutanol tolerance (James C. Liao, UCLA personal communications). More
investigation and characterization of marC is needed to elucidate mechanisms underlying the
observed negative epistasis between miaA-hfq and marC and positive epistasis between marC and
rph/mdh/groL.

The functional basis of epistasis between rph/mdh/groL and miaA-hfq is also not immediately
obvious, as hfq, rph, mdh, and groL participate in seemingly disparate cellular processes: hfq

is a global regulator that mediates binding between sRNAs and their target mRNAs, rph has
RNase PH activity, mdh is TCA cycle enzyme malate dehydrogenase, and groL is part of the
groEL chaperone [150]. miaA-hfq 4407505 -7:AGGAAAA is the second mutation acquired in
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the G3 lineage, and is associated with significantly improved fitness at 1% isobutanol both in the
evolutionary trajectory (Figure 4.7A) and as a reconstructed single mutant (Figure 4.11). The
mutation miaA-hfq 4407505 -7:AGGAAAA is a partial ribosome binding site deletion that is
likely to reduce translation initiation rate of hfq mRNA (evaluated with the Ribosome Binding
Site Calculator, Beta version) and thus reduce Hfq protein levels (evidenced by iodine staining
assay, Figure 4.10A) [156]. Since Hfq is a global regulator, a reduction in activity is likely to
perturb expression of many proteins. The net effect of these perturbations is clearly beneficial at
1% (w/v) isobutanol, but some of the specific expression perturbations caused by reduced Hfq
are likely to be maladaptive. This suggests that some of the subsequent mutations in G3 may be
compensatory to the perturbations caused by reduced Hfq activity, and that the initial fixation
of hfq in G3 may have been a crucial determinant of the evolutionary trajectory in this lineage.
Interestingly, many of the mutations subsequently acquired in the G3 lineage are in genes known
to be regulated (either directly or indirectly) by Hfq, including acrB, phoPQ, gltD, mdh, groL, and
the gat operon [138, 150]. For example, reduced Hfq activity is associated with increased mdh,
gltD, and phoPQ expression; mutations in these genes could thus be compensatory by reducing
expression or protein activity [138, 150]. Indeed, the mdh mutation in G3 was verified to be a
loss-of-function mutation, and our gene expression study indicates reduced PhoPQ activity in
G3.2, probably due to the phoQ mutation. Reduced Hfq activity is also associated with reduced
GroL levels and the acquired groL mutation could likewise be compensatory, perhaps through
increasing GroL activity [138].

The role of the miaA-hfq mutation in the evolution of isobutanol tolerance in G3 suggests
that global regulatory network perturbation is an important genetic mechanism of adaptation.
Indeed, an accumulating body of research points towards regulatory network perturbation as a
general and important mechanism of adaptive evolution under a variety of contexts and selective
pressures, as discussed in section 4.2.1 and [57, 157, 122]. Investigations of transcription factor
network evolution suggest higher evolvability and rates of divergence for central transcription
factors compared to peripheral regulators [158]. Furthermore, the concept of regulatory network
perturbation as a mode of adaptation has been utilized for engineering complex stress tolerance
phenotypes; targeted mutagenesis of rpoD and rpoA in E. coli was used to generate mutant
libraries with perturbed global gene expression patterns, from which variants with dramatically
improved ethanol tolerance (rpoD mutagenesis) and n-butanol tolerance (rpoA mutagenesis) were
iteratively isolated [53, 52, 54].

Many of the adaptive global effect perturbations identified in previous studies involved
transcriptional regulatory changes, often through mutations in transcription factors or genes
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controlling DNA supercoiling. Indeed, our gene expression study of G3.2 revealed a number of
transcriptomic adaptations, probably due in part to changes in RpoS and PhoP activity. However,
our results also suggest that global changes in post-transcriptional regulation might constitute
important modes of adaptation in our evolved lineages. Gene Ontology analysis of mutations
accumulated in G3.2 and X3.5 indicates a significant overrepresentation of genes with RNA
helicase activity, including secA (G3.2), rhlB (G3.2; see Additional file 1), hrpA (X3.5), and
deaD (X3.5). RNA helicases can participate in various modes of post-transcriptional regulation,
including mRNA processing, translation, or degradation [159]. Regulatory effects related to
RNA helicase activity of secA (G3.2), rhlB (G3.2), hrpA (X3.5), and deaD (X3.5) are not well
characterized, and thus it is difficult to speculate about specific mechanisms of adaptation related
to these mutations; however acquisition of hrpA and a mdh/deaD/plsX mutation cluster in the X3
lineage is correlated with significant improvements in isobutanol tolerance (Figure 4.7B). These
results suggest that RNA helicases may be interesting targets for targeted mutagenesis to improve
isobutanol tolerance and possibly other complex stress tolerance phenotypes.

In addition to mutations in RNA helicase genes, we discovered other possible post-
transcriptional regulatory adaptations in our evolved lineages. X3.5 acquired a mutation in
rpsB, ribosomal subunit S2, which could potentially affect translation; however other effects
are possible, as noted in our epistasis discussion. The X1 and G3 lineages acquired mutations
in post-transcriptional regulator hfq, which probably result in reduced activity, as evidence by
iodine staining assay (Figure 4.10A). Hfq is a global regulator that functions by mediating binding
between a variety of sRNAs and their target mRNAs, which can alter target protein levels via
effects on translation initiation or mRNA degradation [138]. Interestingly, many stress response
regulons incorporate sRNA mediated regulation, including the RpoS regulated general stress
response (rpoS translation is mediated through rprA and dsrA sRNAs), oxidative and antibiotic
stress (oxyS, gcvA, and micF sRNAs), osmotic shock (omrA and omrB sRNAs), cell envelope
stress (micA and rybB sRNAs), and iron limitation (ryhB sRNA) [160]. Stress response tuning via
hfq mutations, possibly dominated by modulation of RpoS, may thus constitute a mechanism of
adaptation to isobutanol stress, but due to the global regulatory role of Hfq, many other adaptive
effects are possible. Beneficial hfq mutations have recently been discovered in E. coli lineages
evolved on lactate minimal medium, under glucose limitation, and under phosphate limitation,
underscoring that hfq evolution represents a flexible and general mechanism of adaptation, and hfq

may be an interesting mutagenesis target for engineering improved stress tolerance phenotypes
[115, 161, 162].

The role of centrality in the evolution of biochemical networks has been investigated in
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a number of studies. Investigations of protein-protein interaction and metabolic networks
suggest that central proteins tend to evolve more slowly than peripheral proteins, in contrast
to findings for transcriptional regulatory networks [158, 163, 164]. Intriguingly, we found
numerous potentially adaptive mutations in genes known to have high centrality in protein-
protein interaction and metabolic networks. Examples of adaptation at central protein-protein
interaction nodes include adaptive mutations in groL, a chaperone involved in folding of many
different proteins, and mutations in secA/lepB, components of the Sec complex which exports
numerous proteins out of the cytosol. We also discovered potentially adaptive mutations in
high centrality metabolic network nodes, such as mdh and gltD/glnE. Our results suggest that
more investigation is warranted into the role of centrality in the evolution of biochemical networks.

Parallel evolution occurs when independent lineages evolve similar traits, and is considered
strong evidence of selective pressure [57]. We have identified several instances of parallel
genotypic adaptation in our evolved lineages. In particular, mutations in rph, gatYZABCD

operon, mdh, acrAB, and marC were found in all of the resequenced evolution endpoint clones
(Table 4.1). marC mutations (consisting mostly of transposon insertions) were discovered in
all six evolution endpoint populations, while deletion of a genomic region containing marC

(hipA-flxA) was reported in an independent study of evolution of isobutanol tolerance (Table 4.1)
[124]. Loss-of-function of marC appears to be broadly adaptive to isobutanol stress under various
growth conditions, including glucose and xylose minimal media (Table 4.2) and yeast extract
supplemented glucose media [124]. In addition to marC, acrAB mutations were also prevalent
in evolution endpoint populations (occurring in five out of six populations; Table 4.1), and
adaptive acrAB mutations have also been reported in other investigations of isobutanol tolerance
[165, 124]. In both our work and independent studies, it was found that loss-of-function of acrAB

was correlated with significantly improved isobutanol tolerance. Like marC, effects of acrAB

mutations appear to be broadly adaptive since isobutanol tolerance is improved for a variety
of growth conditions, including xylose and glucose minimal media (this study), yeast extract
supplemented glucose media [124], and rich LB media [165].

In contrast to marC and acrAB mutations, in isolation mdh mutations did not improve
isobutanol tolerance. Yet the appearance of mdh indel mutations in three out of six independent
lineages strongly suggests adaptive effects, perhaps through epistatic interactions. In the case of
the G3 lineage, we find significant positive epistasis between hfq and mdh (Figure 4.11). However,
mdh mutations also appear in strains without hfq mutations or evidence of altered Hfq activity,
suggesting that mdh mutations may be epistatic with other genetic backgrounds. Phenotype
analysis of reconstructed mutants hints that there may be functional overlap between hfq and
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marC, and we observe possible epistasis in a constructed marC/mdh double mutant, although
the measured epistasis is not statistically significant (Figure 4.11); given these results and the
prevalence of marC mutations in the evolution endpoint populations, epistasis between marC and
mdh seems plausible but more investigation is needed.

We did not investigate rph and gatYZABCD parallel evolution as thoroughly as the mutations
discussed above. As described previously, restorative mutations in rph are general adaptations of
E. coli K12 MG1655 to growth in minimal medium rather than specific adaptations to isobutanol
stress. However, it should be noted that rph mutations have been reported to be epistatic with
a variety of genetic backgrounds, and our mutation reconstruction analysis points towards such
a possibility (Figure 4.11). The gatYZABCD operon is strongly upregulated in response to
isobutanol stress (Figure 4.8 and Additional file 4). gatYZABCD genes are involved in galactitol
transport and catabolism, and do not have an obvious role in isobutanol tolerance. An independent
study found that deletion of gatY was correlated with improved isobutanol tolerance [124]. We
suspect that gatYZABCD overexpression in response to isobutanol is spurious and provides no
stress tolerance benefit, perhaps leading to selective pressure for mutations that reduce expression
levels or lead to loss-of-function. We did not investigate gatYZABCD in our other evolved lineages
due to the relatively large size of this locus.

During the course of our isobutanol tolerance evolution study, we became aware of a similar
project concurrently underway in another laboratory [124]. It is informative to compare the
findings reported in [124] with our own results. In this parallel study, E. coli JCL260 (an
isobutanol production strain) was evolved on yeast extract - glucose media supplemented with
isobutanol and then sequenced [124]. A total of 27 mutations were identified in SA481 (the
sequenced evolved isolate), consisting of 25 transposon (IS10) insertions, one SNP, and one large
genomic deletion [124]. Mutation repair analysis and subsequent gene deletion studies revealed
five key genetic loci involved in isobutanol tolerance: tnaA, gatY, acrA, yhbJ, and the hipA-flxA

genomic region [124]. It was demonstrated that deletion of these genetic loci and of marCRAB

(contained within the hipA-flxA genomic region) conferred isobutanol tolerance [124]. In our
study, we discovered parallel mutations in acrAB, marC, and the gatYZABCD operon, and demon-
strated that deletion of acrA, acrB, and marC conferred isobutanol tolerance, consistent with
the independently reported results [124]. Furthermore, in [124] single mutations reportedly had
minor impacts on isobutanol tolerance (with the exception of ∆acrA), but mutation combinations
(∆acrA/∆gatY, ∆acrA/∆tnaA, ∆tnaA/∆gatY/∆acrA, ∆tnaA/∆gatY/∆acrA/∆marCRAB, and
∆tnaA/∆gatY/∆acrA/∆marCRAB/∆yhbJ) showed synergistic effects on isobutanol tolerance;
these findings are consistent with our suggestion that epistasis is an important factor in the
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evolution of isobutanol tolerance and possibly other complex stress tolerance phenotypes.

Beyond the five key mutations discussed in [124], there are other notable parallels and rela-
tionships between the mutations in SA481 and those identified in our study. We identified parallel
loss-of-function mutations in malate dehydrogenase mdh (catalyzing NAD dependent oxidation
of malate to oxaloacetate) in three out of six evolution endpoint populations (Table 4.2), and our
results indicate that mdh mutations provide fitness benefits via epistasis with hfq and possibly
marC mutations (Figure 4.11). SA481 contains an IS10 insertion in malate dehydrogenase maeA

(catalyzing NAD dependent decarboxylation of malate to pyruvate) [124]; the preponderance of
malate dehydrogenase mutations in isobutanol tolerant mutants suggests that rewiring of metabolic
pathways around the malate node may be important in the evolution of isobutanol tolerance. Mu-
tations affecting the mdtJI-tqsA locus were identified both in our study (mdtJ::IS5::tqsA in X3.5)
and in SA481 (tqsA::IS10) [124]. TqsA is a transporter for quorum sensing signal autoinducer
2 (AI-2). Interestingly, the tnaA mutation SA481 may also be related to quorum sensing, since
TnaA (L-cysteine desulfhydrase/tryptophanase) catalyzes catabolism of tryptophan to indole, a
putative quorum sensing molecule [150]. Additionally, the adaptive effects of acrAB mutations
are suspected to be related to the quorum sensing role of the AcrAB-TolC system. In aggregate,
these observations suggest that adaptations involving quorum sensing systems may be important
in isobutanol tolerance, and merit future investigation. As a final parallel, we demonstrated that
RpoS is downregulated in G3.2 and identified mutations in RpoS regulators (including hfq and
acrAB). Interestingly, in SA481 the RpoS regulator rssB (which regulates proteolytic degradation
of RpoS) is mutated, as well as acrA, providing additional evidence that RpoS modulation may be
adaptive to isobutanol stress.

While there are many overlaps between our results and those reported in [124], there are also
significant differences between the genetic loci identified in these two studies. tnaA (L-cysteine
desulfhydrase/tryptophanase) and yhbJ (which senses glucosamine-6-phosphate and regulates
glucosamine-6-phosphate synthase glmS) were reported to contribute to isobutanol tolerance
in [124], but were not identified in our study. Likewise, we discovered epistatic mutations in
miaA-hfq, mdh, rph, and groL that confer high isobutanol tolerance in glucose minimal media, yet
none of these genes were identified in [124]. Since evolved adaptations often show tradeoffs in
relative fitness across different environments, differences in conditions between these two studies
could account for different evolutionary trajectories. In particular, it should be noted that in our
study we used a different parent strain (E. coli EcNR1 vs. JCL260 in [124]) and different media
(glucose or xylose minimal media vs. yeast extract supplemented media in [124]); we also note
that adaptations in our evolved strains exhibit antagonistic pleiotropy in rich media (Figure 4.4A
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and B).

In addition to the above work by Atsumi et al., two independent n-butanol tolerance evolution
studies were reported after the completion of our work, providing additional experimental data
with which to compare and interpret our results. Reyes et al. evolved E. coli K12 BW25113
in chemostats with isobutanol spiked M9 glucose media and performed genome resequencing
on multiple tolerant isolates, leading to the identification of mutations in relA, rho, nus, feoA,
and SNPs in Fur binding sites in the promoter regions of the fes-ybdZ-entF-fepE and fepA-entD

operons [125]. In the other study, Dragosits et al. evolved E. coli K12 MG1655 populations
in five different environments (acidic, osmotic, oxidative, and n-butanol stress, and a control
medium-only environment) with M9 glucose media [126]. Genome resequencing of isolates from
the n-butanol adapted population revealed mutations in acrA, fepA, marC, and rpoB [126]. The
identification of acrA and marC mutations across three different studies (our work, Atsumi et

al. [124], and Dragosits et al. [126]) substantiates the important adaptive effects conferred by
these mutations, and interestingly suggests that the underlying biochemical mechanisms provide
cross-tolerance between n-butanol and isobutanol toxicity.

The most noteworthy outcome of these studies is the occurrence of numerous transcriptional
changes and mutations involving iron-ion transport and metabolism (i.e. feoA and Fur binding
site mutations in Reyes et al. [125]; fepA in Dragosits et al. [126]). Previous studies of ethanol
tolerance in E. coli have found that iron-ion transport and metabolism tend to be upregulated in
ethanol adapted strains compared to WT [121, 166]. fepA was upregulated and shown to be a key
adaptation in both n-butanol and osmotic stress tolerant strains in Dragosits et al. [126]. In Reyes
et al., differential transcriptional regulation of iron related genes was observed in every character-
ized isolate, with NCA suggesting significantly changed Fur activity in six out of eight isolates
[125]. However, the direction of transcriptional changes varied between isolates, with some
showing increased expression of iron ion transport and metabolism genes, and others showing
decreased expression [125]; this variation suggests that different modes of adaptation (potentially
involving epistasis) with iron acquisition genes are possible. Despite this, overexpression of
iron-related genes feoA and entC was demonstrated to improve n-butanol tolerance in the parental
strain [125], suggesting a causal link between these transcriptional changes and alcohol tolerance.
In our studies, genes associated with iron acquisition (entA, entC, fepA, and cirA; regulated by
Fur and CRP) were found to be repressed by isobutanol in G3.2 vs. upregulated by isobutanol
in WT; however despite these regulatory differences, expression at 0.5% isobutanol tended to be
similar between WT and G3.2 (Additional file 4). Collectively, these results and prior literature
[121, 166] suggest that mutations in iron related genes may play a complex role in multiple types
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of stress tolerance. The biochemical tolerance mechanisms conferred by increased expression
of iron related genes have not been fully elucidated. Reyes et al. suggest that upregulation of
iron acquisition genes increases intracellular Fe3+ leading to activation of the BasS/BasR system,
which in turn induces LPS modification genes [125]. Consistent with this, expression of the
BasS/BasR regulated arn operon has been shown to improve both n-butanol [125] and ethanol
[167] tolerance of E. coli.

4.4.2 Remodeling the cell envelope: possible mechanism of adaptation to
isobutanol stress

An accumulated body of evidence indicates that the cell membrane is a primary target of alcohol
toxicity. Alcohols have been demonstrated to intercalate the membrane lipid bilayer, leading
to detrimental changes in the physicochemical properties of membrane [50]. Examining the
genotypic and phenotypic adaptations of our evolved lineages in the context of this known
mechanism of toxicity reveals a trend of evolution targeting various features of the cell envelope
through a diversity of processes. We observe adaptations that may lead to alterations in cell
envelope protein composition, downregulation of fimbriae biogenesis and upregulation of flagellar
biogenesis, and alterations in peptidoglycan, membrane lipid composition, and lipopolysaccharide
(LPS) composition (Figure 4.12A). Collectively, these adaptations suggest that evolution may
be remodeling the cell envelope to counteract the detrimental effects of isobutanol on the cell
membrane.
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Figure 4.12: Possible mechanisms of evolved isobutanol tolerance. Examining genotypic adaptations to isobutanol
stress in the context of known modes of solvent toxicity suggests that remodeling the cell envelope and stress response
attenuation might be important mechanisms of adaptation in our evolved lineages. (A) Postulated mechanisms of adap-
tation involving the cell envelope. Asterisked (*) items were inferred from genoptyic data without direct experimental
validation. We observe adaptations that may lead to alterations in cell envelope protein composition, downregulation
of fimbriae biogenesis and upregulation of flagellar biogenesis, and alterations in peptidoglycan, membrane lipid com-
position, and lipopolysaccharide (LPS) composition. Collectively, these adaptations suggest that evolution may be
remodeling the cell envelope to counteract the detrimental effects of isobutanol on the cell membrane. (B) Our results
suggest that attenuation of RpoS activity may be a convergent adaptive effect associated with hfq, acrAB-tolC, relA,
and spoT mutations. Hfq is required for translation of rpoS mRNA, RelA and SpoT synthesize signalling molecule
ppGpp which upregulates RpoS, and one study suggests that AcrAB-TolC exports an unidentified quorum sensing
signal (QSS) that upregulates RpoS, possibly via a periplasmic receptor [138, 143, 168]. All depicted regulatory in-
teractions involve upregulation. Signalling molecules (ppGpp and QSS) are boxed in yellow. Effects/gene targets that
might be ultimately linked to isobutanol tolerance are red. AcrAB-TolC quorum sensing model adapted from [143],
using similar notation.

Examination of the genotypes of G3.2, G3.6, and X3.5 yields evidence of significant selective
pressure on membrane proteins; Gene Ontology analysis indicates a significant overrepresentation
of membrane proteins among mutated genes (corrected p-value = 7.23x10−3) [132]. We have
also identified various mutations that could cause global changes in cell envelope proteome
composition. Such changes are potentially adaptive to isobutanol stress, perhaps countering
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effects of isobutanol on membrane integrity and mechanical properties. Two lineages, X1 and
G3, acquired hfq mutations that appear to reduce activity, and in G3, the miaA-hfq mutation was
shown to improve tolerance at 1% (w/v) isobutanol (Table 4.2 and Figure 4.11). Many important
membrane proteins, including ompA, ompC, ompW, ompF, ompT, lamB, cirA, fecA, and fepA

feature Hfq mediated sRNA regulation; indeed, almost half of the Hfq binding sRNAs with
known targets regulate the expression of outer membrane proteins [160, 169]. In most cases
sRNAs are involved in downregulation, with sRNAs binding to target mRNA (mediated by Hfq)
leading to translation inhibition and/or increase mRNA degradation [160]. Thus mutants with
reduced Hfq activity would be expected to have altered membrane protein composition and a
general increase in outer membrane proteins, which has been verified in other studies and found
to cause pleiotropic phenotype effects [138, 160, 161, 170]. Consistent with this expectation,
1-D SDS-PAGE characterization of cell envelope protein composition of G3.2 revealed an overall
increase in membrane proteins in G3.2 compared to WT (Figure 4.9B). Additionally, several
protein bands (corresponding to 72 kDa, 55 kDa, and the OmpF/OmpC bands) appear to be
upregulated in G3.2 (Figure 7B). ompF is negatively regulated by micF sRNA, which both inhibits
translation of ompF and reduces ompF mRNA levels. ompF mRNA was found to be upregulated
in the DNA microarray study (Additional file 4) and SDS-PAGE analysis (Figure 4.9B) supports
increased levels of OmpF protein, consistent with the notion that reduced Hfq activity would
increase both ompF mRNA and OmpF protein levels by abolishing micF regulation. OmpC may
also be upregulated in G3.2 (Figure 4.9B; due to the similar molecular weights of OmpF and
OmpC, we were not able to resolve these proteins separately with SDS-PAGE). Interestingly,
a recent study reported that a mutant deficient in rybB sRNA, which downregulates OmpC
and OmpW, had improved SDS tolerance providing additional precedent for stress tolerance
mechanisms involving modulation of sRNA mediated outer membrane protein regulation [171].

In G3.2 and G3.6, we identified mutations in secA/lepB, two components of the Sec protein
translocation apparatus. The Sec apparatus is responsible for translocating many periplasmic and
membrane targeted proteins from the cytosol; examples of known Sec substrates include MalE,
LamB, OmpA, OmpF, OppA, PhoE, MBP, DegP, FhuA, FkpA, OmpT, OmpX, TolB, TolC, YbgF,
YcgK, YgiW and YncE [172]. As discussed previously, the secA/lepB mutations may alter the
peptide binding specificity of the Sec apparatus, and thus membrane and periplasmic protein
composition could be altered by changes in Sec mediated translocation, perhaps by increasing
export of some proteins while reducing export of others. However, we cannot predict how the
S233P mutation in the preprotein binding domain of SecA will affect peptide specificity, and thus
more investigation into this hypothesis is needed. Interestingly the signal recognition particle
(SRP), which is involved in cotranslational targeting of peptides to the Sec translocase, has been
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implicated in mechanisms of acid tolerance in Clostridium acetobutylicum and Steptococcus

mutans [50, 152, 173].

In addition to adaptations involving general modulation of membrane and periplasmic protein
composition, we observe adaptations that appear to specifically target fimbriae and flagellar bio-
genesis (Figure 4.12A). G3.2 shows strong transcriptional upregulation of flagellar biosynthesis
genes, and NCA identified increased activity of related transcription factor FlhDC (Figure 4.8D).
Differential transcriptional regulation of flagellar biosynthesis genes is commonly observed in
E. coli strains evolved for chemical stress tolerance, however regulation patterns are not consistent
across different types of stress. For instance, gene expression studies of an acid adapted strain
showed upregulation of flagellar biosynthesis genes [126], while in contrast downregulation of
flagellar biosynthesis was observed in an ethanol adapted strain [174]. Furthermore, regulation
of flagellar genes can vary even among strains evolved under the same conditions; for example,
in a transcriptional analysis of eight different n-butanol tolerant strains, flagellar biosynthesis
genes were upregulated in three strains and downregulated in five [125]. Whether upregulation
of flagellar biosynthesis in G3.2 is indeed adaptive or simply a spurious consequence of re-
duced RpoS activity in this strain needs to be investigated. In contrast to flagellar genes, G3.2
shows strong transcriptional downregulation of the fim operon (fimAICDFGH), responsible for
fimbriae biogenesis (Figure 4.8C). A study of ethanol tolerance with gene overexpression and
transposon mutagenesis libraries demonstrated that loss-of-function of fim genes was correlated
with improved ethanol tolerance, while fim overexpression was correlated with negative fitness
effects [121]. These results strongly suggest that fimAICDFGH downregulation observed in G3.2
is indeed adaptive. Interestingly, the X3 lineage acquires a mutation in hrpA, a gene known
to be involved in processing the daa fimbriae operon in pathogenic E. coli strains [175]. The
marC/gatC/hrpA mutations occur early in the X3 lineage and are correlated with a significant
fitness increase (Figure 4.7B). However, E. coli EcNR1 does not have the daa operon, so the role
of hrpA in fimbrial biogenesis in this strain is not clear, and additional studies indicate that hrpA

may have other important in vivo functions [176].

Modification of cell envelope peptidoglycan, lipoprotein, and LPS content is a commonly
observed adaptation of bacteria to solvent stress [50]. Recent studies have revealed that LPS
modification is a ubiquitous mechanism of alcohol tolerance in E. coli and possibly other
gram-negative bacteria. Lipid characterization revealed altered Lipid A composition (presence of
3-hydroxytridecanoic acid) in an n-butanol tolerant E. coli mutant [177]. Increased expression
of the BasS/BasR regulated arn operon has been shown to improve n-butanol [125] and ethanol
[167] tolerance of E. coli. The arn operon consists of enzymes which add positively charged
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4-amino-4-deoxy-L-arabinose to the lipid A moiety of LPS [125], perhaps reducing the extent to
which alcohols partition into the membrane via steric hindrance or decreased surface hydropho-
bicity. In addition to the arn operon, expression of lpcA (D-sedoheptulose 7-phosphate isomerase;
first committed step in the biosynthesis of a core LPS component) has been shown to improve
ethanol tolerance in E. coli [167], suggesting that a general increase in LPS may be beneficial
for tolerance. In addition to LPS, solvent tolerant E. coli strains have also been reported to have
increased lipoprotein content, possibly strengthening the cell membrane against the fluidizing
effects of solvent [178]. Finally, modification of peptidoglycan content and structure has also
been correlated with alcohol tolerance in E. coli. Enhanced peptidoglycan biosynthesis has been
implicated in tolerance to ethanol and isobutanol, possibly by changing the rigidity or structural
strength of the cell [121, 124]. A study of ethanol tolerance with gene overexpression and
transposon mutagenesis libraries demonstrated that loss-of-function of peptidoglycan biosynthesis
mur genes was correlated with reduced fitness, while overexpression of mur genes was correlated
with improved tolerance [124]. An independent study of isobutanol tolerance using experimental
evolution and genome resequencing demonstrated that upregulation of glmS, which is responsible
for the synthesis of peptidogylcan and LPS precursor glucosamine-6-phosphate (GlcN-6-P),
resulted in improved isobutanol tolerance [124].

Our evolved lineages show several possible mechanisms of adaptation involving peptido-
glycan, lipoprotein, and LPS biosynthesis. G3.2 was found to contain mutations in fepE and
yjgQ, which are involved in LPS biosynthesis (Additional file 1). The G3 lineage also acquired
probable loss-of-function mutations in glnE and gltD, correlated with improved fitness, that might
alter nitrogen metabolism towards increased biosnythesis of glutamine, a precursor for GlcN-6-P
(Figure 4.7A) [150]. Interestingly, our gene expression study of G3.2 also shows significant
downregulation of glutamine and glutamate catabolic genes (ybaS and gadAB, respectively), fur-
ther suggesting increased glutamine production in G3.2 (Additional file 4) [150]. These changes
suggest that G3.2 may be increasing glutamine flux for peptidoglycan and LPS biosynthesis,
but glutamine is a central metabolite so numerous other adaptive effects would also be possible
[150]. Another adaptation potentially related to regulation of LPS biosynthesis and modification
was observed in phosphoethanolamine transferase eptB. This gene is negatively regulated by
sRNA mgrR, and thus eptB might be upregulated in X1 and G3, which harbour hfq mutations
associated with reduced activity; additionally, eptB transcriptional upregulation was observed in
the G3.2 gene expression study (Additional file 4) [141]. eptB modifies the LPS by adding a
phosphoethanolamine (pEtN) moiety to the terminal 3-deoxy-d-manno-octulosonic acid (KDO)
of LPS [141]. Possible adaptive effects of this modification to isobutanol stress are not clear,
but interestingly eptB upregulation is associated with increased resistance to polymyxin B, a
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detergent-like antibiotic that targets the cell membrane [141].

Our gene expression study of G3.2 reveals differential transcriptional regulation for multiple
genes involved in peptidoglycan, lipoprotein, and LPS biosynthesis. Many genes associated
with LPS biosynthesis are differentially expressed in G3.2; Gene Ontology analysis revealed
significant overrepresentation of cellular polysaccharide biosynthetic process genes (corrected
p-value = 3x10−2). NCA identified significantly reduced activity of PhoP and GadE transcription
factors, and incidentally many of the differentially regulated peptidoglycan, lipoprotein, and LPS
genes are part of these regulons (Figure 4.8 and Additional file 4). We observed downregulation
of slp (starvation lipoprotein, acid resistance regulon), pagP (palmitoyl transferase for lipid A,
PhoP regulon), ybjG (undecaprenyl pyrophosphate phosphatase, PhoP regulon), and slyB (outer
membrane lipoprotein, PhoP regulon) (see Additional file 4); downregulation of these genes may
be adaptive to isobutanol tolerance, but the collective effect of these perturbations is unclear. Other
potentially important lipoprotein and LPS genes differentially regulated in G3.2 included nlpD

(putative outer membrane lipoprotein, downregulated in G3.2) and numerous members of the rfa

gene cluster, which comprise the pathway for LPS core-oligosacchride assembly (rfaL, rfaQ, rfaG,
rfaS, rfaB, rfaI, rfaJ, rfaY, and rfaZ, all upregulated) (Additional file 4). Interestingly, despite the
established role of the arn operon in n-butanol [125] and ethanol [167] tolerance, transcriptional
downregulation of arn genes was observed in the G3.2 gene expression study (Additional file
4). This discrepancy may arise due differences in membrane interactions between straight-chain
alcohols (ethanol and n-butanol) and branched alcohols (isobutanol), or alternately G3.2 may have
evolved alternative LPS adaptations that confer tolerance through different biochemical effects.

Bacteria are known to adapt to solvent stress by altering membrane lipid composition, includ-
ing cis-to-trans isomerisation of fatty acids, changing the proportions of saturated/unsaturated
fatty acids, altering composition of phospolipid head groups, and altering fatty acid acyl chain
length [50]. In our evolved lineages, we observe several possible adaptations to isobutanol stress
involving membrane lipid composition. The X3 lineage acquires a mutation in plsX that may be
adaptive to isobutanol stress (Figure 4.7B). The function of plsX has not been fully elucidated,
but it is suspected to play a role in fatty acid metabolism, possibly regulating the intracellular
concentration of acyl-[acyl carrier protein] (acyl-ACP)[179]. Many genes associated with lipid
metabolism are differentially expressed in G3.2. Gene Ontology analysis revealed significant
overrepresentation of lipid catabolic process genes (corrected p-value = 4.6x10−2); in particular
many lipid catabolism genes were downregulated in G3.2, including tesB (acyl-CoA thioesterase
II), hdhA (7-alpha-hydroxysteroid dehydrogenase), gabT (4-aminobutyrate aminotransferase),
pgpB (phosphatidylglycerophosphatase B), fadJ (fused enoyl-CoA hydratase and epimerase and
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isomerase), fadE (acyl coenzyme A dehydrogenase), and fadB (3-hydroxyacyl-CoA dehydroge-
nase). Other notable expression changes in lipid metabolism genes include downregulation of cfa

(cyclopropane fatty acyl phospholipid synthase), ybhO (cardiolipin synthase 2), and aidB (pre-
dicted acyl-CoA dehydrogenase), and upregulation of fabA (3-hydroxydecanoyl-ACP dehydrase)
(Additional file 4). We profiled the fatty acid composition of G3.2, revealing a significant decrease
in cyclopropane fatty acids and increased unsaturated fatty acids (mainly to due increased propor-
tion of C18:1 and C16:1) relative to WT (Figure 4.9A). The decrease in cyclopropane fatty acids
is attributable to downregulation of cfa, while the increase in unsaturated fatty acids is probably
a collective effect of multiple gene expression changes (with fabA upregulation possibly playing
an important role) [180]. Previous studies have demonstrated that E. coli responds to short chain
(C2-C4) n-alkanol exposure by increasing the unsaturated:saturated fatty acids ratio, suggesting
that the increase in unsaturated fatty acids in G3.2 is indeed adaptive to isobutanol stress [50]. In
one study, a mutation in fabF (β-ketoacyl-ACP synthases II) was shown to specifically increase
C18:1n-7 content and confer improved n-butanol tolerance in E. coli [181], however in a different
study decreased proportions of unsaturated fatty acids were observed in n-butanol adapted strains
[125]. Interestingly, recent in vitro biophysical studies of model yeast membranes (ternary lipid
bilayers consisting of saturated lipids, unsaturated lipids, and ergosterol) in the presence of ethanol
have demonstrated that increasing the proportion of unsaturated lipids protects the membrane
by preventing the formation of interdigitated lipid phases [182]. The decrease in cyclopropane
fatty acids observed in G3.2 is somewhat counterintuitive, since several studies have implicated
cyclopropane fatty acids in n-butanol tolerance [50, 183, 125]. As discussed above for LPS
modifications, differences in lipid composition between n-butanol and isobutanol tolerant strains
may reflect differences in membrane effects between straight-chain vs. branched alcohols, and
further investigation is needed.

Collectively, we have observed many genotypic and gene expression changes that suggest
evolution may be remodeling the cell envelope to counteract the detrimental effects of isobutanol
on the cell membrane. However, further investigation is needed to profile cell envelope changes
in isobutanol tolerant strains and to ascertain that the observed changes are indeed adaptive
to isobutanol stress. Analysis of cell envelope protein and fatty acid composition (Figure 4.9)
will need to be extended to other isobutanol tolerant lineages to investigate parallel adaptations;
additionally, the cell envelope proteome could be resolved in greater detail by performing
two-dimensional electrophoresis. Peptidoglycan and LPS composition will need to be profiled
across different isobutanol tolerant lineages to validate inferences drawn from the gene expression
and genotype data and to investigate parallel adaptations. In addition to profiling cell envelope
composition in evolved isolates, mutations in genes related to cell envelope composition (e.g. hfq,
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secA/lepB, glnE/gltD, phoQ, plsX, etc.) could be reconstructed singly and in combinations with
other mutations from their respective lineages, and the resulting mutant library could be profiled.
These investigations will help to elucidate causal links between genotype, isobutanol tolerance,
and cell envelope composition.

4.4.3 Stress response attenuation: surprising adaptations

We observe evidence of RpoS downregulation in many of our evolved isobutanol tolerant lineages,
implying that reduction of RpoS activity may be adaptive to isobutanol stress (Figure 4.10A and
B). This is a surprising result, given that RpoS is a master regulator of the general stress response
and many prior studies show that reduction of RpoS activity increases sensitivity to a variety of
environmental stresses [144]. In the G3 evolution endpoint population, reduced activity of Hfq
(which is required for translation of rpoS mRNA) is probably the primary mechanism of RpoS
downregulation (Figure 4.10A and B). The X1 population also contains an hfq mutation and
shows evidence of reduced RpoS activity as well (Figure 4.10A). acrAB-tolC mutations associated
with reduction or loss-of-function were common in our evolution endpoint populations, being
discovered in five out of six populations total (Table 4.1); additionally, adaptive acrAB mutations
were reported in an independent genomic investigation of isobutanol tolerance [124]. A recent
study provides evidence that AcrAB-TolC exports an unidentified quorum sensing signal (QSS)
that is associated with transcriptional upregulation of rpoS, possibly via a periplasmic receptor
(Figure 4.12B) [143]. This suggests that adaptive effects associated with reduced AcrAB-TolC
activity (Table 4.2) may be linked to downregulation of RpoS. Interestingly, a transposon
mutagenesis study demonstrated that loss of function of relA or spoT is correlated with enhanced
tolerance to n-butanol and isobutanol [165], and Reyes et al. identified a relA mutation in an
n-butanol adapted strain [125]. relA and spoT both synthesize guanosine tetraphosphate (ppGpp),
an alarmone involved in stringent response [168]. ppGpp upregulates rpoS, and many genes of
the RpoS regulon require ppGpp for transcription; thus the correlation of reduced relA or spoT

activity with improved n-butanol and isobutanol tolerance may also be related to downregulation
of RpoS activity [168].

Our results suggest that attenuation of RpoS activity may be a convergent adaptive effect
associated with hfq, acrAB-tolC, relA, and spoT mutations (summarized in Figure 4.12B). To
determine whether RpoS attenuation is indeed adaptive, we examined the isobutanol tolerance
phenotype of a ∆rpoS::kan single mutant (Figure 4.10C). ∆rpoS::kan was found to cause a
growth defect at 0% and 0.5% (w/v) isobutanol relative to the WT strain, while at 1% (w/v)

146



isobutanol the relative fitness of ∆rpoS::kan is slightly higher than WT; to facilitate comparison,
we report normalized relative fitness (calculated by dividing relative fitness by relative fitness
at 0% w/v isobutanol). These results suggest that RpoS attenuation may indeed be adaptive to
isobutanol stress. However, complete loss-of-function of rpoS appears to incur significant costs
that overshadow adaptive effects at isobutanol concentrations below 1% (w/v) (Figure 4.10C),
indicating that RpoS activity may need to be finely tuned to achieve optimal isobutanol tolerance.
The growth defect of ∆rpoS::kan at 0% (w/v) isobutanol was unexpected, since a previous study
examining E. coli K12 MG1655 and E. coli K12 MG1655 ∆rpoS reported nearly identical growth
phenotypes for the parent and mutant strain in glucose minimal medium [139]; reasons for the
discrepancy between our results and those reported in [139] might include differences in media
formulation and genetic background of the host strains (E. coli K12 BW25113 in our study
vs. E. coli K12 MG1655 in [139]).

Since RpoS is a global regulator affecting the expression of many genes, it is difficult to
speculate on the specific adaptive effects of reduced RpoS activity. It is likely that only a subset
of the gene expression changes elicited by reduced RpoS activity are adaptive, and certain gene
expression changes may in fact be maladaptive, as suggested by the fitness costs apparent in the
∆rpoS::kan single mutant. In minimal medium, RpoS has been demonstrated to be a dominant
activator of acid resistance genes (GadE/GadX/GadW regulon) and repressor of flagellar genes
(FlhDC regulon) [139]. In G3.2, we observe gene expression changes in these regulons consistent
with reduced RpoS activity, and NCA identified GadE and FlhDC among the most significantly
perturbed transcription factors (Figure 4.8 and Additional file 4). A recent genomic study of
ethanol tolerance demonstrated that overexpression of GadE/GadX/GadW regulon and cadAB

acid resistance genes decreased ethanol tolerance, while transposon mutagenesis leading to
loss-of-function of these genes was associated with increased fitness [121]. This strongly suggests
that downregulation of the GadE/GadX/GadW regulon observed in G3.2 is in fact beneficial
for isobutanol stress, and indeed GadE/GadX/GadW downregulation might be an important
adaptive effect provided by reduced RpoS activity (Figure 4.12B). Given the dominance of RpoS
in regulating GadE/GadX/GadW, we would expect GadE/GadX/GadW downregulation to be
recapitulated in other populations with reduced RpoS activity [139]. Interestingly, G3.2 also has
a cadA 4363790 A→G mutation, further suggesting that acid resistance genes are under selective
pressure (Table E.1). It is not clear why attenuation of acid stress response would be adaptive to
isobutanol stress. One possibility is that reduced expression glutamine/glutamate catabolic genes
(i.e. ybaS and gadAB; key components of the acid stress response) may increase intracellular
pools of glutamine for biosynthesis of LPS and peptidoglycan, as discussed previously. More
investigation into the relationship between the GadE/GadX/GadW regulon and alcohol stress will
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be needed.

4.4.4 Caveats and limitations

Given that evolved adaptations can be highly specific to a particular environmental context or
genetic background, microbial tolerance to biofuel products should be evolved under conditions
that closely approximate those used for biofuel production. We want to point out that we used
aerobic cultivation conditions in our isobutanol tolerance evolution study, while isobutanol pro-
duction in engineered E. coli strains is optimal under microaerobic conditions [1]. Additionally,
we evolved a WT E. coli strain for tolerance to exogenous isobutanol, whereas isobutanol will
be formed endogenously during production with engineered E. coli strains. Nonetheless, we
feel our results still provide a valuable advancement in understanding mechanisms of isobutanol
tolerance, and also provide interesting insights into the evolution of complex stress tolerance
phenotypes. We have identified several mutations that appear to provide broad fitness benefits in a
variety of conditions and genetic contexts (such as marC and acrAB, which were also identified in
[124]), and it seems plausible that some of the adaptations we identified will be beneficial under
microaerobic conditions and/or for endogenous isobutanol production as well.

4.4.5 Conclusions

In this work, we used experimental evolution of E. coli followed by genome resequencing and a
gene expression study to elucidate genetic mechanisms of adaptation to isobutanol stress. Com-
parison between strains evolved in glucose and xylose minimal media revealed little carbon source
specificity of adaptation, but we find that adaptations exhibit significant antagonistic pleiotropy
between rich and minimal media. By examining genotypic adaptation in multiple independent
lineages, we find evidence of parallel evolution in marC, hfq, mdh, acrAB, gatYZABCD, and rph.
Many isobutanol tolerant lineages show reduced RpoS activity, perhaps related to mutations in
hfq or acrAB. Consistent with the complex, multigenic nature of solvent tolerance, we observe
adaptations in a diversity of cellular processes. Many of the adaptations appear to involve epistasis
between different mutations, implying a rugged fitness landscape for isobutanol tolerance. We
observe a common trend of evolution targeting post-transcriptional regulation and high centrality
nodes of biochemical networks, and suggest that post-transcriptional regulators, such as hfq, RNA
helicases, and sRNAs may be interesting mutagenesis targets for engineering complex stress
tolerance phenotypes. Collectively, the genotypic adaptations we observe suggest mechanisms
of adaptation to isobutanol stress based on remodeling the cell envelope and surprisingly, stress
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response attenuation. The tolerant strains generated by this work could serve as useful chassis for
engineering isobutanol production strains. Since we conducted our evolution in a minimal media
environment, our strains may actually perform better in industrial fermentation conditions (or in
the TrEc consortium) compared to current isobutanol production strains that depend on costly
nutrient supplements to achieve reasonable growth and performance [1, 3].

Combining methods for identifying genes/mutations conferring desired phenotypes with
genome-scale combinatorial engineering represents a potentially powerful approach for improving
microbial tolerance phenotypes. In the next chapter, we use the mutations and mechanisms of
tolerance identified in this work to select genetic loci for targeted mutagenesis using Multiplex
Automated Genome Engineering (MAGE), allowing us to refactor isobutanol tolerance and
rapidly explore large genotype spaces for improved variants.

4.5 Addendum: X2.5 genome resequencing

After this study was completed, we received a generous opportunity from MYcroarray LLC
for additional genome resequencing work. At the time of this work (2011), MYcroarray was
in the process of developing a sequence enrichment by depletion service for next-generation
sequencing applications. In sequence enrichment by depletion, unwanted sequences are removed
from solution by hybridization to complementary baits. MYcroarray has developed an approach
wherein the sequencing library is denatured and hybridized to a collection of biotinylated RNA
baits complementary to both strands of the sequences to be depleted. Sequences hybridized to the
baits are then removed from solution using streptavidin coated magnetic beads, leaving enriched
sample in the solution1. We collaborated with MYcroarray by providing them with an additional
isobutanol tolerant isolate for beta testing their enrichment by depletion service.

To select a clonal isolate for whole genome resequencing, we first performed an in vivo mutator
assay on each endpoint population (G1, G2, G3; X1, X2, X3) using frequency of spontaneous
rifampin resistance as a metric for mutation rate, with WT E. coli EcNR1 and MutS- E. coli

EcHW24 as references. We found that all glucose lineages had developed mutator phenotypes;
thus we avoided selecting isolates from these endpoint populations as they are likely to have
high mutation loads. We conducted additional phenotyping and genotyping assays on clonal
isolates from X1, X2, and X3. Using our previously developed allele specific PCR reactions,
we discovered that all isolates from the X3 endpoint population were isogenic to X3.5 at each

1Referenced from http://www.mycroarray.com/myreads/myreads.html
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X2.5

Figure 4.13: Chromosome map (E. coli EcNR1 reference sequence) of mutations discovered through whole genome
resequencing of clone X2.5.

genotyped locus2; thus X3 is likely dominated by the X3.5 genotype. We then focused on
populations X1 and X2 as possible sources of isobutanol tolerant isolates with unique genotypes.
We performed a simplified phenotype analysis by examining maximum OD600 in 0.75% (w/v)
isobutanol NX50 media for clonal isolates from X1 and X2. Clone X2.5 grew out to a noticeably
higher OD600 than the other isolates and was selected for genome resequencing.

MYcroarray performed three sequencing runs with X2.5 genomic DNA using the Roche 454
GS Junior platform, yielding approximately 35 Mb sequence per run. Data was analyzed using
the 454 DataAnalysis package. After the first run, depletion was performed to remove genomic
regions with high coverage (>10x) and thus enrich for regions with poor coverage. This procedure
was repeated again after the second run. We were able to map >99.9% of the E. coli EcNR1
genome, however only 40% of genome had >10x coverage. We performed Sanger sequencing to
validate putative mutations; confirmed mutations are shown in Figure 4.13 and listed in Table E.1.
The mutations in acrA, marC, and mdh were identified in our previous studies of parallel evolution
between lineages, while pyrE-rph, gatC, and gltA mutations were not previously known in X2.5.
Mutations in rph and gatC were identified in the X3 and G3 lineages (as discussed in the preceding
sections) and thus their acquisition in X2.5 provides further evidence of parallel evolution at these

2It is possible, however, that these isolates contain additional mutations not present in X3.5.
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loci. Out of the mutations identified in X2.5, gltA 753345 T→C (E116G in the GltA protein) is
the most unique. gltA encodes citrate synthase, an essential gene. Thus unlike many of the other
mutations identified in our study, it is unlikely to be a loss-of-function mutation. The functional
effects of the E116G mutation in the GltA protein are unknown. As discussed previously,
mutations in mdh (malate dehydrogenase) were common in our evolution end-populations, and an
mdh insertion mutation was identified in X2.5. Interestingly, malate dehydrogenase and citrate
synthase operate sequentially in the TCA cycle, suggesting that rewiring TCA cycle metabolism
may be an important mechanism of adaption.

We conducted no further phenotypic, genotypic, or functional characterization of X2.5 beyond
the work presented here.

4.6 Materials and methods

4.6.1 Base strains, media, and growth conditions

E. coli EcNR1 was used as the parent strain in our evolution studies. E. coli EcNR1 is a derivative
of E. coli K12 MG1655 containing a modified λ prophage integrated at the bioA/bioB locus [59].
E. coli EcHW24 was used as a host strain for producing chromosomal mutations with ssDNA
mediated recombination. E. coli EcHW24 is a MutS- derivative of E. coli EcNR1 containing
2864887 T→G and 2864892 G→T SNPs that produce premature stop codons in mutS. NG50
medium, consisting of M9 salts at 1x concentration, 50 g/L glucose, and 0.25 mg/L biotin was
used in the adaptive evolution of E. coli EcNR1 populations with glucose as a sole carbon source.
NX50 medium, formulated similarly to NG50 with glucose replaced by 50 g/L xylose, was used in
the adaptive evolution of E. coli EcNR1 populations on xylose. NG50 and NX50 agar media were
prepared by supplementing NG50 and NX50 media with 15 g/L agar. LB Lennox broth (10 g/L
tryptone, 5 g/L yeast extract, and 5 g/L NaCl) and LB agar (10 g/L tryptone, 5 g/L yeast extract,
10 g/L NaCl, and 15 g/L agar) were used for propagating strains during genetic manipulations and
genomic DNA extraction. Clonal isolates from evolved populations were obtained by isolation
streaking culture samples on LB agar plates or NG50/NX50 agar plates and propagating selected
colonies. All E. coli strains used in this study were grown at 30◦C with 150 to 200 rpm shaking.

151



4.6.2 Adaptive evolution

Isobutanol tolerant lines of E. coli EcNR1 were evolved by serial passaging of three independent
populations on isobutanol spiked NG50 medium (glucose as sole carbon source) and three
independent populations on isobutanol spiked NX50 medium (xylose as sole carbon source).
Cultures were grown in tightly capped 15 mL Falcon tubes containing 3 mL of respective medium.
The initial isobutanol concentration was 0.75% (w/v) for all populations, and was gradually
increased during the evolution to maintain an approximately constant selective pressure. Cultures
were passaged when populations reached mid log phase, and the fresh cultures were inoculated
to yield an initial optical density at 600 nm (OD600) = 0.002. Each lineage was periodically
checked for contamination by isolation streaking culture samples on LB agar. Samples from each
population were cryopreserved every 5 to 10 passages by centrifuging 2 x 1.4 mL samples from
each culture at 14,000 rpm x 1 minute, washing the cell pellets with fresh medium, centrifuging
again, and resuspending each cell pellet in 150 µL fresh medium + 150 µL cryopreservation
solution (65% v/v glycerol and 0.1 M MgSO4). Cell suspensions were transferred to 96-well
microplates, sealed with adhesive film, and stored at -80◦C. The evolution proceeded for 180 days,
corresponding to approximately 500 generations for the glucose lineages and 430 generations for
the xylose lineages, assuming approximately 7.5 generations per passage.

4.6.3 Phenotype evaluation

Isobutanol tolerance was quantified by measuring the maximum specific growth rate (µmax, 1/h)
and saturating OD600 at various isobutanol concentrations, using a microplate spectrophotometer.
Inoculum was prepared by centrifuging 1 mL of overnight culture at 12,000 rpm x 2 min and
resuspending cell pellets in a volume of fresh medium such that OD600 = 2. Standard 96-well
microplates were filled with 200 µL medium per well (spiked with isobutanol or alcohols as
appropriate) and seeded with 2 µL of prepared inoculum per well. Microplates were covered
with adhesive film to prevent isobutanol evaporation and microplate lids were affixed with tape.
OD600 was measured every 10 minutes for 48 hours using Molecular Devices Spectramax M5
or Molecular Devices Versamax plate readers, with 30◦C incubation temperature and agitation
between reads. µmax was calculated via linear regression of ln(OD600) vs. time (h) after subtracting
blank values; regression was done over the time intervals corresponding to log growth phase.
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4.6.4 Genome resequencing

Genomic DNA (10 to 20 µg) was isolated from clonal isolates chosen for genome resequencing
(G3.2, G3.6, G3.266.7, and X3.5) using a DNEasy spin column kit (Qiagen, Germantown, MD,
USA) according to the manufacturers protocol. Genomic DNA libraries were prepared using the
Illumina genomic DNA library generation kit following the manufacturer’s protocol (Illumina
Inc., San Diego, CA, USA). Briefly, 5 to 10 µg genomic DNA was fragmented using a Covaris
Acoustic System to ˜200 bp DNA fragments. The ends of the fragmented DNA were then repaired
with T4 DNA polymerase, Klenow DNA polymerase, and T4 PNK to convert the overhangs into
phosphorylated blunt ends. Klenow fragment (3 to 5 exo minus) was used to add an A base to
the 3 end of the blunt phosphorylated DNA fragments. Following ligation of adapters to the ends
of the DNA fragments, PCR was used to enrich the adapter-modified DNA fragments to obtain
a DNA library suitable for high-throughput sequencing using Illumina Genome Analyzer. The
concentration of DNA library was obtained by RT-PCR. Libraries for single-end sequencing were
prepared for G3.2, G3.6, and X3.5 and a paired-end sequencing library was prepared for G3.266.7.
Single-end libraries were sequenced with the Illumina Genome Analyzer 2 using a 36 cycle run,
while the G3.266.7 paired-end library was sequenced on the same platform using 2 x 36 cycle runs.

4.6.5 Sequence analysis

A custom perl script (available upon request) was written to automate the sequence analysis
described below. Raw illumina reads were aligned to the E. coli EcNR1 reference sequence using
Novoalign v2.04.02 [129]. Novoalign output was converted to MAQ (Mapping and Assembly
with Qualities) map format, and MAQ v0.7.0 was used to build a consensus sequence and call
SNPs and short indels [130]. Annotations and descriptions of mutated genes were downloaded
from KEGG (Kyoto Encyclopedia of Genes and Genomes), and amino acid changes due to SNPs
were automatically computed [184]. Large deletions were detected by tabulating coverage gaps in
the alignments. To detect structural variation (SV) breakpoints with single-end reads, unmappable
reads were filtered to eliminate long homopolymer runs (since erroneous homopolymer runs at tile
edges are common with the Illumina platform) and de novo assembled with Velvet v0.7.51 [131].
For each set of reads, assemblies were done over a range of k-mer values. The assemblies were
aligned to the E. coli EcNR1 reference sequence with BLAST, and were inspected manually to
detect breakpoints [185]. For paired-end sequencing data, structural variations were detected using
BreakDancer v0.0.1, using mean paired-end insert sizes calculated by MAQ [186]. Primer3 v2.0.0
was utilized to automatically design primers (with amplicon sizes of 800-1000 bp and melting
temperatures of 60◦C - 65◦C) flanking detected mutations for Sanger sequencing verification
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[187]. For clones G3.2 and G3.6, only mutations shared between these two clones were verified by
Sanger sequencing. In other sequenced clones, SNPs with consensus quality > 200 (as computed
by MAQ) or indels with frequency > 0.4 were verified; we have found empirically that lower
quality/frequency mutations are almost always false positives [130].

4.6.6 Sanger sequencing

Mutations identified in the genome sequence analysis, as well as mutations reconstructed in
E. coli EcHW24, were verified using Sanger sequencing. Sanger sequencing was also used
to search for mutations in marC, acrAB, tolC, mdh, and hfq in evolved lineages that were not
characterized by genome resequencing. See Additional file 5 for primer list. For mutation
verification, 200 to 1000 bp regions containing putative mutations were amplified by PCR, using
Phusion HotStart polymerase (Finnzymes USA, Woburn, MA) with manufacturers recommended
cycling conditions and a 6:00 min initial denaturation at 95◦C. Cell suspensions were prepared by
resuspending colony material in 250 µL sterile water; 1 µL cell suspension was used as template
per 50 µL PCR reaction. For mutation searches, the entire locus of interest plus at least 200
bp upstream/downstream was amplified, using Phusion HotStart polymerase for PCR. Agarose
gel electrophoresis (50 mL 0.7% agarose gel, tris-acetate-EDTA (TAE) or tris-borate-EDTA
(TBE) buffer, 98 V for 45 minutes running time) was used to verify PCR product size and
reaction specificity. PCR products were purified with a QIAquick spin column kit (Qiagen),
as per manufacturers protocol. DNA concentration in purified PCR products was quantified
with a Thermo Scientific Nanodrop spectrophotometer. Purified PCR products were diluted to
3 ng/µL/kb product size, and were Sanger sequenced with the same primers used for PCR. For
amplicons > 1200 bp in size, internal primers were designed and also used for sequencing, such
that sequencing primers were spaced every 600 bp. Sanger sequencing was completed by the
University of Michigan DNA Sequencing Core. Returned sequences were aligned to the reference
E. coli EcNR1 sequence using BLAST, and chromatograms were manually inspected to verify
mutations.

4.6.7 Allele specific PCR

Primers were designed such that one primer in a pair was complementary to a mutation of interest
at its 3 end [188]. Under stringent PCR conditions, non-proofreading DNA polymerases are
unable to extend from 3 mismatches, allowing genotype discrimination based on the presence
or absence of a PCR product [188]. Allele specific primers for SNPs were designed using
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BatchPrimer3 v1.0, and allele specific primers for indels were designed manually [188]. See
Additional file 5 for primer list. Platinum Taq polymerase (Invitrogen, Carlsbad, CA, USA) was
used for PCR, with 0.2 µM of each primer and other reagent concentrations as per manufacturers
recommendations. Cell suspensions were used as template as described for Sanger sequencing
above. Cycling conditions used were initial denaturation at 94◦C for 6:00, followed by 28 cycles
of 94◦C denaturation for 30 seconds, optimal annealing temperature for 30s, and 72◦C elongation
for 1:00, followed by a final 72◦C extension for 5:00. Optimal annealing temperature for each
PCR reaction was determined via annealing temperature gradient with WT E. coli EcNR1 and
appropriate mutants as controls. Agarose gel electrophoresis (50 mL 1% agarose gel, TBE buffer,
110 V for 30 minutes running time) was used to examine PCR products.

Multiplex allele specific PCR was done with a Qiagen Multiplex PCR kit, using manufacturers
recommended reagent concentrations and cell suspensions for template. Cycling conditions used
were initial denaturation at 94◦C for 15:00, followed by 28 cycles of 94◦C denaturation for 30
seconds, optimal annealing temperature for 1:30, and 72◦C elongation for 1:30, followed by a final
72◦C extension for 10:00. Optimal annealing temperature for each PCR reaction was determined
via annealing temperature gradient with E. coli EcNR1 and appropriate mutants as controls.
Agarose gel electrophoresis (50 mL 3% agarose gel, TBE buffer, 110 V for 1 h 25 minutes running
time) was used to examine PCR products.

4.6.8 Genetic manipulation methods

4.6.8.1 High efficiency ssDNA mediated homologous recombination

High efficiency ssDNA mediated mutagensis in E. coli EcHW24 was used to engineer chromoso-
mal SNPs and short indels, as per previously described procedures [59]. 90-mer oligonucleotides
containing mutations of interest flanked by homologous genomic sequences were designed such
that they targeted the lagging strand of the replication fork during DNA replication and had
∆G > 12.5 kcal/mol for secondary structures (evaluated with mfold v3.2) [189]. Oligos were
synthesized by IDT (Integrated DNA Technologies, Coralville, IA) with four 5 phosphorothioated
bases to enhance in vivo stability. See Additional file 5 for oligo list.

Homologous recombination was done by heat shocking E. coli EcHW24 to induce expression
of λ-Red genes, preparing electrocompetent cells from the induced cultures, and electroporating
the competent cells with oligonucleotide at 5 µM concentration. Overnight cultures of E. coli

EcHW24 were inoculated 1:70 into fresh LB medium and incubated with shaking at 30◦C until
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reaching OD600=0.7. Cultures were then heat shocked at 42◦C for 15 minutes in a water bath with
200 rpm shaking. Immediately after heat shocking, the cultures were chilled on ice for 10 minutes.
All subsequent manipulations were done at 4◦C, which is vital for maximum recombination
efficiency. For each electroporation, 1 mL of induced cells was centrifuged at 16,000 g x 1 minute.
Cells were resuspended in 1 mL chilled ultrapure dH2O. The centrifugation and washing process
was repeated twice. A final centrifugation was performed and the cell pellet was resuspended in
50 µL ultrapure dH2O. Oligonucleotide solution was mixed with the cell suspension such that
the final DNA concentration was 5 µM. Immediately after adding oligonucleotide, cell/DNA
mixture was transferred to 0.1 cm gap electroporation cuvette and electroporated at 1.8 kV,
using an Eppendorf Electroporator 2510. Cell mix was immediately resuspended in 1 mL room
temperature LB medium, added directly to the electroporation cuvette. The resuspended cell mix
was transferred to a Falcon tube, 1-5 mL LB medium was further added, and cells were allowed
to recover at 30◦C with shaking.

After 3-5 hours of incubation, 100 µL of 1:104 and 1:105 diluted recovery mix were plated on
LB agar and incubated at 30◦C overnight. The described recombination approach has efficiencies
ranging from 1-40%, so selection is not required; mutants were recovered by direct genetic screens
of colonies. For each recombination, 20 to 300 colonies were screened for desired mutations using
Sanger sequencing or allele specific PCR (described above).

Multiplex recursive ssDNA mediated mutagenesis was used to generate a mutant set containing
all combinations of miaA-hfq, rph, mdh, and groL mutations identified in the G3 lineage. The
above homologous recombination procedure was carried out, using 5 µM oligonucleotide for each
mutation (miaA-hfq, rph, mdh, and groL, 20 µM total) in electroporation mixes. E. coli EcHW24
was electroporated without oligonucleotides (oligo-) as a control. Recovery mixes were allowed
to grow to OD600=0.7, and the homologous recombination procedure was repeated. This recursive
homologous recombination process was repeated for a total of six cycles. 1:102, 1:103, and 1:104

dilutions of the final recovery mix were prepared and 100 µL aliquots were spread on NG50
plates supplemented with isobutanol at 0.7% (w/v). Plates were wrapped in parafilm to prevent
isobutanol evaporation and incubated at 30◦C for 48 hours. Clones showing improved isobutanol
tolerance, judged by colony size and comparison with the oligo- control plate, were screened
using allele specific PCR for rph and groL and Sanger sequencing for miaA-hfq and mdh. Putative
rph and groL mutations were verified by Sanger sequencing.
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4.6.8.2 Construction of gene knockouts with P1 transduction

E. coli EcNR1 gene knockouts were constructed via P1vir transduction using Keio single gene
knockout strains as donors, as described previously [190, 145]. P1vir lysates were prepared
for each Keio mutant (∆acrA::kan, ∆acrB::kan, and ∆mdh::kan), and used to transduce gene
knockouts to E. coli EcNR1 using LB agar with 100 µg/mL kanamycin as selective medium.
Transductants were purified from residual P1vir phage by isolation streaking on LB agar sup-
plemented with 0.8 mM sodium citrate and 100 µg/mL kanamycin, and verified by PCR as per
published procedures [145].

4.6.8.3 Construction of ∆marC::kan knockouts with homologous recombination

We were unable to generate ∆marC::kan knockouts using P1 transduction; dsDNA homologous
recombination was used as an alternative procedure. A dsDNA cassette containing kan flanked
by 50-100 bp of marC homologous sequence was produced via PCR (as per PCR procedure
described for Sanger sequencing), using the ∆marC::kan Keio mutant as template (see Additional
file 5 for primers). Homologous recombination was carried out using E. coli EcHW24 or progeny
host strains. Procedures for heat shock, preparation of electrocompetent cells, and electroporation
were identical to those described for high efficiency ssDNA mediated recombination. 50 ng
purified ∆marC::kan PCR product was used for each electroporation. Electroporation recovery
mixes were incubated at 30◦C for two hours, then centrifuged at 12,000 rpm x 1 minute. After
discarding supernatant, cell pellets were spread on LB agar plates supplemented with 100 µg/mL
kanamycin and incubated overnight at 30◦C. Colonies were PCR screened to verify ∆marC::kan

genotype.

4.6.9 Microarray sample processing and data generation

4.6.9.1 Probe and microarray design

Microarray probes targeting coding sequences (CDSs) from the Escherichia coli str. K12 sub-
str. MG1655 genome (Genbank NC 000913) were designed using the OligoArray software [191].
In a first pass using the following parameters (Probe length, 45 - 47 nucleotides; GC content 41
- 57% and Tm 83 - 91◦C; Up to 3 probes per gene), we obtained 12037 probes targeting 4253
out of the 4292 CDSs annotated for this strain (99% of all CDSs). In a second pass, the GC
content and Tm parameters were relaxed to 30 - 70% and 78 - 97◦C, respectively. This led to the
design of an additional 41 probes targeting 27 genes missed from the first pass for a total of 12078
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probes targeting 4280 CDSs. Twelve genes (thrL, ylbI, trpL, pheM, yojO, ypaB, ypdJ, pheL, yhaL,
yrhD, yifL and pyrL) failed the second pass and were excluded from this study. Each probe was
replicated 6 times on the array, each replicate being randomly distributed across the whole array
area for a total of 72,468 spots. Oligonucleotide probes were synthesized by MYcroarray (Ann
Arbor, MI, USA) on an 80K array format, one array per slide.

4.6.9.2 Sample Preparation

Total RNA was extracted from mid log phase cultures using an RNeasy kit (Qiagen). 100
µL RNAase free water was used for final elution; a 90 µL aliquot was immediately ethanol
precipitated and stored at -80◦C. mRNA was enriched from 10 µg of total RNA using a MI-
CROBExpressTM Bacterial mRNA Purification Kit (#1905, Ambion, Austin, TX, USA) by the
removal of 16S and 23S ribosomal RNAs. The enriched mRNA (200 ng) was converted to cRNA
containing aminoallyl-UTP with a Message Amp II - Bacteria Prokaryotic RNA amplification kit
(#1790, Ambion) following the manufacturers instructions. Amino-allyl modified cRNA (45 µg)
was coupled with amine reactive fluorescent dye (Alexa Fluor-555, #32756, Invitrogen) in a 10 µL
reaction following the manufacturer’s instructions. After fluorescent dye coupling, unincorporated
dye was removed with RNEasy mini columns (Qiagen) following the manufacturers instructions.
Labeled cRNA was eluted from RNeasy mini columns with RNAse/DNAse free water. The
extent of dye incorporation was determined by the Microarray function on a NanoDrop 1000
spectrophotometer (Thermo Scientific). The dye incorporation calculations were performed as
described by Invitrogen/Molecular Probes for Alexa Fluor dye products. All samples had dye
incorporation between 35 to 43 bases per dye. Fluorescent dye coupled cRNA (20 µg) was
fragmented by exposure to zinc sulphate (5 mM final concentration in a 60 µL reaction) at 75◦C
for 10 min and the reaction was stopped by the addition of 500 mM EDTA to a final concentration
of 20 mM. The extent of fragmentation was visualized with a 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) using a RNA Nano Chip (Agilent Technologies, #5067-
1511). Samples with a mean fragment size of 100-200 nucleotides were qualified for hybridization.

4.6.9.3 Hybridization

Each labeled and fragmented cRNA sample was hybridized individually to one custom 80K
microarray by dynamic hybridization as follows: 20 µg of sample was added to hybridization
solution (600 µL final volume) and incubated at 65◦C for 5 min and then placed on ice.
Hybridization solution contained 6X SSPE (1M NaCl, 6.7mM EDTA, 40mM NaH2PO4 and
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27.3mM Na2HPO4), 0.01 µg/µL acetylated BSA (#R3961, Promega, Madison, WI, USA), 0.01%
Tween-20 (#P9416, Sigma, Saint Louis, MO, USA), and 10% deionized formamide (#P9037,
Sigma). A large volume of hybridization solution master mix was prepared from which aliquots
were removed to prepare each sample. Hybridizations were performed using a hybridization
gasket slide (#G2534-60003, Agilent Technologies) and a Microarray Hybridization Chamber
assembly (#G2534A, Agilent Technologies) following the manufacturers instructions except
that 585 µL of hybridization solution was used per gasket slide and both the gasket slide and
microarray slide were preheated to 65◦C prior to Hybridization Chamber assembly. The final
Hybridization Chamber assembly was incubated at 50◦C for 20 hrs while rotating at 5 rpm
(to assure free movement of the mixing bubble) in a hybridization oven (#G2545A, Agilent
Technologies).

4.6.9.4 Washing and Scanning

Following hybridization, unbound material was removed as follows: The hybridization chamber
assembly was quickly removed from the hybridization oven and the microarray/gasket slide
sandwich was immediately submerged in 1X SSPE at room temperature. The slide was quickly
transferred to fresh wash solution (1X SSPE) at room temperature and incubated for three minutes
with gentle agitation. This wash was repeated twice, however, the first repeat was performed at
50◦C. Finally, the slide was rinsed for 30 sec in 0.25X SSPE at room temperature and immediately
spun dry in a Microarray Minifuge (ArrayIt, Sunnyvale, CA, USA). Slides were immediately
scanned using an Axon 4000B scanner (Molecular Devices) at 5 micron resolution and 100% laser
power. The PMT gain in the 532 nm channel was adjusted to appreciate the full dynamic range (0
- 65,000) of signal intensity such that only a few pixels were saturated in a few spots.

4.6.9.5 Data Extraction

A signal intensity value for each probe on the array was extracted from the scanned image using
Axon GenePixPro 6.1 software (version 6.1.0.4, Molecular Devices). Fixed diameter (35 microns)
circular feature indicators were placed over the centre of each spot (probe) and median pixel
intensity was calculated for each feature.
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4.6.10 Microarray data analysis

4.6.10.1 Pre-processing

First, background fluorescence intensities of individual spots were subtracted directly from
foreground intensities for background adjustment. Then variance-stabilizing normalization (vsn)
and quantile methods without weight were applied sequentially for normalization with software R
(2.11.0, “vs” and “aroma.light” packages [192, 193, 194, 195, 196]). For each strain/isobutanol
condition, spots with acceptable signals in at least two out of three biological replicates were
chosen for further analysis, which resulted in 4-6 replicates for each probe. Two or three probes
for each gene were included on the array. For simplicity, we chose the probe with the smallest
overall variation across replicates (measured by the sum of standard deviations across 12-18
technical/biological replicates over all the four strain/isobutanol conditions) to represent the gene
in further analysis. For each chosen probe, the median of the technical replicates on each array
was calculated to represent the expression level of the corresponding gene for each sample.
The above pre-processing procedure provided normalized expression data for 4235 genes (out
of 4280 included on the array). The complete dataset has been deposited in the GEO database
(www.ncbi.nlm.nih.gov/geo) under accession number GSE23526.

Identification of differentially expressed/regulated genes. We first applied two filters to
select genes that showed notable expression changes, namely by choosing genes with expression
levels higher than 100 units in at least 25% of the 12 samples (i.e. 3 samples) and interquartile
ranges (IQR) larger than 0.5 [192, 197]. This led to a set of 2026 genes for further analysis and
two-sample students t-test was carried out to identify genes that showed differential expression.
In particular, three t-tests were conducted: a t-test between WT/0% isobutanol and WT/0.5%
isobutanol; a t-test between G3.2/0% isobutanol and G3.2/0.5% isobutanol; and a t-test between
changes in G3.2 upon isobutanol treatment and changes in WT upon isobutanol treatment. The
first two t-tests identified differentially expressed genes in each strain and the last t-test identified
genes that responded to isobutanol differently between G3.2 and WT. Empirical Bayes statistics
were applied to remove chip effects with software R (2.11.0, “limma” package [198], parameters:
assumed proportion of differentially expressed genes equal to 0.01, assumed lower and upper
limits for the standard deviation of log2 fold changes for differentially expressed genes equal
to 0.1 and 4 respectively [199, 200]). In addition, the p-values of the t-test were adjusted by
controlling false discovery rate (FDR, BH procedure) [201]. Genes with adjusted p-values less
than 0.001 were considered as differentially expressed in the first two t-tests or responding to
isobutanol differently in the last t-test.
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4.6.10.2 Regulatory network analysis

Network Component Analysis (NCA) was carried out with NCA toolbox (v2.3 for Matlab,
released Feb. 19, 2007) [202, 203] to predict transcription factor activities using microarray data.
Based on previous study of the isobutanol response network in E. coli [137] and preliminary
examination of our microarray data, we selected 16 transcription factors that are potentially
involved in isobutanol tolerance (ArcA, PdhR, Fnr, Fur, FlhDC, OmpR, CRP, GadE, MarA,
Nac, LexA, PurR, Fis, IHF, PhoB and PhoP) for this analysis. The corresponding transcriptional
network was constructed based on connectivity data in RegulonDB (v6.7, MAR.2, 2010) [204].
A total of 998 genes from the above pre-processed expression dataset were regulated by this set
of TFs, with each gene regulated by 1 to 5 TFs (1.5 on average). Due to limited data (i.e. four
strain/isobutanol conditions), we used a subset of four TFs in each NCA analysis and repeated the
analysis for different combinations of the TFs. Only TFs that were consistently predicted to change
significantly across different combinations of TFs and different replicates were kept for further
rounds of analysis; at the end, four TFs that showed the most significant activity changes were
obtained (FlhDC, GadE, MarA and PhoP). In the study described in [137], it was concluded that
activities of ArcA, PhoB, and Fur were significantly perturbed by isobutanol due to quinone/quinol
malfunction. We performed NCA for various combinations of ArcA, PhoB, and Fur with FlhDC,
GadE, MarA, and PhoP (using up to six TFs in each NCA) to determine whether these results
were recapitulated in our study. For each strain/condition, TF activities were calculated for all the
biological replicates and we report their average value and 95% confidence interval in Figure 4.8D.

4.6.11 Analytical methods

4.6.11.1 qRT-PCR validation of gene expression changes

Total RNA extraction and mRNA enrichment were carried out as described for microarray sample
processing, with three biological replicates per strain/condition. Biological replicates were pooled
and 100 ng enriched mRNA was reverse transcribed using a QuantiTect Reverse Transcription
kit (Qiagen) as per manufacturers protocol. Quantitative PCR assays were performed in 25
µL samples on an MJ Research (BioRad, Hercules, CA, USA) Chromo4 thermal cycler with a
QuantiTect SYBR Green RT-PCR kit (Qiagen), using primer pairs designed as per manufacturers
recommendations for genes gadA, fimI, fabA, rfaJ, and rpoD (Additional file 5). 5 ng reverse
transcribed cDNA was used as template for each reaction, with primer and other reagent concen-
trations as per manufacturers protocol. Cycling conditions used were initial denaturation at 95◦C
for 15 minutes, followed by 45 cycles of 94◦C denaturation for 15 seconds, 60◦C annealing for 30
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seconds, 72◦C elongation for 30 seconds, and fluorescence measurement at 72◦C. After the final
cycle, reaction specificity was verified by determining melting profiles over a temperature range of
65◦C to 95◦C in 0.2◦C increments. All assays were run in triplicate. qRT-PCR data was analyzed
by fitting parameters of the MAK2 model (initial target concentration D0 and characteristic
PCR constant k) , using a custom Mathematica script [135]. Initial target concentrations were
normalized to rpoD.

4.6.11.2 Fatty acid analysis

Duplicate 100 mL cultures of E. coli EcNR1 and 50 mL cultures of G3.2 were grown to mid log
phase in NG50 medium supplemented with 0.5% (w/v) isobutanol. Cultures were harvested by
centrifugation at 3,200 g x 10 minutes. Cell pellets were washed with Phosphate Buffered Saline
(PBS) and dried at 70◦C for 24 hours. The dry cell pellets were subjected to ethanolysis at 90◦C
for 2 h in 5% HCl in anhydrous ethanol. The resulting Fatty Acid Ethyl Esters (FAEEs) were
quantified with an Agilent 6890 GC equipped with a 50 m x 0.2 mm x 0.33 mm HPx5 capillary
column, flame ionization detector (FID), and autoinjector. 2 µL FAEE samples were analyzed
after split injection (1:10). Helium was used as a carrier gas with a constant flow rate of 1.9
mL/min. The temperatures of the injector and detector were 325 and 350◦C, respectively. The
following temperature program was applied: 50◦C for 3 min, increase 10◦C/min to 300◦C, then
300◦C for 10 min.

4.6.11.3 Cell envelope protein analysis

50 mL cultures of E. coli EcNR1 and G3.2 were grown to mid log phase in NG50 medium
supplemented with 0.5% (w/v) isobutanol. 5x109 cells (estimated by OD600) were harvested by
centrifugation at 5,000 g x 10 minutes. Cell pellets were washed with PBS and resuspended
in 3 mL 10 mM NaH2PO4-NaOH (pH 7.2) buffer. Cell suspensions were placed on ice and
lysed by sonication (15 W continuous output; 30 seconds sonication followed by 30 seconds
cooling; repeated six times total). Unbroken cells were removed by centrifugation at 1,500 g x 20
minutes. Supernatant was ultracentrifuged at 100,000 g x1 hour at 4◦C to pellet cell envelopes.
Cell envelope pellets were washed with 10 mM NaH2PO4-NaOH (pH 7.2), resuspended in 20
µL dH2O plus 20 µL 2x Laemmli buffer (BioRad), and then incubated at 95◦C for 5 minutes.
Cell envelope samples were then analyzed with SDS-PAGE (12.5% gel; 25 µL loading volume;
200 V for 55 minutes). After electrophoresis, gel was incubated in Coomassie staining solution
(50% v/v methanol, 10% v/v acetic acid, and 0.25% w/v Coomassie brilliant blue R-250 in dH2O)
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for 40 minutes with gentle shaking and then destained by boiling in 1 L dH2O for 20 minutes.
Protein band intensity was quantified by densitometry analysis (using ImageJ software) and nor-
malized to the sum of intensities of the major protein bands (i.e. the 95 kDa, 72 kDa, 55 kDa, 44
kDa, OmpC/OmpF, OmpA, 29 kDa, and 26 kDa bands). Experiment was repeated to verify results.

4.6.11.4 RpoS Western blot

Total cellular protein was extracted from early log phase cultures using B-PER lysis buffer
(Thermo Fisher Scientific, Waltham, MA, USA) as per manufacturers protocol. Protein concentra-
tion was quantified using Bradford assay [96]. Samples were diluted with PBS to 4 µg/µL protein
and mixed 1:1 with 2x Laemmli buffer (BioRad) and then incubated at 95◦C for 5 minutes. Protein
samples were separated with SDS-PAGE (12.5% gel; 10 µL loading volume, corresponding to
20 µg protein; 100 V for 55 minutes) and then electroblotted onto a 0.22 µm nitrocellulose
membrane (BioRad). Membrane was blocked by incubating for one hour with gentle shaking
in 15 mL Tris-Buffered Saline Tween-20 (TBST) buffer (BioRad) supplemented with 5% (w/v)
nonfat dry milk (BioRad). After blocking, membrane was incubated for two hours with gentle
shaking in 15 mL blocking buffer (TBST with 5% w/v milk) supplemented 1:1000 with primary
mouse anti-RpoS antibody (NeoClone, Madison, WI, USA). Membrane was then washed three
times with TBST and incubated for one hour with gentle shaking in blocking buffer supplemented
1:2000 with secondary goat anti-mouse IgG horseradish peroxidase conjugated antibody (Jackson
ImmunoResearch, West Grove, PA, USA). After incubation with secondary antibody, membrane
was washed three times with TBST and treated with Immun-Star horseradish peroxidase substrate
(BioRad) for detection, as per manufacturers protocol. Experiment was repeated to verify results.
Purified E. coli RpoS (NeoClone) was used as a positive control.

4.6.11.5 Ethidium bromide accumulation assay

Ethidium bromide accumulation assays were carried as described previously, with minor modi-
fications [142]. For each strain tested, LB medium was inoculated 1:70 with saturated overnight
culture and incubated at 30◦C with shaking. When cultures reached OD600 = 0.6, 600 µL aliquots
were withdrawn and centrifuged at 13,000 rpm x 3 minutes. Supernatant was discarded and cell
pellets were resuspended in 1000 µL sterile phosphate buffer saline (PBS). The centrifugation
and washing process was repeated once more. After a final centrifugation, cell pellets were
resuspended in PBS such that OD600 = 0.3 in the final cell suspension. Costar black/clear bottom
96-well microplates (Thermo Fisher Scientific) were filled with 2 µL 0.1 mg/mL ethidium bromide
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per well and 198 µL OD600 = 0.3 cell suspension for 200 µL total volume. Fluorescence (518
nm excitation / 605 nm emission) was measured every minute for 60 minutes using a Molecular
Devices Spectramax M5 plate reader, with 25◦C incubation temperature and agitation between
reads. Specific fluorescence was calculated by dividing measure fluorescence by OD600.

4.6.11.6 Malate dehydrogenase assay

Malate dehydrogenase assays were carried out as described previously, with modifications [205].
For each strain tested, LB medium was inoculated 1:70 with saturated overnight culture and
incubated at 30◦C with shaking. When cultures reached OD600 = 0.6, 5 mL aliquots were
withdrawn from each culture and centrifuged at 5000 g x 10 minutes. Supernatant was discarded.
Cell pellets were suspended in 50 µL B-PER (Thermo Fisher Scientific) lysis buffer and incubated
for 15 minutes at room temperature. After incubation, cell lysates were centrifuged at 15,000 g x 5
minutes at 4◦C. Lysis supernatant was reserved and kept on ice for the remainder of the procedure.
Standard 96-well microplates were filled with 185.6 µL PBS, 4.45 µL 10 mM NADH, and 10 µL
1:10 diluted lysate supernatant per well. Absorbance at 340 nm was measured every 30 seconds
for 10 minutes at 30◦C with shaking to determined background NADH oxidation rate. 22.2 µL
20 mM oxaloacetate was then added to each well. Absorbance at 340 nm was measured every
30 seconds for 15 minutes at 30◦C with shaking to determine rate of NADH oxidation. Malate
dehydrogenase activity was calculated as Units/g-wet-cells = ∆A340

∆tε340lc
, where ∆A340 = rate of

change in absorbance at 340 nm wavelength (AU), ∆t = time interval (15 minutes), ε340 = NADH
molar extinction coefficient at 340 nm wavelength (6.22 1/mM/cm), l = 1 cm, and c = 0.0045
g-wet cells per reaction volume.

4.6.11.7 Iodine staining assay

Iodine staining assay was adapted from a previously described procedure [144]. Overnight
cultures of selected strains were streaked on NG50 agar spiked with 0.35% (w/v) isobutanol. The
plate was tightly wrapped in parafilm, incubated at 30◦C for 48 hours, and then flooded with 5
mL USP tincture of iodine. After 2 minutes of incubation at room temperature, excess iodine was
poured off the plate, and iodine was allowed to evaporate until media was translucent.
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CHAPTER 5

Elucidating and improving the genetic architecture
of isobutanol tolerance in Escherichia coli through

targeted genome engineering

5.1 Summary

Due to the complexity of microbial stress tolerance, there is a great need for phenotype im-
provement methods that expand accessible genotype search spaces and which can account for
the multigenic nature this phenotype. Guided by the evolutionary-genomic studies described in
the previous chapter, in this work we generate combinatorial libraries of 38 mutations associated
with isobutanol tolerance in E. coli using Multiplex Automated Genome Engineering (MAGE), a
recently developed technology that entails repeated cycles of high efficiency recombination using
libraries of mutagenic DNA oligonucleotides. This strategy enables rapid exploration of vast
genotype space without being constrained to adaptive walks. Variants with improved isobutanol
tolerance are isolated and then further characterized via quantitative phenotype and genotype
analysis, allowing for systematic mapping of isobutanol tolerance phenotypes and genotypes.
We identified numerous novel isobutanol tolerant genotypes, yielding additional insights into
biochemical mechanisms of tolerance. Additionally, the improved strains generated in this study
may be immediately useful for isobutanol production.

The work presented in this chapter was done in collaboration with the labs of George Church
(Harvard Medical School) and Harris Wang (Pathology and Cell Biology, Columbia University),
and will be reported in a future manuscript: J. Minty, L. Lai, J. Park, S. Wang, B. Johnson,
T. Zaroff, L. Kennedy, D. Boyer, H. Wang, M. Burns, G. Church, and X. Lin. Elucidating
the genetic architecture of isobutanol tolerance in Escherichia coli through targeted genome
engineering and high throughput screening.
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5.2 Introduction and background

5.2.1 Integrating genome mapping and genome engineering for phenotype
improvement

Microbial stress tolerance is a complex multigenic trait that is intractable to traditional genetic
study and rational engineering efforts, thus most methods for stress tolerance phenotype im-
provement involve combinatorial or random-search approaches. In the past, limitations in genetic
manipulation techniques hindered efforts to improve tolerance phenotypes; thus strategies were
restricted to random mutagenesis, adaptive evolution, and breeding (for sexual organisms). These
limitations motivated the development of genome-scale techniques for improving and studying
complex phenotypes, including whole genome shuffling, transcription factor mutagenesis (e.g.
global transcription machinery engineering; gTME), and screening of gene deletion libraries,
genomic fragment overexpression libraries, and promoter and intergenic region libraries (as
discussed in Chapter 1). Advances in DNA sequencing, DNA synthesis, and genome-scale genetic
manipulation techniques have radically expanded our ability to read and write genetic information,
enabling unprecedented opportunities for both genetically decoding and programming complex
phenotypes.

Integrating methods for identifying genes/mutations conferring desired phenotypes with
genome-scale combinatorial engineering represents a promising strategy for improving microbial
chemical tolerance phenotypes. This general approach was recently tried by Sandoval et al. to
identify combinations of genetic loci correlated with improved tolerance of E. coli to acetate,
low pH, and cellulosic hydrolysate [206] (overview shown in Figure 5.1). Trackable Multiplex
Recombineering (TRMR; described in Chapter 1 and [56]) was used to map the effect of increased
or decreased expression of every gene in the E. coli genome onto each of the aforementioned
phenotypes, resulting in identification of gene subsets associated with each trait (Figure 5.1A&B)
[206]. Ribosome Binding Sites (RBS) of identified target genes were mutagenized using Multiplex
Automated Genome Engineering (MAGE; described in Chapter 1 and [59]) to generate combi-
natorial libraries of gene expression variants, which were then subjected to growth selections
(Figure 5.1C&D) [206]. A total of 27 genes were targeted for hydrolysate tolerance, 14 genes
for low pH tolerance, and 8 genes for acetate tolerance [206]. However, despite extensive growth
selections, all variants isolated from the combinatorial libraries were either single or double
mutants; furthermore, few of the double mutants had improved growth relative to single mutants,
and some actually showed overall antagonistic interactions (i.e. the relative growth rates of double
mutants were less than either of the corresponding single mutants) [206]. While this study
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demonstrates the feasibility of integrating genome mapping and genome engineering methods for
improving microbial phenotypes, it also illustrates inherent challenges that need to be addressed.

Figure 5.1: Overview of strategy used by Sandoval et al. Adapted from [206] (A) Trackable Multiplex Recombineering
(TRMR; [56]) is used to map fitness effects of genetic loci. (B) Targets conferring high fitness are selected for further
study. (C) Recursive multiplex recombineering is used to generate a combinatorial library of the selected targets. (D)
Growth selection is performed on the library to yield clones with high tolerance.

One key issue with integrating genome mapping and genome engineering methods is that
most genome-scale trait mapping techniques cannot capture interactions between distal genetic
loci, thus limiting detection of potential synergistic combinations. Since most mapping techniques
identify fitness effects of single genes, a common strategy is to identify single genes with
high fitness effects and create combinatorial variants with top candidates, as exemplified by
Sandoval et al [206]. From an intuitive standpoint this may seem like a good strategy, but recent
evolutionary biology studies [207, 117] have reported widespread negative epistasis (i.e. less than
additive effects) between beneficial mutations, thus reducing the potential utility of this approach.
Prevalent negative epistasis between beneficial mutations was recently reported for E. coli evolved
on glucose minimal media [117] and for an engineered Methylobacterium extorquens strain
evolved with methanol as the sole carbon source [207, 117]. In our work on isobutanol tolerance
(Chapter 4), we observed negative epistasis between beneficial mutations in hfq and marC, but
there was evidence for positive epistasis for each of hfq or marC with subsequent mutations
(groL, mdh, and rph). Collectively, these results suggest that negative epistasis between beneficial
mutations may be a statistically common phenomena which needs to be considered when devising
genome-scale phenotype improvement methods.
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5.2.2 Overview
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Figure 5.2: Genome engineering for further characterization and improvement of isobutanol tolerance.

Guided by our evolutionary-genomics studies (Chapter 4), in this work we devise and implement
a genome engineering strategy to further investigate and improve isobutanol tolerance in E. coli

(Figure 5.2). In collaboration with the labs of George Church (Harvard Medical School) and Harris
Wang (Pathology and Cell Biology, Columbia University), we performed targeted mutagenesis
of candidate genetic loci using Multiplex Automated Genome Engineering (MAGE) [59]. We
utilize the following strategy: i) create mutagenic ssDNA oligo libraries, ii) perform MAGE, with
periodic selection cycles to enrich highly tolerant genotypes, iii) isolate hypertolerant variants, and
iv) characterize isolates for systematic genotype-phenotype correlation (Figure 5.2). A key feature
of this work is that we employ a holistic and comprehensive approach for target gene selection,
utilizing the results from our evolutionary-genomics studies (Chapter 4) as well as leveraging
investigations of E. coli alcohol tolerance reported in literature. We suggest that through judicious
selection of target genes, directed genome engineering can be used to successfully improve
multigenic phenotypes with complex underlying epistatic interactions. In the next section, we
provide background on the selection of target mutations in this study.
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5.3 Results

5.3.1 Selection of target mutations

Due to the importance of microbial chemical tolerance in bioprocessing, there is a large body
of research on the mechanisms and genetic bases of chemical toxicity and tolerance. Amongst
biofuels, short-chain alcohols (i.e. ethanol, n-butanol, and isobutanol) are at the most advanced
development stage and thus there is a disproportionate amount of research concerning the
tolerance and toxicity of short chain alcohols in model organisms such as S. cerevisiae and E. coli.
In June 2011, we conducted a literature and patent review of genetic studies of ethanol, n-butanol,
and isobutanol tolerance in E. coli. Methods used in these studies included evolution/genome
resequencing [124, 208] as well as screening of knockout/overexpression libraries for alcohol
tolerant variants [209, 210, 121, 165, 211]. Since mechanisms of toxicity/tolerance for short chain
alcohols are closely related, we expect that a subset of mutations conferring tolerance to ethanol
or n-butanol may also provide some degree of cross-tolerance to isobutanol; thus we include
these loci as potential genome engineering targets. From this review we compiled 103 genetic
loci correlated with short-chain alcohol tolerance in E. coli, which combined with the 144 loci1

identified in our evolutionary-genomics studies of isobutanol tolerance (Chapter 4) yields a total
of 247 potential genome engineering targets for improving isobutanol tolerance in E. coli.

As shown in Figure 5.3, genetic loci correlated with alcohol tolerance are widely distributed
across many different biochemical functions and genomic locations, consistent with the notion
that tolerance to alcohols is a complex trait that involves a diversity of cellular adaptations and
responses. Many different types of mutations were reported, including SNPs, indels, large-scale
chromosomal rearrangements, transposon insertions, gene knockouts, and gene overexpression
(i.e. cloning genomic fragments into inducible high-copy vectors). While there was a diversity
of different types of mutations, it appears that many of the reported mutations simply lead to
loss-of-function (i.e. indels leading to frameshifts, transposon insertions, and knockouts).

To maintain a tractable combinatorial search space and level of experimental complexity,
we decided to select a reduced subset of target mutations from the 247 identified in our review.
We selected targets based on the following criteria: i) extent to which alcohol tolerance can
be attributed target (i.e. significance rating in Figure 5.3), ii) oligo recombination efficiency
for the required genetic modification (i.e. using MAGE; [59]), and iii) likelihood of synergistic
interactions between targets. Targets with demonstrated or known effects on alcohol tolerance

1This number is larger than the total of 131 given Chapter 4 since it includes mutations identified in our parallel
evolution studies and X2.5 genome resequencing
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Figure 5.3: Chromosome map (E. coli EcNR1 reference sequence) of genetic loci correlated with short-chain (C2-
C4) alcohol tolerance in E. coli. Phenotype significance and major COG (Clusters of Orthologous Groups) class
for each locus is given according to color code in legends. “Significance” is a qualitative metric that captures the
extent to which alcohol tolerance can be attributed to a particular locus. High significance indicates that there is direct
experimental evidence linking alcohol tolerance to a locus; medium significance indicates that direct experimental
evidence is lacking, but the locus has been identified in more than one study and/or is functionally related to known
mechanisms of toxicity; and unknown significance indicates that the locus has an unknown role in alcohol tolerance.
Data compiled from the following sources: [124], [121], [208], [209], [210], [165], and [211].

are obviously preferred, thus the rationale for the first criterion. For the second criterion,
oligo recombination efficiency is correlated to the amount of homologous sequence between
an oligonucelotide and the chromosomal target; point mutations such as SNPs and short indels
can be produced at the highest efficiencies (>10%; [59]). Recombination efficiencies are much
lower for large mutations, though specialized techniques for such mutations are currently under
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development (such as co-selection MAGE; [61]). Therefore, we give preference to targets that
comprise small point mutations, while larger mutations (such as promoter replacements) could be
explored in future work. For our final criterion, it is quite difficult to predict epistasis between
mutations a priori. However, general patterns of epistasis can be used to provide guiding principles
for target selection. Negative epistasis between genetic loci frequently arises due to functional
overlap. For deleterious mutations, if two genes can individually perform a common function,
then each can partially compensate for the loss of the other; however, loss of both genes will
completely eliminate the function, which would be lethal if the function is essential [154]. Similar
effects may occur for beneficial mutations; for example, if two different beneficial mutations
have the same functional effect, then the combined effect of both mutations may be less than
additive due to saturation of the underlying biochemical process [117]. Thus we can minimize the
likelihood of negative epistasis in our genome engineering work by avoiding targets with potential
functional redundancy. For positive epistasis, patterns can be quite complex. For instance,
positive epistasis is prevalent between metabolic genes with non-related functions [154]. On the
other hand, positive epistasis is frequently observed between related or interacting functions; a
common example occurs when mutations enhance the activity/function of a protein but also reduce
structural stability, thus driving the evolution of compensatory mutations that improve stability
of the mutant protein but have little effect in a WT background [212]. Thus we may be able to
increase the likelihood of synergistic interactions in our genome engineering work by selecting
functionally diverse targets, selecting targets with possible functional interactions (e.g. lepB and
secA, components of the Sec protein translocation apparatus; Chapter 4), and most obviously by
selecting targets with known positive interactions (i.e. hfq or marC with subsequent mutations
groL, mdh, and rph; Chapter 4).

Based on the above considerations, we selected a subset of 38 target mutations for genome
engineering (with a combinatorial search space size of 238 ≈ 2.75x1011 genotypes) for improving
isobutanol tolerance in E. coli. Selected targets are given in Table 5.1, with a summary chromo-
some map shown in Figure 5.4. For each target, we designed a 90 bp mutagenic oligonucleotide
for use in MAGE (see section 5.5.3 for more details). Approximately 2/3 of the selected targets
were derived from our evolutionary-genomics studies (Chapter 4) while the remainder were
obtained from various literature and patent sources (Table 5.1). Due to the difficulty in producing
mutations >10bp with MAGE, we avoided targets that involve promoter replacement (i.e. gene
overexpression). Most of the selected mutations are thus point mutations, indels, or gene deletions
(produced with SNPs that introduce premature stop codons) (Table 5.1). All of the significant
mutations identified in our evolutionary-genomics studies (Chapter 4) are included, as well as a
number of uncharacterized mutations (Table 5.1). Overall, our library includes a large number
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targets with confirmed effects on alcohol tolerance, and represents a diversity of different cellular
processes (Table 5.1). Having selected our target mutations, in the next section we discuss
considerations in the design of our genome engineering strategy.

Figure 5.4: Chromosome map (E. coli EcNR1 reference sequence) of target loci selected for combinatorial genome
engineering with MAGE. Mutation types given according to color code in legend. See Table 5.1 for more details.
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Table 5.1: Target mutations selected for combinatorial genome engineering. Mutation positions are given as absolute
genomic coordinates in the E. coli EcNR1 reference sequence. SNPs are indicated by base transition/transversion.
Small insertions are indicated by a “+”, with the size (number of bp) of the insertion and sequence of inserted bases.
Small deletions are designated by “−” with a format similar to that for small insertions. “DELETION” indicates gene
deletion and/or loss-of-function.

Locus Position Mutation Locus description Source

fepE 618531 T→C Regulates length of O-antigen; component of the fer-
ric enterobactin transport system

This work (Chapter 4); G3 lineage

gatZ 2182915 -1:C D-tagatose 1,6-bisphosphate aldolase 2, subunit
(EC:4.1.2.40)

This work (Chapter 4); G3 lineage

gltD 3367270 1:G Glutamate synthase, 4Fe-4S protein, small subunit
(EC:1.4.1.13)

This work (Chapter 4); G3 lineage

glnE 3206870 DELETION Fused deadenylyltransferase/adenylyltransferase for
glutamine

This work (Chapter 4); G3 lineage

greA-
dacB

3336132 A→G Promoter region of D-alanyl-D-alanine endopeptidase
dacB

This work (Chapter 4); G3 lineage

groL 4378650 A→C Cpn60 chaperonin GroEL, large subunit of GroESL This work (Chapter 4); G3 lineage

lepB 2711902 G→A Leader peptidase (signal peptidase I) (EC:3.4.21.89) This work (Chapter 4); G3 lineage

miaA-
hfq

4407505 -7:AGGAAAA Ribosome binding site of pleiotroic regulator hfq, in-
volved with many RNA-based regulators

This work (Chapter 4); G3 lineage

nlpI-pnp 3316213 T→C Lipoprotein involved in osmotic sensitivity and fila-
mentation

This work (Chapter 4); G3 lineage

phoQ 1197581 A→G Sensory histidine kinase in two-component regulatory
system with PhoP

This work (Chapter 4); G3 lineage

pstC 3917582 T→C Phosphate transporter subunit This work (Chapter 4); G3 lineage

queA 425270 A→G S-adenosylmethionine:tRNA
ribosyltransferase-isomerase (EC:5.-.-.-)

This work (Chapter 4); G3 lineage

rhlB 3972054 A→G ATP-dependent RNA helicase This work (Chapter 4); G3 lineage

secA 108975 T→C Preprotein translocase subunit, ATPase This work (Chapter 4); G3 lineage

yjgQ 4494710 T→C Lipopolysaccharide export ABC permease of the
LptBFGC export complex

This work (Chapter 4); G3 lineage

mdh 3390936 5:AACCT Malate dehydrogenase,
NAD(P)-binding (EC:1.1.1.37)

This work (Chapter 4); X3 lineage

gatC 2180640 C→T Galactitol-specific enzyme IIC component of PTS This work (Chapter 4); X3 lineage

gltA 753345 T→C Citrate synthase (EC:2.3.3.1) This work (Chapter 4); X2 lineage

rph 3823229 4:GGTC Defective ribonuclease PH This work (Chapter 4); G3 lineage

acrA 483735 1:A Multidrug efflux system This work (Chapter 4); X3 lineage

deaD 3314027 4:AGAC ATP-dependent RNA helicase This work (Chapter 4); X3 lineage

hrpA 1493514 C→T Predicted ATP-dependent helicase This work (Chapter 4); X3 lineage

plsX 1156697 A→G Probable phosphate acyltransferase This work (Chapter 4); X3 lineage

rpsB 190557 1:A 30S ribosomal subunit protein S2 This work (Chapter 4); X3 lineage

173



Table 5.1: Target mutations selected for combinatorial genome engineering.

Locus Position Mutation Locus description Source

yfgO 2623022 C→T Predicted inner membrane permease,
UPF0118 family

This work (Chapter 4); X3 lineage

astE 1834154 DELETION Succinylglutamate desuccinylase n-butanol tolerance study; [209]

ygiH 3211923 DELETION Conserved inner membrane protein n-butanol tolerance study; [209]

yhbJ 3354344 DELETION Predicted P-loop containing ATPase; involved in
glmS regulation

Isobutanol tolerance study [124]

tnaA 3895960 DELETION L-cysteine desulfhydrase / tryptophanase Isobutanol tolerance study [124]

marC 1626139 DELETION Conserved protein; predicted transporter Common mutation in isobutanol toler-
ant strains; Chapter 4, [208], [124]

ydhF 1732863 DELETION Predicted oxidoreductase n-butanol tolerance study; [210]

potG 903421 DELETION PotFGHI ATP-dependent putrescine transporter n-butanol tolerance study; [210]

yheT 3490431 DELETION Predicted hydrolase,
member of the UPF0017 protein family

n-butanol tolerance study; [210]

gadX 3673040 DELETION GadX DNA-binding transcriptional dual regulator;
controls the transcription of pH-inducible genes, in-
cluding the principal acid resistance system

ethanol tolerance study; [121]

slt 4637963 DELETION Soluble lytic murein transglycosylase ethanol tolerance study; [121]

relA 2920880 DELETION GDP pyrophosphokinase / GTP pyrophosphokinase;
ppGpp synthetase

n-butanol tolerance study; [211]

luxS 2821962 DELETION S-ribosylhomocysteine lyase; biosynthesis of quorum
sensing signal AI-2

Reported to increase
isobutanol production; [213]

lsrA 1608721 DELETION Predicted ATP-binding component of the AI-2 ABC
transporter

Reported to increase
isobutanol production; [213]

5.3.2 Design considerations for combinatorial genome engineering

The basic genome engineering strategy that we devised entails performing repeated cycles of
MAGE using an oligo library targeting the above described mutations (Table 5.1), with periodic
selection steps (passaging populations on isobutanol spiked media) to enrich genotypes with im-
proved fitness. Important cycling parameters include total number of cycles, frequency and dura-
tion (i.e. growth time) of selection steps, and strength of selection (i.e. isobutanol concentration).
To gain insights into how cycling parameters affect population dynamics and genotype distribu-
tions, we constructed a simple model of our genome engineering strategy. For each cycle of mul-
tiplex oligonucleotide recombination, mutations are distributed binomially; thus assuming equal
probability (i.e. recombination efficiency) for each mutation, the frequency of cells with recombi-
nation events at one locus, two loci, ... to n loci can be predicted with the binomial probability
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density function [59]2. For repeated cycles of MAGE, we can then iteratively model mutation
distributions as follows:

fj,k = fj,k−1 +

j−1∑
i=0

fi,k−1B(n, j − i, p)−
n−j∑
i=1

fj,k−1B(n, i, p) (5.1)

B(n, x, p) =

(
n

x

)
px (1− p)n−x (5.2)

Where fj,k is the frequency of genotypes with j loci modified after k cycles, p is the recombination
probability per locus, n is the total number of targeted loci, and B(x, y, z) is the probability
density function for a binomial distribution. The first summation term in Equation 5.1 represents
generation of genotypes with j modified loci due to mutations added to genotypes with < j

modified loci, while the second summation term represents transitions from genotype j to
higher-order mutants.

Since we do not know the relative fitness of different genetic variants a priori, we cannot pre-
cisely predict the effect of enrichment steps on population dynamics. To qualitatively explore
the effect enrichment cycles on genotype distributions and population dynamics, we can assume
a simple of model of relative fitness as a function of number of genomic loci modified. As dis-
cussed previously, recent studies suggest prevalent negative epistasis between beneficial mutations
in evolving bacterial populations [207, 117]. In contrast, we observe both positive and negative
epistasis between mutations acquired in the evolution of isobutanol tolerance in E. coli (Chapter 4).
As a conservative estimate, we will assume a predominance of negative epistatic effects between
mutations in our library, leading to eventual saturation of relative fitness. This can be represented
by a simple phenomenological model:

Rf,j =
µmax,MUT

µmax,WT

= Rf,max

(
j

j +Km

)
+ 1 (5.3)

Where Rf,j is the relative fitness of genotypes with j loci modified, Rf,max is the maximum relative
fitness, and Km is a pseudo affinity. Parameter values will vary with selective pressure; in the
absence of selection, Rf,j = 0 for all loci. Assuming exponential growth, population dynamics
during selection can be modeled as:

2If probabilities of each mutation are not equal, then predicting genotype distributions requires Monte Carlo simu-
lations
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fj,k =
fj,k−1e

(Rf,j−1)t∗

f0,k−1 +
n∑

i=1

fi,k−1e
(Rf,i−1)t∗

(5.4)

Where t∗ = µmax,WT t is dimensionless time, and other terms are as described previously.

Parameter Value Notes

p 0.0066 Assuming 25% overall recombination efficiency (di-
vided by 38 loci)

n 38 Total number of targeted loci

Rf,max ≈ 5 Maximum relative fitness at (0.5% to 1% w/v isobu-
tanol selection); estimated from results in Chapter 4

Km ≈ 10 Order of magnitude estimate

Table 5.2: Parameters used in genome engineering model.

Using the parameter values given in Table 5.2, we modeled mutation distributions and overall
population fitness for a total of 50 MAGE cycles, without and with selection steps every 10th
cycle (Figure 5.5). Even with a conservative fitness model, selection steps have a dramatic effect
on the distribution of genetic variants, increasing frequencies of high fitness genotypes by multiple
orders of magnitude within a single enrichment step (Figure 5.5A vs. C). Thus selection steps may
decrease the total number of cycles required to reach a given genotype frequency, reducing labor
and accumulation of off-target mutations. While we could further increase the frequency, duration,
and intensity of selection steps, our model suggests that our current scheme of isobutanol selection
(0.5 to 1% w/v) every 10th cycle should yield highly modified variants (10 to 20 mutations) at
selectable frequencies (> 10−7) within a manageable number of cycles (20 to 30 total).

In addition to the cycling parameters discussed above, there are other factors that may affect
mutation distributions and population dynamics. In general, epistatic effects and strength of
selection could have major impacts on genotype distributions. Epistatic effects can dramatically
alter fitness landscapes, especially in the case of global regulators (i.e. hfq) [214]. Thus while we
wish to generate synergistic mutation combinations, if epistatic mutations become fixed in pop-
ulations at early MAGE cycles this could constrain accessible evolutionary trajectories and limit
exploration of combinatorial search spaces. For selection, increasing intensity favors enrichment
of highly fit genotypes while purging less fit variants; however, if selective pressure is too strong,
population diversity will be drastically reduced, again limiting search space exploration. Beyond
the effects of epistasis / selection, there are additional caveats that must be considered. In prior
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Figure 5.5: Theoretical modeling of genome engineering strategies, with parameter values as described in Table 5.2.
(A) Mutation distribution as a function of MAGE cycle number with no selection steps (i.e. t∗ = 0). (B) Overall
population relative fitness as a function of MAGE cycle number with no selection steps. (C) Mutation distribution
with selection every 10th cycle; total growth time of t∗ = 4.8 per selection. (D) Overall population relative fitness
with selection every 10th cycle; t∗ = 4.8 per selection.

work (Chapter4) we have established that i) certain mutations reduce subsequent recombination
efficiency by≈100x or more and ii) certain mutations may exhibit antagonistic pleiotropy between
rich and minimal media, causing negative selection during MAGE (since rich media is required
for optimal recombination efficiency). We have specifically observed both effects (recombination
efficiency / antagonistic pleiotropy) with mutation miaA-hfq 4407505 -7:AGGAAAA. Beyond
hfq, it seems likely that mutations which alter cell envelope properties could affect electroporation
efficiency (and thus overall recombination efficiency), and such cell envelope targeting mutations
are prevalent in our library (since the cell envelope is a primary target of isobutanol toxicity).
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5.3.3 Multiplex genome engineering experiments and phenotypic character-
ization of populations

Based on the above considerations, we decided to test several different MAGE schemes. In our
first series of experiments, we performed MAGE cycles with a full (38x target) oligonucleotide
library (“38*” lineages; see Figure 5.6 for details). In a second set of experiments, we performed
MAGE with reduced dosage of the miaA-hfq 4407505 -7:AGGAAAA oligonucleodtide (“37”
and “38” lineages; see Figure 5.7 for details). The miaA-hfq 4407505 -7:AGGAAAA mutation
has confirmed epistasis with several other loci (groL, mdh, and rph) and potentially many
more uncharacterized interactions. Additionally, hfq causes reduced recombination efficiency /
antagonistic pleiotropy in rich media, as discussed above. Due to these issues, fixation of hfq in
MAGE populations may constrain accessible evolutionary trajectories and limit evolvability, thus
motivating us to examine the effects of reduced hfq oligonucleotide dosage (Figure 5.6).

10 MAGE cycles 
38x target oligo library 

Selection 
0.75% i-BtOH 

Selection 
1% i-BtOH 

Figure 5.6: Genome engineering strategy: full (38x target) library. 10 cycles of MAGE are performed with full
oligonucleotide library. After 10 cycles, population is split into two fractions subject to selection on NG50 minimal
media spiked with 0.75% and 1% (w/v) isobutanol, respectively. Lineages are referred to as “38* / 0.75% sel” and
‘38* / 1% sel”, respectively.

MAGE experiments were performed according to the above described cycling schemes
in collaboration with the labs of George Church (Harvard Medical School) and Harris Wang
(Pathology and Cell Biology, Columbia University), using E. coli EcHW24 (K12 λ-Red ∆mutS)
intC::yfp as a host strain. We performed a total of 10 MAGE cycles for the 38* lineages (full
oligonucelotide library; see Figure 5.6 for details), 20 cycles for the 38 lineage (reduced hfq; see
Figure 5.7A & B for details), and 30 cycles for the 37 lineage (reduced hfq; see Figure 5.7A &
B for details), with selection steps after every 10th cycle (see Figure 5.6, and Figure 5.7B & C
for details). For selection steps, cell populations were washed and diluted 1:10 to 1:100 in NG50
minimal media supplemented with isobutanol (concentrations indicated in Figure 5.6 & 5.7) and
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9 cycles 
37x (hfq-) oligo library 

1 cycle 
38x (hfq+) 

1 cycle 
37x (hfq-) 

Selection cycles 

Next iteration 

9 cycles 
37x (hfq-) 

1 cycle 
38x (hfq+) 

“37”  
lineage 

“38”  
lineage 

A 

C 10 cycles 

0.5% iBtOH 

1% iBtOH 

10 cycles 

1% iBtOH 

10 cycles 

B 10 cycles 

0.5% iBtOH 

1% iBtOH 

10 cycles 

Figure 5.7: Genome engineering strategy: reduced hfq dosage. (A) 9 cycles of MAGE with reduced (37x target; hfq
omitted) oligonucleotide library. After 10th cycle, population is split into two fractions, one of which is subject to
recombination with the reduced (37x target / hfq-) library (termed “37” lineage) and the other with the full (38x target
/ hfq+) library (termed “38 lineage”), respectively. Populations are subject to selection cycles at various isobutanol
concentrations. MAGE is continued using a scheme of 9 cycles with reduced (hfq-) library and 1 cycle with full (+hfq)
library per 10 cycles. Thus the main difference between the 37 and 38 lineages is that the 37 lineage received 19
MAGE cycles before first hfq dose vs. 9 cycles for the 38 lineage. (B) Selection steps used in 38 lineage. 20 cycles
total. (C) Selection steps used in 37 lineage. 30 cycles total.

then grown to saturation. We use a notation of lineage-cycle # to refer to MAGE populations
(e.g. “37-20” corresponds to lineage 37, cycle 20 population).

As an initial characterization, we examined isobutanol tolerance phenotypes of whole popu-
lation samples from each MAGE lineage by measuring growth rates (µmax; 1/h) and maximum
OD600 in NG50 media with 1% (w/v) isobutanol (Figure 5.8). We calculated relative fitness (RF;
mutant phenotype divided by parental E. coli EcHW24 intC::yfp phenotype) in terms of both
µmax (RFµ; Figure 5.8A) and maximum OD600 (RFOD; Figure 5.8B). There was little variation in
maximum OD600 between the different populations, with the exception of 37-30 (Figure 5.8B);
RFµ values varied more between populations and number of cycles. After 10 MAGE cycles
and a selection step, RFµ for all lineages was increased substantially, indicating that isobutanol
tolerant variants were present at high frequency in all populations (Figure 5.8A & B). As expected,
population RFµ tended to increase with MAGE cycle number, with the exception of population
37-20 (Figure 5.8A). Overall, the 37-30 had the highest fitness at 1% (w/v) isobutanol out of the
populations examined, with RFµ = 3.1 ± 0.1 and RFOD = 1.48 ± 0.06. Interestingly, the 38*-10
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Figure 5.8: Population relative fitness (RF) after 10, 20, and 30 MAGE cycles (post isobutanol selection step). Lin-
eages are noted in the legend, and correspond to those described in Figure 5.6 & 5.7. (A) Relative fitness at 1% (w/v)
isobutanol, calculated from µmax values: RFµ = µmax,MUT /µmax,WT . (B) Relative fitness at 1% (w/v) isobutanol,
calculated from maximum OD600 values: RFOD = OD600,MUT /OD600,WT .

populations (full target library) populations had higher RFµ values compared to 37-10 and 38-10
(reduced hfq dosage). However, 38*-10 was subjected to stronger selection (0.75% or 1% w/v
isobutanol; Figure 5.6) compared to 37-10 and 38-10 (0.5% w/v isobutanol; Figure 5.7B & C), so
we cannot ascertain whether these fitness differences are simply due to selection effects or arise
from genotype distribution differences between different hfq dosing strategies.

To further examine the effects of selection intensity, we subjected MAGE populations to ad-
ditional selections at various isobutanol concentrations and then measured population RFµ in 1%
(w/v) isobutanol NG50 (Figure 5.9). Intuitively we would expect that population RFµ should in-
crease with selection pressure. However, several populations show a trend wherein population RFµ

increases with isobutanol concentration up to a certain point, and then declines (Figure 5.9B & C).
Surprisingly, in some cases population RFµ after high selection pressure (1% to 1.5% w/v isobu-
tanol) is actually lower than pre-selection RFµ (e.g. 38-10, 37-10, and 37-20; Figure 5.9B & C).
There are various possible explanations for this unusual trend. At high isobutanol concentrations
(> 1% w/v) growth saturates at a relatively low OD600, and so reduction in population doublings
may correspondingly reduce enrichment of tolerant genotypes. In extreme cases, if isobutanol
levels exceed the minimum inhibitory concentration (MIC) of all variants present in the popula-
tion, then selection changes to favor retention of viability as opposed to maximum growth rate.
Since there is often a tradeoff between survival and growth rate (e.g. allocating resources to re-
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Figure 5.9: Population RF at 1% (w/v) isobutanol (RF = RFµ = µmax,MUT /µmax,WT ) after selection at indicated
isobutanol concentrations. Legend is shown to right; “pre” indicates pre-selection populations. (A) 38* lineage. (B)
38 lineage. (C) 37 lineage.

production and growth vs. cellular maintenance and repair) [215], variants with improved survival
at high isobutanol concentrations may actually have reduced growth rates at non-inhibitory levels.
Additionally, at isobutanol concentrations high enough to reduce cell viability, population bottle-
necking effects could occur. Overall, the 37-30 population selected at 1.25% (w/v) isobutanol had
the highest fitness out of the populations examined, with RFµ = 3.5±0.1 and RFOD = 1.53±0.07.

5.3.4 Phenotype/genotype characterization of highly tolerant isolates

For each of the populations depicted in Figures 5.6 & 5.7, we screened for isolates with high
isobutanol tolerance by plating population samples (104 to 105 cells) on NG50 agar spiked with
1% (w/v) isobutanol3. We selected a total of 10 colonies from each of the 38*-10 populations
(0.75% and 1% isobutanol selection cycles; Figure 5.6), 37-10 and 38-10 populations (0.5% w/v
isobutanol selection cycles; Figure 5.7), and 37-20 and 38-20 populations (1% w/v isobutanol
selection cycles; Figure 5.7), and 15 colonies from the 37-30 population (1% w/v isobutanol
selection cycle; Figure 5.7). Clonal isolates were genotyped at each targeted locus using PCR
based assays, and phenotyped by measuring µmax and maximum OD600 in 1% (w/v) isobutanol
NG50 media. We use a notation of lineage-cycle-colony # to refer to isolates (e.g. “37-20-10”
corresponds to lineage 37, cycle 20 population, colony # 10).

3Isobutanol toxicity varies between liquid and agar media; 1% (w/v) isobutanol is completely inhibitory to the
parental E. coli EcHW24 intC::yfp on NG50 agar media.
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Figure 5.10: Genotype/phenotype map for clonal isolates from 38* lineages. Genotypes for each clonal isolate (N =
20 total) are shown with hierarchical clustering (Ward’s method; Euclidean distance). Genotypes are coded according
to legend in upper left corner (green, wild type; yellow, not determined; grey, mutant). Relative fitness (RF = RFµ =
µmax,MUT /µmax,WT ) was measured in 1% (w/v) isobutanol NG50 media. Clone labels (right hand side) are color
coded by isobutanol selection level (red, 1% w/v isobutanol; green, 0.75%).

A genotype/phenotype map for isolates from the 38* lineage is shown in Figure 5.10. Number
of mutations per isolate ranged from 9 to 17 mutations total (with a mean of 13), compared to a
statistically expected mean of 2.4 mutations per isolate after 10 cycles of MAGE without selection
(see Figure 5.12A); this represents an ≈ 105 fold increase over expected frequency. All isolates
had RFµ values between 1.95 and 3.86 (Figure 5.10). While we observe a diversity of phenotypes
and genotypes in the 38* populations, hierarchical clustering reveals that mutations are particularly
prevalent for a group of loci including rph, hfq, marC, groL, plsX, gatZ, gltA, pstC, ydhF, tnaA,
and relA (area boxed in blue in Figure 5.10). Most notably, all genotyped clones have hfq, rph, and
marC mutations (i.e. 100% allele frequency). We characterized phenotypic effects and epistasis
for hfq, marC, rph, and groL mutations from the G3 lineage in our evolutionary-genomics work
(Chapter 4); given the known importance of these mutations, the observed high frequencies are
not surprising. Interestingly, in our previous work mdh was also shown to be epistatic with hfq /
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Figure 5.11: Genotype/phenotype map for clonal isolates from 37 and 38 lineages. Genotypes for each clonal isolate
(N = 55 isolates total) are shown with hierarchical clustering (Ward’s method; Euclidean distance). Genotypes are
coded according to legend in upper left corner (green, wild type; yellow, not determined; grey, mutant). Relative fitness
(RF = RFµ = µmax,MUT /µmax,WT ) was measured in 1% (w/v) isobutanol NG50 media. The boxed regions indicate
clusters of isolates with high RF and shared mutations; isolates with green labels (right hand side) were derived from
population 37-30, with red labels denoting 38-20.

marC (Chapter 4), but is less prevalent (40% frequency).

In addition to 38*, we also characterized clonal isolates from the 37 and 38 lineages (Fig-
ure 5.11). Number of mutations per isolate ranged from 7 to 16 mutations total, comparable to
the range observed for the 38* lineage. Interestingly, there was little variation in the number
of mutations between different lineages or different numbers of MAGE cycles (Figure 5.12),
suggesting that fitness saturates within the observed mutation ranges. Isolates from the aggregate
37/38 set had a broad range of RFµ values, ranging between 0.7 and 6.1, and a diversity of
genotypes (Figure 5.11). In contrast to other populations, isolates from 37-30 were nearly isogenic
(generally containing marC, rph, glnE, gltD, yfgO, tnaA, gltA, plsX, hrpA, fepE, rpsB, and ydhF

mutations). Phenotypes of 37-30 isolates were less uniform, possibly due to accumulation of
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Figure 5.12: Distribution of genetic variants for different MAGE lineages / cycle numbers. Central mark is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points. The series
“unselected (pred)” corresponds to predicted distribution (based on model (Equation 5.1) with p = 0.0066 and n = 38)
without selection (i.e. Rf,j = 0).

off-target mutations (Figure 5.11). Overall 37-30 had the highest population RFµ (Figure 5.8A),
suggesting that the observed genotype is present at high frequency in the population. Hierarchical
clustering reveals two groups of clones (corresponding to isolates from 37-30 and 38-20) with
high RFµ that share a set of common mutations including gltA, tnaA, yfgO, gltD, glnE, rph,
and marC, suggesting that these mutations may be important determinants of high isobutanol
tolerance. However, we note that several isolates with markedly different genotypes also had
high fitness. Out of all isolates characterized, 38-20-4 had the highest isobutanol tolerance, with
RFµ = 6.1± 0.8 and mutations in hfq, secA, gadX, gltA, tnaA, yfgO, gltD, glnE, rph, and marC.

5.3.5 Cross-lineage comparison of phenotypes and genotypes

Comparison of phenotypes and genotypes between the 38* and 37/38 lineages reveals several key
patterns. In terms of phenotypes, 37/38 lineages showed a much greater range of RFµ and RFOD

values compared to 38* (Figure 5.13). For 37/38 isolates, there is visible correlation between
RFµ and RFOD, while there is little or no correlation between these metrics for the 38* isolates.
However, lack of correlation for 38* isolates may simply be due to reduced sample size (N = 20

vs. N = 55) and/or narrower phenotype range. In general, both high RFµ and RFOD are desirable
characteristics for isobutanol production strains, thus isolates that have high tolerance by both
metrics are of greatest interest (i.e. 34-20-4 and other points in the upper right side of Figure 5.13).
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Figure 5.13: Comparison of observed phenotypes in clonal isolates from 38* lineage (N = 20 isolates total) with 37
and 38 lineages (reduced hfq dosage; N = 55 total isolates). For each clonal isolate, RFµ = µmax,MUT /µmax,WT

and RFOD = OD600,MUT /OD600,WT in 1% (w/v) isobutanol NG50 are plotted.

In addition to phenotypic differences, isolates from 38* have a distinctly different mutation
signature compared to 37/38 isolates. In general, there is greater genotypic diversity among 37/38
isolates compared to 38*, which may underlie the greater range of phenotypes observed for these
lineages (i.e. compare Figures 5.10 & 5.11). As discussed above, we hypothesized that hfq may
constrain accessible evolutionary trajectories and limit evolvability; however, we cannot ascertain
whether reduced hfq dosage is the origin of greater diversity in the 37/38 lineages, since this
set includes two MAGE lineages (vs. one 38*), more MAGE cycles, different selection levels,
and a greater number of isolates compared to 38*. Direct comparison of mutation frequencies
between 38* and 37/38 provides additional insights into the genotypic patterns in these lineages
(Figure 5.14). As expected, hfq is present at higher frequency in 38* compared to 37/38;
additionally, frequencies of groL, mdh, relA, and pstC are also increased in 38* relative to 37/38
(Figure 5.14). The increased frequencies of groL and mdh in 38* are likely due to epistasis with
hfq. Interestingly, the uncharacterized pstC mutation originates in the same evolved lineage as hfq

(G3; Chapter 4); thus the increased frequency in 38* suggests potential epistasis with hfq. The
relA mutation was obtained from our literature review and is correlated with n-butanol tolerance;
however, a recent study demonstrated functional interaction between hfq and relA wherein RelA
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enhances multimerization of Hfq and stimulates Hfq binding to sRNAS, thus suggesting a possible
link between these genes [216].
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Figure 5.14: Comparison of mean mutation frequencies in 38* lineage with 37 and 38 lineages. The data set for 37
and 38 lineages represents an aggregate of all populations (i.e. 38-10, 38-20, 37-10, 37-20, and 37-30). Open symbols
denote mutations that occur at low frequency (≲ 0.25) in both lineages; green symbols denote mutations that occur
at high frequency (≳ 0.4) in both lineages; red symbols denote mutations that occur more frequently in 37 and 38
lineages compared to 38*; and blue symbols denote mutations that occur more frequently in 38* compared to 37 and
38.

There are several mutations which occur at higher frequency in 37/38 compared to 38*,
including rpsB, deaD, fepE, yfgO, and gltD (Figure 5.14). All of these mutations derive from
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the G3 and X3 lineages of our evolutionary-genomics work and are uncharacterized (Chapter 4).
yfgO, deaD, and rpsB all derive from lineage X3 (which has WT hfq), and deaD/rpsB may
interact functionally in ribosome assembly, suggesting possible epistasis between these mutations.
Possible relationships between other mutations enriched in 37/38 vs. 38* are less obvious, and it is
not clear whether frequencies of these mutations are higher by chance or due to reduced hfq dosage
(e.g. due to negative epistasis with hfq). In addition to differences in mutation frequencies between
the 38* and 37/38 lineages, there are also notable similarities. There is a large group of mutations
that occur at relatively low frequency (≲ 0.25) in both 38* and 37/38 (Figure 5.14). These
low-frequency mutations may be of lesser importance to isobutanol tolerance, or alternately may
only confer fitness benefits in certain genotypic backgrounds (e.g. due to epistasis). Interestingly,
acrA mutations occur at very low frequency in both 38* and 37/38 lineages, despite that acrAB

mutations were prevalent in our evolutionary-genomics studies and were demonstrated to confer
improved isobutanol tolerance (Chapter 4). In addition to low-frequency mutations, there are also
mutations that occur at high frequency (≳ 0.4) in both 38* and 37/38 lineages, including marC,
rph, glnE, plsX, gltA, gatZ, ydhF, hrpA, and tnaA. These higher frequency mutations could be key
determinants of isobutanol tolerance, and may act independently of hfq.

5.4 Discussion and conclusion

5.4.1 Rapid generation of highly tolerant novel variants with directed
genome engineering

The genome engineering strategy that we devised successfully generated highly modified variants
(ranging from 6 to 17 mutations per genome) with improved isobutanol tolerance (RFµ up to
6.1± 0.8 and RFOD up to 11.8± 0.6 at 1% w/v isobutanol). To put these results into perspective,
we can compare the characteristics of tolerant strains generated through genome engineering
vs. experimental evolution (Chapter 4). As shown in Table 5.3, the top performing isolate from our
genome engineering work (38-20-4) has ≈60% higher RFµ at 1% isobutanol compared to the best
evolved strain (G3.2; Chapter 4). To comprehensively compare isobutanol tolerance between these
two strains we would need to characterize 38-20-4 at isobutanol concentrations higher than 1%;
however, these preliminary results suggest that 38-20-4 is more tolerant than G3.2. Furthermore,
38-20-4 has far fewer mutations than G3.2 (Table 5.3). Thus through genome engineering we
have refactored isobutanol tolerance into simpler and higher fitness genotypes, which facilitates
further investigation into mechanisms and genetic bases of adaptation. In addition to generating
highly tolerant strains, genome engineering is a rapid technique - we were able to generate highly
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tolerant variants in a few weeks time, compared to approximately six months for the evolution
(Table 5.3). However, the genome engineering strategy we devised requires a priori selection of
target loci. Since target selection was partially based on our evolutionary-genomics studies of
isobutanol tolerance, our genome engineering strategy was necessarily dependent on the outcomes
of these studies and thus we must exercise prudence in comparing these methods for phenotype
improvement. Overall, with the high speed of MAGE, methods for target gene identification are
likely to be a rate limiting factor for phenotype improvement methods integrating both approaches.

Method Best strain RF∗
µ # mutations Time

Evolution G3.2 3.9± 0.5 47 ≈6 months

Genome engineering 38-20-4 6.2± 0.8 10 ≈2 weeks

Table 5.3: Comparison of top-performing strains generated with genome engineering vs. experimental evolution. ∗RFµ

values determined in 1% (w/v) isobutanol NG50.

Approximately 2/3 of the genome engineering targets in this work were derived from our
evolutionary-genomics studies (Chapter 4) while the remainder were obtained from various lit-
erature and patent sources (Table 5.1). We experimentally characterized isobutanol tolerance ef-
fects for certain mutations from our evolutionary-genomics studies (marC, hfq, groL, mdh, rph,
and acrA), but the majority remain uncharacterized. Many of the highly tolerant isolates in this
library include mutations that are uncharacterized (e.g. plsX, gltA, pstC, glnE, gltD, yfgO, hrpA,
gatZ, rpsB, and deaD), or which were that identified from literature (e.g. ydhF, tnaA, and relA),
thus suggesting that these loci may be important for isobutanol tolerance and should be exam-
ined in greater depth. Furthermore, many isolates feature combinations of mutations derived from
several different evolved lineages or literature sources. For example, 38-20-4 (genotype shown
in Table 5.4) includes mutations derived from three different evolved lineages (G3, X3, and X2;
Chapter 4) as well as two literature reports ([124] and [121]). Recombination of mutations from
diverse origins represents a prime advantage of our directed genome engineering method, as it al-
lows exploration of larger and more complex genotype search spaces compared to strategies that
rely on one particular method for target gene identification (e.g. TRMR in Sandoval et al [206]).
While recombination techniques have been developed for asexual organisms (e.g. genome shuf-
fling via protoplast fusion), our genome engineering strategy is more powerful due to the high
efficiency/speed of MAGE, and does not require pre-existing in vivo mutations [217]. Overall,
through our genome engineering work we have correlated additional genetic loci (beyond those
investigated in Chapter 4) with isobutanol tolerance and generated novel highly isobutanol tolerant
genotypes that provide new insights into mechanisms of adaptation, which are discussed in the
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next section.

Locus Position Mutation Locus description Source

marC 1626139 DELETION Conserved protein; predicted transporter Common mutation in isobutanol toler-
ant strains; Chapter 4, [208], [124]

rph 3823229 4:GGTC Defective ribonuclease PH Chapter 4; G3 lineage (rph mutations
are common in K12 strains evolved on
minimal media).

glnE 3206870 DELETION Fused deadenylyltransferase/adenylyltransferase for
glutamine

Chapter 4; G3 lineage

gltD 3367270 1:G Glutamate synthase, 4Fe-4S protein, small subunit
(EC:1.4.1.13)

Chapter 4; G3 lineage

yfgO 2623022 C→T Predicted inner membrane permease, UPF0118 family Chapter 4; X3 lineage

tnaA 3895960 DELETION L-cysteine desulfhydrase / tryptophanase Isobutanol tolerance study; [124]

gltA 753345 T→C Citrate synthase (EC:2.3.3.1) Chapter 4; X2 lineage

gadX 3673040 DELETION GadX DNA-binding transcriptional dual regulator;
controls the transcription of pH-inducible genes, in-
cluding the principal acid resistance system

Ethanol tolerance study; [121]

secA 108975 T→C Preprotein translocase subunit, ATPase Chapter 4; G3 lineage

hfq 4407505 -7:AGGAAAA Ribosome binding site of pleiotroic regulator hfq, in-
volved with many RNA-based regulators

Chapter 4; G3 lineage

Table 5.4: Genotype of isolate 38-20-4. Bold gene names indicate that these loci belong to the high RFµ cluster shown
in Figure 5.11. Mutation positions are given as absolute genomic coordinates in the E. coli EcNR1 reference sequence.
SNPs are indicated by base transition/transversion. Small insertions are indicated by a “+”, with the size (number of
bp) of the insertion and sequence of inserted bases. Small deletions are designated by “−” with a format similar to that
for small insertions. “DELETION” indicates gene deletion and/or loss-of-function. Source names are color-coded to
highlight the different origins of the mutations.

5.4.2 Possible mechanisms of adaptation in highly tolerant variants

Mechanisms of adaptation to isobutanol toxicity were extensively investigated and discussed in
Chapter 4. However, the mutation patterns generated by genome engineering lend additional
insights into possible mechanisms of tolerance. Of particular interest, we identified two groups
of clones with high RFµ from the 37 and 38 lineages that share a set of common mutations,
including gltA, tnaA, yfgO, gltD, glnE, rph, and marC. marC and rph mutations were previously
characterized in our evolutionary-genomics work (Chapter 4), while tnaA was confirmed to play a
role in isobutanol tolerance in E. coli in another study [124]. However, the significance of yfgO,
gltA, gltD, and glnE was not apparent in our previous studies. These mutations may represent
important core adaptations to isobutanol toxicity, and merit further examination.

yfgO has not been characterized yet (no information available in literature as of April 2013),
so the role of this protein in isobutanol tolerance is not clear. However, based on sequence
homology yfgO is predicted to be an inner membrane protein and is thus a possible target of

189



X ∆mdh

gltA
E116G

succinate

?

Figure 5.15: mdh and gltA mutations may rewire central metabolism around the oxaloacetate node. mdh mutation leads
to loss-of-function (verified in Chapter 4). Functional effects of gltA E116G mutation have not yet been elucidated.
Portions of figure adapted from [218].

isobutanol toxicity [150]. gltA (citrate synthase), gltD (glutamate synthase, subunit), and glnE

(deadenylyltransferase/adenylyltransferase; regulator of glutamine synthase activity) mutations
are all of great interest since these genes represent high centrality metabolic network nodes.
gltA is a key metabolic enzyme and represents a potential rate-controlling step of the TCA
cycle (Figure 5.15) [9]. Our previous work (Chapter 4) and other studies [124] demonstrate
that many adaptive mutations in isobutanol tolerance simply involve loss-of-function. However,
gltA is an essential gene so the mutation (753345 T→C; E116G) likely has some other effect;
possibilities include changes in substrate specificity, catalytic activity, or modulation of NADH
/ α-ketoglutarate inhibition (Figure 5.15). In our previous studies loss-of-function mutations
in TCA cycle gene mdh (malate dehydrogenase) were prevalent in evolved isobutanol tolerant
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lineages and shown to be epistatic with hfq (Chapter 4). In the TCA cycle, Mdh and GltA
operate sequentially, with Mdh catalyzing the reversible oxidation of malate to oxaloacetate
(with concomitant generation of NADH) and GltA catalyzing the condensation of acetyl-CoA
and oxaloacetate to form citrate (Figure 5.15). Collectively, the prevalence of mdh and/or gltA

mutations in isobutanol tolerant variants suggests that rerouting TCA cycle metabolism may be an
important mechanism of adaption to isobutanol toxicity.

X	
  

ΔgltD!

X"

?	
  

	
  

ΔglnE   X"
Figure 5.16: Potential effects of gltD and glnE mutations on nitrogen metabolism. Portions of figure adapted from
[219]. (A) Loss-of-function of glutamate synthase (GOGAT; subunit gltD) is expected to disrupt conversion of
glutamine to glutamate, possibly increasing intracellular glutamine pool. (B) Glutamine synthase (GS) activity is
regulated by adenylyltransferase/adenylyl-removing enzyme (AT/AR), with adenylylation inactivating GS. Loss-of-
function of AT/AR (glnE) is expected to increase GS activity via elimination of the adenylylation reaction, potentially
further increasing glutamine biosynthesis.

In addition to the TCA cycle, nitrogen metabolism may also be significant to isobutanol
tolerance. In our previous work, we identified putative loss-of-function mutations in gltD and
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glnE in the G3 lineage (Chapter 4). glnE and gltD mutations occurred at high frequency in
the 37/38 lineages of our genome engineering studies, and interestingly also clustered closely,
suggesting correlation between these mutations (Figure 5.11 & 5.14). We hypothesize that these
mutations may act in concert to increase glutamine biosynthesis via elimination of glutamate
synthase (Figure 5.16A) and upregulation of glutamine synthase activity (Figure 5.16B). We have
not yet fully elucidated how TCA cycle rerouting via mdh/gltA mutations or nitrogen metabolism
rerouting via gltD/glnE mutations may contribute to improved isobutanol tolerance. We speculate
that mdh/gltA and gltD/glnE may be convergent metabolic adaptations in glutamine biosynthesis,
since mdh/gltA mutations may increase the intracellular pool of α-ketoglutarate, which is a
precursor to glutamine (Figure 5.17).

gltA E116GΔmdh

Glutamate Glutamine

NH
3

NH
3

α-ketoglutarate

H+

GABA+CO
2

ΔglnE

GS

gadE/W/X

YbaS

ΔgltDGDC

gadE/W/X

X
GOGAT

X

TCA

cycle

?

Figure 5.17: Convergent adaptations in glutamine biosynthesis. Mutations in TCA cycle genes may increase metabolic
flux to glutamate (though the functional effect of gltA E116G has not been characterized). ∆glnE is expected to in-
crease glutamine synthase (GS) activity, while glutamate synthase activity is eliminated by ∆gltD, which may increase
glutamine production. Several glutamate/glutamine catabolic genes are part of the GadE/GadW/GadX acid stress re-
sponse regulon, including glutaminase (YbaS) and glutamate decarboxylase (GDC; GadAB). Thus attenuation or
loss-of-function of gadE/gadW/gadX may reduce glutamate/glutamine catabolism. Color code: red denotes loss-of-
function for genes/reactions; green denotes possible increased expression/activity for genes/reactions; blue denotes
possible decreased expression/activity for genes/reactions.

Beyond these mutations, our evolutionary-genomics studies (Chapter 4) suggest additional
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possible adaptations in glutamate/glutamine metabolism. We observed that the acid tolerance
GadE/GadX/GadW regulon is strongly repressed in G3.2 (Chapter 4), and additionally acid
tolerance genes were negatively correlated with ethanol tolerance in another study [121]. Glu-
tamate decarboxylase (GadAB) and glutaminase (YbaS) are key mechanisms of acid tolerance
(via consumption of H+ and generation of basic NH3, respectively; see Figure 5.17) and are
regulated by GadE/GadX/GadW; indeed, gadB and ybaS were among the most differentially
regulated genes in G3.2 compared to WT (Chapter 4). Downregulation of glutamate/glutamine
catabolic genes is expected to increase glutamine availability, thus representing further potential
convergent adaptations (Figure 5.17). Collectively, our results suggest a link between glutamine
biosynthesis and isobutanol tolerance, but the mechanistic basis of improved tolerance in not clear.
Glutamine is a key protein component and acts as a nitrogen donor for many important reactions,
including the biosynthesis of amino acids, nucleotides, glucosamime and carbamoyl phosphate
[150]. Glucosamine is a peptidoglycan precursor, thus increased glutamine availability may
ultimately lead to increased peptidoglycan biosynthesis, which has previously been implicated
in ethanol [121] and isobutanol [124] tolerance. We conducted a preliminary study to determine
whether supplementing culture media with glutamine or glutamate improves isobutanol tolerance
in E. coli EcNR1; however, there was no difference in growth between the supplemented and
unsupplemented cultures (data not shown). Glutamine is unstable in aqueous solutions, so the
results of this experiment are not conclusive and further study is warranted.

5.4.3 Future work

Our genome engineering studies have generated a rich set of data and isobutanol tolerant isolates
that could provide many additional insights into mechanisms and genetic bases of tolerance in
future work. Our results suggest that metabolic adaptations may be more important to isobutanol
tolerance than previously thought. We suggest further investigation of possible links between
glutamine metabolism and isobutanol tolerance. Potential followup studies could include recon-
structing metabolic mutations (mdh, gltA, gltD, and glnE) singly and in various combinations to
determine functional and phenotypic effects and investigating epistasis between metabolic genes
and other mutations (e.g. hfq or marC). At a broader level, metabolomic and 13C flux analysis
studies of reconstructed mutants and highly tolerant genome engineering isolates could provide
insights into the global metabolic basis of isobutanol tolerance. In studies of E. coli evolved
for ethanol tolerance under aerobic conditions, ethanol degradation emerged as an important
mechanism of adaptation [121]; thus isobutanol catabolism should be assessed in the isolates
from this study, especially in light of the observed metabolic mutations. In addition to metabolic
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adaptations, it would also be fruitful to examine additional aspects of isobutanol tolerance through
transcriptomic studies and cell envelope profiling. With the high genetic diversity in our library of
genome engineering isolates, it would be particularly interesting to perform comparative studies
between different isolates to explore whether adaptations are convergent or vary between different
genotypes. While we have a large number (N = 75) of isobutanol tolerant strains available
for study, isolates/genotypes of interest could be narrowed down by performing additional
phenotyping studies at isobutanol concentrations > 1% (w/v) to characterize minimum inhibitory
concentration (MIC).

In addition to the above suggested investigations, it would also be fruitful to conduct further
genetic studies with our genome engineering isolates. We suspect that isobutanol tolerance
arises from complex epistatic interactions between many genetic loci. Total epistasis could be
determined by constructing and phenotyping single mutants for each target in our library (or a
subset of mutations of interest, such as those from a highly tolerant isolate), and then comparing
single-mutant fitness to the fitness of isolates with multiple mutations. Additional insights could
be gained by “knocking-in” WT alleles in highly-tolerant isolates and measuring residual fitness.
As suggested above, additional phenotyping studies would facilitate selection of isolates / sets of
genetic loci of interest. Since our genome engineering host strain is MutS- (mutation rate ≈100x
higher than WT), it would also be beneficial to perform whole-genome resequencing on selected
isolates to identify off-target mutations that accumulate during genome engineering. Off-target
mutations could potentially contribute to isobutanol tolerance and thus represent an important
confounding factor in this study.

5.5 Materials and methods

5.5.1 Model analysis

The model described in section 5.3.2 was implemented and iteratively solved in MATLAB (Math-
Works Inc), using parameter values given in Table 5.2.

5.5.2 Base strains, media, growth conditions, and cryopreservation

E. coli EcHW24 intC::yfp (E. coli K12 λ-Red+ bla ∆mutS intC::PLlacO1-yfp-cat) was used
as a host strain for genome engineering and general ssDNA mediated recombination. E. coli

EcHW24 is a derivative of E. coli K12 MG1655 containing a modified λ prophage integrated at
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the bioA/bioB locus [59], and 2864887 T→G and 2864892 G→T SNPs that produce premature
stop codons in mutS. intC::PLlacO1-yfp-cat (cassette for IPTG inducible yfp expression) was
transferred from strain RP22 [220] to EcHW24 to create the final strain used in this study. NG50
minimal medium, consisting of M9 salts at 1x concentration, 50 g/L glucose, and 0.25 mg/L
biotin (identical to that used in Chapter 4) was used for selection cycles and phenotyping assays.
NG50 agar plates were prepared by supplementing NG50 with 15 g/L agar. Isobutanol was added
to media as indicated; to prevent evaporation, liquid cultures were conducted in screw-cap tubes
or flasks and plates were tightly sealed with parafilm. LB Lennox broth (10 g/L tryptone, 5 g/L
yeast extract, and 5 g/L NaCl) and LB agar (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, and
15 g/L agar) were used for propagating strains during genetic manipulations. Growth conditions
were 30◦C with 150 to 200 rpm shaking for liquid cultures. When needed, culture samples were
cryopreserved by centrifuging 1 mL aliquots at 16,000 g x 1 to 2 minutes, removing supernatant,
resuspending cell pellets in 500 µL LB broth and 500 µL 50% (v/v) glycerol, and then transferring
to cryovials and storing at -80◦C.

5.5.3 Design of mutagenic ssDNA oligonucleotides

Mutagenic oligoucleotides were designed as per specifications given in Wang et al. 2009 [59].
For each mutation in Table 5.1, we designed a 90-mer oligonucleotide containing the mutation
flanked by homologous genomic sequences. Oligonucleotides were designed such that they
targeted the lagging strand of the replication fork during DNA replication and had predicted ∆G
> -12.5 kcal/mol for secondary structures (evaluated with mfold v3.2) [189]. For sequences
with a high propensity for folding, we disrupted base pairing in predicted secondary structures
by introducing additional mutations in the form of synonymous SNPs, which are expected to be
neutral. Oligos were synthesized by IDT (Integrated DNA Technologies, Coralville, IA) with four
5’ phosphorothioated bases to enhance in vivo stability. Designed oligonucleotide sequences are
shown in Table 5.5.
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Oligo name Locus Position Mutation Oligo sequence

fepE g3.2 mut fepE 618,531 T→C t*t*t*c*tggatgccatcgcatagcgcaacagcacgccaccacaagccGccatcccgccgatcaacgcggaaaggatcacaataatcgcctta

gatZ g4.2 mut gatZ 2,182,915 -1:C c*a*a*a*ttccacacccggctgcaccacgatggcaatcacacgtgttaa-gcctctgtcagcccacgggcaataaaggccttttgatgcgtacg

gltD g3.2 mut gltD 3,367,270 1:G c*a*a*T*acTaaacagttaatgggctttggtgaaacccgTgacgaaccGgttcgtcagcatggaaggcaaacgcgtggtggtccttggcggtg

glnE SNP del glnE 3,206,870 ∆: $55, $56, $57; 946 t*g*c*g*gcggttggctttAcTAttAcgtcagccactctggatgcgcaatcacgctgtcctgcacaaaatcactaaaagtaagtactgacttc

greA dacB g3.2 mut greA-dacB 3,336,132 A→G t*t*t*g*atagtcattttaccctgaagttcccgaagggtcatcgtttGctttatagggcgttgcgccgtagtatgacggctcgattccaggtt

groL g4.2 mut groL 4,378,650 A→C a*a*c*c*tgagcaatcgctttagagtcagagcatggtacggacagcgcGttcagttcttcaactgcagcggtaaccgctttgtcgataccacg

lepB g3.2 mut lepB 2,711,902 G→A a*c*g*c*tcggaaagacgaattccattttctttggtttcgtttttcgAcacttcaaagaatccgctggtcgcttccccaccattacggcgtga

miaA-hfq g4.2 mut miaA-hfq 4,407,505 -7:AGGAAAA g*t*t*c*aggaacggatcttgtaaagattgccccttagccattctctc-------tatatgcttatttgtactttgaacctttcgattctgaaaaaattg

nlpI pnp g3.2 mut nlpI-pnp 3,316,213 T→C a*a*a*a*ggcttcatttcccactcccgaagaccacggttgaatgaacgtcctgttcccggttgctaacaaggcgCcctgcccggttaaaagcc

phoQ g3.2 mut phoQ 1,197,581 A→G g*g*t*t*tatctatgtgctctcagccaatctgctgttagtgatcccgcCgctgtgggtcgccgcctggtggagtttacgccccatcgaagccc

pstC g3.2 mut pstC 3,917,582 T→C g*a*g*a*gacaataatgccacccaacatcaatagcacaatcagcgccgccagttttaccagcacgctgaaaattatgCcgccctttttacccg

queA g3.2 mut queA 425,270 A→G c*g*c*c*gcggaattactccccgacgcgctcattaattgcctgcggatCgtacgtgataaacatcgcatcaccgtaactaaaaaagcgatatt

rhlB g3.2 mut rhlB 3,972,054 A→G t*g*c*t*gcaaacgctgatcgaagaagagtggccagacagagcgattattttcgccaacaccaaacaccgttgCgaagagatctggggccacc

secA g3.2 mut secA 108,975 T→C g*g*a*a*ggtttcggagtcttctttttcctgacggatcaggtgcggaataattttattcacgcgtttatacatttccgGgctgtcttctgccg

yjgQ g3.2 mut yjgQ 4,494,710 T→C t*c*g*g*gaagaagatctgcacatctttcggcacgctcagcaaggtatGcattcctgcgcctaacgcgtcgtaactcccctgcccggcttttt

mdh x3.5 mut mdh 3,390,936 5:AACCT g*g*t*c*agatcagccacttcctgctcggtaaaactaacgccaggAACCTaacctgtgacagcagcggcagaatggtaacaccagagtgaccg

gatC x3.5 mut gatC 2,180,640 C→T g*c*c*g*tatgtcccagcagcaacgccggatcaaggccaatcaggaactTctgaccgccgaacttcgcctgtaaacgactacgagcctgctta

gltA x2.5 mut gltA 753,345 T→C a*t*g*a*cgaatttaaaactacggtgacccgtcataccatgatccacgGgcagattacccgtctgttccatgctttccgtcgcgactcgcatc

rph g4.2 mut rph 3,823,229 4:GGTC g*c*a*c*ttcaatgatgcgcccgtcttcggtcatcactacgttcatGTCGgtcggtctctgcggcagagtcttcaacgtattccagatcgcaa

acrA x3.5 mut acrA 483,735 1:A a*g*g*c*gatcgcgtagtaataagtgggctgcagaaagtgcgtcctggTtgtccaggtaaaagcacaagaagttaccgctgataataaccagc

deaD x3.5 mut deaD 3,314,027 4:AGAC c*g*t*t*cggcagttctacttccggaatagtcagcttcatagtacgttcaatgttgcgcagcagacAGACgacgctcgcggttctcaacgaac

hrpA x3.5 mut hrpA 1,493,514 C→T t*a*a*c*ttttcatgtaaatatttgattggcgatggaatattcagcaAcagtagacggcgaagaccgttccacattgcctgcttttgctccag

plsX x3.5 mut plsX 1,156,697 A→G t*c*a*c*aaaccagcacatctgtcttgccagttaacaactcattggctCcaagatagccgatataattgatagaagggattgttttaagcacc

rpsB x3.5 mut rpsB 190,557 1:A c*t*a*t*tttgggggagttatcaagccttattactcagcttctacgaagctttcttccgcctgggaagccagaTtcctgagaacggccttcac

yfgO x3.5 mut yfgO 2,623,022 C→T g*c*c*a*ccagcaacggagcaagcaggccactaaagaaaaagataatgTcaaatccggcaactaaaataaccagcaaggcaatcgcttccggg

astE SNP del astE 1,834,154 ∆: $49, $51, $56; 322 a*g*c*a*acgcgtccagcatctccacaggtgccgtctAattaccgtgtattcAcgctCaaatcaccagtgcgccttgcggtggcgttaatggc

ygiH SNP del ygiH 3,211,923 ∆: $25, $27, $28; 205 c*g*t*a*cctctgcggctccatttccagtgccattctggtttgAcgctAgtgAgggctgcccgatccgcgaaccagcggctccggcaatccag

yhbJ SNP del yhbJ 3,354,344 ∆: $22, $27, $28; 284 a*g*g*t*tcaggtaaatctgtcgccctgcgtgcgctgTaagatatgggtttttaGtgAgtggataaccttcccgtagtgttgttacccgatct

tnaA SNP del tnaA 3,895,960 ∆: $26, $28, $29; 471 a*t*t*c*gtgttattgagccagtaaaacgtaccactcgcgcttaGcgtTaaTaggcaattattaaatccggtatgaacccgttcctgctggat

marC SNP del marC 1,626,139 ∆: $43, $44, $45; 221 a*c*g*c*caccatcatgatggcaaatacgtacaccgaggccatcTacTactAacgattacgttcggcactgttcatgttgcctgccaggccaa

ydhF SNP del ydhF 1,732,863 ∆: $21, $22, $23; 298 a*a*a*c*tgaccagctggcgggcggacatattccagtccatcaatcAcTaCtagcccatcacaaaacgggaaaactccgggccttgcggcgca

potG SNP del potG 903,421 ∆: $43, $44, $46; 377 a*a*a*c*ctgccagcatacgcagcagcgtggacttgccacagccggatgAgcccagcagcgcgaagatttAaccttACtagatggtcaggctg

yheT SNP del yheT 3,490,431 ∆: $46, $47, $48; 340 t*g*c*t*gccgcgtctgtttcgtcgtcaggtgaaattcaccccgtaGtgATagcggctggagttgcccgacggcgattttgtcgatcttgcgt

gadX SNP del gadX 3,673,040 ∆: $25, $26, $28; 274 t*g*g*c*ttgcatccgcaaaaaccaggtcaccgccattaaaCtagcgCtattAaccattaaccatggtgagaatatatttatgtcttgcatac

slt SNP del slt 4,637,963 ∆: $29, $32, $33; 645 t*g*t*t*cgaccacatccatttgtcgattatcccaggcctgcttgatttgAgcgtaacgactacgctActAatccagtCagtcggctcgcgcc

relA SNP del relA 2,920,880 ∆: $29, $30, $31; 744 g*t*t*g*cagacaatacgcccaggtttcggctaagcactcacacTactActAgctggtaatacccagacttgcgatccatttttccggatcaa

luxS SNP del luxS 2,821,962 ∆; $3, $4, $5; 171 a*c*t*g*caggcgcttccatccgggtatgatcgactgtgaagctCtAtTacTacggcatttagccacctccggtaatttttttaaaaattttc

lsrA SNP del lsrA 1,608,721 ∆: $20, $21, $22; 511 c*c*c*g*cgcgttaccgctactttgcgcccgctcggtttataaaTagtaAtGaggggtcaatgtcctgaaaggcatcgattttacgttgcatc

Table 5.5: Oligonucleotide library used for genome engineering. Mutagenic oligonucleotides were designed for each of the target mutations listed in Table 5.1. For
deletion mutations (“∆”), position denotes start of gene. We use the following notation for deletion mutations: $X, $Y,......; N where X, Y, = stop codon residue
position and N= total number residues in peptide. Notation for other mutations is the same as in Table 5.1. For oligo sequences, “*” denotes phosphorothioate
bond; “-” denotes deleted nucleotide; and N denotes inserted nucleotides or SNPs.
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5.5.4 Multiplex ssDNA mediated homologous recombination

ssDNA mediated homologous recombination was done by heat shocking E. coli EcHW24 intC::yfp

to induce expression of λ-Red genes, preparing electrocompetent cells from the induced cultures,
and electroporating competent cells with oligonucleotides at 1 µM/oligo concentration. Overnight
cultures of E. coli EcHW24 intC::yfp were inoculated 1:70 into fresh LB medium and incubated
with shaking at 30◦C until reaching mid-log phase (OD600 ≈0.7). Cultures were then heat shocked
at 42◦C for 15 minutes in a water bath with 200 rpm shaking. Immediately after heat shocking,
the cultures were chilled on ice for 10 minutes. All subsequent manipulations were done at 4◦C,
which is vital for maximum recombination efficiency. For each electroporation, 1 mL of induced
cells was centrifuged at 16,000 g x 1 minute. Cells were resuspended in 1 mL chilled ultrapure
dH2O. The centrifugation and washing process was repeated twice. A final centrifugation was
performed and the cell pellet was resuspended in 50 µL ultrapure dH2O. Oligonucleotide solution
was mixed with the cell suspension such that final DNA concentration was 1 µM/oligo (38 µM
total for full library or 37 µM for hfq- library). Immediately after adding oligonucleotide solution,
cell/DNA mixture was transferred to a 0.1 cm gap electroporation cuvette and electroporated at
1.8 kV. Cell mix was immediately resuspended in 1 mL room temperature LB medium, added
directly to the electroporation cuvette. The resuspended cell mix was transferred to a Falcon tube,
diluted with 1-5 mL additional LB medium, and allowed to recover at 30◦C with shaking for 2 to
3 h. Once cells reached mid-log phase they were used for additional genome engineering cycles,
selection cycles, or isolated and subjected to genotype/phenotype analysis (all described below).

5.5.5 Multiplex genome engineering

This work was performed in collaboration with the labs of Professor George Church (Harvard
Medical School) and Harris Wang (Pathology and Cell Biology, Columbia University), with
technical assistance from John Harding (Wyss Institute). Genome engineering was performed
via recursive cycles of multiplex ssDNA mediated homologous recombination (described above),
using cycling schemes described in section 5.3.3. As a control/reference, a lineage of E. coli

EcHW24 intC::yfp was cycled similarly to those described in section 5.3.3, but with a lacZ-

oligo (g*g*a*a*acagctatgaccatgattacggattcactggccgtcgtttGacaacgtcgtgactgggaaaaccctggcgttacccaacttaatc) instead of the above
described oligonucleotide library. Recombination efficiency during genome engineering was
monitored by differential plating of population samples from the lacZ- lineage on LB agar
supplemented with 0.1 mM IPTG and 40 µg/mL Xgal. 1 mL aliquots of each population were
cryopreserved before and after selection cycles. For selection cycles, inocula were prepared by
centrifuging 1 mL population samples (with OD600 ≈0.7) at 16,000 g x 1 minute, discarding
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supernatant, and resuspending cell pellets in 1 mL NG50 media. Resuspended pellets were
inoculated into 100 mL NG50 media with isobutanol at indicated concentration, and incubated at
30◦C with shaking until saturation.

5.5.6 Plate screening for tolerant isolates

Isobutanol tolerant variants were isolated by plating population samples on 1% (w/v) isobutanol
NG50 agar plates (on solid media, 1% isobutanol is completely inhibitory to WT E. coli EcHW24
intC::yfp). To prepare media, NG50 agar plates were weighed to measure the volume of media
(weight of empty plate subtracted; ρNG50 = 0.98 g/mL) and determine volume of isobutanol to
add to each plate. The required volume of isobutanol was spread onto each plate using glass
beads. After adding isobutanol, plates were tightly wrapped with parafilm to prevent evaporation
and incubated for 12 hours before use to ensure uniform diffusion of isobutanol through the
media. Serial dilutions (prepared in NG50 media) of population samples were plated at a density
of 104 to 105 cells per plate, estimated by OD600 of the undiluted culture (with 1 OD600 ≈ 1x109

cells/mL). Plates were incubated at 30◦C until colonies were visible (up to 5 days). For each plate,
NG50 cultures were inoculated from 10 to 15 randomly selected colonies, incubated at 30◦C until
saturation, and then cryopreserved. Cryostocks were used for subsequent phenotype/genotype
analysis (described below).

5.5.7 Phenotype analysis

Isobutanol tolerance was quantified by measuring the maximum specific growth rate (µmax, 1/h)
and saturating OD600 in 1% (w/v) isobutanol NG50, using a microplate spectrophotometer (similar
to procedure described in Chapter 4). Inoculum was prepared by centrifuging 1 mL of overnight
culture at 16,000 g x 2 min and resuspending cell pellets in a volume of fresh medium such that
OD600 = 1. Standard 96-well microplates were filled with 200 µL medium per well and seeded
with 2 µL of prepared inoculum per well. Microplates were covered with adhesive film to prevent
isobutanol evaporation and microplate lids were affixed with tape. OD600 was measured every 10
minutes for 48 hours using Molecular Devices Spectramax M5 or Molecular Devices Versamax
plate readers, with 30◦C incubation temperature and agitation between reads. µmax was calculated
via linear regression of ln(OD600) vs. time (h) after subtracting blank values; regression was done
over the time intervals corresponding to log growth phase. To provide cross-experiment references,
WT E. coli EcHW24 intC::yfp and arbitrarily selected genome engineering isolate 37-30-15 were
included in each microplate study. Relative fitness (RF) was calculated as µmax,MUT/µmax,WT or
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maximum OD600,MUT / OD600,WT , were MUT denotes genome engineering isolates.

5.5.8 Genotype analysis

5.5.8.1 Multiplex allele specific PCR (MASPCR) genotyping assays

We designed allele specific PCR genotyping assays for each mutation in our library, except for
hfq. Primers were designed such that one primer in a pair was complementary to a mutation of
interest at it’s 3’ end [188]. Under stringent PCR conditions, non-proofreading DNA polymerases
are unable to extend from 3’ mismatches, allowing genotype discrimination based on the presence
or absence of a PCR product [188]. Allele specific primers for SNPs were designed using
BatchPrimer3 v1.0, and allele specific primers for indels were designed manually [188]. See
Table 5.6 for list of primers and sequences. To increase genotyping throughput, we multiplexed
allele specific PCR reactions according to the reaction sets listed in Table 5.6. Multiplex allele
specific PCR was done with a Qiagen Multiplex PCR kit, using manufacturer’s recommended
protocol with 0.2 µM each primer in the final reaction mix. Cell suspensions were prepared by
resuspending cryostock material in 250 µL sterile water; 0.4 µL cell suspension was used as
template per 20 µL PCR reaction.

For each MASPCR reaction set, we optimized reaction conditions by performing annealing
temperature gradient PCR over varying numbers of cycles, using E. coli EcHW24 intC::yfp

cells as a negative control and whole population samples from the 38*-10 lineage as a positive
control4; optimal annealing temperatures and cycle numbers for each reaction set are shown in
Table 5.6. Cycling conditions used for final PCR reactions were initial denaturation at 94◦C for
15:00, followed by cycles of 94◦C denaturation for 30 seconds, optimal annealing temperature
for 1:30, and 72◦C elongation for 1:30, followed by a final 72◦C extension for 10:00. Agarose
gel electrophoresis (Invitrogen E-gel 48 or 96 system; 2% or 4% agarose; 15-25 minutes total run
time) was used according to manufacturer’s recommended protocol to examine PCR products.

5.5.8.2 PCR genotyping assay for hfq mutation

We were unable to develop a reliable allele specific PCR assay for the miaA-hfq 4407505
-7:AGGAAAA mutation in this study. Instead, we designed primers flanking miaA-hfq 4407505
-7:AGGAAAA (Table 5.6) and genotype this mutation via a short amplicon PCR reaction

4All targeted mutations are expected to be present in MAGE populations; 38*-10 was arbitrarily chosen for use as
a positive control
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that allows discernment of the -7:AGGAAAA mutation based on product size. Platinum Taq
polymerase (Invitrogen, Carlsbad, CA, USA) was used for PCR, with 0.4 µM of each primer
and other reagent concentrations as per manufacturer’s recommendations. Cell suspensions were
used as template as described above. Cycling conditions used were initial denaturation at 94◦C
for 6:00, followed by 32 cycles of 94◦C denaturation for 30 seconds, 60◦C annealing for 30s, and
72◦C elongation for 1:00, followed by a final 72◦C extension for 5:00. Agarose gel electrophoresis
(Invitrogen E-gel 48 system; 4% agarose; 17-23 minutes total run time) was used according to
manufacturer’s recommended protocol to examine PCR products; WT miaA-hfq yields a 75 bp
product, while miaA-hfq 4407505 -7:AGGAAAA yields a 68 bp product.

5.5.8.3 PCR genotyping assays for hrpA mutation

We were unable to develop a reliable allele specific PCR assay for the hrpA 1493514 C→T
mutation in this study. All allele specific PCR reactions tested for hrpA appear to produce an
off-target product of similar size to the expected product, thus obfuscating the results. However,
we discovered that the off-target product has a lower melting temperature (73.5◦C) compared to
the expected product (79◦C). Thus we can discriminate between these two PCR products using
quantitative PCR with melt curve analysis. Quantitative PCR (qPCR) assays were performed in
25 µL samples on an MJ Research (BioRad, Hercules, CA, USA) Chromo4 thermal cycler with
a QuantiTect SYBR Green RT-PCR kit (Qiagen), using primer pairs for hrpA given in Table 5.6.
Cell suspensions were used as template as described above, with primer and other reagent concen-
trations as per manufacturer’s protocol. Cycling conditions used were initial denaturation at 95◦C
for 15 minutes, followed by 55 cycles of 94◦C denaturation for 15 seconds, 67.5◦C annealing
for 30 seconds, 72◦C elongation for 30 seconds, and fluorescence measurement at 72◦C. Melting
profile was determined over a temperature range of 55◦C to 95◦C in 0.2◦C increments. qPCR
data was analyzed by fitting parameters of the MAK2 model (initial target concentration D0 and
characteristic PCR constant k) with a custom R script [135]. E. coli EcHW24 intC::yfp and E. coli

X3.5 (origin of hrpA mutation; Chapter 4) were used as negative and positive controls, respectively.
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5.5.8.4 PCR primers used in this study

Table 5.6: Primers and MASPCR cycling conditions for PCR genotyping reactions. See corresponding sections for
hfq and hrpA PCR procedure and cycling conditions.

Set # Locus Primer names Sequence Size Cycles Anneal. T

1 gatC gatC x3.5 fwd mut gatcaaggccaatcaggaaatt 65 29x 61.3◦C

gatC x3.5 rev out ctaagcaggctcgtagtcgtttaca

yfgO yfgO x3.5 fwd out gtagcaatataccgacgaaaaccac 182

yfgO x3.5 rev mut1 gttattttagttgccggattgga

plsX plsX x3.5 fwd mut1 ttctatcaattatatcggctatctggg 303

plsX x3.5 rev out ggctgcaccatgactttttatcac

groL groL g4.2 fwd out gcacgacactgaacatacgaattta 453

groL g4.2 rev mut gcatggtacggacagcacg

2 mdh mdh x3.5 fwd mut aaaactaacgccaggaacctaacctgtg 101 29x 68.3◦C

mdh x3.5 rev out aggcaaacagccaggcgaagt

gatZ gatZ g4.2 fwd out3 gtctggtaatcggtagaatgtgctt 168

gatZ g4.2 rev mut3 cgtgggctgacagaggctta

rph Rph g4.2 fwd mut tcatcactacgttcatgtcggtcggtc 193

Rph g4.2 rev out tcgattacgggtgcctgcgtgg

acrA acrA x3.5 fwd mut2 acttcttgtgcttttacctggacaacc 211

acrA x3.5 rev out agtcccgcaacagggcgtaacc

deaD deaD x3.5 fwd mut1 ttgcgcagcagacagacg 362

deaD x3.5 rev out1 ctggaagcggaagattttgatg

rpsB rpsB x3.5 fwd out1 cggtatgctgactaactggaaaac 406

rpsB x3.5 rev mut2 cgcctgggaagccagatt

3 glnE glnE 4SNP fwd tacagagcgcctcctgcaacc 92 29x 68◦C

glnE 4SNP AS rev gcatccagagtggctgacgtaatagt

potG potG 1SNP AS fwd2 ttcgcgctgctgggct 144

potG 1SNP rev2 atattgatggggcgcaggtaag

astE astE 2SNP fwd ccaacgaccgccaaacattc 199

astE 2SNP AS rev cgcactggtgatttgagcgt

yheT yheT 3SNP fwd cgaactgtatgaccagagccgtaaa 308

yheT 3SNP AS rev ggcaactccagccgctatcac

gadX gadX 2SNP AS fwd gtcaccgccattaaactagcgc 386

gadX 2SNP rev ttggctgtctattcatcgtgttgat

slt slt 2SNP AS fwd gcgagccgactgactggatt 512

slt 2SNP rev tacccgctttcatcgccagac

201



Table 5.6: Primers and MASPCR cycling conditions for PCR genotyping reactions.

Set # Locus Primer names Sequence Size Cycles Anneal. T

relA relA 2SNP AS fwd2 gtttcggctaagcactcacactacta 596

relA 2SNP rev2 gtactggatctgttctgcggtatg

luxS luxS 4SNP fwd cgccaatgagatcttctggatgt 703

luxS 4SNP AS rev ggaggtggctaaatgccgtagtaatag

lsrA lsrA 3SNP fwd cgcaacggagccggaataata 862

lsrA 3SNP AS rev tttcaggacattgacccctcattacta

4 fepE fepE g3.2 fwd mut gttgatcggcgggatggc 120 28x 72◦C

fepE g3.2 rev out acggcaccttcaaccgcaaatagt

greA-
dacB

greA dacB g3.2 fwd mut gaagttcccgaagggtcatcgtttg 156

greA dacB g3.2 rev out atcaacatttgcggcctgaacact

lepB lepB ASv3 fwd catcatgaagtattgtcccggagga 203

lepB ASv3 mut3bp rev gaccagcggattctttgaagggt

nlpI-pnp nlpI pnp g3.2 fwd out tgccctcagaccgagactatcataca 316

nlpI pnp g3.2 rev mut gggcttttaaccgggcaggg

phoQ phoQ g3.2 fwd mut cggcgacccacagcg 408

phoQ g3.2 rev out caagcaaagccccaccatga

pstC pstC g3.2 fwd mut cagttttaccagcacgctgaaaattatgc 513

pstC g3.2 rev out gtacaccaaactgatctccgctgatg

rhlB rhlB g3.2 fwd mut caggtggccccagatctcttcg 618

rhlB g3.2 rev out cttctctctcatcctgcgattgcc

secA secA g3.2 fwd mut ggcccggcagaagacagcc 715

secA g3.2 rev out ccagctccgatttttcgatggagat

yjgQ yjgQ g3.2 fwd2 agtgttagcagaagcgaaagcgaac 869

yjgQ g3.2 mut3bp rev ggcacgctcagcaaggtctg

5 ygiH ygiH fwd AS mut gccattctggtttgacgctagtga 97 29x 67.6◦C

ygiH rev out ccttgccaccgatacgtaacacatt

gltA gltA x2.5 fwd mut4 gaacagacgggtaatctgcc 140

gltA x2.5 rev out4 agctggcgaccgattctaa

yhbJ yhbJ fwd AS mut tgcgctgtaagatatgggtttttagtga 180

yhbJ rev out gagaaagcgtcaggcaggttactca

queA queA g3.2 fwd out3 gttggcaccacttcagtacgtt 300

queA g3.2 rev mut3 ctcattaattgcctgcggatc

gltD gltD g3.2 fwd out3 aggtctggcgtgtgcgga 393
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Table 5.6: Primers and MASPCR cycling conditions for PCR genotyping reactions.

Set # Locus Primer names Sequence Size Cycles Anneal. T

gltD g3.2 rev mut2 tgccttccatgctgacgaacc

tnaA tnaA fwd out tgctccccgaacgattgtga 510

tnaA rev AS mut tcataccggatttaataattgcctattaacgc

marC marC fwd out tggccagtgacactcgaagaaca 619

marC rev AS mut gaacagtgccgaacgtaatcgttagtagta

ydhF ydhF fwd AS mut cggacatattccagtccatcaatcactac 704

ydhF rev out gcaactcagtcagtcgctggtgata

Misc hfq hfq 75 up ttcagaatcgaaaggttcaaagtaca - - -

hfq 75 down ttgtaaagattgccccttagcc - - -

hrpA hrpA x3.5 fwd mut aacggtcttcgccgtctactgt - - -

hrpA x3.5 rev out ttatccacaccgcaggagatacagt - - -
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CHAPTER 6

Concluding remarks and perspectives

6.1 Part I: Synthetic fungal-bacterial consortia for production
of cellulosic biofuels and commodity chemicals

6.1.1 Concluding remarks and perspectives

Inspired by power of natural microbial ecosystems, in this work we explored engineering synthetic
microbial consortia for flexible conversion of cellulosic feedstocks to biofuels. The required
biochemical functions are divided between two specialist organisms: the fungus Trichoderma

reesei, which secretes cellulases to hydrolyze lignocellulose into soluble saccharides, and the
bacterium Escherichia coli, which metabolizes soluble saccharides into desired products. We de-
veloped and experimentally validated a comprehensive modeling framework for T. reesei / E. coli

(TrEc) consortia, allowing us to elucidate key ecological interactions, as well as mechanisms that
permit stable and tunable population compositions. To illustrate bioprocessing applications, we
demonstrated direct conversion of cellulosic feedstocks to isobutanol, achieving titers up to 1.86
g/L and 62% theoretical yield. These titers and yields represent the highest reported to date (April
2013) for production of advanced biofuels with consolidated bioprocessing, and were achieved
without detailed optimization of culture conditions or nutrient supplementation other than minimal
salts. Beyond isobutanol, the modularity of our system will allow it to be readily adapted to
the large portfolio of existing E. coli strains metabolically engineered to produce biofuels or
commodity chemicals, representing a key advantage over the conventional approach of using a
single microbe, or “super-bug”.

While the notion of using saccharolytic / fermentative (S/F) consortia to produce fuels and
chemicals from biomass is not new and has been tried a number of times, our comprehensive
theoretical and experimental studies of the TrEc model system have yielded new insights into
the underlying ecological interactions and properties of S/F consortia. For example, our results
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suggest that growth and substrate uptake kinetics play a major role in determining carbon flow
partition between T. reesei and E. coli, which in turn determines the tradeoff between substrate
hydrolysis rate and potential product yields. As another example, we show that cooperator-cheater
dynamics within the TrEc consortium lead to stable coexistence between T. reesei and E. coli, and
that equilibrium population composition can be tuned by modulating relative cooperation/cheating
benefits, and possibly other ecological parameters. More broadly, cooperator-cheater tuning
could serve as a general tool for designing and implementing microbial consortia, and could be
accomplished via manipulation of culture conditions as we have done or through genetically pro-
grammed cellular behavior. Overall, by demonstrating a promising strategy for direct conversion
of cellulosic biomass to biofuels and engineering microbial consortia with stable and controllable
population compositions, this work makes substantive contributions to the state-of-the-art in
biofuels and microbial engineering. Ultimately, we envision that synthetic microbial consortia
will become increasingly important in industrial bioprocessing, and this work provides a valuable
foundation for future studies. As our understanding of the complex interactions and dynamics in
microbial communities improves, it is likely that engineered microbial consortia will become the
most cost-effective route for biosynthesis of many different fuels and chemicals from biomass,
and may prove useful for other biotechnology applications, such bioremediation or medicine.

As a final perspective, we would like to point out that our results illustrate the importance
of engineering and testing microbial strains under conditions representative of their intended
usage (e.g. industrial scale fermentation). In the course of this study, we examined three different
E. coli strains engineered for isobutanol production (JCL260 [1], NV3 [3], and NV3r1 [3],
all with plasmids pSA55 and pSA69), generously provided to us by the lab of James Liao
(Chemical and Biomolecular Engineering, UCLA). Through the use of rich media (i.e. yeast
extract supplementation) and glucose/nutrient feeding cycles, the Liao lab was able to reach
isobutanol titers >20 g/L with strains JCL260 [1] and NV3r1 [3], while titers were lower for
NV3 [3]. However, when we tested these strains on minimal media (more representative of
industrial biofuel fermentations), titers were much lower; for example strain NV3 produced only
3.5±0.1 g/L isobutanol in minimal media vs. 13.6 g/L in rich media with feeding cycles. We
also noted that performance of these strains varied greatly between monoculture and co-culture
with T. reesei. Under co-culture conditions, all three strains showed evidence of instability,
including plasmid loss and high variance in isobutanol titers/yield between replicate cultures
(see Figure 2.7). Interestingly, NV3 achieved the highest and most consistent titers under
co-culture conditions, despite that this strain had the poorest titers/yields under monoculture
conditions. Further investigation revealed that fermentation product (succinate, acetate, ethanol,
and isobutanol) distributions varied between monoculture and co-culture, with greatly reduced
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isobutanol selectivity under co-culture conditions. These results thus demonstrate the dependence
of strain performance on environmental and physiological context. This issue is also of con-
sequence in our genome evolution and engineering work, and will be touched upon again in 6.2.2.2.

6.1.2 Future directions

6.1.2.1 Extending the TrEc consortium to include C5/C6 specialists
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Figure 6.1: General scheme and model analysis of two member E. coli consortium for co-fermentation of hexose
and pentose sugars into isobutanol. Adapted from [31]. (A) Process for converting AFEX-pretreated corn stover into
isobutanol using E. coli specialist strains. The enzyme mixture breaks down the AFEX-pretreated corn stover, produc-
ing an enzymatic hydrolysate. The E. coli specialists then convert the sugars into isobutanol. Although the enzymes
can hydrolyze the corn stover into glucose and xylose mono and oligosaccharides, the glucose oligosaccharides are
currently not utilized by the consortium. (B) Predicted consortium productivities at 72 g/L total initial sugars. Numer-
ical solutions to our ODE model were found over a range of NC5 inoculum fractions and xylose fractions, and used to
calculate relative mean isobutanol volumetric productivity (RMQP ; ratio of consortium productivity to diauxic mono-
culture productivity). The region where RMQP >1 (i.e. consortium outperforms diauxic monoculture) is enclosed by
solid black line; dashed line corresponds to optimal NC5 inoculum fractions. Sample numerical solutions for point
marked by white * are shown in panels C and D. (C) Sample numerical solution for diauxic monoculture, correspond-
ing to the white * in panel B (72 g/L total sugars; 0.5 g/g initial xylose fraction) (D) Sample numerical solution for
two-member consortium, corresponding to the white * in panel B (72 g/L total sugars; 0.5 g/g initial xylose fraction;
0.58 g/g NC5 inoculum fraction).

Isobutanol production with E. coli C5/C6 specialists In conjunction with the TrEc consortium
presented in this dissertation, we have also developed a consortium of pentose (C5) and hexose
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(C6) E. coli specialists engineered for isobutanol production (Figure 6.1A) [31]; this work was
done in collaboration with Alissa Kerner, another member of Xiaoxia Nina Lin’s laboratory.
Achieving efficient utilization of mixed hexose/pentose saccharides remains an important
challenge in biofuel production from lignocellulosic biomass [16] [14]. Engineering hexose
and pentose specialized microbes, each exclusively metabolizing it’s respective carbon source,
represents a promising strategy for co-utilization of mixtures of hexoses/pentoses. Co-cultures of
hexose and pentose specialists would be expected to utilize both types of sugar simultaneously
(in contrast to diauxic sequential utilization, observed in most natural species), thus improving
the conversion rate of mixed sugars derived from lignocellulosic biomass. We created an
isobutanol producing C5 specialist by knocking out key genes involved in glucose transport and
assimilation (∆ptsG, ∆manX, and ∆glk) in E. coli NV3 pSA55/69, thus eliminating glucose
metabolism and making this strain obligately dependent on pentose sugars (NC5 in Figure 6.1A).
Unmodified E. coli NV3 pSA55/69 serves as the C6 specialist (NC6 in Figure 6.1A). Modeling
and theoretical analysis suggest that the NC5/NC6 biculture will outperform diaxuic monocultures
under many different conditions (see Figure 6.1B-D). Specifically, our model predicts that for a
given sugar composition, there is a range of consortia population compositions over which which
the two-member consortium will achieve higher mean volumetric isobutanol productivity than a
diauxic monoculture (Figure 6.1B); as would be expected, the optimal NC5 inoculum fraction
increases with pentose fraction (Figure 6.1B).
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Figure 6.2: Mono and co-culture growth profiles (A), glucose (B) and xylose (C) consumption, and isobutanol pro-
duction (D) on defined media containing both glucose and xylose. Concentration of each sugar is 36 g/L, 72 g/L total,
data shown for 72 hours. Error bars represent the±S.D. of two biological replicates (with only one biological replicate
for NC6). Adapted from [31].

Experiments performed by Alissa Kerner have substantiated that the NC5/NC6 biculture can
outperform a diauxic NC6 monoculture. For example, NC5/NC6 mono and biculture studies
on defined media demonstrated that the biculture utilized glucose and xylose simultaneously,
and achieved higher xylose conversion and isobutanol titers compared to monocultures of
either strain (sample data shown in Figure 6.2). More importantly, the biculture grows well
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on real lignocellulosic biomass (AFEX pretreated corn stover) hydrolysate, producing up to
2.95 g/L isobutanol at ≈65% of theoretical yield without detoxification or additional nutrient
supplementation. These results are detailed in a manuscript that is presently under preparation [31].

Cellulose

NC6 Specialist
E. coli

Hemicellulases
Hemicellulose

Pentose mono and 
oligo saccharides

Biofuel

Cellulases

Cellulolytic Specialist
T. reesei

NC5 Specialist
E. coli

Glucose mono and 
oligo saccharides

Figure 6.3: TrEc consortium with NC5/NC6 E. coli specialists. The T. reesei cellulolytic specialist hydrolyzes hemi-
cellulose and cellulose into pentose and glucose mono and oligosaccharides, which are cofermented by the respective
E. coli specialists into isobutanol.

Extending the TrEc consortium by combining C5/C6 specialists with T. reesei The ultimate
goal for the NC5/NC6 consortium is to integrate it with T. reesei to form a three-specialist
system for direct conversion of lignocellulosic biomass to isobutanol (Figure 6.3). The combined
T. reesei/NC5/NC6 consortium may be able to achieve better performance compared to T. reesei /
diauxic E. coli bicultures, especially at higher substrate loadings. To implement the three-member
consortium, T. reesei/NC5/NC6 tricultures will need to be characterized on model substrates (de-
fined mixtures of microcrystalline cellulose and purified xylan) and real lignocellulosic biomass
over a range of different population compositions. In conjunction with experimental work, our
modeling framework could be extended to include hemicellulose hydrolysis, pentose consumption,
and kinetics for the NC5 specialist, allowing us to perform theoretical analyses to gain insights
into consortium performance and behavior. While our theoretical and experimental results for
NC5/NC6 bicultures suggest that the three-member consortium is a promising approach, several
caveats must be mentioned. Co-cultures of T. reesei and diauxic E. coli NV3 pSA55/69 (NC6)
on AFEX pre-treated corn stover achieved high conversion of pentose sugars while conversion of
cellulose was incomplete (see Figure 2.9A & B), in contrast to results with NC5/NC6 bicultures
on hydrolyzed AFEX pre-treated corn stover (e.g. Figure 6.2). Additionally, our theoretical
analysis of the TrEc consortium suggests that substrate uptake and growth rates will be very low
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during co-culture growth on cellulose. Low glucose flux through phosphoenolpyruvate-dependent
phosphotransferase systems (PTSs) is expected to increase intracellular cyclic AMP (cAMP)
levels, resulting in transcriptional activation of catabolite repressed operons [150]. Thus WT
diauxic E. coli strains may actually co-utilize hexose and pentose sugars under co-culture
conditions due to low substrate uptake and growth rates. This phenomena could be investigated
by using transcriptional analysis to determine whether catabolite repressed genes are expressed in
E. coli under co-culture conditions, or through 13C flux analysis studies.

6.1.2.2 Spatial structure and cross-feeding: additional mechanisms for stability and tun-
ability

In this work, we exploited cooperator-cheater dynamics as a mechanism for stabilizing and tuning
population composition in TrEc consortia. However, it is important to consider the long-term
evolutionary stability of cooperator-cheater systems. While ecological motifs such as metabolic
cross-feeding [42, 106] and cooperator-cheater dynamics may exhibit stable short-term behavior,
these systems are not necessarily stable over long evolutionary timescales, especially in homoge-
nous environments. For example, consortia based on metabolic cross-feeding are prone to invasion
by cheating strains which consume nutrients secreted by the partner strain without reciprocation
[221]. Additionally, in experimental evolution studies with cross-feeding E. coli auxotrophs,
the cross-feeding strains eventually evolved to become metabolically independent (Xiaoxia Nina
Lin, personal communication). However, numerous studies have shown that spatially structured
environments promote the evolution and persistence of cooperation in microbes [221]. In
contrast to homogenous (e.g. well-mixed) environments, in spatially structured environments each
individual microbe interacts with a limited number of neighbors, creating local feedback that can
reward cooperators and punish cheaters [221]. The effect of spatial structure on cooperation was
recently demonstrated with a symbiotic microbial system consisting of a methionine secreting
Salmonella enterica mutant (met+ S. enterica) and an E. coli methionine auxotroph (met- E. coli)
[221]. On lactose minimal medium, the two strains are interdependent: met- E. coli ferments
lactose to acetate, which is metabolized by met+ S. enterica, while met+ S. enterica secretes
methionine to support met- E. coli [221]. Methionine secretion is costly for met+ S. enterica, and
when met- E. coli and met+ S. enterica are cultured in a well mixed environment, the population
is subject to invasion by non-methionine secreting S. enterica, which has a higher growth rate
than met+ S. enterica [221]. In contrast, a spatially structured 2-D environment with isolated
patches of E. coli / S. enterica favored the persistence of cooperation; patches dominated by
cooperators engender more growth than cheater-dominated patches, thus increasing the proportion
of cooperators in the total population [221].
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Figure 6.4: Spatially structured T. reesei / E. coli consortium featuring substrate surface colonization and adhesion
between T. reesei and E. coli. (A) Consortium at time t0. WT E. coli cells are indicated by green, while red cells
represent a fast growing mutant (i.e. µmax,MUT > µmax,WT ) (B) Consortium at time tf . (C) Proposed system for
fimbrial adhesion of E. coli to T. reesei.

We suggest that spatial structure may also be beneficial for maintaining stability of TrEc
consortia and other systems with cooperator-cheater dynamics. Over long time-scales, we expect
that E. coli and T. reesei will evolve in the co-culture environment, ultimately leading to changes
in ecological parameters (i.e. Table 3.1) that shift population equilibria. Since mutation rates
are generally higher in bacteria compared to filamentous fungi [222], it is likely that E. coli will
evolve faster than T. reesei, which in the case of a well-mixed homogenous environment may
lead to increased equilibrium XEc over time. We may be able to improve the stability of E. coli

growth rate by introducing spatial structure to the consortium. Figure 6.4 depicts a proposed
spatial structure scheme featuring substrate surface colonization and E. coli adhesion to T. reesei

mycelium, and illustrates how this structure might maintain growth rate stability in E. coli. At
time t0 the substrate surface is colonized by patches of T. reesei mycelia with adherent WT E. coli

(green) and a fast growing mutant (red) (Figure 6.4A). The fast growing mutant E. coli will
utilize a greater proportion of cellulose hydrolysis products, reducing growth rate and cellulase
production in adherent mycelia. After a period of time tf , mycelia with WT E. coli have outgrown
mycelia with fast growing mutant E. coli, and the overall proportion of WT E. coli has increased
despite the higher growth rate of the mutant; thus spatial structure could mitigate invasion by
faster growing mutants (Figure 6.4B).

Promoting surface colonization by T. reesei and engineering fimbrial adhesion of E. coli

specialists to T. reesei mycelium (Figure 6.4C) could create the spatial structure depicted in
Figure 6.4A&B. T. reesei can be encouraged to colonize substrate surfaces by choosing ap-
propriate culture conditions, such as low shear submerged culture or solid state fermentation
[108, 223]. Many strains of E. coli naturally produce type I fimbriae, which facilitate binding
to host epithelial cells [224]. Fimbrial binding is mediated by mannose-specific FimH adhesins,
located at fimbriae tips (Figure 6.4C) [224]. Since T. reesei has a high proportion of mannosylated
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proteins in the cell wall, fimbrial adhesion of E. coli to T. reesei mycelium seems highly plausible
(Figure 6.4C) [225]. Unfortunately, most non-pathogenic laboratory strains of E. coli weakly
express fimbriae. Fimbriae expression can be improved by knocking out fimE and overexpressing
fimB, which are negative and dual regulators of fimbriae genes, respectively [226]. Thus we could
construct ∆fimE / fimB overexpressing strains and test for T. reesei adhesion using agglutination
and microscopy assays, and if warranted investigate the effects of fimB expression on adhesion.
To test the effects of spatial structure on the consortium, we could perform coculture studies
with T. reesei and mixtures of a slow/fast growing adherent (i.e. ∆fimE / fimB overexpressing)
strains or slow/fast growing non-adherent strains. If spatial structure creates the anticipated
local-feedback, we would expect co-cultures with adherent E. coli to be resistant to invasion
by faster growing strains. We expect that E. coli adhesion to T. reesei mycelium would alter
local glucose concentration gradients, thus changing cooperator-cheater dynamics and shifting
population equilibria. Additionally, fimbriae expression may be deleterious to isobutanol tolerance
in E. coli (see Chapter 4). These potential issues would need to be carefully considered in the
design and implementation of the proposed spatial structure, as well as choice of culture conditions.

Lignocellulose

C6 Sugars C5 Sugars

i-BtOH T. reesei

NC6 
specialist 

(E. coli)

NC5 
specialist 

(E. coli)

i-BtOH
urea

NH3

urea

NH3

X
urea

NH3

Figure 6.5: Proposed nitrogen/carbon metabolic cross-feeding circuit for TrEc consortium with NC5 and NC6 spe-
cialists.

An alternative or additional approach for achieving stability/tunability in TrEc consortia is
engineering a symbiotic relationship between T. reesei and E. coli. Engineering a synthetic ni-
trogen/carbon metabolic cross-feeding circuit between E. coli and T. reesei is one possibility that
we suggest exploring (Figure 6.5). In this system, fermentation media containing urea as the sole
nitrogen source would be utilized. The T. reesei urea assimilation pathway will be disabled by
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deleting the gene(s) for urease, while E. coli will be engineered to express a heterologous ure-
ase (such as ureABCEFG from Klebsiella aerogenes [227]) that hydrolyzes urea to NH3 and CO2

(Figure 6.5). NH3 can then be secreted out of E. coli cells (via membrane diffusion and the Amt
facilitated transport system) into the medium where it is available to T. reesei. Thus the relationship
between T. reesei and E. coli would be symbiotic: T. reesei secretes cellulases and hemicellulases
that hydrolyze lignocellulose to soluble saccharides, while E. coli hydrolyzes urea, providing both
organisms with nitrogen (Figure 6.5). The proposed symbiosis is expected to be stable in a spa-
tially structured environment, as discussed above [221]. Besides creating a stable interdependence
between T. reesei and E. coli, the suggested cross-feeding circuit could also provide mechanisms
for tuning population composition. A key drawback to this design is that it requires urea as the sole
nitrogen source. If the cellulosic substrate contains other nitrogen sources, then the cross-feeding
relationship will be obviated. Some cellulosic feedstocks such as waste paper or cardboard have
very low nitrogen levels, and thus nitrogen would be supplied by the fermentation media. However,
most types of lignocellulosic biomass will have significant nitrogen content (e.g. proteins, amino
acids, etc.), and biomass pre-treated by AFEX may contain residual NH3. These types of issues
would need to be considered in the design and deployment of any kind of symbiotic cross-feeding
circuit.

6.1.2.3 The TrEc consortium as modular and flexible platform for consolidated bioprocess-
ing

While we demonstrated isobutanol production as a proof-of-concept application of the TrEc
consortium, this system represents a modular and flexible CBP platform that can be readily
adapted to biosynthesize a variety of products from lignocellulosic feedstocks. The modularity
of our system allows it to leverage the vast existing portfolio of E. coli strains metabolically
engineered to produce valuable products, many of which could be swapped directly into the
TrEc consortium in a “plug-and-play” fashion. As a caveat, if desired products are excessively
toxic, tolerance of both T. reesei and E. coli will need to be improved to achieve efficient
fermentation. Additionally, E. coli strains optimized for monoculture conditions may require
additional metabolic engineering and other improvements to produce desired products at high
yields/titers under co-culture conditions (e.g. as discussed in section 2.4.1).

The TrEc consortium requires aerobic metabolism of desired products, but this constraint is
not excessively prohibitive. For example, E. coli can be readily engineered to produce anaerobic
metabolites under aerobic conditions via elimination of respiratory chain components, as discussed
in the introduction to Chapter 2 [75]. Furthermore, many next-generation biofuels and commodity
chemicals are produced through biosynthetic non-fermentative pathways with substantial ATP
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and NADPH requirements, and thus it may actually be more efficient to produce these products
aerobically or microaerobically. Examples include products of isoprenoid pathways (such as
farnesene and isopentenol), products of fatty acid pathways (such as alkanes, alkenes, fatty alco-
hols, and fatty acid ethyl esters), and 1,3-propanediol1 [228]. Indeed, the majority of promising
value-added building block chemicals that can be produced biologically will likely require aerobic
metabolic pathways (Figure 6.6) [229] . Many fine and specialty chemical products, such as
amino acids and vitamins, are also produced via aerobic fermentation. While we developed the
TrEc consortium with an eye towards consolidated bioprocessing of lignocellulosic biomass into
fuels and commodity chemicals, it may also prove useful for production of higher-value products
from biomass. Beyond the TrEc consortium, other fermentation specialists could be readily used
in place of E. coli (e.g. S. cerevisiae), and other cellulolytic specialists are possible as well.
Since many cellulolytic microbes have cell-wall localized (i.e. complexed) cellulase systems
[14], cooperator-cheater dynamics could be preserved; additionally, use of cellulolytic microbes
with different levels of privileged access to hydrolysis products represents a possible means of
tuning/optimization.

1Glycerol can be fermented to 1,3-propanediol anaerobically, but production from glucose requires aerobic
metabolism
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Table 8 – Pathways to Building Blocks from Sugars 

Building Blocks
Yeast or 
Fungal

Bacterial
Yeast or 
Fungal

Bacterial
Chemical & 

Catalytic 
Processes

 Biotrans-
formation

3 Carbon 
 C ommercial 
Product - C

 C ommercial 
Product - C

 C ommercial 
Product - C

 C ommercial 
Product - C

 C ommercial 
Product - C

 C ommercial 
Product - C

3-Hydroxy propionic 
acid

X X

Gl ycerol X X X X C
Lactic acid X X C
Malonic acid X X
Propionic acid X
Serine X CC

4 Carbon  
3-Hydroxy 
butyrolactone

X

Acetoin X X X
Aspartic Acid X X X
Fumaric Acid X X X
Malic acid X X
Succinic acid X X X X
Threonine X C

5 Carbon  

Arabitol XX C X
Furfural C
Glutamic X C
Itaconic Acid C
Levulinic acid X
Xylitol XXX C

6 Carbon  
2,5 Furan 
dicarbox ylic acid

X

Aconitic acid X
Citric acid C
Glucaric acid X X X
Gluconic acid C X X
Levoglucosan X
Lysine X C
Sorbitol X X C X
Number in each 
Pathway category* 21 14 4 6 11 7
Commercial 
processes 3 4 0 1 4 2

* All of the top 30 were used in the evaluation but only those involved in the �nal downselect are shown 
here, hence total pathway in each category numbers may not add up on this speci�c chart. 

Identi�cation of Actual and Potential Pathways to Building Blocks from Sugars

AEROBIC FERMENTATIONS ANAEROBIC FERMENTATIONS CHEM-Enzyme TRANSFORMATIONS

Figure 6.6: Summary of pathways for conversion of sugars to building block chemicals. Adapted from [229].
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6.2 Part II: Genome evolution and engineering for elucidat-
ing the genetic architecture of isobutanol tolerance in Es-
cherichia coli

6.2.1 Concluding remarks

In this work, we studied and improved isobutanol tolerance in E. coli by integrating experimental
evolution, genome re-sequencing to identify acquired mutations, genomic and functional dissec-
tion to reverse engineer mechanisms of tolerance, and multiplex genome engineering to explore
a large combinatorial genotype space for improved variants. Consistent with the complex nature
of solvent tolerance, our experimental evolution and genomic studies revealed adaptations in
a diversity of cellular processes. By examining genotypic adaptation in multiple independent
lineages, we find evidence of parallel evolution in genes marC, hfq, mdh, acrAB, gatYZABCD, and
rph. Many isobutanol tolerant lineages show reduced RpoS activity, perhaps related to mutations
in hfq or acrAB. Collectively, the genotypic adaptations we observe suggest mechanisms of
adaptation to isobutanol stress based on remodeling the cell envelope and, surprisingly, stress
response attenuation. Guided by these results and findings from literature, we selected a set of
38 target mutations for multiplex genome engineering. Populations generated through genome
engineering contained a diversity of novel genotypes and phenotypes. We identified a large cluster
of highly tolerant genotypes that share a set of common mutations, including gltA, tnaA, yfgO,
gltD, glnE, rph, and marC. These core mutations are derived from four different origins (three
independent evolutionary lineages plus one from literature), and the significance of some of these
loci in isobutanol tolerance was uncertain prior to this study. The gltA, gltD, and glnE mutations
appear to be convergent metabolic adaptations that may increase intracellular levels of glutamine
(a precursor for key cell envelope components), representing a potential new mechanism of
adaptation. The best strain generated through our genome engineering work had higher fitness at
1% (w/v) isobutanol and fewer mutations compared to the best evolved strain, and thus through
genome engineering we have effectively refactored isobutanol tolerance into simpler and higher
fitness genotypes.

This work makes a number of important contributions to the current state-of-the-art in
microbial alcohol tolerance and phenotype improvement methods. We generated a large library of
isobutanol tolerant variants that could potentially serve as chassis strains for isobutanol production.
Additionally, we have identified the underlying genetic bases of several important mechanisms of
isobutanol tolerance, providing a foundation for further efforts to improve this phenotype. Beyond
our contributions to isobutanol tolerance, this work provides valuable fundamental insights into
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engineering complex phenotypes. In our evolutionary-genomics studies of isobutanol tolerance,
we observed a trend of evolution targeting post-transcriptional regulation and high centrality
nodes of biochemical networks. Phenotype improvement methods based on mutagenizing
global transcription factors have been developed, but thus far perturbation of other regulatory or
biochemical network hubs has not been explored. We suggest that post-transcriptional regulators
(such as Hfq or RNA helicases) and perhaps protein interaction network hubs (such as GroEL and
components of the Sec apparatus) are interesting mutagenesis targets for future global phenotype
engineering.

Our results also demonstrate the importance and impact of epistasis in phenotype engineering.
Mutation reconstruction and phenotyping studies revealed a striking predominance of positive
epistatic effects in isobutanol tolerance. We observed evidence of positive epistasis between hfq

or marC and each of groL, mdh, and rph mutations. Interestingly, individual groL, mdh, and rph

mutations had neutral effects on isobutanol tolerance, suggesting that these mutations may be
compensating adaptations to maladaptive side effects of global regulatory changes cause by hfq or
possibly marC mutations. Such evolutionary patterns (i.e. global effect mutations and subsequent
compensatory mutations) are not unique to isobutanol tolerance, and have been observed for a
variety of phenotypes [123]. Many standard target gene identification strategies (such as knockout
or overexpression libraries) are unable to capture interactions between distal genetic loci, and
are therefore unable identify these types of adaptations. Thus while experimental evolution and
genome resequencing studies are laborious and require relatively long time scales, these studies
are of great value for studying highly epistatic phenotypes.

In addition to target gene identification, epistasis is also an important factor to consider in
directed genome engineering studies. Several recent studies have demonstrated that negative
epistasis between beneficial mutations may be a statistically common phenomena, both in
evolution [117, 207] as well as integrated trait mapping / directed genome engineering studies
[206]. In our work, we used general patterns of epistasis to guide selection of target genes so
as to minimize the likelihood of negative epistatic effects, namely by avoiding combinations of
genetic loci with functional redundancy and seeking loci with functional interactions. We suggest
that this strategy could be of broad utility in future genome engineering studies. Epistasis can
also affect genome engineering by altering fitness landscapes, especially in the case of global
regulators [214]. Thus while we wish to generate synergistic mutation combinations, if epistatic
mutations become fixed in populations too early this could constrain accessible evolutionary
trajectories and limit exploration of combinatorial search spaces. To explore this notion, we
conducted genome engineering studies with low and high dosage of the epistatic hfq mutation.
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Our results demonstrate distinctly different mutation profiles between low hfq and high hfq dosage
lineages, with hfq and associated epistatic mutations reaching much greater frequencies in the high
dosage populations. Qualitatively, our results suggest that low hfq dosage populations have greater
genotype and phenotype diversity than the high hfq populations, and we ultimately identified
isolates with the highest isobutanol tolerance from low hfq populations. The effects of epistatic
interactions on combinatorial genome engineering will need to be further studied in future work.

6.2.2 Future directions and perspectives

6.2.2.1 Increasing scope, scale, and throughput of our integrated phenotype engineering
methodology

In this section, we describe potential ways to leverage new technologies in DNA synthesis,
next-generation sequencing, and microfluidics to expand the scope, scale, and throughput of our
methodology for studying and improving complex phenotypes. The use of experimental evolution
represents a key limiting step in our current approach. We suggest that integrating rapid target
gene identification methods (knockout/overexpression libraries, TRMR, etc.) with experimental
evolution may be a good strategy for improving scope and productivity. For example, TRMR
could be used to generate a library of single gene upregulation/downregulation variants with
improved fitness. The single gene variant library could then be subjected to a short round of
experimental evolution (e.g. 25-50 generations) and genome resequencing to identify subsequent
beneficial mutations. Throughput of this approach could be increased by use of liquid handling
robotics systems for culturing and colony screening and highly multiplexed libraries for genome
resequencing. In addition to this proposed approach, it would be of great value to develop
rapid target gene identification methods that can capture interactions between distal genetic loci.
Conducting TRMR recursively (described in Chapter 1) is a particularly promising approach, but
has not yet been reported in the literature as of this writing (April 2013).

217



DNA chip

****

****

****

****

****

Primers:

****

****

****

**** ****

****

****

Shear
Isolate 90 bp
End repair

epPCR 
mutagenesis

**** ****

****

****

Cleave
PCR

Digest

Exo

Adapter
Ligation

PCR
Digest
Exo

Oligo Library Preparation

X X
X

****
****

****

Electroporation

Recovery

Growth

Multiplex Automated Genome Engineering

Periodic Selection

****

****

****

****

****

****

****

****

A
Genome-scale 

target selection

droplets

spacing oil

waste

Sorting / data collection

Micro�uidic screening / phenotype analysis

Droplet generation

O�-chip cultivation

B Phenotype distributions

Highly tolerant 
isolates

Detailed 
growth evaluation

Genotyping PhenotypingC

Detection and
image analysis

ampli�cation of 
target loci (RainDance platform)

multiplex
library prep

next-gen sequencing

105 to 106

cells

102 to 103

di�erent
variants

Figure 6.7: Future directions in genome engineering: expanding scale and throughput. (A) Proposed methods for
synthesis of high complexity oligonucleotiode libraries. For DNA chip based libraries, 90 bp MAGE oligo sequences
will be flanked by ≈20 bp PCR priming sites incorporating type IIs restriction sites, such that the priming sites
can be scarlessly cleaved from PCR products. The designed oligo library will be synthesized on a DNA microchip
and then PCR amplified. PCR primers in the same strand as the required ssDNA product will have four degenerate,
phosphorothioate 3 nucleotides. After amplification and restriction digestion to remove priming sites, the 90 bp dsDNA
library will be treated with a 5’→3’ exonuclease to selectively degrade the unwanted strand yielding the desired
lagging-strand targeted 90-mer ssDNA library with 5’ phosphorothioate nucleotides. For random mutagenesis of
genetic loci, we will employ an epPCR based approach for generating an oligo library. Selected genetic loci will be
PCR amplified and then epPCR will be used to generate mutagenized PCR products. The epPCR products will be
sheared, and≈90 bp fragments will be isolated and end repaired. The products will then be ligated to dsDNA adapters
containing PCR priming sites similar to those above, and the library will then be PCR amplified, restriction digested,
and exonuclease digested as above. (B) High throughput microfluidic phenotyping and sorting system. Portions of
figure adapted from [230] and [231]. (C) Genotyping and phenotyping highly tolerant isolates. Portions of figure
adapted from [232].
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We used a relatively small library (38x targets; combinatorial search space size of
238 ≈ 2.75x1011 genotypes) for the multiplex genome engineering work described in Chapter 5.
Expanding genotype search spaces to larger scales would be of great benefit for engineering
complex phenotypes such as isobutanol tolerance, but requires more sophisticated methods
for designing and synthesizing oligonucleotide libraries, and for screening, phenotyping, and
genotyping. Due to the small library size used in Chapter 5, we were able to use conventionally
synthesized oligonucleotides. For larger libraries, conventionally synthesized oligonucleotides
will be prohibitively expensive, and more scalable synthesis methods must be employed. The
homologous recombination procedure used in MAGE requires 90-mer ssDNA (containing a
mutation of interest with flanking homologous sequence) targeted to the lagging strand of the
DNA replication fork and having four 5’ phosphorothioate modified nucleotides [59]. Generating
a complex oligonucleotide library conforming to MAGE requirements is not trivial and requires
novel design strategies. For constructing precise point mutations (e.g. reconstructing specific
mutations found from genome resequencing), oligonucleotide libraries on the order of 104 to 105

sequences could be synthesize on DNA chips, with subsequent amplification and processing to
produce ssDNA with the required 5’ phosphorothioate modifications (see Figure 6.7A for more
details). For random mutagenesis of genetic loci (e.g. focused mutagenesis of global transcription
factors), we suggest using error-prone PCR (epPCR) to generate mutant sequence libraries,
with subsequent processing to produce the required ≈90-mer ssDNA with 5’ phosphorothioate
modifications (see Figure 6.7A for more details). For the epPCR method, library complexity
will depend on the number of targeted loci and epPCR mutation rate, which will need to be
modulated to maintain reasonable library sizes (e.g. 107 to 108 sequences). Both of these proposed
methods will require extensive testing and optimization, and the final oligo libraries will need to
be validated. Beyond point mutations (i.e. SNPs and small indels), it would also be desirable to
create larger mutations (e.g. promoter replacements to generate overexpression libraries). MAGE
has recently been modified to permit construction of longer mutations (i.e. insertions >10 bp) via
the co-selection MAGE (CoS-MAGE) method [61] and also for selection of highly modified cells
via co-operative oligonucleotide co-selection [62]. These new methods could be incorporated into
future genome engineering work.

In conjunction with expanding genotype search spaces, higher throughput methods for
screening, phenotyping, and genotyping combinatorial libraries are also needed. We are currently
working with the lab of Mark Burns (Chemical Engineering, University of Michigan) to develop
a high throughput microfluidic phenotyping and sorting system for screening combinatorial
libraries. The system consists of microfluidic devices for encapsulating cells in microdroplets
(developed by Jihyang Park; [230]), and for sorting microdroplets based on fluorescence intensity
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(originally designed by Jihyang Park and currently under development by Mathieu Rossion and
Sida Wang as of April 2013) (Figure 6.7B). The first device generates aqueous droplets (consisting
of media with cells) dispersed in a continuous oil phase; by adjusting the concentration of cells
in the aqueous phase, we can achieve a density of ≈1 cell/droplet (Figure 6.7B). The droplets
can then be removed from the device and incubated off-chip in a microtube. After cultivation,
the droplet library will be sorted on a second microfluidic device based on their level of growth
(i.e. fluorescence); if selection is applied (e.g. isobutanol added to media used for droplets),
then we would expect higher growth for more tolerant cells. The sorting device consists of a
split junction, and the flow of droplets to the collection or waste channels can be controlled via
pressure (Figure 6.7B). Droplets will be electronically imaged with fluorescence microscopy, and
then sorted based on threshold fluorescence2. In addition to selecting droplets with high growth
(i.e. tolerance), droplet images can be saved and analyzed, yielding insights into growth phenotype
distributions in combinatorial populations (Figure 6.7B). Currently the sorting device can operate
at a rate of ≈1 droplet/s, but we hope to increase the throughput in future work so that it will be
possible to screen large libraries (i.e. 106 or more droplets).

After droplet sorting, the isolated highly tolerant variants can be further characterized off-chip.
For the genome engineering work described in Chapter 5, we designed and optimized allele
specific PCR (ASPCR) assays to genotype target mutations. However, due to the cost and labor
involved this approach is intractable for larger numbers of mutations; additionally, ASPCR would
not be applicable to sequences subjected to random mutagenesis. Therefore different methods will
need to be developed and optimized for genotyping large numbers of target loci with potentially
unknown mutations. Recently developed technologies for target enrichment and next-generation
sequencing could be deployed for this work, which we describe briefly here. For target enrichment,
the RainDance3 platform could be used for multiplex amplification of target loci from genome
engineering isolates (Figure 6.7C). The RainDance technology is similar to emulsion PCR but
uses a microfluidic system to create droplets that contain different pairs of preselected primers,
with up 4,000 primer pairs in single reaction set. The droplets are collected in a single tube
and then cycled similarly to emulsion PCR. Enriched target loci can then be used to prepare
barcoded libraries for multiplex next-generation sequencing (Figure 6.7C). Using this general
approach, up to ≈100 isolates can be genotyped in a single experiment. For phenotyping, we have
previously developed 96 and 384 well microplate based assays (Chapter 4) that allow detailed
characterization of growth kinetics at different isobutanol concentrations; these assays should

2This method requires fluorescent markers; we have modified standard genome engineering host strain E. coli
EcHW24 to express Yfp, as described in section 5.5.2

3http://www.raindancetech.com
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be sufficient for phenotyping sample libraries of ≈100 isolates. Detailed phenotype/genotype
characterization of greater than 102 or 103 isolates will require the development of more advanced
methods.

Continued advances in DNA synthesis, genome engineering, next-generation sequencing, and
microfluidics technologies will enable further increases in the scale and throughput of phenotype
engineering work. We envision that in the future, much of the experimental work required
for phenotype engineering could be miniaturized and automated, allowing for rapid hands-off
engineering and study of complex phenotypes. Additionally, genome engineering technologies
may eventually be extended beyond E. coli to allow for integrated phenotype engineering in other
bacteria or fungi hosts.

6.2.2.2 Perspectives

Due to the complex multigenic nature of chemical tolerance phenotypes, most phenotype improve-
ment approaches developed to date follow a “top-down” combinatorial approach of generating
diversity in a population and then studying isolates with desired traits. Recent advances in DNA
synthesis technologies have enabled de novo synthesis and assembly of multigene constructs,
chromosomes, and even entire microbial genomes [63]. These new synthesis technologies
will allow for bottom up design and construction of large-scale synthetic gene networks and
perhaps even synthetic organisms, offering new opportunities for engineering of complex cellular
behaviors and phenotypes. Advances in the mechanistic understanding of chemical tolerance
phenotypes combined with new technologies for large-scale editing and synthesis of genetic infor-
mation may eventually permit a synthetic biology paradigm of “bottom-up” rational programming
of complex chemical tolerance phenotypes. However, this will require a more complete and
quantitative understanding of mechanisms of tolerance, as well as expanded tools for the design
and construction of complex genetic circuits and signal transduction pathways. In silico modeling
may prove useful in this regard. As a recent example, modeling of synthetic control systems for
efflux pumps suggested that feed-forward control of efflux pump expression in response to biofuel
concentration might improve fermentation performance [233]. Genome-scale metabolic network
models could be used in conjunction with constraint-based optimization techniques to predict
genetic manipulations to maximize/minimize a tolerance or toxicity objective function, provided
that tolerance/toxicity mechanisms that can be represented in terms of metabolic fluxes. Examples
of such mechanisms could include maintenance ATP requirements and changes in the synthesis
and composition of cell envelope components (i.e. LPS, peptidogolycan, and lipids).
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Hybrid rational-combinatorial methods for phenotype improvement are possible (i.e. rational
engineering of a phenotype and then applying combinatorial approaches for optimization), and
perhaps represent the best approach at present. Many recent studies demonstrate rational engi-
neering approaches to improve chemical tolerance phenotypes based on established mechanisms
of toxicity or tolerance. Examples from literature include overexpressing heat-shock proteins to
improve alcohol tolerance in E. coli [234], engineering trehalose accumulation [235] and lipid
composition [236] in S. cerevisiae to improve ethanol tolerance, overexpression of efflux pumps to
improve tolerance of E. coli [237] to hydrophobic biofuel molecules, and engineering mechanisms
for detoxification of alcohol induced reactive oxygen species (ROS) in E. coli [238]. How-
ever, all of these approaches focus on improving tolerance via a single mechanism; future work
needs to integrate multiple mechanisms of tolerance to achieve maximum phenotype improvement.

Research in microbial chemical toxicity and tolerance is usually motivated by the need to
improve fermentation titers and productivity. However, tolerance to a toxic product does not
necessarily confer improved production, as exemplified by the Atsumi et al. study of isobutanol
tolerance in E. coli [124]. Indeed, metabolic degradation is a common mechanism of tolerance to
toxic chemicals [50]. As a striking example, Goodarzi et al. revealed that ethanol degradation and
assimilation was a dominant component of adaptation in an ethanol tolerant E. coli mutant [121].
These studies highlight the need for new methods of co-selecting tolerance and production pheno-
types. Given that adaptations can be highly specific to a particular environment or physiological
context, it is also important to perform screens/selections under conditions that mimic those in
industrial scale production. For example, many studies perform screens and/or selections in rich
media, even though such media is not likely to be economically viable for commercial production
of biofuels. In our work we discovered that adaptations acquired in evolved isobutanol tolerant
strains exhibited antagonistic pleiotropy between minimal and rich medium, demonstrating the
importance of considering environmental and physiological context (Chapter 4). Tolerance
adaptations may also vary between different growth phases (i.e. exponential vs. stationary
phase), thus the growth phase in which biofuel production occurs must also be considered in
selection/screening. As an example, in E. coli RpoS attenuation was found to be improve growth
[3], isobutanol production [3], and isobutanol tolerance (Chapter 4) in exponential phase, but
decreased isobutanol production and survival in stationary phase, leading to overall reduced titers
and yields [3]. Finally, it is also possible that tolerance mechanisms may differ between exogenous
exposure to toxic chemicals compared to endogenous production. For example, cell envelope
modifications may protect cells from exogenous alcohol toxicity by improving envelope integrity
and/or reducing diffusion of exogenous alcohols into the cell. However, if such mechanisms
likewise prevent diffusion of endogenously produced alcohols out of the cells, they may not
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improve tolerance in production strains and may even be detrimental under such conditions.

As a case in point, Woodruff et al. recently developed a chassis ethanol producing E. coli strain
(LW06) for phenotype engineering [239]. Several genes previously identified to improve tolerance
to exogenous ethanol in a WT non-production strain were overexpressed in LW06 [239]. None
of the tested genes improved tolerance or ethanol titer under production conditions, underscoring
the importance of the caveats discussed above [239]. In a followup study, Woodruff et al. ap-
plied genomic library enrichment under ethanol production conditions to identify genes improving
tolerance and production in LW06, leading to identification of a different set of genetic loci com-
pared to a similar study with WT strains [167, 240]. In our own work, we attempted to construct
an isobutanol producing chassis strain for genome engineering by transducing λ-Red to E. coli

JCL260 [1] and using oligo recombination to inactivate MutS. However, λ-Red produces a severe
growth defect in the JCL260 background (data not shown), perhaps due to interactions between
the JCL260 genotype and λ-Red or an unknown mutation co-transduced with λ-Red. For future
work, we suggest developing an isobutanol producing strain for genome engineering using a more
robust base strain such as NV3 or NV3r1 [3].
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APPENDIX A

Modeling the T. reesei-E. coli (TrEc) consortium

A.1 Introduction

To gain insights into the behavior and ecology of the T. reesei / E. coli (TrEc) consortium, we de-
veloped a comprehensive ordinary differential equation (ODE) modeling framework that captures
salient features of the system. We derived rate expressions for microbial growth, uptake of soluble
saccharides, production of cellulase enzymes (endoglucanase, exoglucanase, and β-glucosidase)
by T. reesei, enzymatic cellulose hydrolysis (based on novel mechanistic models for each type of
enzyme), isobutanol production by E. coli, and isobutanol toxicity. The model was developed by
writing differential mole/mass balances (for a batch reactor) for each species of interest, including
microbial biomass (T. reesei and E. coli), cellulases, insoluble cellulose polysaccharides, soluble
oligo and monosaccharides, and isobutanol. We give a detailed description of our model in the
following sections.

A.2 Microbial growth and substrate utilization

A.2.1 Maintenance model

Substrate consumption by microbes has two components: substrate consumed for growth, and
substrate consumed for non-growth associated maintenance. We expect that maintenance substrate
consumption will be important in the T. reesei / E. coli consortium due to low growth rates. Main-
tenance substrate uptake is usually empirically modeled as follows [83]:

rsm = mCc (A.1)

Where rsm is maintenance substrate uptake rate (g L−1 h−1), m is the maintenance coefficient (g-
substrate g-cells−1 h−1), and Cc is cell concentration (g L−1). We find this model to be unrealistic,
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however, as it supposes that substrate uptake rate is completely independent of substrate concen-
tration. This assumption may be reasonable in situations involving high substrate concentrations
(e.g. batch culture growth on soluble substrates), but for growth on cellulosic substrates, concen-
trations of soluble saccharides are likely to be very low, requiring us to consider the actual kinetics
of substrate uptake. We thus propose an alternative maintenance model centered on substrate up-
take kinetics. We assume that total substrate uptake follows Michaelis-Menten kinetics, and allow
for the uptake of multiple substrates simultaneously [241]. Uptake rate of substrate Si can then be
modeled as:

rSi
= pSi

Kmax,Si
Si

KSi
+ Si

Cc with pSi
=

Si∑
j

Sj

(A.2)

Where rSi
is uptake rate of substrate i (g L−1 h−1), pSi

is the fraction of substrate i out of total
soluble substrate, Kmax,Si

is maximum specific uptake rate of substrate i (g-substrate g-cells−1

h−1), KSi
is affinity for substrate i (g L−1), Si is concentration of substrate i (g L−1), and Cc is cell

concentration (g L−1). We assume that substrate is partitioned between growth and maintenance
uses. We can thus write a mass balance for substrate uptake as follows:

rSi
= pSi

Kmax,Si
Si

KSi
+ Si

Cc = YSi/CcµSi
Cc +mpSi

Cc (A.3)

Where YSi/Cc is the substrate-biomass yield coefficient (g-substrate g-cells−1), µSi
is specific

growth rate on substrate i (h−1), and other terms are as described previously. The term YSi/CcµSi
Cc

represents substrate consumption for growth, while the mpSi
Cc term represents maintenance con-

sumption. If we hold m constant (i.e. assume constant maintenance requirement), then we can
rearrange and write µSi

in terms of the other parameters and variables:

µSi
=

pSi

YSi/Cc

(
Kmax,Si

Si

KSi
+ Si

−m

)
(A.4)

The maximum specific growth rate µSi,max corresponds to Si ≫ KSi
with i as the sole substrate:

µSi,max =
1

YSi/Cc

(Kmax,Si
−m) (A.5)

Since µSi,max is readily available from experimental data, it makes sense to reformulate our model
in terms of this parameter:

Kmax,Si
= YSi/CcµSi,max +m (A.6)

Microbial growth rate can then be written as:
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rg,Si
= µSi

Cc = pSi

[(
µSi,max +

m

YSi/Cc

)
Si

KSi
+ Si

− m

YSi/Cc

]
Cc (A.7)

Where rg,Si
is growth rate on substrate i (g L−1 h−1) and all other terms are as described previously.

Substrate consumption can be written as:

rSi
= pSi

Kmax,Si
Si

KSi
+ Si

Cc = pSi

(
YSi/CcµSi,max +m

) Si

KSi
+ Si

Cc (A.8)

We can write the total growth rate as:

rg =
∑
i

rg,Si
=
∑
i

[
pSi

((
µSi,max +

m

YSi/Cc

)
Si

KSi
+ Si

− m

YSi/Cc

)
Cc

]
(A.9)

Where all terms are as described previously

A.2.2 T. reesei privileged access to substrate

T. reesei cell surface
β-glucosidase

δ

Diffusion

Bulk media

+ + +

uptake

δ

Bulk media

R Mycelium surface

A B

Figure A.1: Mass transfer model for oligosaccharide hydrolysis by cell-wall bound β-glucosidase of T. reesei (A)
Hydrolysis and diffusion of oligosaccharides at T. reesei cell surface (B) Approximation of mycelium as cylindrical
surface.

Accounting for the hydrolysis of cellulosic feedstocks to soluble bioavailable saccharides is a
crucial aspect of modeling the T. reesei / E. coli consortium. An important subtlety in this process
is that soluble oligosaccharides (i.e. saccharides 2 to 4 glucose monomers in size) are hydrolyzed to
glucose via β-glucosidase bound to the cell wall of T. reesei [81], as depicted in Figure A.1A. This
leads to locally increased concentration of glucose at the cell surface relative to the bulk media,
thus affording privileged access to T. reesei. We perform a mass-transfer analysis to estimate the
concentration of glucose at the cell surface, making the following assumptions:

1. Soluble oligosaccharides are hydrolyzed by β-glucosidase via a heterogenous Michaelis-
Menten reaction at the cell surface.

2. Concentration of soluble saccharides is lower than β-glucosidase affinity (SGi
< KBGL

M,Gi
) —

reasonable for co-culture conditions.
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3. No homogenous hydrolysis reactions in the bulk media.

4. Pseudo steady state conditions — reasonable due to large timescale for changes in bulk
saccharide concentrations.

5. Most of the glucose produced at the T. reesei cell surface is lost to diffusion (verified in [107]
for S. cerevisiae / sucrose hydrolysis).

6. The cell surface is surrounded by a stagnant boundary layer of depth δ which provides the
primary resistance to mass transfer to the bulk media (Figure A.1B).

7. T. reesei mycelial geometry can be approximated as cylindrical (Figure A.1B).

Based on assumption 2, we can simplify β-glucosidase kinetics to yield the following rate law
for hydrolysis of soluble saccharides:

rBGL
SGi
≈ −kcat,BGL,Gi

ρE
KBGL

M,Gi

SGi
= −kBGL,Gi

SGi
(A.10)

kBGL,Gi
=

kcat,BGL,Gi
ρE

KBGL
M,Gi

(A.11)

Where rBGL
SGi

is the cellobiose hydrolysis rate per unit area (mmol dm−2 h−1), kcat,BGL,Gi
is the

specific activity of β-glucosidase for substrate i (mmol g-BGL−1 h−1), ρE is the density of β-
glucosidase on the cell surface (g-BGL dm−2), KBGL

M,Gi
is affinity of β-glucosidase for substrate i

(mM), SGi
is concentration of substrate i (mM; i is equivalent to degree of polymerization DP,

i.e. number of glucose monomers), and kBGL,Gi
is an apparent first-order rate constant (dm h−1).

Applying conservation equations and simplifying yields the following:

∇ ·NGi
= 0 (A.12)

∇2SGi
= 0 (A.13)

Where NGi
is the molar flux of substrate i (mmol dm−2 h−1) and other terms are as defined pre-

viously. By argument of symmetry (Figure A.1B) we can neglect all components except for the
radial direction, allowing us to simply further:

1

r

d

dr

(
r
dSGi

dr

)
= 0 (A.14)

The above equation can be solved to yield a concentration profile of SGi
as a function of position

by applying the following boundary conditions:
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SGi
= SGi,0 at r = R + δ (A.15)

SGi
= SGi,T r at r = R (A.16)

Where SGi,0 is the bulk concentration substrate i (mM), SGi,T r is the concentration of substrate i

at the T. reesei mycelium surface (mM), R is the hyphal radius (dm), and δ is the boundary layer
thickness (dm). Integrating and applying the above BCs yields:

SGi
= (SGi,T r − SGi,0)

ln r − ln(R + δ)

lnR− ln(R + δ)
+ SGi,0 (A.17)

Next we apply a mole balance to the interface between the boundary layer and the mycelium
surface, equating the diffusive flux at the surface to the rates of hydrolysis of substrate i and
production of substrate i from hydrolysis of i+ 1 saccharides:

−DGi

dSGi

dr

∣∣∣∣
r=R

= rBGL
SGi
− rBGL

SGi+1
= −kBGL,Gi

SGi,T r + kBGL,Gi+1
SGi+1,T r (A.18)

Where DGi
is the diffusion coefficient of substrate i (dm2 h−1), −DGi

dSGi

dr
is the diffusive flux of

substrate i (mmol dm−2 h−1), rBGL
SGi

is the hydrolysis rate of substrate i on the mycelium surface
(mmol dm−2 h−1), and rBGL

SGi+1
is the hydrolysis rate of substrate i + 1 at the mycelium surface

(mmol dm−2 h−1). Substituting the radial concentration profile SGi
in the derivative above and

rearranging yields the following expression for SGi,T r:

SGi,T r =
R ln

(
R

R+δ

)
−DGi

[
−kBGL,Gi

SGi,T r + kBGL,Gi+1
SGi+1,T r

]
+ SGi,0 (A.19)

To estimate a value for δ, we can assume that the stagnant boundary layer is the primary barrier to
mass transfer. The mass transfer coefficient is then simply given by Sherwood number Sh = 2.0

and therefore δ ≈ R. The above equation then simplifies to:

SGi,T r =
−kBGL,Gi

SGi,T r + kBGL,Gi+1
SGi+1,T r

DGi

R ln 2 + SGi,0 (A.20)

We calculate the surface concentrations of each soluble saccharide (DP=1 to 4) as follows:

A.2.2.1 Cellotetraose: DP=4

SG4,T r =
−kBGL,G4SG4,T r

DG4

R ln 2 + SG4,0 (A.21)

228



Rearranging,

SG4,T r

SG4,0

=
1

1 +
kBGL,G4

R ln 2

DG4

= η4 (A.22)

with parameters defined for substrate i as:

ηi =
1

1 + kBGL,Gi
ϕi

(A.23)

ϕi =
R ln 2

DGi

(A.24)

Where ηi is the ratio of mycelium surface concentration to bulk concentration for substrate i, and
ϕi is the ratio of characteristic boundary layer length to the diffusion coefficient for substrate i (h
dm−1)

A.2.2.2 Cellotriose: DP=3

SG3,T r =
−kBGL,G3SG3,T r + kBGL,G4SG4,T r

DG3

R ln 2 + SG3,0 (A.25)

Which can be rearranged to yield:

SG3,T r = kBGL,G4ϕ3η3SG4,T r + η3SG3,0 (A.26)

= kBGL,G4ϕ3η3η4SG4,0 + η3SG3,0 (A.27)

With parameters defined as above.

A.2.2.3 Cellobiose: DP=2

Proceeding as for cellotetraose and cellotriose:

SG2,T r = kBGL,G3ϕ2η2SG3,T r + η2SG2,0 (A.28)

=
−kBGL,G2SG2,T r + kBGL,G3SG3,T r

DG2

(R ln 2) + SG2,0 (A.29)

= kBGL,G3ϕ2η2 (kBGL,G4ϕ3η3η4SG4,0 + η3SG3,0) + η2SG2,0 (A.30)

With parameters defined as above.
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A.2.2.4 Glucose

For glucose, we modify the interfacial mole balance since glucose is the product of all β-
glucosidase hydrolysis reactions:

−DG1

dSG1

dr

∣∣∣∣
r=R

= 2rBGL
SG2

+ rBGL
SG3

+ rBGL
SG4

(A.31)

= −2kBGL,G2SG2,T r − kBGL,G3SG3,T r − kBGL,G4SG4,T r (A.32)

Where all terms are as defined previously. Proceeding as above, SG1,T r can be expressed as:

SG1,T r = (2kBGL,G2SG2,T r + kBGL,G3SG3,T r + kBGL,G4SG4,T r)ϕ1 + SG1,0 (A.33)

Which can be simplified to the following expression by substituting in the above expressions for
SG2,T r, SG3,T r, and SG4,T r and making some rearrangements:

SG1,T r = SG1,0 + θ2SG2,0 + θ3SG3,0 + θ4SG4,0 (A.34)

Where the θ coefficients are recursively defined as follows:

θ2 =
2kBGL,G2ϕ1

1 + kBGL,G2ϕ2

(A.35)

θ3 = θ2
kBGL,G3ϕ2

1 + kBGL,G3ϕ3

+
kBGL,G3ϕ1

1 + kBGL,G3ϕ3

= (θ2ϕ2 + ϕ1)
kBGL,G3

1 + kBGL,G3ϕ3

(A.36)

θ4 = (θ3ϕ3 + ϕ1)
kBGL,G4

1 + kBGL,G4ϕ4

(A.37)

(A.38)

A.2.2.5 Proposed general framework

In general, we can describe the surface concentration of any soluble saccharide in terms of coeffi-
cients similar to those defined above for glucose. A proposed framework:

SGi,T r = SGi,0 +
4∑

k=i+1

θk→iSGk,0 (A.39)

Where θk→i is the contribution of substrate i concentration at the mycelium surface due to hydrol-
ysis of substrate k (mM mM−1 or any other ratio of consistent concentration units)
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A.3 T. reesei model

A.3.1 T. reesei growth

T. reesei is a multicellular filamentous fungus that has different mycelial growth states. Vegeta-
tive growth and enzyme secretion are highly active at hyphal tips, while senescent mycelium is
relatively dormant [82]. Assuming that growth at hyphal tips follows Monod kinetics and that T.

reesei is capable of simultaneous utilization of multiple soluble sugars (i.e. glucose and soluble
glucose oligosaccharides), T. reesei growth in the presence of isobutanol can be described with a
segregated kinetic model:

dCTr,v

dt
= µTrCTr,v − kv→sCTr,v (A.40)

dCTr,s

dt
= kv→sCTr,v − kTr,dCTr,s (A.41)

In the first expression, CTr,v is the vegetative mycelium concentration (g L−1), µTr is a general-
ized Monod function (h−1) depending on isobutanol concentration I (g L−1) and concentration of
soluble glucose saccharides SGi

(g L−1; i is the degree of polymerization), and kv→s is the specific
rate of conversion of vegetative mycelium to senescent mycelium (h−1). In the second expression,
CTr,s is the concentration of senescent mycelium (g L−1) and kTr,d is the specific death rate of the
senescent mycelium (h−1). We formulate µTr as follows:

KI
Tr =


(
1− I

I∗Tr

)nTr

if I ≤ I∗Tr

0 if I > I∗Tr

(A.42)

µTr = KI
Tr

∑
i

pSGi


(
µmax,Tr,SGi

+
mTr

YSGi
/CTr

) SGi
+

4∑
k=i+1

θk→iSGk

KTr,SGi
+ SGi

+
4∑

k=i+1

θk→iSGk

− mTr

YSGi
/CTr


(A.43)

with pSGi
=

SGi∑
j

SGj

Where KI
Tr is an empirical inhibition function (dimensionless) [83], I is isobutanol concentra-

tion (g L−1), I∗Tr is the growth inhibiting concentration of isobutanol (g L−1) for T. reesei, nTr is
an empirically determined exponent, µmax,Tr,SGi

is maximum specific growth rate on substrate i
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(h−1), pSGi
is the proportion of substrate i in the total substrate concentration (SGi

/
∑

SGk
), SGi

is
substrate i concentration (g L−1), KTr,SGi

is substrate i affinity (g L−1), the coefficients θk→i are as
described in section A.2.2, mTr is the maintenance coefficient (g-substrate g-biomass−1 h−1), and
YSGi

/CTr
is the substrate/biomass yield coefficient for substrate i (g-substrate g-biomass−1). We as-

sume that growth occurs via utilization of multiple substrates simultaneously, as opposed to diauxic
substrate utilization. Available experimental data suggests that this is a reasonable assumption for
T. reesei, especially the RUTC30 strain, which contains a loss-of-function mutation in catabolite
repression gene cre1 [84]. Our model assumes a total substrate maintenance requirement mTr

rather than an individual maintenance term for each substrate i; this is reasonable for substrates
with similar metabolism / energy yields (e.g. glucose and cellobiose), but could be revised for more
diverse substrates.

A.3.2 T. reesei enzyme secretion

Assuming that enzyme secretion is stoichiometrically coupled to growth and that composition of
secreted enzymes is constant, the following expression can be derived for cellulase production:

dET

dt
= YET /CTr

µTrCTr,v + kET
CTr,s (A.44)

dEi

dt
= xEi

dET

dt
= xEi

[
YET /CTr

µTrCTr,v + kET
CTr,s

]
(A.45)

Where ET is the total concentration of secreted enzymes (g L−1), YET /CTr
is the enzyme/biomass

yield coefficient (g-protein g-biomass−1), kET
is the specific enzyme production rate of senescent

mycelium (g-protein g-biomass−1 h−1), Ei is concentration of enzyme i (g L−1), xEi
is the fraction

of enzyme i in the total secretome (Ei/ET ), and the other terms are as described in previous
sections. T. reesei produces a large suite of biomass degrading enzymes, but for the purpose of our
cellulose hydrolysis model, we consider the most important enzymes [14]:

• cellobiohydrolase 1 (CBH1) and 2 (CBH2)

• endoglucanase 1 (EG1)

• β-glucosidase 1 (BGL)

A.3.3 T. reesei RUTC30 saccharide uptake

Assuming that saccharide uptake is stoichiometrically coupled to growth of vegetative mycelium
and that both vegetative and senescent mycelia consume saccharides for maintenance, the follow-
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ing expression for saccharide uptake by T. reesei can be derived:

rTr
SGi

=
[
YSGi

/CTr
KI

TrpSGi
µmax,Tr,SGi

+mTr

] SGi

KTr,SGi
+ Si

CTr,v +mTrpSGi

SGi

KTr,SGi
+ SGi

CTr,s

(A.46)
Where rTr

SGi
is the total rate of saccharide i uptake by T. reesei (g L−1 h−1), and all other terms are

as described in previous sections.

A.4 E. coli model

A.4.1 E. coli growth

We model E. coli growth with Monod kinetics [83], assuming that only glucose is utilized for
growth (i.e. glucose oligosaccharides cannot be metabolized):

dCEc

dt
= (µEc − kEc,d)CEc (A.47)

Where CEc is E. coli concentration (g L−1), µEc is specific growth rate (h−1), and kEc,d is the
specific cell death rate (h−1). µEc is assumed to be a function of glucose concentration SG1 , with
concentration-dependent inhibition from isobutanol:

KI
Ec,SG1

=


(
1− I

I∗Ec,SG1

)nEc,SG1

if I ≤ I∗Ec,SG1

0 if I > I∗Ec,SG1

(A.48)

µEc = KI
Ec,SG1

[(
µmax,Ec,SG1

+
mEc,SG1

YSG1
/CEc

)
SG1

KEc,SG1
+ SG1

−
mEc,SG1

YSG1
/CEc

]
(A.49)

Where KI
Ec,SG1

is an empirical inhibition function (dimensionless) [83], I is isobutanol concen-
tration (g L−1), I∗Ec,SG1

is the growth inhibiting concentration of isobutanol (g L−1) for E. coli,
nEc,SG1

is an empirically determined exponent, µmax,Ec,SG1
is maximum specific growth rate of E.

coli on glucose (h −1), KEc,SG1
is glucose affinity (g L−1), YSG1

/CEc
is the glucose/biomass yield

coefficient (g-substrate g-biomass−1), and mEc,SG1
is the maintenance coefficient (g-substrate g-

biomass−1 h−1).
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A.4.2 E. coli saccharide uptake

Substrate uptake is assumed to be stoichiometrically coupled to growth. Additionally, experimental
data for E. coli demonstrates non-growth associated substrate uptake (i.e. during stationary phase)
for maintenance / isobutanol production [1]. We then model uptake of glucose as follows:

rEc
SG1

= YSG1
/CEc

KI
Ec,SG1

µmax,Ec,SG1
SG1

KEc,SG1
+ SG1

CEc +mEc,SG1

SG1

KEc,SG1
+ SG1

CEc (A.50)

Where rEc
SG1

is the rate of total glucose uptake by E. coli (g L−1 h−1), and the other terms are as
described in previous sections.

A.4.3 E. coli isobutanol production

Unlike many metabolic products, isobutanol production is not stoichiometrically coupled to
growth, since substantial isobutanol production is observed during stationary phase [1]. To ac-
count for this, all consumed substrates, both for growth and maintenance, will be assumed to be
converted to isobutanol. For generality, we allow yield coefficients to vary between growth and
non-growth associated substrate uptake:

dI

dt
= Y growth

I/SG1
KI

Ec,SG1

µmax,Ec,SG1
SG1

KEc,SG1
+ SG1

CEc + Y maint
I/SG1

mEc,SG1

SG1

KEc,SG1
+ SG1

CEc (A.51)

Where Y growth
I/SG1

is the growth associated isobutanol/glucose yield coefficient (g-iBtOH g-
substrate−1) and Y maint

I/SG1
is the non-growth (maintenance) isobutanol/glucose yield coefficient (g-

iBtOH g-substrate−1). In the case of E. coli K12, both yield coefficients would be 0 (i.e. no
isobutanol production).

A.5 Enzymatic cellulose hydrolysis: general framework

There are numerous models reported in literature for microbial growth on cellulose [14]. However,
few of these models accounts for the hydrolysis of cellulose to soluble saccharides. Competition
between the E. coli and T. reesei for soluble saccharides is a crucial ecological interaction that
needs to be accounted for to accurately predict population dynamics, behavior, and isobutanol
production in the TrEc consortium. Enzymatic cellulose hydrolysis is a complex process that
is poorly understood, and remains an active area of research [14]. There are two main classes
of cellulase: endoglucanases and cellobiohydrolases (also known as exoglucanases) [14]. Most
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cellulolytic organisms produce multiple, even dozens of cellulases of each type [14]. As a starting
point for developing mechanistic models of cellulose hydrolysis, we utilize the general framework
for enzymatic cellulose hydrolysis proposed by [14] and [85], which we describe in the following
sections. Additionally, we also include generalized soluble saccharide mole balances that describe
rate of production/consumption due to enzymatic hydrolysis and microbial uptake.

A.5.1 Endoglucanase

Endoglucanases adsorb at random to cellulose molecules and cleave them to release two shorter
chain polysaccharides [85]. This mechanism can be represented as [85]:

SGi
+ EEGm

KEGm
dis←−−→ SGi

· EEGm
kEGm−−−→ EEGm + SGi−j

+ SGj
(A.52)

Where EEGm is endoglucanase m, KEGm
dis is the dissociation constant for endoglucanase m (mM

bonds), kEGm is the rate constant of adsorbed EEGm (mmol bonds g-EGm·SGi
−1 h−1), i and j are

cellulose chain lengths, with 1 ≤ j < i, SGi
· EEGm is adsorbed EEGm, and other terms are as

previously described. The rate of hydrolysis of saccharide SGi
by endoglucanase m is then [85]:

rEGm
SGi

= −kEGm [SGi
· EEGm] (A.53)

Where rEGm
SGi

is hydrolysis rate (mM bonds h−1) and [SGi
· EEGm] is the mass concentration of

EEGm adsorbed to SGi
(g L−1). Cellulose saccharides SGi

can be formed from endoglucanase
hydrolysis of longer cellulose molecules SGk

, with k > i. The rate of hydrolysis of SGk
to SGi

is
equal to the overall rate of hydrolysis of SGk

times the fraction of hydrolysis events that lead to
a chain length SGi

, fGk→Gi
. If all glycosidic bonds are cleaved at an equal rate, then fGk→Gi

=

2/ (k − 1), leading to the following [85]:

rEGm
SGk

→SGi
= fGk→Gi

rEGm
SGk

= − 2

k − 1
kEGm [SGk

· EEGm] (A.54)

The overall rate of formation of SGi
by endoglucanase is then the sum of the rate of hydrolysis of

SGi
and the rate of formation of SGi

from SGk
with k > i [85]:

rEGm
SGi

= −kEGm [SGi
· EEGm]−

∑
k>i

fGk→Gi
rEGm
SGk

(A.55)

= −kEGm [SGi
· EEGm] +

∑
k>i

2

k − 1
kEGm [SGk

· EEGm] (A.56)
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Where the upper limit of the summation is implicitly understood as DPmax (maximum polysac-
charide length i for given type of cellulose) and other terms are as described previously.

A.5.2 Exoglucanase

In contrast to endoglucanases, exoglucanases (often referred to as cellobiohydrolases) bind to the
ends of cellulose chains and processively hydrolyze cellobiose units. Mechanistically, this can be
represented as [85]:

SGi
+ ECBHm

KCBHm
dis←−−−→ SGi

· ECBHm
kCBHm−−−−→ ECBHm + SGi−2

+ SG2 (A.57)

Where ECBHm represents cellobiohydrolase m, KCBHm
dis is the dissociation constant for cellobio-

hydrolase m (mM bonds), kCBHm is the rate constant of adsorbed ECBHm (mmol bonds g-
CBHm·SGi

−1 h−1), SGi
· ECBHm is adsorbed EEGm, and the other terms are as described pre-

viously. The rate of hydrolysis of saccharide SGi
by cellobiohydrolase is then [85]:

rCBHm
SGi

→SG2
= −kCBHm [SGi

· ECBHm] (A.58)

Where terms are similar to those described for endoglucanase. SGi
can also be formed from cel-

lobiohydrolase hydrolysis of i+2 chain length cellulose molecules. The overall rate of formation of
SGi

by cellobiohydrolase is then the sum of the rate of hydrolysis of SGi
and the rate of formation

of SGi
from i+ 2 saccharides [85]:

rCBHm
SGi

= −kCBHm [SGi
· ECBHm] + kCBHm

[
SGi+2

· ECBHm

]
(A.59)

Where terms are as described in previous sections. The overall rate of formation of SG2 is the sum
of cellobiohydrolase hydrolysis rates for all saccharides SGi

for i ≥ 3 :

rCBHm
SG2

= kCBHm

∑
i≥3

[SGi
· ECBHm] (A.60)

Where the upper limit of the summation is implicitly understood as DPmax and other terms are as
described previously.

A.5.3 β-glucosidase

β-glucosidase hydrolyzes cellobiose and other soluble cellulose oligosaccharides to glucose [86].
For soluble saccharides of DP i = 2..4 this can be mechanistically represented as:
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SGi
+ EBGLm

KBGLm
Gi,dis←−−−→ SGi

· EBGLm

kBGLm,Gi−−−−−−→ EBGLm + SGi−1
+ SG1 (A.61)

Where EBGLm represents β-glucosidase m, KBGLm
Gi,dis

is the dissocation constant for β-glucosidase
m (mM substrate), kBGLm,Gi

is the rate constant of adsorbed EBGLm (mmol g-BGLm·SGi
−1 h−1),

SGi
· EBGLm is the β-glucosidase / substrate complex, and the other terms are as described in

previous sections. The rate of hydrolysis of SGi
or formation of SG1 is then:

rBGLm
SGi

= −rBGLm
SG1

= −kBGLm,Gi
[SGi
· EBGLm] (A.62)

For cellobiose, the coefficient before rBGLm
SG1

would be −2 instead −1 since two glucoses are
produced per cellobiose.

A.5.4 Saccharide mass balances

In general, saccharide mass balances must account for both enzymatic cellulose hydrolysis and
microbial saccharide uptake. However, insoluble cellulose molecules (chain length i > 4) are not
utilized biologically. Thus for chain length i > 4 cellulose molecules, net rates of formation from
endoglucanase and cellobiohydrolase need only be considered. Writing a mass balance for each
cellulose molecule of chain length i with i > 4 yields [85]:

dSGi

dt
=
∑
m

rEGm
SGi

+
∑
n

rCBHn
SGi

for i > 4 (A.63)

Where all terms are as described in previous sections. For the case of the T. reesei cellulase sys-
tem, consisting of endoglucanase 1 (EG1), cellobiohydrolase 1 (CBH1), and cellobiohydrolase 2
(CBH2), the mass balances reduce to:

dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
for i > 4 (A.64)

Where all terms are as described in previous sections. For soluble saccharides, microbial saccha-
ride uptake and β-glucosidase hydrolysis must also be considered. For a co-culture of T. reesei and
E. coli, writing a mass balance on cellulose molecules of chain length 1 ≤ i ≤ 4 yields:

dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
+ rBGL

SGi
− 1

MWSGi

(
rTr
SGi

+ rEc
SGi

)
for 1 ≤ i ≤ 4 (A.65)

Where MWSGi
is the molecular weight of SGi

(g mmol−1), and all other terms are as described in
previous sections. Most E. coli strains cannot metabolize cellulose oligosaccharides and are thus
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only able to use SG1; additionally, while it seems biologically plausible, there is little evidence
to support significant uptake and metabolism of i > 2 glucose saccharides by T. reesei. We thus
reduce the i ≤ 4 saccharide balances to:

dSGi

dt
= rEG1

SGi
+ rCBH1

SGi
+ rCBH2

SGi
+ rBGL

SGi
for 3 ≤ i ≤ 4 (A.66)

dSG2

dt
= rEG1

SG2
+ rCBH1

SG2
+ rCBH2

SG2
+ rBGL

SG2
− 1

MWSG2

rTr
SG2

(A.67)

dSG1

dt
= rEG1

SG1
+ rCBH1

SG1
+ rCBH2

SG1
+ rBGL

SG1
− 1

MWSG1

(
rTr
SG1

+ rEc
SG1

)
(A.68)

Where all terms are as described in previous sections.

A.6 Enzymatic cellulose hydrolysis: kinetics and rate laws

Deriving tractable kinetic expressions for enzymatic cellulose hydrolysis requires making simpli-
fying assumptions, many of which are idealizations that do not apply to real systems. Zhang and
Lynd [85] derived rate laws for endoglucanase and exoglucanase by incorporating enzyme mass
balances with adsorption equilibria and making the following simplifying assumptions:

1. Random adsorption.

2. Continuous equilibrium between adsorbed and free components.

3. No interactions between adsorbing components / affinity does not vary with fractional cov-
erage.

4. Substrate binding sites are in excess of enzyme.

5. Constant substrate reactivity.

6. Negligible inhibition from hydrolysis products (e.g. SG1 and SG2).

Some of the assumptions made in [85] are clearly not applicable to enzymatic cellulose hydrolysis
in the TrEc consortium. In particular, the assumption of excess substrate binding sites is valid
only in the early stages of growth; during later stages, when enzyme concentrations are maximal
and cellulose concentrations low, substrate binding sites are clearly not in excess of enzyme
binding sites [14]. Additionally, in real systems, substrate reactivity (defined in terms of apparent
rate constants k) is found to decrease by one to two orders of magnitude as cellulose conversion
approaches 100% [14].
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To better model enzymatic cellulose hydrolysis with the TrEc consortium, we advanced
Zhang and Lynd’s model [85] by deriving a new set of kinetics for endoglucanase and ex-
oglucanase. Our derivation incorporates substrate site balances and empirical correlations for
declining reactivity, described below. As a secondary consideration, we also include empirical
non-competitive product (SG1 and SG2) inhibition expressions in our kinetics, though these terms
are likely to be unimportant since soluble saccharide concentrations are generally low during TrEc
consortium growth on cellulosic substrates.

A.6.1 Endoglucanase

As described in section A.5.1, the overall rate of formation of SGi
by endoglucanase is the sum of

the hydrolysis rate of SGi
and the rate of formation of SGi

from SGk
hydrolysis with k > i [85]:

rEGm
SGi

= −kEGm [SGi
· EEGm] +

∑
k>i

2

k − 1
kEGm [SGk

· EEGm] (A.56)

Where the upper limit of the summation is implicitly understood as DPmax (maximum polysac-
charide length i for given type of cellulose) and terms are as described previously. Computing
rEGm
SGi

requires us to express [SGi
· EEGm] in terms of known or measurable variables. Zhang

and Lynd [85] derive such expressions by incorporating EEGm mass balances with the EEGm

adsorption equilibrium, given below:

Adsorption equilibrium [85]:

KEGm
dis =

EEGm,fCf∑
i≥2

[SGi
· EEGm]

(A.69)

Where EEGm,f is concentration of free (i.e. unadsorbed) endoglucanase m (g-EGm L−1), Cf is
concentration of free substrate binding sites (mM bonds), the upper limit of the summation is
implicitly understood as DPmax, and other terms are as described previously.

Enzyme balance [85]:

EEGm = EEGm,f +
∑
i≥2

[SGi
· EEGm] (A.70)
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Where the upper limit of the summation is implicitly understood as DPmax and other terms are as
described previously.

We modify the derivation described in [85] by incorporating a balance on substrate binding
sites [85]:

∑
i≥2

Fa (i− 1)SGi
=
∑
i≥2

2αEGm
[SGi
· EEGm]

MWEGm

+ Cf (A.71)

Where Fa is the fraction of enzyme accessible β-glycosidic bonds, αEGm is the number of cel-
lobiose lattice units occupied by a single molecule of endoglucanase m, MWEGm is the molecular
weight of endoglucanase m (g-EGm mmol−1), Cf is the concentration of free β-glycosidic bonds
accessible to cellulase (mM bonds), and the upper limit of the summation is implicitly understood
as DPmax. We then derive expressions for [SGi

· EEGm]:

[SGi
· EEGm] =

(i− 1)SGi∑
i≥2

(i− 1)SGi

Y (A.72)

Y =
1

2
bY ±

1

2

√
b2Y −

4

βEGm

EEGm

∑
i≥2

Fa (i− 1)SGi
(A.73)

bY = EEGm +
KEGm

dis

βEGm

+
1

βEGm

∑
i≥2

Fa (i− 1)SGi
(A.74)

βEGm =
2αEGm

MWEGm

(A.75)

Where all terms are as described previously. Incorporating balances on both enzyme binding sites
and substrate binding sites into the adsorption equilibrium expression results in a quadratic equa-
tion in [SGi

· EEGm]; the physically meaningful root of Y is the one for which binding site balances
are satisfied: 0 < [SGi

· EEGm] < EEGm and 0 < [SGi
· EEGm] < (1/βEGm)

∑
i≥2

Fa (i− 1)SGi

[14].
The overall rate of formation of SGi

due to endoglucanase is then:

rEGm
SGi

=
kEGmY∑

i≥2

(i− 1)SGi

(
2
∑
k>i

SGk
− (i− 1)SGi

)
(A.76)

Where all terms are as described previously.
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A.6.2 Exoglucanase

As described in section A.5.2, the overall rate of formation of SGi
by cellobiohydrolase is the sum

of the hydrolysis rate of SGi
and the rate of formation of SGi

from hydrolysis of i+ 2 saccharides
[85]:

rCBHm
SGi

= −kCBHm [SGi
· ECBHm] + kCBHm

[
SGi+2

· ECBHm

]
(A.59)

Computing rCBHm
SGi

requires us to express [SGi
· ECBHm] in terms of known or measurable

variables. Zhang and Lynd [85] derive expressions for [SGi
· ECBHm] analogous to the above

described procedure for endoglucanase, that is by incorporating ECBHm mass balances with
ECBHm adsorption equilibrium, shown below:

Adsorption equilibrium [85]:

KCBHm
dis =

ECBHm,fCf∑
i≥3

[SGi
· ECBHm]

(A.77)

Where ECBHm,f is concentration of free (i.e. unbound) cellobiohydrolase m (g-CBHm L−1), Cf

is concentration of free substrate sites (mM bonds), the upper limit of the summation is implicitly
understood as DPmax, and other terms are as described previously.

Enzyme balance [85]:

ECBHm = ECBHm,f +
∑
i≥3

[SGi
· ECBHm] (A.78)

Where terms are as described previously.
We modify the approach described in [85] by including a balance on substrate binding sites [85]:

∑
i≥3

2FaSGi
=
∑
i≥3

[SGi
· ECBHm]

MWCBHm

+ Cf (A.79)

Where MWCBHm is the molecular weight of cellobiohydrolase m (g-CBHm mmol−1), the upper
limit of the summation is implicitly understood as DPmax, and other terms are as described pre-
viously. Note that we assume cellobiohydrolases adsorbs only at cellulose chain ends. We then
derive expressions for [SGi

· ECBHm]:
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[SGi
· ECBHm] =

SGi∑
i≥3

SGi

Z (A.80)

Z =
1

2
bZ ±

1

2

√
b2Z −

8FaECBHm

βCBHm

∑
i≥3

SGi
(A.81)

bZ = ECBHm +
KCBHm

dis

βCBHm

+
2Fa

βCBHm

∑
i≥3

SGi
(A.82)

Where βCBHm = 1/MWCBHm and all other all terms are as described in previous sections. In-
corporating balances on both enzyme binding sites and substrate binding sites into the adsorption
equilibrium expression results in a quadratic equation in [SGi

· ECBHm]; the physically meaningful
root of Z is the one for which binding site balances are satisfied: 0 < [SGi

· ECBHm] < ECBHm

and 0 < [SGi
· ECBHm] < MWCBHm

∑
i=n

2FaSGi
[14]. The overall rate of formation of SGi

by

cellobiohydrolase is the sum of the hydrolysis rate of SGi
and the rate of formation of SGi

from
hydrolysis of i+ 2 saccharides:

rCBHm
SGi

=
kEGmZ∑
i≥3

SGi

(
SGi+2

− SGi

)
(A.83)

Where all terms are as described previously. The overall rate of formation of SG2 is the sum of
cellobiohydrolase hydrolysis rates for all saccharides SGi

for i ≥ 3:

rCBHm
SG2

= kCBHmZ (A.84)

Where all terms are as described previously.

A.6.3 β-glucosidase

We adopt multisubstrate Michaelis-Menten kinetics for β-glucosidase [86]:

rBGLm
SGi

= − kBGLm,Gi
EBGLmSGi

KBGLm
M,Gi

(
1 +

SG1

KBGLm
G1

4∑
i=2

SGi

KBGLm
M,Gi

) (A.85)

Where KBGLm
M,Gi

is the Michaelis constant for SGi
(mM), KBGLm

G1
is the glucose inhibition term

(mM), and other terms are as described in previous sections. The total rate of glucose production
via β-glucosidase is then:

242



rBGLm
SG1

= −2rBGLm
SG2

−
4∑

i=2

rBGLm
SGi

(A.86)

A.6.4 Empirical relations for substrate reactivity and product inhibition

A.6.4.1 Declining substrate reactivity

It has long been observed that specific rates of cellulose hydrolysis (i.e. rate per adsorbed cellulase)
decline by one to two orders of magnitude as the reaction proceeds to completion [14]. Numerous
explanations for this phenomenon have been proposed, but presently the most widely accepted the-
ory is declining substrate reactivity [14]. Whatever the cause, the phenomenon can be empirically
modeled. We adopt the following model which describes rate constants for cellulose hydrolysis as
a function of substrate conversion [242]:

km = km,max [fdeact (1−X)ndeact,m + (1− fdeact)] (A.87)

X =

∑
i>4

MWGi
(SGi
|t0 − SGi

|t)∑
i>4

MWGi
SGi
|t0

(A.88)

Where km is the apparent rate constant for enzyme m (m = EG1, CBH1, or CBH2 in the case
of the T. reesei cellulase system; mmol bonds g-m−1 h−1), km,max the maximum rate constant
for enzyme m (i.e. at 0% conversion; mmol bonds g-m−1 h−1), 1 − fdeact is fractional residual
activity, ndeact,m is an empirically determined exponent for cellulase m, X is substrate conversion
(g-consumed g-initial−1), MWGi

is the molecular weight of saccharide Gi (g mmol−1), SGi
|t0 is

the initial concentration of saccharide Gi (mM), SGi
|t is the concentration of saccharide Gi at time

t (mM), and the upper limit of the summation is implicitly understood as DPmax.

A.6.4.2 Product inhibition

Glucose and cellobiose have been observed to non-competitively inhibit most cellulase enzymes
[14]. Expressions for inhibition can be formally derived from reaction mechanisms; rather than
performing a formal derivation for each enzyme, we empirically describe non-competitive inhibi-
tion in terms of an apparent reaction rate constant [243]:

km =
km,max

1 +
SG1

Km
G1

+
SG2

Km
G2

(A.89)

243



Where Km
G1

and Km
G2

are dissociation constants between enzyme m (m =EG1, CBH1, or CBH2

in the case of the T. reesei cellulase system; g L−1 or mM) and SG1 and SG2 respectively, and all
other terms are as described previously. During microbial growth on cellulose, soluble saccharide
concentrations are likely to be very low, so accounting for product inhibition is probably unimpor-
tant. However, for completeness we include inhibition in our model.

A.6.4.3 Combined expression for declining reactivity and substrate inhibition

The above empirical expressions can be combined to describe effects of declining substrate reac-
tivity and product inhibition on reaction rate constants:

km = km,max

fdeact (1−X)ndeact,m + (1− fdeact)

1 +
SG1

Km
G1

+
SG2

Km
G2

 (A.90)

Where all terms are as described previously.
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APPENDIX B

Model parameters

Table B.1: List of all parameters used in global sensitivity analysis, sampling distribution (normal or uniform) for each
parameter, values of µj , cv,j (normal distribution) or aj,min, aj,max (uniform distribution), description/units for each
parameter, and additional notes/references.

IC or parameter µj /aj,min cv,j /aj,max Distribution Description Notes / source

log(Fa) −3 −1 Uniform Fractional accessible bonds Range from PASC to Avi-
cel [85]

DP 1.6 2.25 Uniform Cellulose mean degree of polymerization
(DP; log scale)

Median value corresponds
to Avicel [85]

cv,DP 0 0.1 Uniform cv of cellulose DP distribution Est. from [91]∑
SGi

(t0) 10 40 Uniform Initial cellulose concentration (g L−1) −∑
Ci(t0) 0.1 1 Uniform Total initial microbial biomass (g L−1) −

XTr,v(t0) 0.72 0.2 Normal Initial fraction vegetative mycelium Biologically reasonable
range

XP (t0) 0.5 0.2 Normal Initial protein concentration (fraction of
total biomass)

−

log(XEc)(t0) −3 0 Uniform Initial Ec population (fraction of total
biomass)

−

I(t0) 0 5 Uniform Initial isobutanol concentration (g L−1) −

xCBH1 0.6 0.2 Normal Fraction of CBH1 in total protein [85]

xCBH2 0.2 0.2 Normal Fraction of CBH2 in total protein [85]

xEG1 0.12 0.2 Normal Fraction of EG1 in total protein [85]

xBGL 0.03 0.2 Normal Fraction of BGL in total protein Est. from [244] and [81]

ndeact 5 0.2 Normal Declining substrate reactivity exponent Est. from [242]

fdeact 0.8 0.99 Uniform 1−fdeact = residual cellulase activity at
100% conversion

Est. from [242]

kEG1 24 0.2 Normal EG1 rate constant (mmol g-EG1−1 h−1) Est. from [85]

KEG1
dis 0.33 0.2 Normal EG1 dissociation constant (mM) [85]

βEG1 0.166 0.2 Normal 2αEG1/MWEG1 (mmol substrate sites
g-EG1−1)

Est. from [245] and [14]
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Table B.1: List of all parameters used in global sensitivity analysis, sampling distribution (normal or uniform) for each
parameter,values of µj , cv,j (normal distribution) or aj,min, aj,max (uniform distribution), description/units for each
parameter, and additional notes/references.

IC or parameter µj /aj,min cv,j /aj,max Distribution Description Notes / source

kCBH1 4.8 0.2 Normal CBH1 rate constant (mmol g-CBH1−1

h−1)
Est. from [85]

KCBH1
dis 0.25 0.2 Normal CBH1 dissociation constant (mM) [85]

βCBH1 0.019 0.2 Normal 1/MWCBH1 (g-CBH1 mmol−1) Est. from [245] and [14]

kCBH2 9.6 0.2 Normal CBH2 rate constant (mmol g-EG1−1

h−1)
Est. from [85]

KCBH2
dis 0.25 0.2 Normal CBH2 dissociation constant (mM) [85]

βCBH2 0.022 0.2 Normal 1/MWCBH2 (g-CBH2 mmol−1) Est. from [245] and [14]

kBGL,G2 339 0.2 Normal BGL rate constant for cellobiose (mmol
g-BGL−1 h−1)

[86]

KBGL
M,G2

1.36 0.2 Normal BGL affinity for cellobiose (mM) [86]

KBGL
G1

11.33 0.2 Normal BGL competitive glucose inhibition con-
stant (mM)

[86]

kBGL,G3 758 0.2 Normal BGL rate constant for cellotriose (mmol
g-BGL−1 h−1)

KBGL
M,G3

0.2 0.2 Normal BGL affinity for cellotriose (mM) [86]

kBGL,G4 1810 0.2 Normal BGL rate constant for cellotetraose (mmol
g-BGL−1 h−1)

KBGL
M,G4

0.38 0.2 Normal BGL affinity for cellotetraose (mM) [86]

Ki
G2

17.2 0.2 Normal Cellulase (EG1, CBH1, CBH2) non-
competitive cellobiose inhibition constant
(mM)

Est. from [243]

Ki
G1

66.6 0.2 Normal Cellulase (EG1, CBH1, CBH2) non-
competitive glucose inhibition constant
(mM)

Est. from [243]

kTr,d 0.005 0.2 Normal Death rate of senescent mycelium (h−1) Est. from [82]

KTr,SG1
0.02 0.5 Normal Tr glucose affinity (g L−1) Est. from [246]

KTr,SG2
0.0001 0.5 Normal Tr cellobiose affinity (g L−1) Est. from [247]

θG2→G1 1.7 0.2 Normal Glucose contribution at mycelium surface
due to cellobiose hydrolysis (mM mM−1)

Calculated from [248] and
[249]

θG3→G1 2.2 0.2 Normal Glucose contribution at mycelium sur-
face due to cellotriose hydrolysis (mM
mM−1)

Calculated from [248] and
[249]

θG4→G1 2.5 0.2 Normal Glucose contribution at mycelium sur-
face due to cellotetraose hydrolysis (mM
mM−1)

Calculated from [248] and
[249]

YSG1
/CTr

2 0.2 Normal Glucose/biomass yield coefficient for Tr
(g-glucose g-biomass−1)

Est. from [246]
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Table B.1: List of all parameters used in global sensitivity analysis, sampling distribution (normal or uniform) for each
parameter,values of µj , cv,j (normal distribution) or aj,min, aj,max (uniform distribution), description/units for each
parameter, and additional notes/references.

IC or parameter µj /aj,min cv,j /aj,max Distribution Description Notes / source

YSG1
/CTr

2 0.2 Normal Cellobiose/biomass yield coefficient for
Tr (g-cellobiose g-biomass−1)

Est. ≈glucose

YET /CTr
0.5 0.2 Normal Enzyme/biomass yield coefficient for Tr

(g-protein g-biomass−1)
Est. from [14] and [250]

µmax,Tr,SG1
0.087 0.2 Normal Maximum specific growth rate of Tr on

glucose (h−1)
Est. from [82], [251], and
[246]

µmax,Tr,SG2
0.025 0.5 Normal Maximum specific growth rate of Tr on

cellobiose (h−1)
Est. from [247]

kv→s 0.01 0.2 Normal Specific rate of conversion of vegetative
mycelium to aged mycelium (h−1)

Est. from [82]

mTr 0.027 0.2 Normal Maintenance coefficient for Tr (g-
substrate g-biomass−1 h−1)

Est. from [246]

ITr,∗ 0.2 0.2 Normal Isobutanol inhibition exponent for Tr
(exponential inhibition model; g-iBtOH
L−1)

Est. ≈Ec

kET
0.008 0.2 Normal Specific enzyme production rate of senes-

cent mycelium (g-protein g-biomass−1

h−1)

Est. as ≈ 1/5 rate of veg-
etative mycelium

kEc,d 0.001 0.2 Normal Ec death rate (h−1) Est. from [2]

KEc,SG1
0.001 0.5 Normal Ec glucose affinity (g L−1) Est. from [2]

YSG1
/CEc

6.4 0.5 Normal Glucose/biomass yield coefficient for Ec
(g-glucose g-biomass−1)

Est. from [2]

mEc,SG1
0.23 0.5 Normal Maintenance coefficient for Ec (g-glucose

g-biomass−1 h−1)
Est. from [1] and [2]

µmax,Ec,SG1
0.08 0.2 Normal Maximum specific growth rate of Ec on

glucose (h−1)
Est. from experimental
data in this study

Y growth
I/SG1

0 0.41 Uniform Growth associated isobutanol/glucose
yield coefficient for Ec (g-iBtOH g-
glucose−1)

Est. from [1] and [2]; [3]

Y maint
I/SG1

0 0.41 Uniform Maintenance associated isobu-
tanol/glucose yield coefficient for Ec
(g-iBtOH g-glucose−1)

Est. from [1] and [2]; [3]

IEc,∗ 0.2 0.2 Normal Isobutanol inhibition exponent for Ec
(exponential inhibition model; g-iBtOH
L−1)

Est. from experimental
data in this study
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Strain

Parameter Units NV3 pSA55/69 JCL260 pSA55/69

µmax,Ec,SG1
h−1 0.14± 0.02 0.11± 0.01

kEc,d h−1 0.001 0.001

KEc,SG1
g L−1 0.001 0.001

YSG1
/CEc

g-glucose g-biomass−1 8.3 6.4

mEc,SG1
g-glucose g-biomass−1 h−1 0.1 0.2

Y growth
I/SG1

g-iBtOH g-glucose−1 0.25 0.3

Y maint
I/SG1

g-iBtOH g-glucose−1 0.17 0.41

Table B.2: Model parameter values for E. coli JCL260 pSA55/69 and E. coli NV3 pSA55/69. µmax,Ec,SG1
was

measured experimentally; remaining parameter values were estimated from data presented in [1], [2] and [3].
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Species Experiment notes Parameter Value Units

E. coli K12 Microplate µmax,Ec,SG1
0.41± 0.02 h−1

E. coli NV3 Microplate µmax,Ec,SG1
0.43± 0.03 h−1

E. coli JCL260 Microplate µmax,Ec,SG1
0.34± 0.01 h−1

E. coli NV3 pSA55/69∗ Microplate µmax,Ec,SG1
0.14± 0.02 h−1

E. coli JCL260 pSA55/69 Microplate µmax,Ec,SG1
0.11± 0.01 h−1

E. coli JCL260 pSA55/69 Microplate; NG50; 0% (w/v) i-BtOH µmax,Ec,SG1
0.11± 0.005 h−1

E. coli JCL260 pSA55/69 Microplate; NG50; 0.25% (w/v) i-BtOH µmax,Ec,SG1
0.071± 0.003 h−1

E. coli JCL260 pSA55/69 Microplate; NG50; 0.5% (w/v) i-BtOH µmax,Ec,SG1
0.006± 0.002 h−1

T. reesei RUTC30 Flask µmax,Tr,SG1
0.092± 0.01 h−1

T. reesei RUTC30 Flask; 0.2% (w/v) i-BtOH µmax,Tr,SG1
0.08± 0.01 h−1

E. coli K12 Chemostat KEc,SG1
0.24± 0.19 mg L−1

E. coli K12 Chemostat YSG1
/CEc

1.4± 0.7 g-glucose g-biomass−1

E. coli K12 Chemostat mEc,SG1
0.4± 0.2 g-glucose g-biomass−1 h−1

T. reesei RUTC30 Chemostat KTr,SG1
24± 18 mg L−1

T. reesei RUTC30 Chemostat YSG1
/CTr

1.4± 0.3 g-glucose g-biomass−1

T. reesei RUTC30 Chemostat mTr 0.0175± 0.005 g-substrate g-biomass−1 h−1

T. reesei RUTC30 Bioreactor; RUTC30 on Avicel YSG1
/CTr

3.95 g-glucose g-biomass−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel KTr,SG1
0.1 mg L−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel YSG1
/CTr

1.75 g-glucose g-biomass−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel YSG2
/CTr

1.75 g-cellobiose g-biomass−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel YET /CTr
0.1 g-protein g-biomass−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel kET
0.001 g-protein g-biomass−1 h−1

T. reesei RUTC30 Bioreactor; K12/RUTC30 on Avicel µmax,Tr,SG1
0.08 h−1

Endoglucanase I Bioreactor; K12/RUTC30 on Avicel kEG1 67.2 mmol g-EG1−1 h−1

Cellobiohydrolase I Bioreactor; K12/RUTC30 on Avicel kCBH1 13.44 mmol g-CBH1−1 h−1

Cellobiohydrolase II Bioreactor; K12/RUTC30 on Avicel kCBH2 26.88 mmol g-CBH2−1 h−1

β-glucosidase I Bioreactor; K12/RUTC30 on Avicel kBGL,G2 949.2 mmol g-BGL−1 h−1

β-glucosidase I Bioreactor; K12/RUTC30 on Avicel kBGL,G3 2122.4 mmol g-BGL−1 h−1

β-glucosidase I Bioreactor; K12/RUTC30 on Avicel kBGL,G3 5068 mmol g-BGL−1 h−1

E. coli K12 Bioreactor; K12/RUTC30 on Avicel kEc,d 0.00001 h−1

E. coli K12 Bioreactor; K12/RUTC30 on Avicel KEc,SG1
0.00001 mg L−1

E. coli K12 Bioreactor; K12/RUTC30 on Avicel YSG1
/CEv

3 g-glucose g-biomass−1

E. coli K12 Bioreactor; K12/RUTC30 on Avicel mEc,SG1
0.02 g-glucose g-biomass−1 h−1

E. coli K12 Bioreactor; K12/RUTC30 on Avicel µmax,Ec,SG1
0.0425 h−1

Table B.3: Experimentally measured model parameters. ∗We estimated µmax,Ec,SG1
for E. coli NV3 pSA55/69

by multiplying µmax,Ec,SG1
for NV3 (i.e. the plasmid free strain) by the ratio of JCL260 pSA55/69 : JCL260

µmax,Ec,SG1
values.
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Major carbohydrates (g g−1)

Species Ara Xyl Mann Gal Glc Cry cel Total

T. reesei RUTC30 (1± 1)E−3 (5± 2)E−3 0.049± 0.008 0.021± 0.003 0.14± 0.02 0 0.21± 0.02

E. coli K12 (2±0.4)E−4 (2±0.3)E−4 (2± 0.5)E−4 (1± 0.2)E−3 0.029± 0.001 0.021±0.005∗ 0.05±0.005

AFEX CS 0.03± 0.002 0.20± 0.03 (2.6± 0.4)E−3 0.01± 0.001 0.034± 0.007 0.47± 0.04 0.74± 0.05

Table B.4: Carbohydrate composition of microbial biomass and AFEX pre-treated corn stover (taken from AFEX CS
TMM media sample). Abbreviations: Arabinose, Ara; Xylose, Xyl; Mannose, Mann; Galactose, Gal; Hemicellulose
glucan, Glc; Crystalline cellulose, Cry cel. ∗Neither T. reesei nor E. coli are known to produce crystalline cellulose;
since the Updegraff assay is non-specific, the measured value probably reflects some other recalcitrant polysaccharide

pH µmax,Tr (h−1) Source µmax,Ec (h−1) Source µ∗

5.3 0.104± 0.01 Est from [109] 0.09± 0.01 This study 0.9± 0.1

5.5 0.098± 0.01 Est from [109] 0.21± 0.03 This study 2.1± 0.4

6 0.092± 0.01 This study 0.39± 0.01 This study 4.2± 0.5

Table B.5: µmax,Tr, µmax,Ec, and µ∗ for E. coli K12 and T. reesei RUTC30 on 20 g L−1 glucose TMM media at
various pH levels. All µmax,Ec values were measured experimentally; For T. reesei, we measured µmax,Tr at pH 6
and extrapolated to pH 5.5 and 5.3 using data presented in [109].
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APPENDIX C

Supporting figures for Chapter 2
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Figure C.1: Model predictions for isobutanol production with TrEc consortium. (A) Predicted isobutanol titer vs.
XEc(t0) for T. reesei RUTC30 / E. coli NV3 pSA55/69 co-cultures on 20 g L−1 Avicel. (B) Rank transform of data
in panel A (i.e. isobutanol titer rank vs. XEc(t0) rank); R2 = 1 (C) Mean cellulose hydrolysis rate (Rcel; g L−1 h−1)
vs. isobutanol yield (YI/S ; g g-cellulose−1; 0.41 g g−1 theoretical maximum) over all parameter and initial condition
(IC) values sampled in sensitivity analysis.
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Figure C.2: Global sensitivity analysis of TrEC consortium model - full results. The TrEc consortium model was numerically integrated with 1000 different sets
of parameter values and initial conditions (ICs) sampled from appropriate statistical distributions using latin hypercube selection (LHS) [87]. We calculated partial
rank correlation coefficients (PRCC) [87] between each parameter or IC and a set of output metrics, including mean T. reesei growth rate (RTr; g L−1 h−1), T.
reesei titer (CTr(tf ); g L−1), mean E. coli growth rate (REc; g L−1 h−1), E. coli titer (CEc(tf ); g L−1), mean cellulose hydrolysis rate (RCel; g L−1 h−1), E. coli
population fraction at fermentation endpoint (XEc(tf ); g g-total−1 microbial biomass), fraction of substrate carbon consumed by E. coli (PC→Ec; g g-total−1),
isobutanol yield (YI/S ; g g-cellulose−1), isobutanol titer (I(tf ); g L−1), and isobutanol productivity (QI ; g g-cellulose−1 h−1). Parameter PRCCs are shown with
hierarchical clustering (Wards method; Euclidean distance); statistically insignificant PRCCs (p < 0.05) set to 0. For description of parameters, parameter values,
and statistical distributions used, see Table B.1
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APPENDIX D

Supporting information for Chapter 3

Parameter Value Description Notes and source

µmax,Tr 0.087 Maximum specific growth rate of Tr on glucose (h−1) Est. from [82], [251], and [246]

KS,Tr 0.02 Tr glucose affinity (g L−1) Est from [246]

YEcel/CTr
0.5 Enzyme/biomass yield coefficient for Tr (g-protein g-biomass−1) Est. from [14] and [250]

YEBGL/CTr
0.015 β-glucosidase / biomass yield coefficient for Tr (g-BGL g-biomass−1) Est. from [244] and [81]

YSG1
/CTr

2 Glucose/biomass yield coefficient for Tr (g-glucose g-biomass−1) Est. from [246]

kcel 0.4 Cellulase rate constant (g-cellobiose g-cellulose−1 h−1) Est. from [14]

kBGL 116 β-glucosidase rate constant (g-glucose g-cellobiose−1 h−1) Est. from [86]

KM,BGL 0.465 β-glucosidase affinity for cellobiose (g L−1) Est. from [86]

YBGL/cel 0.03 β-glucosidase fraction of total cellulase; same as xBGL (g g-total−1) Est. from [14] and [250]

α 8.7
YEBGL/CTr

kBGL

YEcel/CTr
kcel

−

YTr/Ec 1.5 YSG1
/CEc

/YSG1
/CTr

Biologically reasonable value

Table D.1: Baseline parameters used for steady state analysis of the simplified TrEc consortium model. Other param-
eters, including θG2→G1 , β, KS,Ec (K∗

S) and µmax,Ec (µ∗) were varied to explore population dynamics and steady
state composition.
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Figure D.1: Steady state analysis of simplified TrEc model. PC→Ec (carbon flow partition to E. coli) as a function of
β, K∗

S , µ∗, and θG2→G1
over biologically reasonable ranges for each parameter. Parameter values are as follows: α =

8.7, K∗
BGL = 23.25, YTr/Ec = 1.5; β = 3, 10, 17, K∗

S = 0.1, 1, 10, µ∗ = 1.05...4.05, and θG2→G1 = 0.05...2.05.
For explanation of parameters see section 3.3.1.
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APPENDIX E

Supporting information for Chapter 4

E.1 Tables and figures

Table E.1: Mutations discovered in genome resequencing of evolved isobutanol tolerant E. coli clones. Mutation
entries in bold denote loci that were mutated in all sequenced clones from end populations. Mutation positions are
given as absolute genomic coordinates in the E. coli EcNR1 reference sequence. SNPs are indicated by base transi-
tion/transversion. Small insertions are indicated by a “+”, with the size (number of bp) of the insertion and sequence
of inserted bases. Small deletions are designated by “−” with a format similar to that for small insertions; for large
deletions, the sequence of deleted bases is excluded. Transposons are indicated by the insertion sequence (IS) identity.

Clone Gene Gene Description Biological Process Cellular Location Genomic
Coordinate

Nucleotide Change Protein Change

G3.2/G3.6 phoQ sensory histidine kinase in two-
component regulatory system with
PhoP

Signal transduction Inner membrane 1197581 A→G L209P

acrB multidrug efflux system protein Transport Inner and outer
membrane

480665 G→A P988L

queA S-adenosylmethionine:tRNA
ribosyltransferase-isomerase
(EC:5.-.-.-)

Translation Cytoplasm 425270 A→G N346D

secA preprotein translocase subunit, ATPase Protein secretion Inner membrane 108975 T→C S233P

cadA lysine decarboxylase 1 (EC:4.1.1.18) Amino acid
metabolism

Cytoplasm 4363790 A→G I686T

groL Cpn60 chaperonin GroEL, large subunit
of GroESL

Protein folding Cytoplasm 4378650 A→C K132N

mutL methyl-directed mismatch repair protein Mismatch repair Cytoplasm 4405650 -19 bp Frameshift

pstC phosphate transporter subunit Transport Inner membrane 3917582 T→C D16G

rph defective ribonuclease PH RNA processing Cytoplasm 3823229 +4:GGTC Frameshift

yiaK 2,3-diketo-L-gulonate dehydrogenase,
NADH-dependent (EC:1.1.1.-)

Carbohydrate
metabolism

Cytoplasm 3750540 T→C L193P

gltD glutamate synthase, 4Fe-4S protein, small
subunit (EC:1.4.1.13)

Amino acid,
Nitrogen metabolism

Cytoplasm 3367270 +1:G Frameshift

mdh malate dehydrogenase,
NAD(P)-binding (EC:1.1.1.37)

Tricarboxylic acid
cycle

Membrane peripheral 3390726 -1:C Frameshift

nlpI-
pnp

lipoprotein involved in cell division Cell cycle Inner membrane 3316213 T→C Non-coding region; Possible
effect on terminator before
nlpI

glnE deadenylyltransferase/adenylyltransferase
for glutamine

Nitrogen metabolism Cytoplasm 3205272 IS186 insertion Disruption

hybB predicted hydrogenase 2 cytochrome b
type component

Electron transport
chain

Inner membrane 3150318 A→G V359A
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Table E.1: Mutations discovered in genome resequencing of evolved isobutanol tolerant E. coli clones

Clone Gene Gene Description Biological Process Cellular Location Genomic
Coordinate

Nucleotide Change Protein Change

gatZ D-tagatose 1,6-bisphosphate aldolase 2,
subunit (EC:4.1.2.40)

Carbohydrate
metabolism

Cytoplasm 2182915 -1:C Frameshift

yeeE predicted inner membrane protein - Inner membrane 2092513 A→G S333P

lepB leader peptidase (signal peptidase I)
(EC:3.4.21.89)

Transport Inner membrane 2711902 G→A P213S

hfq HF-I, host factor for RNA phage Q β

replication
Translation Cytoplasm 4407505 -7:AGGAAAA Non-coding region; Ribo-

some binding site deletion

marC conserved protein;
predicted transporter

- Inner membrane 1625925 IS1 insertion Disruption

G3.266.7 groL Cpn60 chaperonin GroEL, large subunit
of GroESL

Protein folding Cytoplasm 4378650 A→C K132N

rph defective ribonuclease PH RNA processing Cytoplasm 3823229 +4:GGTC Frameshift

gltB-
yhcE

- - - - -9.9kb ∆gltBDF, ∆yhcADE

mdh malate dehydrogenase,
NAD(P)-binding (EC:1.1.1.37)

Tricarboxylic acid
cycle

Membrane peripheral 3390726 -1:C Frameshift

glnE deadenylyltransferase/adenylyltransferase
for glutamine

Nitrogen metabolism Cytoplasm 3205272 IS186 insertion Disruption

hfq HF-I, host factor for RNA phage Q β

replication
Translation Cytoplasm 4407505 -7:AGGAAAA Non-coding region; Ribo-

some binding site deletion

ycfK e14 prophage; predicted protein - - 1216432 -1688 bp ∆ycfK

marC conserved protein;
predicted transporter

- Inner membrane 1625925 IS1 insertion Disruption

X3.5 acrA multidrug efflux system protein Transport Inner and outer
membrane

483735 +1:A Frameshift

rpsB 30S ribosomal subunit protein S2 Translation Cytoplasm 190557 +1:A Frameshift

rph defective ribonuclease PH RNA processing Cytoplasm 3823180 -1:C Frameshift

mdh malate dehydrogenase,
NAD(P)-binding (EC:1.1.1.37)

Tricarboxylic acid
cycle

Membrane peripheral 3390936 +5:AACCT Frameshift

deaD DEAD-box RNA helicase Translation Cytoplasm 3314027 +4:AGAC Frameshift

yfgO predicted inner membrane protein - Inner membrane 2623022 C→T G30D

gatC galactitol-specific enzyme IIC
component of PTS

Transport Inner membrane 2180640 C→T E290K

plsX fatty acid/phospholipid synthesis protein Fatty acid metabolism Cytoplasm 1493514 A→G E216G

hrpA ATP-dependent helicase RNA processing Cytoplasm 1493514 C→T L1075L

mdtJ-
tqsA

MdtJ SMR protein; transporter of quorum
signal AI-2

Transporter/Transporter Inner membrane 1681114 IS5 insertion Non-coding region; mdtJ and
tqsA promoter region

marC conserved protein;
predicted transporter

- Inner membrane 1626081 IS1 insertion Disruption

X2.5∗ acrA multidrug efflux system protein Transport Inner and outer
membrane

484383 T→G N154T

gltA citrate synthase Tricarboxylic acid
cycle

Membrane and
cytoplasm

753345 T→C E116G

marC conserved protein; predicted trans-
porter

- Inner membrane 1626084 IS5 insertion Disruption

gatC galactitol-specific enzyme IIC
component of PTS

Transport Inner membrane 2180721 C→A V263L

mdh malate dehydrogenase, NAD(P)-
binding (EC:1.1.1.37)

Tricarboxylic acid cy-
cle

Membrane peripheral 3390659 +4:GATT Frameshift

pyrE-
rph

defective ribonuclease PH RNA processing Cytoplasm 3822991 G→A Non-coding region

Table E.1: ∗See addendum on X2.5 sequencing (section 4.5).
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Figure E.1: qRT-PCR validation of gadA, fimI, fabA, and rfaJ gene expression changes. qRT-PCR was used to validate
gene expression changes measured by DNA microarray. Target concentrations were determined by fitting the MAK2
PCR model to qRT-PCR data [135]. Expression levels were normalized to house keeping gene rpoD (sigma factor 70).
(A) rpoD normalized expression levels determined by qRT-PCR. (B) Expression levels from DNA microarray study.
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Figure E.2: acrAB and mdh functional assays. AcrAB-TolC efflux pump activity was measured via ethidium bromide
(EtBr) accumulation in reconstructed single mutants and clonal isolates harbouring acrAB mutations from evolution
end populations. Mid log phase cells were incubated with ethidium bromide and intracellular ethidium bromide was
monitored via relative fluorescence (518 nm excitation / 605 nm emission). Mdh (NADH dependent malate dehydro-
genase) activity was assayed by incubating cell extracts with oxaloacetate and NADH; disappearance of NADH (due
to reduction of oxaloacetate to malate) was monitored by measuring absorbance at 340 nm. (A) EtBr accumulation
assay for the parent E. coli EcNR1 (WT), clonal isolates from evolution end populations harbouring acrA mutations
(G1.1, X2.1, X3.5), a reconstructed acrA single mutant (containing mutation found in X3.5), and ∆acrA::kan control.
(B) EtBr accumulation assay for the parent E. coli EcNR1 (WT), clonal isolates from evolution end populations har-
bouring acrB mutations (X1.1, G3.2), a reconstructed acrB single mutant (containing mutation found in G3.2), and
∆acrB::kan control. (C) Mdh assay for the parent E. coli EcNR1 (WT), clonal isolates from evolution end popula-
tions harbouring mdh mutations (G3.2, X3.5), reconstructed mdh single mutants (containing mutations found in G3.2
or X3.5), and ∆mdh::kan control.
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E.2 Additional files

The additional files referenced in Chapter 4 accompany our publication:

J. Minty, A. Lesnefsky, F. Lin, Y. Chen, T. Zaroff, A. Veloso, B. Xie, C. McConnell, R. Ward,
D. Schwartz, J.M. Rouillard, Y. Gao, E. Gulari, and X. Lin. Evolution combined with genomic
study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microbial Cell

Factories, 10:18, 2011. doi:10.1186/1475-2859-10-18

Additional file numbers correspond to those used in the publication, except files 5 and 6 are in-
cluded in this dissertation (Figures E.1 & E.2, respectively) and Additional file 7 in the publication
has been renumbered to Additional file 5 in this dissertation. Descriptions of and direct hyperlinks
to each additional file (hosted on Microbial Cell Factories website) are given below. In that event
that the hyperlinks are corrupt, please access the online version of the publication through DOI
(e.g. http://dx.doi.org/10.1186/1475-2859-10-18).

Additional file 1: Full mutation list
Full lists of SNP, indel, and SV mutations discovered in G3.2, G3.6, G3.266.7, and X3.5 with
Illumina sequencing. Mutation positions are genomic coordinates in the E. coli EcNR1 reference
sequence, gene descriptions are from the KEGG database, mutation frequency is defined as
mutant reads divided by the total number of mapped reads at a position, and consensus quality
was computed by MAQ [130]. For G3.2, G3.266.7, and X3.5, SNPs with consensus quality
<150 or indels with frequency <0.4 were discarded; we have found empirically that lower
quality/frequency mutations tend to be false positives. G3.6 may have been contaminated with
another clonal isolate and thus may be mixed genotype; to reduce false negatives, quality cutoff
thresholds were lowered to consensus quality <100 for SNPs and frequency <0.15 for indels.
Mutations that were later discovered to be heterogeneities in the parent E. coli EcNR1 strain were
discarded. Entries with red text were verified by Sanger sequencing.

Additional file 2: E. coli EcNR1 genome reference sequence
E. coli EcNR1 is a derivative of E. coli K12 MG1655 containing a modified λ prophage integrated
at the bioA/bioB locus. We created a reference genome sequence for E. coli EcNR1 by adding the
above genetic modification to the E. coli K12 MG1655 reference sequence (NC 000913) obtained
from the National Center for Biotechnology Information Reference Sequence Collection (NCBI
RefSeq). We provide three formats: Lasergene DNA (.seq), FASTA (.fas), and GenBank (.gbk).
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Additional file 3: Tracing mutations found in endpoint populations through intermediate
generations
We investigated the dynamics of genotypic adaptation in the G3 and X3 lineages by genotyping
population samples from intermediate generations for selected mutations identified in the end
point populations. Genotyping was conducted by screening whole-population cryopreserved
samples for mutations with Sanger sequencing of PCR amplified mutated regions (for G3 mdh

and miaA-hfq mutations), inferred from PCR product size for large insertion mutations (marC

transposon insertions, X3 mdtj::IS5::tqsA, and G3 glnE::IS186) or using allele specific PCR
(all other genotyped mutations). WT designates wild-type allele (directly detected in Sanger
sequencing or inferred from lack of allele specific PCR product), Mut designates mutant allele
(directly detected in Sanger sequencing or inferred from of amplification of allele specific PCR
product), NT designates not tested. Strength (strong, weak, etc) indicates band intensity on
agarose gel electrophoresis of PCR product, and is roughly correlated with allele frequency (allele
specific PCR and large insertions). Sanger sequencing and genotyping via PCR product sizes
allow discrimination of mixed genotypes, which are reported where applicable.

Additional file 4: Microarray Data and Analyses
Microarray data for gene expression study of G3.2 and the parent E. coli EcNR1 (WT) in 0%
and 0.5% (w/v) isobutanol glucose minimal medium. Genes that responded to isobutanol the
most differently between G3.2 and WT are tabulated with p-values and transcription factors
controlling them. Differentially expressed genes, p-values, and related transcription factors are
also tabulated for WT / 0% isobutanol and WT/ 0.5% isobutanol, G3.2 / 0% isobutanol and G3.2/
0.5% isobutanol, and lastly WT / 0.5% isobutanol and G3.2/ 0.5% isobutanol. BiNGO was used
to assess any overrepresented GO terms amongst genes that responded to isobutanol the most
differently between G3.2 and WT, and for genes differentially expressed between WT / 0.5%
isobutanol and G3.2/ 0.5% isobutanol. A summary of NCA results is given as well.

Additional file 5: Primers and oligos used in this study
Sequences of forward and reverse primers used for Sanger sequencing, allele specific PCR, qRT-
PCR, and all other PCR reactions described in this study are listed. Sequences of oligonucleotides
used for ssDNA mediated homologous recombination are also given.
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