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I present a semi-analytical halo model to study line-of-sight projection ef-

fects in the galaxy cluster population. The model produces realizations of

sight-lines using halo space densities and two-halo correlations, and employs

a log-normal covariance model to relate halo mass to multivariate observables.

The model sums idealized red-sequence galaxy counts (optical richness), ther-

mal Sunyaev-Zel’dovich (SZ) effect, and X-ray flux within an angular annulus

set by a given target halo of size R200 at redshift zt after convolution with top-

hat, matched, and background-subtracted filters.

The observed signal bias, variance, and covariance for a fiducial target of

mass 5×1014h−1M� at zt = 0.3 in a WMAP7 cosmology have been measured.

Optical richness is most susceptible to projection, with a top-hat filtered signal

bias of 16%, compared to 6% and 4% in SZ and X-ray, respectively, for the

fiducial target. Projection in the optical is also more localized in redshift and

therefore more dependent on nearby, correlated haloes. Background subtrac-

tion removes the bias but increases the variance in observed signals. I examine

the sensitivity of these effects to target mass and redshift, finding at zt = 0.3 that

the top-hat projected SZ signal bias exceeds that in the optical at halo masses

below ∼1013.9h−1M�. The underlying mass distribution at fixed observed sig-

nal is shown to be non-Gaussian with its scatter increased by projection and a

skewed towards lower mass.

Covariance in observed signals is studied via extending the model to in-

clude intrinsic correlations. The projected contributions are found to be posi-

tively correlated, whose approximate scatter of 7% mostly come from cosmic

variance, uncertainties in the spatial distributions of projected haloes. A −20%

intrinsic correlation between the optical and SZ / X-ray signals will be reduced

to −3% and −10%, respectively, when observed, due to projections for the

fiducial target. The degree of such distortions to the intrinsic correlations are

xviii



reduced at zt = 0.7 as fractional projection amplitude decreases.

An attempt to model the velocity dispersion in optical galaxy clusters using

the projected halo model is made, which involves modeling the Halo Occupa-

tion Distribution (HOD) and colors of the galaxy population via Markov Chain

Monte Carlo (MCMC). The correlated contribution to velocity dispersion mea-

surements is found to be less than 5%.

In general, line-of-sight projections introduce bias to observed signals of

galaxy clusters at the ∼ 10% level, while the precise value is model-dependent.

The projected halo model provides a platform, via which projection-induced

statistical biases in both signals and signal covariance of galaxy clusters can be

assessed, in an era where precision in cluster cosmology reaches ∼1%.
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CHAPTER 1

Introduction

In 1929, Edwin Hubble discovered that galaxies beyond the Milky Way are receding at

speeds proportional to their distances [Hubble, 1929],

v = Hr, (1.1)

in which v is the radial velocity, r is the distance, and H is the Hubble constant. The

isotropic recession of distant galaxies points to one rational conclusion, the expansion of

the Universe.

In less than a decade, Zwicky [1937] showed that the velocity dispersion in the Coma

Cluster cannot be explained using even the most extreme mass-to-light ratio possible in

galaxy clusters. This discovery led to the concept of Dark Matter, massive particles that do

not exhibit electromagnetic interactions.

Following the accidental discovery of the Cosmic Microwave Background (CMB) by

Penzias and Wilson [1965], cosmologists began to favor the Big Bang theory, which de-

scribes the Universe as starting from a hot dense state that expanded over cosmic time.

However, whether the Universe will eventually contract and collapse due to gravity re-

mained a controversy until the discovery of the accelerating expansion of the Universe

around the Millennium. The initial observational evidence was seen in Type-Ia supernovae

in distant galaxies [Perlmutter et al., 1999, Riess et al., 1998], followed by subsequent

confirmations from studies of the CMB [Spergel et al., 2003] and the Baryonic Acoustic
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Figure 1.1: An illustrative history of the Universe from the Big Bang, Inflation, to Nucle-
osynthesis, star formations, and the accelerated expansion. This figure is taken from the
NASA website.

Oscillation (BAO) [Eisenstein et al., 2005]. The acceleration pointed to the existence of

vacuum energy, a possible form of Dark Energy, thus completing the main ingredients of

the modern Λ Cold Dark Matter (ΛCDM) cosmology.

Figure 1, made by NASA, provides an excellent illustration of the time-line of our

Universe. From the initial Big Bang, photons were coupled with matter until arriving at

the “surface of last scattering”, at which point they decoupled and formed the CMB. In the

mean time, quarks began to form baryons and subsequently hydrogen, deuterium, helium,

and lithium, in the process of Nucleosynthesis. These light elements later formed the first

generation of stars and galaxies.
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1.1 The ΛCDM Cosmology

In the modern ΛCDM cosmology, Hubble’s Law in Eq. 1.1 can be re-written as

H ≡
ȧ
a
, (1.2)

in which a(t) is the scale factor of the Universe, which is defined to be 1 at the present

time and 0 at the beginning of space-time. The dimensionless Hubble parameter, h, is often

used, which is defined as H0 = 100hkms−1 Mpc−1, where H0 is the Hubble constant at

present time (a = 1).

The Friedmann Equation describes the expansion as

H2 =
8πG

3
ρ−

kc2

a2 , (1.3)

in which G is the gravitational constant, k is the spatial curvature, and c is the speed of

light. The Wilkinson Microwave Anisotropy Probe (WMAP) experiment results supported

a spatially flat universe, i.e., k = 0, which then leads to the definition of the critical density,

ρc =
3H2

8πG
. (1.4)

It is common to use the dimensionless density parameters, Ω, defined as

Ω =
ρ

ρc
= Ωr +Ωm +ΩΛ, (1.5)

in which Ωr, Ωm, and ΩΛ are the radiation, matter, and vacuum energy contributions. The

matter composition can be further broken into its baryonic and Cold Dark Matter (CDM)

components,

Ωm = Ωb +ΩCDM, (1.6)

In a spatially flat universe, Ω = 1, however, its relative composition is not constant. In
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fact, the Friedmann equation can also be written as

H2

H2
0

= Ωra−4 +Ωma−3 +ΩΛ. (1.7)

From the different scalings with expansion parameter in Eq. 1.7, it can be easily seen that

our Universe went from being radiation dominated (when a→ 0), to matter dominated, and

then the present Dark Energy dominated era.

To relate to observations, it is often convenient to use redshift z, as opposed to the scale

factor, a. Although initially interpreted as the Doppler shift in wavelength / frequency,

redshift can be formally introduced via

z =
1
a
−1 (1.8)

in the scope of the ΛCDM cosmology.

Values of these cosmological parameters derived from the Wilkinson Microwave Anisotropy

Probe 7-Year Results (WMAP7) are h = 0.71, Ωb = 0.0449, ΩCDM = 0.222, ΩΛ = 0.733,

and σ8 = 0.8011.

1.2 CMB and the Primordial Power Spectra

The CMB is an almost uniform full sky black body radiation with a temperature ∼ 2.7K,

thus peaking in the microwave range of radio frequency. It is the oldest remnant of the

initial Big Bang, whose tiny fluctuation ∼ ±200µK beyond absolute homogeneity marks

the early quantum fluctuations, which later evolved gravitationally to form stars, galaxies,

and large scale structures in our Universe. Figure 1.2 shows this temperature fluctuation on

the full sky obtained by the WMAP, a spacecraft launched in 2001 to measure the CMB,

succeeding the Cosmic Background Explorer (COBE) mission.

1In this dissertation, I shall use the WMAP7 values except in Appendix A when comparing to the Hubble
Volume simulation. The definition of σ8 will come later after Eq. 1.12 in §1.2.
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Figure 1.2: The detailed, all-sky picture of the infant Universe created from nine years
of WMAP data. The image reveals 13.77 billion year old temperature fluctuations at the
level of ±200µK, which correspond to seeds that later grew into galaxies. Signals from
the Milky Way were removed using the multi-frequency data. This figure is made by the
NASA / WMAP Science Team.

The observation of a homogeneous and isotropic CMB poses a conundrum to the Big

Bang cosmology, how did different parts of the Universe establish causal relationship so

as to appear homogeneous and isotropic? This problem was reconciled by the theory of

inflation [Guth, 1981], which adds a period of rapid expansion following the Big Bang. In

the inflationary cosmology paradigm, the inhomogeneity we see in the CMB is the relic of

the initial quantum fluctuations “frozen” as photons decoupled from matter.

If we use δ(r) to describe the density perturbation and use δk to denote its Fourier

transform

δ(r) ≡
ρ(r)
ρ
−1 =

∫
dkδk eik·r, (1.9)

the power spectrum P(k) can be introduced via

< δkδk′ >=
2π2

k3 δD(k− k′)P(k), (1.10)

in which δD is the Dirac delta function. The Fourier transform of the power spectrum is the
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two-point correlation function,

ξ(r) =

∫
d3 k

(2π)3 P(k)exp(ik · r). (1.11)

The initial perturbations due to Inflation are expected to be Gaussian [Bardeen et al.,

1983, Guth and Pi, 1982, Hawking, 1982, Starobinsky, 1982], such that higher order cor-

relations / powers (bispectrum, trispectrum, etc.) are zero.

The variance of the linearly evolved fluctuations at scale R

σ2(R) =

∫
k3P(k)

2π
|W(kR) |dlnk, (1.12)

in which the window function W(kR) takes the Fourier form of [3/(kR)3](sinkR−kRcoskR)

when it has a top-hat shape in real space. The quantity in Eq. 1.12 calculated at R =

8h−1Mpc and z = 0, σ8, is often used as the normalization parameter of the matter power

spectrum.

The evolution of large scale structure is governed by the continuity and Euler equations,

∂δ

∂t
+

1
a
∇ · (1 +δ)u = 0 , (1.13)

∂u
∂t

+ Hu +
1
a

[(u ·∇)u +∇φ] = 0 , (1.14)

in which u is the peculiar velocity and the potential φ relates to the density perturbations

via the Poisson equation:

∇2φ = 4πGρa2δ. (1.15)

In the linear regime (δ << 1), the two equations may be combined to yield [Peebles and

Yu, 1970]
∂2δ

∂t2
+ 2H

∂δ

∂t
−4πGρδ = 0. (1.16)
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The growing mode solution to Eq. 1.16 takes the form

δ(k, a) = G(a)δ(k, 1), (1.17)

in which the growth function

G(a) ∝
H(a)
H0

∫ ∞

z(a)
dz′(1 + z′)

[
H0

H(z′)

]3

. (1.18)

In linear perturbation theory, the initial density fluctuation field power spectrum can be

written as [Cooray and Sheth, 2002]

k3

2π2 Plin(k) = δ2
H

(
k

H0

)n+3

T 2(k), (1.19)

in which n ∼ 1 [Harrison, 1970, Peebles and Yu, 1970, Zeldovich, 1972] is the slope of the

scale-invariant initial spectrum; and T 2(k) is the transfer function that marks the deviation

from the initial scale-free form.

Causes of departures from the primordial power spectrum include the transition from

the radiation-dominated era to the matter-dominated era. Differences in growth rate of den-

sity perturbations during the two epochs create a turnover in the shape of the power spec-

trum [Blumenthal et al., 1984, Bond and Efstathiou, 1984]. In addition, baryons, massive

neutrinos, etc. leave other important features in the transfer function. In this dissertation, I

adopt the fitting form of T 2(k) in Eq .1.19 provided by Eisenstein and Hu [1999].

1.3 Dark Matter Haloes and N-body Simulations

The linear and higher order perturbation theory can only describe gravitational clustering

when δ << 1. As the density fluctuation approaches unity, we enter the non-linear regime,

in which the formation and clustering of non-linear objects have been studied via N-body
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simulations.

In the spherical collapse model, dark matter haloes form from the collapse of a region

with initial overdensity
δsc(z)
1 + z

=
3
5

(
3π
2

)2/3

≈ 1.6865. (1.20)

Linear theory predicts that the virialized halo should have a density ∆vir = 18π2 ≈ 178 times

the background density, which leads to the definition of halo mass

M200c = 200×
4
3
πR200

3ρc (1.21)

defined as the mass enclosed by radius R200, at which the average density enclosed is

200 times the critical density. In some literatures, the other convention, M200m defined as

∆ = 200 times the background matter density, may be used.

In this dissertation, I shall adopt the M200 ≡ M200c convention in Eq. 1.21. For details

on conversions between M200c and M200m, refer to Appendix D.

To study the formation and clustering of matter haloes, N-body simulations employing

collision-less dark matter particles have been run, [e.g., Evrard et al., 2002, Sheth and

Tormen, 1999, Warren et al., 2006]. Figure 1.3 shows the z = 0 output in the Millennium

Simulation by the Virgo Consortium [Springel et al., 2005]. It was the largest N-body

simulation of its time, using 10 billion particles and taking almost one month to complete on

a 512-processor cluster at the Max Planck Institute for Astrophysics in Garching, Germany.

In the figure, one can see visualizations of dark matter haloes at the scale of ∼Mpc.

In N-body simulations, haloes are found via Spherical Overdensity (SO) or Friends-

of-friends (FOF) algorithms. Their population density in the co-moving space, n(M, z), is

commonly referred to as the mass function, which can be formulated by

f (σ, z) ≡
M
ρm

dn(M, z)
d lnσ−1 (1.22)
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Figure 1.3: A snapshot of the z = 0 output in the Millennium Simulation, taken from The
Virgo Consortium website.
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in which σ is defined in Equation 1.12, and f (σ, z) is a model dependent function of the

filtered perturbation spectrum. Such a formalism using σ−1(M) as oppose to M as the

variable was initially proposed by Press and Schechter [1974]. It was later confirmed by

Jenkins et al. [2001] that when expressed as a function of σ−1, f (σ) has the same universal

curve independent of the output time in simulations (the redshift dependency is added for

more accurate fit to the mass function).

Various simulations have produced empirical fitting forms of f (σ,z) [Evrard et al.,

2002, Jenkins et al., 2001, Tinker et al., 2008]. In this work, I shall in use the result by

Tinker et al. [2008] in most places, except for Appendix A, where I use the Evrard et al.

[2002] mass function in consistency with the Hubble Volume simulation.

1.4 Observations of Galaxy Clusters

Much of our knowledge about the Universe and the ΛCDM cosmology comes from study-

ing the CMB, Supernovae, BAO, and galaxy clusters. These different studies complement

each other via untangling degeneracies in various cosmological parameters, as seen in Fig.

1.4, where values of Ωm and ΩΛ are constrained using results from the CMB, Supernovae,

and galaxy clusters.

Clusters of galaxies were first observed as local enhancements in galaxy number [Abell,

1958, Zwicky et al., 1961] in the optical wavelength, then as extended sources of X-ray

emission from the hot intra-cluster plasma [Forman et al., 1972], and as extended regions

where the CMB spectrum has been distorted due to the inverse Compton scattering from

thermal electrons in the plasma [Sunyaev and Zeldovich, 1972]. In addition, the curvature

in space-time created by halo mass bends the light from distant galaxies, which may result

in weakly or strongly lensed images. Projected mass distribution between the source and

us can be reconstructed from the lensed images [e.g., Leauthaud et al., 2007].

An illustration combining these different observations / measurements can be seen in
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Figure 1.4: An illustration of constraining Ωm and ΩΛ through the results of CMB, Super-
novae, and galaxy clusters. This figure is made by the Supernovae Cosmology Project.
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Figure 1.5: Galaxy cluster 1E 0657-56, commonly known as the “bullet cluster”, is shown
in this composite image. Its individual galaxies are seen in the optical image data. Over-
laying on top of the optical image in red color is the X-ray emission, which shows traces
of the hot intra-cluster medium gas. The dark matter halo mass is mapped by gravitational
lensing of the background galaxies and is shown in blue color. One can easily see the the
shock front in shape of the gas cloud created by the collision between the two clusters.
This clear separation of dark matter and gas clouds is considered to be direct evidence to
the existence of dark matter. This composite figure is taken from the NASA website.

the composite image (Figure 1.5) of galaxy cluster 1E 0657-67, more commonly known as

the “bullet cluster”. The figure overlays the X-ray emission as well as the lensing mass on

top of the optical image of galaxies. The “bullet cluster” is a merging two-cluster system,

as one can see from the inferred lensing mass in blue color which shows the positions of

the two dark matter haloes. The striking feature of this observation is that one can easily

see from the X-ray emission, shown in red color, that the gas clouds have been stripped

away from the centers of the two haloes post collision. This separation of dark matter and

gas clouds is considered direct evidence to the existence of dark matter.
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1.4.1 Optical Galaxy Clusters

The matter composition of the Universe includes CDM and baryonic gas. Their distri-

butions are not the same due to thermal pressure, radiative processes, etc. in the latter

substance. White and Rees [1978] showed that the baryonic gas can cool and form stars

in the potential well of a virialized halo. Thus in this framework, galaxies exist in the

centres of haloes or sub-haloes, the latter of which are local sub-clumps in dark matter

haloes. These two populations are commonly referred to as central and satellite galaxies.

In the dark matter halo framework, the luminosity and spatial distribution of galaxies are

characterized by the Halo Occupation Distribution (HOD).

The process of galaxy formation involves radiative cooling, hydrodynamic and magne-

tohydrodynamic processes, feedback from Active Galactic Nuclei (AGN), and the evolu-

tion of the comic web in the background. Its complexity and non-linear nature confine the

study to primarily numerical simulations.

During the halo formation process, baryonic matter is thermalized by the release of

gravitational potential energy via shocks. The thermal pressure supports intra-cluster plasma

against gravitational collapse until the gas is sufficiently cooled. In fact, feedback from

compact sources such as AGN limit the cooling process very effectively, reducing the

amount of gas in galaxies relative to the Intra-Cluster Medium (ICM) [Allen et al., 2008,

Giodini et al., 2009, Lin and Mohr, 2004].

In optical surveys, it is common to focus on red-sequence galaxies, ones that lie on the

redder end of the color-magnitude diagram. Morphologically speaking, the red-sequence

galaxies are usually elliptical [Coleman et al., 1980], which tend to have relatively low star

formation rates. In addition to red-sequence galaxies are blue galaxies, ones that lie near

the bluer end of the color-magnitude diagram. Blue galaxies are often spiral and have a

higher star formation rate, as reflected in their color. The minority of galaxies residing in

between these two groups on the color-magnitude diagram form the “green valley”.

In Chapter 5 of this dissertation, I shall fit an empirical HOD model to the Sloan Digital
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Sky Survey (SDSS) optical galaxies and subsequently model the color evolution of the red

and blue populations separately.

1.4.2 SZ and X-ray

A majority of the baryonic matter in clusters lives in the form of hot gas in the ICM.

Gravitational heating can push up the ICM gas temperature to around 107 ∼ 108 K, thus

making it emit brightly in the X-ray wavelength. The primary mechanisms in the X-ray

emissions of clusters include free-free (Bremsstrahlung), free-bound, and bound-bound

emissions. The bolometric X-ray luminosity of a cluster is given by

LX =

∫
d3rρ2

gas(r)Λ(T (r)), (1.23)

in which ρgas is the thermal gas density and Λ(T (r)) is a normalized emissivity dependent

only on temperature [Arnaud and Evrard, 1999].

Besides X-ray observations, inverse Compton scattering of CMB photons by electrons

in the ICM plasma creates distortions in the CMB map at small scales, known as the thermal

SZ effect. Observation of SZ clusters are usually characterized by the integrated flux YSZ,

which is proportional the integrated electron density along the line-of-sight,

YSZ =
kBσT

mec2

∫
d3rne(r)Te(r), (1.24)

in which kB is the Boltzmann constant, σT denotes the Thomson cross section, me, ne, and

Te are the mass, number density, and temperature of electron, respectively [da Silva et al.,

2000, Sunyaev and Zeldovich, 1972].

A model of cluster populations observed in optical, SZ, and X-ray wavelengths forms

the primary object of interest in this dissertation.
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1.5 Motivations of the Projected Halo Model

The extended nature of clusters makes them susceptible to contamination from sources

projected along the line-of-sight. By themselves, the massive haloes that host clusters

are partially responsible for projected contamination, as the virial regions of haloes above

1014h−1M� cover ∼ 10% of the sky [Voit et al., 2001].

Early N-body simulations were used to study the degree to which optical studies of

clusters based on single-band photometry were subject to projected confusion. Frenk et al.

[1990] and van Haarlem et al. [1997] showed that large errors in membership and inferred

velocity dispersion result when clusters are defined as local overdensities in single-band

photometry, as in the original prescription of Abell [1958]. Such errors are dramatically

reduced when cluster finding is performed using spectroscopic redshifts for member galax-

ies [Biviano et al., 2006, Eke et al., 2004, Padilla and Lambas, 2003, Wojtak et al., 2007,

Yan et al., 2004]. Multi-band photometric surveys enable cluster finding via methods that

rely on red-sequence galaxies with evolved stellar populations [e.g., Gladders and Yee,

2005, Koester et al., 2007a] or on redshifts derived from photometry [Adami et al., 2010,

Eisenhardt et al., 2008, Wilson et al., 2009]. Preliminary tests of these methods with cos-

mological simulations [e.g., Adami et al., 2010, Cohn et al., 2007, Johnston et al., 2007]

have produced estimates of the blending and mis-centering that occurs when haloes lie near

enough in sky - color or sky - photo-z space.

Since the thermal SZ effect is largely redshift independent, the SZ signal from a given

sky location will contain contributions from the electron pressure of all haloes along the

line-of-sight [Bartlett and Silk, 1994]. Simulated sky maps based on explicit gas dynamic

[Cohn and White, 2009, Hallman et al., 2007, 2009, Kay et al., 2012, Vale and White,

2006, White et al., 2002] or post-processed N-body methods [Bode et al., 2009, Sehgal

et al., 2010] have been used to investigate the effect on individual cluster measurements

and on the angular power spectrum of the summed map. For individual clusters, projection

boosts the signal in a stochastic manner, producing skewness in the statistical likelihood of
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the aperture-integrated signal at a given mass and redshift.

The density-squared dependence of the thermal emissivity of the ICM makes X-ray

surface brightness less susceptible to projection relative to galaxy counts and SZ distor-

tions. Point sources, particularly AGN, both internal and external to the host halo, are the

dominant contaminant to intrinsic thermal emissions [e.g., Atlee et al., 2011, Hart et al.,

2011, Ma et al., 2012, Martini et al., 2009]. I ignore such contamination here, partly be-

cause bright point sources are typically excised in cluster images and partly because of

uncertainties in describing X-ray point source populations in the halo model.

Deep and wide sky surveys will soon allow for large, overlapping samples of clusters

with measured optical richness, X-ray luminosity, and thermal SZ amplitude. Analysis

of the combined data provides the means to measure covariance of these properties in the

massive halo population. Several recent simulation studies have begun to tease out the co-

variance of observed optical, millimeter, and X-ray signals [Angulo et al., 2012, Meneghetti

et al., 2010, Noh and Cohn, 2011, 2012]. The recent study of Noh and Cohn [2012] employs

∼ 104 partial sight-lines centered on massive haloes found at z = 0.1 in a 250h−1Mpc N-

body simulation to study the correlation among observed cluster properties. Their Principal

Component Analysis (PCA) analysis identified cluster orientation as a major contribution

to property covariance, providing arguments for positive correlations in intrinsic signals.

The modeling cited above is based on cluster sight-lines derived from N-body and other

dynamical simulations. A drawback to such studies is the limited statistical sampling in-

herent in finite-volume simulations, particularly of the massive haloes, which happen to be

the most interesting objects in most studies, in the mean time.

In this dissertation, I present a semi-analytical halo model, which employs the halo

mass function, bias, and two-point spatial correlation function to generate halo sight-lines

using a Monte Carlo approach. Observable optical, SZ, and X-ray signals with intrinsic

covariance are then introduced via scaling relations to each of the haloes in those sight-

lines to create sky images.
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The principle aim of this approach is to provide a low-cost method for estimating the

effects of projection on measured cluster signals. Results from this approach can help guide

simulation studies targeted to support analysis of specific observational samples.

1.6 Dissertation Layout

The projected halo model will be presented in Chapter 2, followed by its direct application,

the study of line-of-sight projections in optical, SZ, and X-ray clusters, in Chapter 3. Con-

tents of these two chapters will also appear in Chen & Evrard, 2013 A (to be submitted to

MNRAS).

In Chapter 4, the model is extended to include covariances, and a subsequent study of

projection effects on observed signal covariance is presented. The work in this chapter will

appear in Chen & Evrard, 2013 B, which is currently in preparation.

Finally in Chapter 5, I present an attempt at applying the projected halo model to explain

the stacked ensemble of velocity dispersions in optical clusters [Becker et al., 2007]. An

empirical HOD model as well as a two-population color model are fitted using Markov

Chain Monte Carlo (MCMC). The model explains the galaxy cluster velocity dispersion to

a certain extend, but accurate fitting of the stacked distributions requires detail modeling of

faint galaxies, whose observational data is scarce.

17



CHAPTER 2

The Halo Projection Model

2.1 The Analytical Framework

I use the generic term signal to represent a measurable property of a cluster, and also the

source property of the halos producing the observable. Consider a halo massive enough to

host a galaxy cluster lying at some redshift along the sightline to an observer. In general,

the observed signal, S obs, of the cluster is a sum of S int, the chosen, or “target”, halo’s

intrinsic signal, and a contribution from halos projected along the line-of-sight, S proj. The

latter can be modeled as a discrete sum of contributions from halos along the line of sight,

S obs(Mt, zt) = S int(Mt, zt) + S proj(Mt, zt)

= S int(Mt, zt) +
∑

i

∆S (Mi, zi,∆θi |Mt, zt). (2.1)

Here, Mt and zt are the mass and redshift of the target halo, and ∆S (Mi, zi,∆θi |Mt, zt) is

the projected partial signal function contributed by a halo of mass Mi located at redshift zi

and displaced by an angle ∆θi from the target halo. This function characterizes how much

a projected halo will contribute to the observed signal of the target.

The summation in Eq. 2.1 covers a local angular patch in the direction of the target

cluster. The probability of observing a projected halo of Mi, zi and ∆θi in the sightline

of the target cluster is larger than one would expect along a random direction due to the
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amplification caused by halo-halo correlations,

pproj(M, z,∆θ |Mt, zt) = pran(M, z) + pcor(M, z,∆θ |Mt, zt)

∝ n(M, z) + n(M, z)ξhh(M, z,∆θ,Mt, zt), (2.2)

where n(M, z) is the halo mass function. The first term represents the random chance of

intercepting a projected halo of M and z and pcor is the increased probability due to halo-

halo spatial correlation (ξhh) with the target halo. I shall refer to signals due to the first term

as “random” and those due to the second one as “correlated”.

I model the halo-halo correlation by [e.g., Sheth and Tormen, 1999]

ξhh(M, z,∆θ,Mt, zt) = b(M, z)b(Mt, zt)ξ(rhh), (2.3)

in which b(M, z) is the halo bias function and ξ(rhh) is the two-point matter correlation

function and rhh is the co-moving distance between the projected and target halos.

To enforce distinct halos, I impose a hard sphere exclusion near the target halo in the

calculation, i.e., no projected halo would have its center fall within the R200
tar + R200

proj

volume centered on the target one.

While the two-halo correlation with the target halo is included, I ignore spatial cluster-

ing of the random and correlated haloes. The variance in the projected signal component

S proj calculated by this model will therefore be a lower limit to the true value, since higher-

order correlations describing clustering amongst the projected haloes will only increase the

variance in S proj.

I employ both the mass function and the halo bias of [Tinker et al., 2008]. Haloes are

assumed to be spherical objects with radial signal profiles explained below.
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2.2 Fast Halo Sight-lines

I use the model above, Eq. 2.2, to generate Monte Carlo realizations of ensembles of small

patches of synthetic sky surrounding a target dark matter halo. Each realization contains

a different set of random and correlated projected halos, each of which is dressed with

multivariate signals that are summed and filtered in ways discussed below. Ensembles of

many thousands of individual targets allows us to investigate statistical properties of the

observables in detail.

In each simulated sight-line, I first establish the target halo with mass Mt and redshift zt,

then use a Monte Carlo method to populate the sight-line with projected haloes, including

both random and correlated ones, using Eq. 2.2, the probability of observing a halo of mass

M, redshift z, and angular separation ∆θ from the target. To avoid extremely large angular

sized halos, I apply a low redshift cutoff at z = 0.01. The sums extend to a maximum red-

shift, zmax = 2, beyond which the number density of massive halos is strongly suppressed.

The results are not strongly sensitive to these choices.

Numerically, using an inverse transform sampling of the cumulative probability func-

tion on the grid of M, z, and ∆θ in the case of correlated haloes, with linear interpolation

between grid points, I obtain a sky patch of 25 arcmin in radius, zmax = 2 in depth and

featuring all haloes above Mmin = 2×1011h−1M� in about 4 seconds on a single core.

2.3 From Halos to Observables

Regardless of one’s choice of the analytical form or the simulated halo sight-lines, it is

necessary to translate the dark matter halo representation into actual observables to make

meaningful assessments of cluster projections. The reason is that, ultimately, we do not

make direct observations of dark matter haloes, but their cluster counterparts at various

wavelengths.

Given a simulated halo sight-line, I then translate the dark matter halo representation
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into observables in order to assess the projection effects. I shall mainly focus on three

wave-bands: optical, sub-millimeter, and X-ray. For signals at each wavelength, I first

assign each halo in the sight-line a set of intrinsic signals, Π, comprised of Ngal for optical,

YSZ for SZ, and LX for X-ray, and then convert them into observed quantities S , comprised

of a color-selected Ngal, SZ flux, fSZ, and X-ray flux, fX.

2.3.1 Intrinsic Signals

I employ an HOD approach to model optical richness and use curved power-law scalings

between SZ and X-ray signals and halo mass.

HOD models often use separate terms to describe central and satellite galaxies in mas-

sive haloes. The satellite component scales nearly linearly with halo mass in the general

galaxy population [Zehavi et al., 2011] as well as for red-sequence galaxies [Coupon et al.,

2012].

In this work, I adopt the red galaxy HOD model described in Coupon et al. [2012] for

galaxies brighter than Mg − 5logh = −19.8. This magnitude limit roughly corresponds to

the magnitude cut of 0.4L? used in the MaxBCG catalogue [Koester et al., 2007b]. The

expected intrinsic optical signal will take the following form,

< Πopt(M′, z) >=
1
2

(1 + erf(
ln M′− ln M′min

σln M′
))(1 + (

M′−M′0
M′1

)α), (2.4)

comprised of a central galaxy part, determined by M′min and σln M′ , and a satellite galaxy

part with two mass parameters M′0 and M′1, and a slope, α. A primed halo mass, M′, is used

here because Coupon et al. [2012] uses a halo mass defined with respect to 200 times the

background matter density ρm, as oppose to ρcrit. I convert between the two conventions

using an abundance matching approach described in Appendix D.

Values of the red galaxy HOD parameters in the three redshift regions separated by

z = 0.4 and z = 0.6 are listed in Table. 2.1. The intrinsic optical richness of a given halo
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Table 2.1: HOD Parameters

Redshift log10 M′min σln M′ log10 M′0 log10 M′1 α
z <0.4 12.15 0.36 10.58 13.25 1.19

0.4 <z <0.6 12.10 0.26 8.37 13.19 1.22
z >0.6 12.14 0.25 11.65 13.21 1.22

From Coupon et al. [2012] Masses here are defined at a contrast of ∆ = 200 with respect to
the background matter density, in units of h−1M�.

follows a Poisson distribution with mean value given by employing these values in Eq. 2.4.

In sub-millimeter wavelengths, clusters are observed via the imprint of their SZ effect

on the CMB. At low frequencies, the thermal SZ effect of clusters lowers the local CMB

temperature by an amount determined by the integrated electron thermal pressure, YSZ. The

scaling of YSZ with mass is a subject under active investigation but a power law of slope

close to the self-similar expectation of 5/3 is generally supported by observations [e.g.,

Planck Collaboration et al., 2011d].

At X-ray wavelengths, clusters are observed in the form of peaks in the X-ray flux

map. For simplicity, I choose to use bolometric luminosity as the X-ray mass equivalent.

A number of previous works have been done on ln LX− ln M relations [Rykoff et al., 2008,

Stanek et al., 2010]. The hot gas fraction in halos falls strongly below the group mass

scale [e.g., Dai et al., 2010]. To accommodate this aspect into the model, I use a curved

power-law model for both SZ and X-ray signals,

< lnΠ(M, z) >= A + B ln M +C(ln M)2 + D ln(1 + z) + E(ln(1 + z))2, (2.5)

which includes second order terms in both mass and redshift. I employ values for these

parameters taken from the preheated simulations of Stanek et al. [2010], reproduced in

Table 2.2. The curvature terms are modest, and are mainly important for decreasing the SZ

signal on galactic-halo mass scales.
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Table 2.2: Observable-mass scaling relation parameters

Parameter A B C D E σlnΠ

SZ -8.8102 1.5941 -0.0586 0.3080 -0.0141 0.12
X-ray 2.5285 1.7304 -0.0351 0.786 0.477 0.4

Unit of the intrinsic SZ signal, YSZ, is h−2Mpc2 and that of X-ray signal, LX, is
1044ergs−1cm−2. Halo mass in Eq. 2.5 is a critical M200 in units of 1015h−1M�.

2.3.2 Observable Signals

Given the intrinsic signals of the target, the next step is to convert them into observable

signals received by a telescope.

For optical richness, red-sequence or photometric redshift selection will tend to filter

galaxies in a manner peaked around the target halo redshift with some width σz [e.g., Hao

et al., 2010, Koester et al., 2007b, Rykoff et al., 2013].

I model this selection as a Gaussian filter in redshift space,

S opt(M, z |zt) = Πopt(M, z)exp(−
(z− zt)2

σz(zt)2 ) (2.6)

with the filter width σz taken to be a function of redshift,

σz(z) = 0.03(1 + z) + 0.2z2 (2.7)

This form roughly fits the redshift uncertainty seen in SDSS data out to z ' 1 [Oyaizu et al.,

2008].

For SZ and X-ray, I convert the integrated YSZ and LX in Eq. 2.5 into their proper fluxes

with

S SZ(M, z) =
ΠSZ(M, z)

dA(z)2 = ΠSZ(M, z)
(1 + z)2

r(z)2 (2.8)

S X(M, z) =
ΠX(M, z)

dL(z)2 = ΠX(M, z)
1

(1 + z)2r(z)2 , (2.9)
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in which r(z) is the co-moving metric distance to a source at redshift z.

2.3.3 Creating Sky Maps

In the final step of turning the halo sight-lines into observable sky patches, one needs to

assign the observed signals to each halo with a proper profile. I generalize the projected

signal profiles λ as seen in the sky into the following form,

λ(θ) ∝ g(
θ

θc
), (2.10)

which contains θc, the angular size of the core radius (θ here is the angular distance to the

center of the halo). The core radius relates to R200 via the following relationship,

Rc(M, z) =
R200(M, z)

c(M, z)
, (2.11)

in which c(M, z) is the concentration parameter.

I use the dark matter halo concentration given by Bhattacharya et al. [2013],

c̄ = D(z)0.536.6ν−0.41 ,

σlnc = 0.37 , (2.12)

where ν≡ δsc(z)
σ(m) . The scatter in concentration is taken to beσlnc = 0.37, independent of mass

and redshift. For simplicity, I use the scale radius of the dark matter to set the scale radius

of galaxies as well as the core radius of the ICM hot gas. We interpret the halo model

literally in the sense that profiles are truncated at θ200, with amplitudes re-normalized to

yield the assumed scaling relations.

Because galaxies trace their underlying dark matter distribution, I use a projected

Navarro-Frenk-White (NFW) profile [Bartelmann, 1996] for the the angular distribution
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of optical galaxies,

g(x) =


(x2−1)−1(1− 2√

x2−1
tan−1

√
x−1
x+1 ) x > 1

(x2−1)−1(1− 2√
x2−1

tanh−1
√

1−x
x+1 ) x < 1

(2.13)

As for SZ and X-ray, assuming that the electron number density follows a β profile,

ne(r) = ne0(1 + (
r
rc

)2)−3β/2, (2.14)

one can find the projected 2-D β profile for SZ,

g(x) = (1 + x2)
1−3β

2 ; (2.15)

and for X-ray,

g(x) = (1 + x2)
1
2−3β. (2.16)

In this study, I use a fixed β value of 2
3 [Neumann and Arnaud, 1999].

Putting all the ingredients together, I show in Figure 2.1 views of a sky patch centered on

a Mt = 5×1014h−1M� and zt = 0.3 target with projected halos down to M = 2×1011h−1M�

shown out to zmax = 2. In the upper left panel, I plot the projected matter sky surface density,

and in the other three panels, I display the same sky patch as observed in optical, sub-

millimeter, and X-ray wavelengths. The optical panel displays galaxies filtered by redshift

/ color, while the SZ and X-ray panels present the respective sky surface brightnesses of

the SZ decrement and X-ray flux. The X-ray sightline is clearly dominated by the target

while the optical signal is more confused. Relative to the X-ray, the SZ is less centrally

concentrated and more susceptible to high redshift contamination.

In Figure 2.2 I show the shape of the mean intrinsic and projected radial profiles around

this target halo via stacking the simulated sky patches of the same target. Each signal is

normalized to the mean intrinsic value within a θ200 aperture, thus the intrinsic profiles
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Figure 2.1: A simulated sky patch of 30 arcmin2 centered on a target halo of
5×1014h−1M� at zt = 0.3 as seen in projected dark matter sky surface density (upper-left),
optical (upper-right), SZ flux (lower-left), and X-ray flux (lower-right). The optical panel
contains only those galaxies whose magnitude is brighter than the cutoff implied by the
HOD model and within the redshift filter as discussed in §2.3.2. In the other three panels,
I plot the observed fluxes in 200×200 pixel maps and use a logarithmic color scale with a
floor of 1% of the brightest pixel value.
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Figure 2.2: Scaled, angular profiles of optical (blue), SZ (green), and X-ray(red) wave-
bands, each broken down into its intrinsic (solid), correlated (dashed), and random (dot-
dashed) components. The hard-sphere exclusion assumption creates the feature seen in the
correlated component just beyond θ200.
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(solid lines) integrate to unity within the θ200 aperture, and the projected profiles represent

fractional contributions to the intrinsic signal.

Projection in the optical is larger than the other wavebands, and the contribution from

correlated halos (dashed lines) is a significant fraction of this total. The first feature reflects

the shallower scaling relation slope in the optical, which allows contributions to Ngal from

the more numerous haloes of lower mass, while the second feature reflects the relatively

narrow length scale probed by the optical redshift filter, Equation 2.6, as discussed in § 3.1.2

below. The stronger mass scaling in the SZ and X-ray limits contributions to the projected

partial signal function to a relatively rarified set of high mass haloes. Because of their

wider redshift sensitivity, these signals are dominated by random projections; correlated

halos contribute at a level below 1% of the intrinsic value.

2.3.3.1 Filtered Cluster Signals

The raw signal, S obs(Mt, zt), computed above is convolved with a set of simple angular

filters, f filt(θ), centered on the target halo. The projected component is then,

S obs(Mt, zt) =
∑

i

S i(Mi, zi)
∫

Ω

λ(θ,φ |θi,φi) f filt(θ)dΩ, (2.17)

in which θ is the angular separation from the target centre, S i is the observable signal as

in Eq. 2.6, 2.8, and 2.9; and λ is the unitary-normalized version of the angular profile

function, Equation 2.10. For more details, refer to Appendix B.

I consider three typical filtering scenarios: a simple top-hat; local background subtrac-

tion, and matched filter.

The top-hat filter simply sums the total signal within the known θ200 aperture centered

on the target,

f top−hat(θ) =


0, θ > θ200

1, θ < θ200

(2.18)
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The θ200 top-hat filter measures the amplitude of projected signal onto the face of the clus-

ter.

The second approach is a local Background Subtracted (Bg-sub) filter,

f bg−sub(θ) =


1, θ < θ200

−1,
√

3× θ200 < θ < 2× θ200

0, otherwise

(2.19)

which subtracts signal that falls within an annulus defined by radii of
√

3θ200 and 2θ200.

The area enclosed in this region is equal to the area of the θ200 top-hat filter itself. Annulus

subtraction techniques similar to this are commonly used in X-ray cluster analysis. While

background subtraction can be performed either locally or globally in general, local back-

ground subtraction has the advantage of including part of the correlated component in the

projected signal.

The third approach is a matched filter, which applies a weighted function to the sky map

whose shape is taken to be the mean profile of each target signal, i.e., the optical sky map

will be convolved with a matched filter proportional to its profile in Eq. 2.13, and similarly

for SZ and X-ray.

f matched(θ) ∝ g(θ), (2.20)

where g(θ) are the projected profiles of Eq. 2.13, Eq. 2.15, and Eq. 2.16. The amplitude is

normalized such that the target cluster by itself would yield an observed signal S obs(Mt, zt)

equaling to itself S int(Mt, zt) after the convolution.

When realizing a target halo, I allow the concentration to vary as a log-normal with

scatter σlnc = 0.37. Applying a single matched filter to the ensemble of targets will not

necessarily return an unbiased average, and there will certainly be variance in the filtered

signal induced by the use of a single profile. Filtering each instance with a filter tuned to

its own concentration eliminates this source of variance, but at present there is no simple
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way to apply this approach to large samples of observed clusters.

The model is idealized in several respects. First, I assume the perfect knowledge of the

target halo center and redshift. There is no mis-centering, an effect that can wash out target

signal and increase the importance of projection. Second, I assume perfect knowledge of

the angular scale radius, θ200, of the target halo. These idealizations mean that the effects

of projection on the expected mean and variance of observed signals should be treated

with some caution. Complementary analyses of synthetic simulated skies are necessary to

determine a more complete picture of projection expected for specific survey data.

2.3.4 Special Cases

In the process of producing the multi-wavelength sky patch realizations as described in the

previous sections, I come across several scenarios that require special treatment.

The first issue involves rare cases where a single projected halo overwhelms the target.

I argue that, in these instances, the original “target halo” should be replaced by the largest

contributing halo. Such patches are discarded in the simulation to avoid double counting.

For reference, the fraction of these systems are 0.02% in Optical, 0.1% in SZ, and 0.4% in

X-ray for a Mt = 5×1014h−1M�, zt = 0.3 target 1.

A second class of instances, which I do not discard, are cases in which the projection

contamination is strong. I define Heavily Projected (HP) clusters as those for which the

observed, filtered signal is more than 2.5 standard deviations larger than its intrinsic value,

lnS obs
HP (Mt, zt) > lnS int(Mt, zt) + 2.5σlnS (Mt, zt). (2.21)

If there were no projections and all intrinsic signals are indeed log-normally distributed, the

chance of observing such events is 0.62%. With line-of-sight projections, this likelihood

will undoubtedly becomes larger. Scenarios categorized as HP will more likely be mis-

1The larger fraction in X-ray is caused by realizing haloes as close as zmin = 0.01.
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interpreted as a more massive halo and thus distort the inferred mass distribution at fixed

S obs, as I shall show later in § 3.3.

Finally, when using the Bg-sub filter in Eq. 2.19, there is a chance that one or more

sizable halos could lie in the subtraction annulus such that one would over-subtract, poten-

tially resulting in an unphysical (negative) value for the filtered S obs. I consider it more

likely for observers to notice the large companion in the outer annulus and hence make

rational ad hoc modifications to avoid if encountered in real observations. For the above

reasoning, I shall refer to cases in which S obs is less than 50% of S int as “over-subtracted”

and not include in the following analyses. The fractions of such systems are 0.03% in

Optical, 0.01% in SZ, and 0.4% in X-ray for a Mt = 5×1014h−1M�, zt = 0.3 target 2.

2The larger fraction in X-ray is caused by realizing haloes as close as zmin = 0.01.
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CHAPTER 3

Projection Effects on Galaxy Clusters

3.1 Projections of a Fixed Target

I begin with a benchmark case of a target halo with fixed mass of Mt = 5×1014h−1M� at

redshift zt = 0.3. Under a WMAP7 cosmology, one expects to find 370 haloes more massive

than this one in the full sky between redshift 0.25 and 0.35, corresponding to a sky surface

density of 1 per 100deg2. Such target is a typical cluster that can be found in existing

optical, SZ, and X-ray surveys.

Using the scaling relations presented in § 2.3.1, the target will have the following in-

trinsic properties

< N(Mt,zt) > = 71.0,

exp < lnY(Mt,zt) > = 5.20×10−5h−2Mpc2,

exp < ln L(Mt,zt) > = 4.72×1044erg s−1cm−2.

3.1.1 Observed Signals with Projection

I first examine shifts in the distribution of observed filtered signals relative to the intrinsic

input distribution. Recall that the shape of the intrinsic variance is Poisson for optical

counts and log-normal for the SZ and X-ray signals, with scatter of 0.12 and 0.40 in lnYSZ

and ln LX, respectively. I quote biases in the expected mean as well as the relative scatter
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Table 3.1: Projection in Optical Clusters

Filter Type Top-hat Matched Bg-sub
< S obs/S int > 1.158 1.067 0.996
< σlnS > 0.125 0.182 0.165

HP fraction 9.25% 9.11% 1.89%

in S obs at each of the three wavelengths.

I produce 30,000 realizations of sky patches centered on the reference target and process

their signals with the top-hat, matched, and Bg-sub filters to obtain three measurements of

S obs. The 30,000 realizations reduce the statistical uncertainties to the third significant

digit.

3.1.1.1 Optical

Figure 3.1 shows the frequency distribution of intrinsic (halo) and observed (cluster) op-

tical richness for the reference target. In the optical, line-of-sight projections using the

Coupon et al. [2012] red galaxy HOD have a significant effect on observed counts using

a straightforward top-hat filter within the θ200 target aperture. The mean increase in S obs

due to projection is 16% and in 9.3% of the time, the target will exhibit a S obs more than

2.5 standard deviations away from the intrinsic mean, thus becoming “heavily-projected”

in our definition. There is also a slight increase in the observed signal scatter, going from

11.9% in ln Ngal without projections to 12.5% with them.

Applying the simple (non-compensated) matched filter reduces the overall signal bias

from 16% in the top-hat scenario to 6.7%. It barely changes the HP fraction, which still

hovers slightly above 9%. Although the matched filter does significantly reduce the signal

bias on expectation, it possesses the undesired side-effect of amplifying the variance. The

observed signal variance increases substantially, to 18.2%. This increase in scatter is due

to both variations in intrinsic shape of the cluster profile – the intrinsic concentration varies

for each target instance – as well as cosmic variance in the projected population. The latter

33



40 60 80 100 120
N

ga l

P
r
o
b
a
b
il
it
y
D
e
n
s
it
y

 

 

Target
Top−Hat

Matched
Bg−Sub

Figure 3.1: Distributions of optical richness, Ngal, for a fixed Mt = 5×1014h−1M�,zt = 0.3
target are shown. The intrinsic, Poisson distribution (black, bold solid) is compared to
versions of observed richness that include the effects of projection under top-hat filtering
(red, dashed), a simple matched filter (green, dotted) and local background subtraction
(blue, dot-dashed). Values of the mean and scatter for the observed distributions are listed
in Table 3.1.
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Table 3.2: Projection in SZ Clusters

Filter Type Top-hat Matched Bg-sub
< S obs/S int > 1.061 1.053 1.001
< σlnS > 0.127 0.131 0.138

HP fraction 3.16% 3.19% 1.60%

effect is a lower limit, since the random component of our model lacks spatial clustering.

The local Bg-sub filter performs almost perfectly in removing signal bias in the mean.

While the random component is expected to cancel out, removal of the correlated compo-

nent is not guaranteed due to its radial profile structure (Figure 2.2).

Similar to the matched filter case, local annulus subtraction also adds to the signal

variance, increasing the scatter to 16.5%. This increase mainly arises from the fact that

the variance in this filtered signal is the summed variance of the pseudo-independent signal

and background regions, hence the enlargement by roughly
√

2 in the scatter.

3.1.1.2 SZ

Figure 3.2 shows the frequency distribution of intrinsic and observed thermal SZ effect

for the reference target. The basic level of SZ signal contamination measured by the θ200

top-hat measurement is a boost of 6.1%, roughly a factor three smaller than the mean

optical projection. Correspondingly, the HP fraction declines is lower at 3.2%, small but

still a factor five larger than the 0.62% intrinsic value. The scatter in log-signal remains

dominated by intrinsic variations, the observed top-hat filtered scatter is 12.7%, hardly

changed from the 12% input value.

The matched and Bg-sub filters behave similarly to the optical case. The matched filter

reduces the overall signal bias to 5.3% and background subtraction removes the bias almost

perfectly. For reasons explained in the previous subsection, the standard deviation in log-

signal increases to 13.1% for the matched filter and to 13.8% for the background-subtracted

one.
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Figure 3.2: The distribution of SZ signals for the reference target halo is shown using the
same format as Figure 3.1.
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Table 3.3: Projection in X-ray Clusters

Filter Type Top-hat Matched Bg-sub
< S obs/S int > 1.043 1.015 0.999
< σlnS > 0.392 0.463 0.410

HP fraction 0.67% 1.64% 0.66%

3.1.1.3 X-ray

Figure 3.3 shows the frequency distribution of intrinsic and observed thermal X-ray flux

for the reference target. It is obvious from Table.3.3 that the X-ray suffers a lesser de-

gree of projections to begin with, both in terms of the overall 4.3% bias and the 0.67%

heavily-projected fraction, the latter of which is almost on par with the 0.62% expected

from intrinsic variations alone. The small HP fraction is a consequence of the larger in-

trinsic variance, σlnS int = 40%; the mean projected signal enhancement of 4.3% is a much

smaller fraction of the intrinsic scatter, and chance projections that overwhelm the target

flux are removed from our patch samples.

An interesting feature here is that the top-hat scatter about its mean is actually slightly

lower than the intrinsic value. The primary source of variance in the projected signal is

cosmic variance in the halo sight-line population, which fluctuates at roughly the 7% level

for X-ray. Adding a much less volatile component to the intrinsic signal that has 40%

scatter results in a smaller < σlnS > because the effect on the mean is larger than that of the

scatter.

Similar to the results in Optical and SZ, applying the matched filter reduces the overall

bias to 1.5% while the background-subtraction removes it completely. The steeper radial

filter makes the matched filter more sensitive to the location of projected halos; well aligned

projections lead to larger boosts in signal, as seen in Figure 3.3. The variance and HP

fractions are therefore largest for this filtering scheme. Background subtraction enlarges

the scatter by only a small amount, but I would like to caution that the background modeled

here ignores the dominant point source contributions.
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Figure 3.3: The distribution of X-ray signals for the reference target halo is shown using
the same format as Figure 3.1.
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3.1.2 Demographics of Projection Sources

In this section, I examine the demographics of projection for the reference halo by exam-

ining contributions to the top-hat filtered signal as a function of projected halo mass and

redshift.

The upper panel of Figure 3.4 shows the cumulative contribution to the θ200 top-hat

signals as a function of projected halo mass. In the SZ and X-ray, the super-linear scal-

ing relations with mass limit projected contributions to the target halo from haloes above

1×1013h−1M�. In contrast, about half of the projections in the optical signal come from

haloes below 4×1012h−1M� in mass and only about 25% come from systems more massive

than 1×1013h−1M�. The convergence below 1×1012h−1M� in the upper panel of Fig. 3.4

marks the point at which halos are not expected to host a red galaxy brighter than the mag-

nitude limit. The shape of the HOD creates a plateau in halo mass between 1×1012h−1M�

and 6×1012h−1M�) within which halos are likely to host a single galaxy. Because of their

sheer numbers, haloes in this mass range contribute a large fraction of the observed count

within the top-hat filter.

Along the redshift direction, it can be seen in the lower panel of Fig. 3.4 that both

SZ and X-ray signals are subjected to projections along a wide redshift range. The less

than 4 percent overall X-ray projection is split nearly equally between foreground and

background, whereas the 6 percent projected signal in SZ is dominated by gas in high

redshift haloes. In the optical, the redshift filter I assume for red-sequence galaxies, Eq.

2.7, limits contributions to a narrow redshift range centered on the target.

3.1.3 Correlated Projections

Figure 3.4 also shows the contributions to the top-hat filtered signals from spatially corre-

lated halos as dashed lines. The correlated component adds 6 percent to the optical richness,

about one-third of the overall top-hat filtered projection. The contribution to SZ or X-ray

signals is at the level of ∼ 0.6 percent overall, a small fraction of the random projected
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Figure 3.4: Cumulative observed signal over intrinsic signal as one sum the projected
contributions along haloes of different mass (top panel), and along redshift (bottom panel),
for a target mass of Mt = 5×1014h−1M� at zt = 0.3. For comparison across different wave-
lengths, observed signals are collected within the θ200 of the target with a top-hat window
function.
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contribution. These results reflect the fact that correlated projections reside in a relatively

narrow bin in redshift space.

These differences in projection signatures lead to different trends when we vary the

target mass and redshift in the next section. It also has a strong influence on the signal

covariance, which I will discuss in Chapter 4.

3.2 Projection as a Function of Target Mass and Redshift

After studying projections on a fixed target, I move on to explore its behaviors as a function

of target halo mass and redshift. I study these dependencies separately by fixing one pa-

rameter and varying the other, using the target halo of the previous section as a benchmark.

When varying redshift, I choose not to keep the target mass fixed, but instead employ

a halo mass that matches the sky surface density of the reference Mt = 5×1014h−1M� and

zt = 0.3 target halo. For more details of this varying mass scale along redshift, refer to

Appendix C.

3.2.1 Varying Target Halo Mass at z = 0.3

For target halos at zt = 0.3, Figure 3.5 presents trends in the mean projected S obs/S int (solid

lines) as well as its standard deviation (shaded colors) as a function of halo mass ranging

from the group scale, Mt = 1013.8h−1M�, to rich clusters, Mt = 1×1015h−1M�. The upper

panel shows top-hat filtering while the lower panel shows local background subtracted

signals. Results using the matched filter exhibit trends similar to an interpolation between

these two cases, i.e., the bias is reduced from the top-hat scenario but not to zero, so I

choose not to present them explicitly here.

In the upper panel of Fig. 3.5, the overall (top-hat) projection amplitude, S obs/S int,

increases as the target mass decreases. The driving factor here is the decrease in the de-

nominator, S int, as one moves to less massive targets. optical clusters see their projec-

41



Figure 3.5: The expected value of S obs/S int (solid lines) and 68%-quantile range (shaded)
for the ratio of observed to intrinsic signals as a function of target halo mass at zt = 0.3. In
the top panel, S obs is calculated using a top-hat filter within θ200 while the bottom panel
uses local background subtraction in an annulus between

√
3θ200 and 2θ200.
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tion enhancement grow from 13% at Mt = 1×1015h−1M� to 34% at Mt = 6×1013h−1M�.

Across the same mass range, the top-hat contribution to S obs grows from 2.3% to 22% in

X-ray and from 3.2% to 38% in SZ. The mean projected signal in SZ exceeds that in the

optical for Mt < 1013.9h−1M�.

In the optical, the intrinsic signal changes more gradually than that of the SZ and X-ray

as a function of mass, resulting in a smaller gradient in S obs/S int. Furthermore, a signifi-

cant portion of the projection comes from the correlated structure, which is proportional to

the halo bias, so as the target mass decreases, the correlated contribution diminishes. Both

the SZ and X-ray projections are dominated by the random component instead of the cor-

related one, which simply scales linearly with the halo’s sky area, πθ200
2 ∝ M200

2/3. When

combined with their intrinsic slopes near α ∼ 5/3 for these scaling relations, one expects

S proj/S int ∝ M−1
t , close to the behavior seen in the model calculations.

In the lower panel of Fig. 3.5, I apply the Bg-sub filter, which performs well in remov-

ing the projection induced bias across the mass range shown. The shaded areas in the plot

show that the scatter in S obs becomes larger at lower target masses, growing from 12%,

4.0%, and 3.5%, to 68%, 59%, and 40%, in optical, SZ, and X-ray, respectively, across the

mass range shown.

Even though variances are kept constant in both SZ and X-ray intrinsic log-signals, as

I have discussed in § 3.1, cosmic variance dominants the projected component uncertainty

and its magnitude depends on the πθ200 sky area, which increases as the area gets smaller.

Furthermore, the denominator in S obs/S int becomes smaller as Mt decreases, exacerbating

the amplification in signal variance we see in Fig. 3.5.

3.2.2 Varying Target Halo Redshift

When varying the target redshift, I choose not to simply use a constant mass because a

5×1014h−1M� halo is much rarer at redshift of 1 than redshift of 0.3. Instead, I set the

target mass by requiring that the sky surface density match that of our benchmark Mt =

43



Figure 3.6: Similar to Figure 3.5, but showing behavior as a function of target redshift
instead of mass. The target mass is varied with redshift to maintain a fixed sky surface
density of target haloes (see text and Figure C.1).
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5×1014h−1M� halo at zt = 0.3, which translates to a density of 1 per ∼ 100 deg2. The

target mass set this way is peaked near z = 0.3 and declines at lower and higher redshifts,

falling to 2×1014h−1M� at z = 1.4. Figure C.1 in Appendix C provides details.

In the upper panel of Figure 3.6, I compute S obs/S int using the simple top-hat filter. The

most striking feature is how the projection amplitude in the optical signals changes much

differently compared to that in the SZ and X-ray. In those two wavebands, projections are

dominated by the random component, which is a plain function of the sky area πθ200
2 cov-

ered by the target, thus the trend in S obs/S int can be easily described by the ratio between

the target πθ200
2 and its intrinsic signal flux. In the X-ray, the decreasing intrinsic flux with

redshift means that top-hat projection effects are larger than those of SZ at z > 0.6.

In the optical, the trend is more complicated as multiple factors come into play. The

ratio between the two correlated and random contributions increases weakly as a function

of redshift (as can be seen in Figure A.1 in Appendix A). Within the correlated component

itself, the behavior is not trivial as the halo-halo bias tends to increase the projection while

the decline in the massive halo space density at earlier epochs pulls in the opposite direc-

tion. Another contributing factor is fact that the redshift filter, Eq. 2.6, widens with redshift.

This effectively lengthens the projection cylinder at higher redshift which correspondingly

increases the projection amplitude. Generally speaking, the upward trend in S obs/S int be-

fore redshift of 1.2 is caused by the combination of an increased correlated projection and

a larger effective cylindrical volume, whereas the decline beyond z = 1.3 is mainly due to

the drop in the halo mass function.

The lower panel in Figure 3.6 shows that the Bg-sub filter works extremely well in

removing the projection induced signal bias along the entire redshift range from 0.1 to 1.5.
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Figure 3.7: Population densities of haloes at zt = 0.3 are shown in the lnS obs − log10 M
plane for Optical, SZ, and X-ray (top to bottom) signals. The left-hand-panels show θ200
top-hat filtering while the right-hand panels are obtained using the local background sub-
traction filter. The expected log-mean S int values are shown in solid cyan lines, and the
range of ±2.5σlnS int in dashed. Systems that lie above the top dashed line are those de-
fined to be “Heavily-Projected”. The green horizontal dashed lines in right panels show the
signal selection ranges for haloes in Figure 3.8.

46



3.3 The Effect on Inferred Halo Mass

So far I have focused on the probability distribution of the observed signal given a target

mass and redshift, P(S obs |Mt, zt). However, when dealing with samples selected by observ-

able, it is the inverse, the distribution of target mass given an observed signal P(Mt |S obs,zt),

that is the relevant quantity. Inferring the underlying mass selection is an important com-

mon objective for clusters surveys of all wavelengths.

The fast halo sight-lines can be built with a range of target masses, as in § 3.2.1, al-

lowing us to create an ensemble of observed cluster-halo pairs from individual sky patches.

We then use these pairs to map out the distributions of underlying halo masses selected by

observed signals.

To properly create the simulated survey catalogue, first, I generate sky patches with

target masses sampled from a uniform distribution in large quantity. I then process these

sky patches and obtain the observed signal S obs(Mt, zt) for each target in Optical, SZ, and

X-ray. Subsequently, I apply a prior probability P(Mt,zt), which is proportional to the halo

mass function, to each patch.

P(S obs|z rt) =

∫
M

P(S obs |Mt,zt)P(Mt |zt), (3.1)

in which the prior distribution P(Mt |zt) is the dark matter halo mass function at redshift zt.

It is worth noting that since the mass function itself is not a proper prior (in the sense that

it cannot be normalized), a cutoff mass has to be introduced in the actual computation. The

results are not significantly affected by such cutoff as I investigate in a S obs much higher

than the expected value of the cutoff mass.

In Figure 3.7, I show the product of such simulated catalogue. Densities of the joint

S obs - Mt distributions are shown in heat maps. In panels on the left, the observed signal is

computed with a θ200 top-hat filter, whereas the right-hand-side panels use the local Bg-sub

filter. The expected intrinsic values with no projections are shown in solid cyan lines,
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accompanied by their ±2.5σ ranges in dashed lines. Systems that lie above the top dashed

lines are defined to be “Heavily-Projected” in this model (Eq. 2.21).

The top-hat filtered signals are naturally enhanced relative to the intrinsic values, with

SZ at low masses most strongly affected. Local background-subtraction removes the bias

caused by projection but introduces additional scatter at the same time.

While theorists may prefer to look at Figure 3.7 this way, observers should see its

transposed image in survey data, without a perfect knowledge of the actual ln M. Inferring

the underlying mass distribution at fixed S obs is essentially slicing a horizontal piece from

Figure 3.7 to obtain P(M |S obs).

As illustrated by the green horizontal dashed lines in Figure 3.7, I center on the expected

intrinsic signals of a 5×1014h−1M� and a 1×1014h−1M� target and select systems whose

S obs fall within ∆ = ±10% of them, and plot their distributions in Figure 3.8.

The Probability Density Function (PDF)s as obtained in the simulated catalogue are

presented in Figure 3.8 as histograms while their Gaussian fits are shown in solid black

lines. The “Heavily Projected” systems are highlighted in red color while the rest are

represented by shaded blue. I include the location of both the M = 5×1014h−1M� and M =

1×1014h−1M� halo on the plot with dashed line for reference. Results here are obtained

using the Bg-sub filter as it removes the projection bias which may otherwise shift the PDFs

significantly.

Note that the PDFs are not expected to center on the M = 5×1014h−1M� and M =

1×1014h−1M� dashed-lines. The deviation between the log-mean of the distributions and

the target value into the observable-mass scaling relations is the Eddington bias driven by

the convolution with a steep mass function, as described analytically in Rozo et al. [2012].

Another key feature in Figure 3.8 is the increase in mass scatter towards smaller clus-

ters. The intrinsic optical signal scatter increases at lower mass due to the nature of Poisson

distribution, but the variance in the log- SZ and log- X-ray signals are constant. While X-

ray observations are less susceptible to projections and thus exhibit insignificant changes
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Figure 3.8: Conditional mass likelihood selected by local background subtracted signals
at zt = 0.3 in Optical, SZ, and X-ray (top to bottom). Clusters are selected if their observed
signal lies within ±10% of the expected value of a 5× 1014h−1M� target (on the right) or
a smaller, 1×1014h−1M� target (on the left). The parts shaded red represent contributions
from the “Heavily-Projected” systems. The solid black curves represent Gaussian fits to the
data. Black dashed lines are added to show the mass scales at which I select the observed
signals.

49



in the width of P(M |S obs), the inferred mass distribution widens noticeably in SZ as one

moves to weaker signals. In optical, such increase in scatter is exacerbated by the increase

in Poisson variance.

Additionally, the PDFs deviates form a perfect Gaussian shape, being skewed toward

lower masses, especially in the optical. Such non-Gaussianity is driven by the “blended”

systems as defined in Cohn et al. [2007], which has been further studied by Erickson et al.

[2011].

3.4 Summary and Discussion

In Chapter 2, I presented an semi-analytical projected halo model, which enables the as-

sessment of line-of-sight projections in galaxy clusters. Using a simple Monte Carlo ap-

proach, one may generate discrete sight-lines featuring both correlated and random haloes.

The method serves as a much faster alternative to N-body simulations in studying galaxy

cluster projections with greater statistical power, especially of the massive clusters.

In to assess projections in S obs, a simple multi-wavelength signal model is added to the

projected halo model, in which intrinsic signals are put in via scaling relations and assigned

to the simulated sky patches using proper profiles. S obs was presented with three filtering

schemes, top-hat, matched, and background-subtracted.

In Chapter 3, the observed signal bias and variance for a fiducial target of mass 5×1014h−1M�

at zt = 0.3 in a WMAP7 cosmology have been measured. Optical richness is most suscep-

tible to projection, with a simple, top-hat filtered boost of 16%, compared to 6% and 4% in

SZ and X-ray, respectively, for the fiducial target.

Projection in the optical is also more localized in redshift and therefore more depen-

dent on nearby, correlated haloes. Background subtraction removes the signal bias but

increases the variance in observed signals. I examined the sensitivity of these effects to

target mass and redshift, finding that at zt = 0.3, the top-hat projected SZ boost exceeds
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that in the optical at halo masses below ∼ 1013.9h−1M�. I further discussed the fraction

of “Heavily-Projected” systems in each observable, and examined the shape of the mass

selection function at fixed S obs.
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CHAPTER 4

Observed Signal Covariance

We live in an era where large surveys at different wavelengths begin to provide abundant

statistics of galaxy clusters. In the optical, existing surveys such as the SDSS [Ahn et al.,

2012, Stoughton et al., 2002] have provided optical galaxy clusters on the order of 10,000.

Up-coming surveys such as the Dark Energy Survey (DES) [Annis et al., 2005, The Dark

Energy Survey Collaboration, 2005], the Visible and Infrared Survey Telescope for Astron-

omy (VISTA) at the European Southern Observatory (ESO) [Saito et al., 2012], etc. will

add to this pool in statistics and at deeper redshift. In the sub-millimeter wavelength, an

increasing number of SZ clusters has been observed by Planck [Planck Collaboration et al.,

2011a,b,c], and by the South Pole Telescope (SPT) [Carlstrom et al., 2011] in recent years.

In the X-ray, missions like the X-ray Multi-Mirror Mission (XMM-Newton) [Finoguenov

et al., 2007, Hasinger et al., 2007], the XMM Cluster Survey (XCS) [Mehrtens et al., 2012],

and the eRosita mission [Cappelluti et al., 2011, Pillepich et al., 2012] continue to add to

the X-ray cluster pool.

The overlap of survey fields has provided a number of clusters observed in multi-

ple wavelengths. Joint studies between SZ and optical [e.g., Planck Collaboration et al.,

2011d], SZ and X-ray [e.g., Planck Collaboration et al., 2012], X-ray and lensing [e.g.,

Leauthaud et al., 2010, Mahdavi et al., 2013], etc. have already emerged in recent years. In

the near future, studies on the observable joint distribution of galaxy clusters [e.g., Mantz

et al., 2010, Rozo et al., 2009] are expected to come in greater quantity as the number of
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clusters observed in multi-wavelengths increases.

Such studies of the observable covariance in cluster signals lead us towards better un-

derstanding of the intra-cluster physics and higher accuracy in joint mass estimations. In

this chapter I aim at utilizing the projected halo model to understand the various effects on

observed signal covariance when line-of-sight projections are introduced.

4.1 Extensions to the Model

Starting from the beginning of the projected halo model, I shall now treat the observed

signal, S obs in Eq. 2.1, as a vector, Sobs, which contains multi-wavelength measurements in

the optical, SZ, or X-ray. In this chapter, I shall use a subscript i to represent an observation

at a specific wavelength, for example S obs
i = Ngal when i = optical, etc..

4.1.1 The Intrinsic Covariance

It was not until recently did studies of intrinsic signal covariance through gas dynamic

simulations began to emerge [e.g., Stanek et al., 2010]. Observational studies, on the other

hand, can only provide insights to the observed covariance of Cov(S obs) with the limited

number of jointly observed clusters. I shall show later in this chapter, that Cov(S obs) may

differ from Cov(S int) due to line-of-sight projections.

Following the formalism in Chapter 2, I first consider modeling the covariance in the

intrinsic signal Π(M, z) as discussed in § 2.3.1.

I shall mainly discuss two scenarios of the intrinsic covariance matrix, Cov(Π). The

first is a zero correlation case, in which correlations between pairs of intrinsic optical, SZ,

and X-ray signals are all zeros. The “zero” case provides a perfect starting point for one

to see the effects of projections on observed signal covariance. The second scenario is a

“typical” intrinsic correlation matrix as shown in Table 4.1, in which the SZ and X-ray

components are 78% intrinsically correlated in log-signal, while the optical has a -20%
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Table 4.1: The “Typical” Intrinsic Correlation Matrix

Optical SZ X-ray
Optical 1 -0.2 -0.2

SZ -0.2 1 0.78
X-ray -0.2 0.78 1

The correlation matrix of the logarithmic intrinsic signals in the optical, SZ, and X-ray.
The SZ and X-ray signals follow log-normal distributions with standard deviations of 12%

and 40%, respectively. In this case, the optical signal is sampled from a log-normal
distribution with a variance equivalent to that of the Poisson distribution. Please refer to

§ 4.1.2 for more details on this approximation.

correlation to each of them.

The 78% correlation between SZ and X-ray is motivated by the simulation results in

Stanek et al. [2010], as their observations both scale with the electron density in the ICM

(Equations 1.23 and 1.24).

With respect to the optical - SZ / optical - X-ray correlations, both stripping and feed-

back processes caused by supernovae winds and black hole jets are mechanisms that lower

baryonic matter composition in galaxies and raises gas fraction in the ICM, which could

potentially create a negative intrinsic correlation between the optical and X-ray / SZ sig-

nals. Unfortunately, there exist no literature to provide a precise quantitative measurement

of these correlations. I choose a fiducial value of −20% in both the optical - SZ and the

optical - X-ray intrinsic correlations.

4.1.2 Introducing Intrinsic Correlations to the Optical Signals

Common optical galaxy cluster mass proxies such as the cluster richness Ngal dictate its

distribution to be Poisson at fixed mass, which posses a conundrum for this study when

using the “typical” intrinsic correlations in Table 4.1.

Since most target clusters are massive, having sufficiently high optical richnesses (i.e.,

Ngal
tar >> 1), I use a log-normal approximation of the Poisson distribution to introduce the

negative correlation between optical and the other two intrinsic signals.
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I find that, when N > 12, a log-normal distribution with the following scatter fits the

Poisson distribution scatter well,

σln N =


exp(0.1−0.52ln N) ln N ≥ 2.5

0.3012 ln N < 2.5
. (4.1)

I choose not to simply employ the 1√
N

scatter because it underestimates the Poisson

variance in ln N when N is small, can be seen in Figure 4.1, whereas the fit provided by

Eq. 4.1 gives better agreement down to the level of N ≈ 12. The plot shows the scatter

of ln N, when N is drawn from Poisson distributions in blue solid line. The data samples

10,000 independent identically distributed N values for each mean. The red solid line

shows the fit using Eq. 4.1 and the solid black line is the canonical 1√
N

value.

The log-normal approximation of a Poisson distribution becomes poor when N < 12,

both in terms of the scatter and the asymmetrical shape in the distribution. Thus, the usage

of this approximation is limited to the target haloes only, i.e., intrinsic optical signals Πopt

of the projected haloes are still drawn from the Poisson distribution and will exhibit no

correlation with either the SZ or the X-ray signals. It will be shown later in § 4.2.3, that the

projection contribution to the observed signal covariance is dominated by cosmic variance,

which makes the effect of not including the -20% correlations amongst the projected signals

insignificantly.

4.1.3 Inclusion of Halo Mass

In addition to the optical, SZ, and X-ray, I shall include a fourth component in the co-

variance matrix, the projected mass along the entire line-of-sight. Such measurement may

serve as an approximation to lensing mass of galaxy clusters, which essentially measures

the abundant mass along the line-of-sight relative to the background density with a weigh-

ing function in redshift and angular distance.

Precise modeling of the lensing mass requires decisions about the lensed galaxy popu-
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normal scatter fitting form given in Eq. 4.1 (in red).
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lation, a quantity that differs from survey to survey. The typical approach in simulations is

to use a multi-plane ray tracing technique and find the projected mass via lensed images.

Since this study is exploratory, I choose to include the projected mass directly as op-

posed to applying the ray tracing technique to maintain the simplicity of the model. Ulti-

mately, the goal of this study is to make a first attempt of covariance assessment with the

presence of line-of-sight projections and the projected halo mass measurement serves this

goal well.

4.1.4 Contributions to the Observed Covariance

Within the model of framework, the intrinsic component is independent from the projected

one. Obviously the uncorrelated random component should exhibit no correlation to the

other components, as there exist no astrophysical process that relates, for instance, the

abundance in optical galaxies in one halo to Ngal in another one hundreds of Mpc away.

However, some models, such as the cooperative galaxy formation model [Bower et al.,

1993], have proposed mechanisms in which the correlated component may exhibit weak

spatial correlations. I choose to exclude such possible weak cross-correlations in this model

because it is a higher order correction, thus enforcing Cov(S int
i ,S proj

j ) = 0.

Covariance of the observed signal S obs can be expanded in the following form,

Cov(S obs
i , S obs

j )

= Cov(S int
i , S int

j ) + Cov(S proj
i , S proj

j )

= σint
i σint

j ρint
ij +σ

proj
i σ

proj
j ρ

proj
ij , (4.2)

in which σ is the the standard deviation in linear S , and subscripts i, j stand for the observed

signal at different wavelengths.

Although the intrinsic signals in both SZ and X-ray are assumed to follow log-normal

distributions with fixed Cov(lnS int
i , lnS int

j ) values, the study will focus on examining Cov(S , S )
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instead of Cov(lnS , lnS ) henceforth as S represents the physical quantities, i.e., number of

galaxies and flux, which add linearly. The additive feature of S allows for the separation of

components in Eq. 4.2, making physical interpretations much easier.

4.2 Projection Induced Covariances

With the extensions to the model, I study covariances in S obs via populating haloes in the

simulated sight-lines with multivariable signals that are intrinsically correlated as described

in § 4.1.1.

Figure 4.2 shows the δ lnS - δ lnS matrix generated from 30,000 simulated sight-lines

on a Mt = 5×1014h−1M�, zt = 0.3 target halo with the “typical” intrinsic correlation matrix

(Table 4.1). S obss are obtained using the Bg-sub filter to remove the bias. The diagonal

blocks show the distribution of lnS obs
i and lnS int

i for each observable. In the off-diagonal

panels, lower-left contours show the intrinsic δ lnS int - δ lnS int joint distributions, whereas

the upper-right ones display the observed joint distributions (the intrinsic halo mass is de-

fined to be Mt, thus creating the effect seen in the last row of Figure 4.2).

In following parts of this chapter, I shall extract correlation / covariance information on

S obs from the simulated sight-lines as seen in Figure 4.2.

4.2.1 The Zero Intrinsic Correlation Scheme

Covariance of S obs from a projected sight-line standpoint depends on a variety of factors,

e.g., the intrinsic correlation, signal variance, filtering scheme, etc.. To disentangle the

problem, I first start with an perhaps unrealistic but simple scenario by setting the intrinsic

correlations to zero and use a simple top-hat filter of the size θ200 of the target cluster.

In better reference to the results in Chapter 3, the same benchmark target of Mt =

5×1014h−1M�, zt = 0.3 is used here. By creating 30,000 realized light-lines and subse-

quently convolving the signal sky patch with a θ200 top-hat filter, the correlation / covari-
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Figure 4.2: Mock optical, SZ, X-ray, and projected mass joint survey result using 30,000
fast halo sight lines simulated with a Mt = 5×1014h−1M�, zt = 0.3 target to the depth of
zmax = 2. Observed signals are computed via applying the background-subtracted filter.
Histograms on the diagonal show the distributions of δ lnS int and δ lnS obs, the deviations
of log-signals about their means, while the lower-left off-diagonal panels display the joint
distributions for each intrinsic signals pairs, and the upper-right ones show that for each
observed signal pair.
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Figure 4.3: I present the correlation / covariance matrix of a Mt = 5×1014h−1M�,zt = 0.3
target with no intrinsic correlations amongst signals. The result is computed with 30,000
realizations and the statistical uncertainty of each entry is on the ±0.01 level. The upper-
right entries are correlations of the observed signals while the lower-left entries show that
of the intrinsic. The values in blue color along the diagonal are the normalized standard
deviations, σ(S obs)/ < S int >.

ance matrix of S obs in obtained and shown in Figure 4.3.

In this figure and similar ones to follow, I display correlations in the intrinsic signal,

ρ(S int
i , S int

j ), in the lower-left entries of the matrix; and show those of the observed signal,

ρ(S obs
i , S obs

j ), in the upper-right entries. The scatter in observed signal normalized by its

expected log-mean intrinsic value, σ(S obs)/ < S int >, in each observable, is presented along

the diagonal.

As seen in Figure 4.3, there are overall increases in the observed signal variance at each

wavelength due to the additional projected component in Eq. 4.2, which have been seen in

Chapter 3. In addition to the increase in variance, correlations amongst observed signals
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are shown to be positive, despite no intrinsic correlations in the model.

It can be seen from Eq. 4.2 that such positive correlation can only come from a cor-

related projected signal, if we model ρint
ij to be zero. Amongst the signals, the correlation

between the optical and SZ leads at 10%, with a 6% observed correlation between SZ and

X-ray and 2% in X-ray and optical to follow. In § 4.2.2, I shall show that the larger ob-

served correlation between the optical and SZ signal is caused by a larger scatter in the

projected component of those signals, as opposed to a greater correlation in ρproj. In fact,

Figure 4.4 shows that the largest correlation in the projected signals comes from X-ray and

SZ, ρproj = 83%.

The projected mass exhibits larger induced correlations with the observables in general,

due to its ∼ 26% scatter, as seen in the right-most column in Figure 4.3. SZ signals show the

strongest correlation with projected mass, at 25%, because it effectively probes the deepest

sight-line amongst the three observables (Figure 3.4).

4.2.2 Covariance of the Projected Component

To further reveal details about covariance of the projected component, I investigate the

projected signal by itself in Figure 4.4, which shows the correlation / covariance matrix

of only the projected signals. Instead of ρ(S obs
i , S obs

j ), the upper-right entries in the figure

show ρ(S proj
i , S proj

j ), and the diagonal ones are σ(S proj)/ < S int > instead of σ(S obs)/ <

S int >. The target cluster (Mt = 5×1014h−1M�, zt = 0.3) and filtering scheme (θ200 top-hat)

are kept the same with those used to create Figure 4.3.

It can be seen that the projected signals are highly correlated, with ρproj between SZ

and X-ray leading the way at 83%. As previously discussed in § 3.1.2, the two share a

very similar trait in terms of the contributions from the different redshift (Figure 3.4). The

amplitude of variance in the projected signals is around the 7% level, except for projected

mass. The 26% scatter in projected mass essentially characterize the level of mass variance

in the sight-line relative to Mt = 5×1014h−1M�, hence in this case the scatter of the summed

61



Optical SZ Xray Mass

Mass

Xray

SZ

Optical

+0.00 +0.00 +0.00 (0.26)

+0.00 +0.00 (0.07) +0.34

+0.00 (0.06) +0.83 +0.55

(0.08) +0.41 +0.36 +0.26

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Correlation / covariance matrix of the projected signals in sight-lines centered
on Mt = 5×1014h−1M�, zt = 0.3 targets with no intrinsic correlations. The result is com-
puted on 30,000 realizations and the statistical uncertainty of each entry is ± ∼ 0.01. See
figure 4.3 and text in § 4.2.1 for more details.
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projected mass within the θ200 aperture has σ(Mproj) ∼ 0.26× (5×1014h−1M�).

The correlation between projected mass and projected optical signal is seen to be the

smallest in Figure 4.4, since projected optical signals are extremely localized (Figure 3.4)

in this model, whereas projected mass simply sums masses from all redshift with an even

weight. Nonetheless, ρproj between the optical and projected mass is still shown to be very

significant, at 26%, which, I argue, is likely driven by cosmic variance.

4.2.3 Cosmic Variance

In this model framework, covariances introduced by projections come from mainly two

sources, the covariances in the projected signals, and cosmic variance i.e., covariances due

to the spatial arrangement of haloes in each line-of-sight. Obviously clusters that reside

in densely populated sight-lines should have higher S obs compared to those residing in

cleaner environments. This effect, by itself, will introduce an extra piece of variance as

well as correlation to the intrinsic covariances.

Since correlations in the intrinsic signals are kept to be zeros, most of the correla-

tions seen in Figure 4.4 should come from cosmic variance. To examine the amplitude

of covariance introduced by cosmic variance, I present an idealized situation, in which

all randomness from other components are turned off, i.e., every halo contributes a signal

equaling to exactly its expected value, making cosmic variance the only remaining source

of uncertainty.

Results in Figure 4.5 show that cosmic variance is the dominant factor in the projected

covariance seen in Figure 4.4. The amount of scatter introduced by cosmic variance is ∼ 5

- 6% in σlnS , and the correlations are almost uniformly higher than those in the projected

signals in § 4.2.2. Despite localized in redshift, the optical signal correlates with projected

mass in the entire line-of-sight at 31%, due to the fluctuations in the number and masses of

haloes in the correlated structure. On the other hand, the similar redshift dependency in SZ

and X-ray signals yields the highest correlation of 87% due to cosmic variance.
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Figure 4.5: Correlation / covariance matrix in the Cosmic Variance only scenario. The
result is computed on 30,000 realizations and the statistical uncertainty of each entry is
± ∼ 0.01. The target haloes in these sight-lines are still Mt = 5×1014h−1M�, zt = 0.3. See
figure 4.3 and text in § 4.2.1 for more details.
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The result here also justifies not including corrections between optical and SZ / X-ray

in the projected haloes, as discussed in § 4.1.2.

4.3 Distortions to the Intrinsic Covariance

Moving on from the idealized scenario in which signals are intrinsically independent, I shall

now investigate the effect of projections on a given intrinsic covariance. In this section,

the “typical” intrinsic correlation matrix in Table 4.1 is used to examine the influence on

Cov(S obs) by the line-of-sight projections. For easier reference, the same target halo with

Mt = 5×1014h−1M�, zt = 0.3 and the θ200 top-hat filter are used. Figure 4.3 shows the

correlation / covariance matrix of S obs for such a target cluster with 30,000 realizations.

In the “typical” scheme, the −20% intrinsic correlation between the optical and SZ

signals is much reduced to only −3% when projections are included, echoing the results in

§ 4.2, which saw a positive correlation introduced by projections. In essence, the negative

ρint in Eq. 4.2 is counteracted by the positive ρproj, with the final balance in ρobs determined

by the scatter in those signals.

Hence, the −20% intrinsic correlation between the optical and SZ signals is more

severely distorted to −3%, compared with a −11% correlation between observed signals

in Optical and X-ray, as the projection contribution is larger in SZ than in X-ray, which can

be seen either directly in Table 3.3, or indirectly from Figure 4.3.

The observed correlation between SZ and X-ray signals remains strong at 73%, com-

pared to its intrinsic value of 76% in linear signals. As discussed in § 4.2.2, the projected

SZ and X-ray signals establish a strong correlation (> 80%) due to similar redshift depen-

dency, hence it is expected that the observed correlation does not differ much from its high

intrinsic value.

Findings here answer an important question, if the intrinsic signals are negatively cor-

related in optical - SZ or optical - X-ray due to reasons explained in § 4.1.1, observational
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Figure 4.6: Correlation / covariance matrix of S obs when the target halo has Mt =

5×1014h−1M�,zt = 0.3 and the “typical” intrinsic correlations in Tab. 4.1. The result is
computed on 30,000 realizations and the statistical uncertainty of each entry is ± ∼ 0.01.
See figure 4.3 and text in § 4.2.1 for more details.
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studies on jointly resolved clusters in multi-wavelength surveys may see a much reduced

value due to line-of-sight projections. In fact, the various idealizations made in this model

tend to underestimate the projection-induced covariance. Uncertainties in locating the clus-

ter centers, especially in the optical, and subsequently determining the correct θ200 size,

will introduce additional variances to the problem. If such variances are uncorrelated, i.e.,

if one expects, for example, mis-centering in the optical not to correlate with measure-

ments in the X-ray, the actual ρ(S obs
i , S obs

j ) from observations may lie even further from its

intrinsic −20%.

4.4 Covariances at Higher Redshifts

As future surveys such as the DES [Annis et al., 2005, The Dark Energy Survey Collabo-

ration, 2005], XCS [Mehrtens et al., 2012], etc. move to deeper redshift, it is important to

understand how Cov(S obs) of clusters are affected by projections at redshifts beyond 0.3.

Figure 4.7 shows the correlation / covariance matrix of S obs for a Mt = 4.38×1014h−1M�

target halo at zt = 0.7, under the top-hat filter scheme with no intrinsic correlations (top

panel) versus the “typical” intrinsic correlations in Table 4.1. The target mass here is de-

rived from matching the sky surface density of the benchmark Mt = halo514, zt = 0.3 target.

For more details on the abundance matching scheme, refer to Appendix C.

Compared to the results at zt = 0.3, the observed covariance, Cov(S obs), z = 0.7 shows

similar effects from projections, but at a reduced level.

For instance, in the zero intrinsic correlation scenario (top-panel of Figure 4.7), the

correlation between the observed signals in Optical and SZ stands at 6%, compared to 10%

at zt = 0.3. The scaled down projection induced correlation here, as well as between SZ

and X-ray, are direct consequences of the reduced projection fraction resulting from the

smaller πθ200 sky area, as explained in § 3.2.2, as one moves to higher redshift. This effect

is heavily compensated by the rapid decline in intrinsic flux in X-ray signal, as it scales
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Figure 4.7: Correlation / covariance matrix of S obs when the Mt = 4.38×1014h−1M� is at
zt = 0.7. In the top panel, a “zero” intrinsic correlation is assumed, while in the bottom one,
I use the “typical” intrinsic correlations. See figure 4.3 and text in § 4.2.1 for more details.
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with luminosity distance (Eq. 2.9) as opposed to angular diameter distance in SZ (Eq. 2.8).

Similarly, with the “typical” intrinsic correlations (bottom-panel of Figure 4.7), the dis-

tortions due to projections are also reduced, yielding a −9% observed correlation between

Optical and SZ, and −14% between Optical and X-ray, compared to −3% and −10% in

Figure 4.3 when zt = 0.3. Therefore, if the optical signal does exhibit negative intrinsic

correlations to SZ and X-ray, they should be easier to observe at higher redshifts as a con-

sequence of the reduced line-of-sight projections.

On the other hand, the observed correlation between Optical and projected mass is

increased to 26% at z = 0.7, compared to only 14% at z = 0.3. It can be seen in Figure A.1

in Appendix A, that the correlated component occupies a greater fraction of the optical

projection as one moves to higher redshift. Such an increase in the correlation fraction,

exacerbated by the larger bias of a Mt = 4.38×1014h−1M� halo at zt = 0.7, causes the

increase in the observed Optical - Mass correlation.

4.5 Discussions

The studies in this chapter provide several important insights to cluster signal covariance.

First, the model shows that the projected signal contributions are positively correlated

by nature, mainly due to cosmic variance, uncertainties in the spatial displacement of haloes

along the sight-line. The scatter in S obs due to cosmic variance is measured to be between

6 and 7 percent in Optical, SZ, and X-ray. The projection-induced correlations is measured

to be 10% or less amongst the observables for a target halo of Mt = halo514, zt = 0.3.

In addition, the model shows that a negative intrinsic correlation in the optical with

either SZ or X-ray is reduced when projections are included, suggesting that uncovering

negative intrinsic correlations at the −20% level between Optical and SZ / X-ray may be

difficult in observation. Furthermore, the projection effects on signal covariances are re-

duced at higher redshifts, particularly in the SZ, as a result of the reduced fractional pro-
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jection seen in § 3.2.2.

The study here is aimed at providing an exploratory investigation on the signal covari-

ance of galaxy clusters in multi-wavelength surveys. Findings in this chapter may provide

guidance to future analyses of the current and up-coming joint surveys, e.g., the DES, the

XCS, and Planck, as well as existing studies [e.g., Mantz et al., 2010, Rozo et al., 2009] on

the observed signal covariance for clusters.
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CHAPTER 5

Modeling Optical Galaxies and Their Velocity

Dispersion

In this chapter, I narrow my focus to the optical wavelength and discuss how I model

the optical galaxy clusters, in terms of the HOD and a color model, to the SDSS galaxy

catalogue [Adelman-McCarthy et al., 2008, Ahn et al., 2012], in an attempt to use the

projected halo model and recreate the stacked galaxy velocity dispersion measurement in

optical richness bins in SDSS clusters by Becker et al. [2007].

5.1 The Sloan Digital Sky Survey

The SDSS is a deep, multi-band optical survey over more than a quarter of the sky with

∼ one million galaxies after eight years of operations in its two phases [Ahn et al., 2012,

Stoughton et al., 2002]. Its enormous catalogue of optical galaxies and the subsequent

galaxy clusters between redshift 0.1 ∼ 0.3 [Hao et al., 2010, Koester et al., 2007a] had

led to a number of HOD [Abazajian et al., 2005, Coupon et al., 2012, Tinker et al., 2012,

Zehavi et al., 2011] and color models [Guo et al., 2013, Zehavi et al., 2011] to describe the

galaxy population.

The most relevant components relating to the Becker et al. [2007] velocity dispersion

study are the Sloan Digital Sky Survey 7th Data Release (SDSS-DR7) spectroscopic data

[Abazajian et al., 2009b] and the MaxBCG galaxy cluster catalogue [Koester et al., 2007a].
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Amongst the > 100 million galaxies with 5-band photometry in the SDSS main sam-

ple, only ∼ one million were followed-up with spectroscopy. The spectroscopic sub-set is

designed to be complete for galaxies brighter than an R-band apparent magnitude 17.76,

except when the galaxies are too close to each other to insert optical fibers for both. Such an

event is described as “fibre collision” and the level of incompleteness in the spectroscopic

sample due to it is estimated to be ∼ 10% [Abazajian et al., 2009b].

The MaxBCG catalogue [Koester et al., 2007a] is a red-sequence galaxy cluster cata-

logue with 13823 resolved clusters found in the SDSS main sample using an algorithm,

which assumes that there is always a Brightest Central Galaxy (BCG) in the centre of a

cluster and subsequently looks for galaxies that are most likely to be BCGs at each redshift

[Koester et al., 2007b]. The algorithm then tries to estimate the θ200 size of the cluster from

the location of the BCG and count the number of galaxies within the aperture that fall into

the corresponding color range. This galaxy count, Ngal, is often referred to as the richness

of the cluster.

5.2 Velocity Dispersion in SDSS Galaxy Clusters

Evrard et al. [2008] studied virialized haloes in an ensemble of simulations to show that

dark matter velocity dispersion forms a power law relationship to halo mass,

σDM(M,z) = σDM,15(
M

1015h−1M�
)α, (5.1)

in which the logarithmic slope, α, is found to be∼ 1/3 with an interceptσDM,15 = 1083kms−1.

In addition, the log-scatter in this power-law relation, σlnσ, was measured to be 4.3%.

Becker et al. [2007] measured the observed galaxy velocity dispersion in the MaxBCG

clusters, via computing cδz for every galaxy with spectroscopy in the vicinity of a BCG

and subsequently stacking the signals into four richness bins to create the histograms seen

in Figure 5.1. The log-scatter in the radial velocity dispersion, cδz, is shown to increase
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Figure 5.1: The pairwise velocity difference histograms stacked in four richness bins of
the MaxBCG cluster catalogue in Becker et al., 2008.

from ∼ 15% when Ngal ≈ 88 to 40% at Ngal ≈ 10.

Though measuring similar properties, the 4.3% scatter as measured by Evrard et al.

[2008] is the scatter at fixed mass, while Becker et al. [2007] measures the log-scatter in

radial velocity at fixed richness, which contributes significantly towards the σlnσ measure-

ment, especially at the low richness end.

The stacked radial velocity dispersion measurement made in Becker et al. [2007] can be

used to test the projected halo model in observation, as it captures the correlated structure

in both the foreground and background of a cluster. Using the projected halo to reproduce

the observed histograms in Figure 5.1 can provide observational verification of the model

and improve our understanding of the observed scatters in galaxy velocity dispersion.

To use the Projected Halo Model, two components in addition to Eq. 5.1 are needed to
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simulate the observed velocity dispersion. One is the mass-richness relation of MaxBCG

clusters and the other is the likelihood function of each member to have spectroscopic

follow-up in the SDSS, i.e., mR < 17.76. While Johnston et al. [2007] provided a good

mass-richness study using weak lensing measurements, the latter component does require

an HOD model based on the SDSS R-band magnitude.

5.3 The HOD Model

Traditionally, the HOD contains two components, the number of galaxies above some

threshold luminosity / magnitude limit in a given halo; and the spatial distribution of these

galaxies. Since only the first component, i.e., the number density, is relevant for the purpose

of this study, I shall omit the spatial distribution in my HOD model.

Studies have shown that central and satellite galaxies have distinct features in many

physical properties, e.g., the central ones are usually brighter and redder than their counter-

parts [e.g., Hao et al., 2009, Loh et al., 2008]. In consistency with the MaxBCG algorithm,

I follow the two-component treatment and demand that the central galaxy be brighter than

any other member in the cluster.

Ngal(Mr,M,z) = Ngal
cen(Mr,M,z) + Ngal

sat (Mr,M,z), (5.2)

in which Ngal(Mr,M,z) is the number of galaxies brighter than absolute magnitude Mr
1

residing in a halo with mass M and redshift z and subscript cen and sat represent its central

and satellite components, respectively. An illustration of such a two-component model can

be seen in Figure 5.2.

By definition, the expected value of Ngal
cen of an halo should lie between 0 and 1. Inspired

by previous works [Brown et al., 2008, Zheng et al., 2005, 2009], I model this expection

1Since the symbol M has been assigned to denote halo mass, I shall refrain from using it as the convention
for absolute magnitude. Instead, in places of absolute magnitudes, I use the R-band magnitude, Mr, directly.
It is worth noting that the HOD formalism presented here is generic and can be applied to any other band.
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Figure 5.2: The luminosity function of galaxies in haloes with mass 5×1014h−1M�,
1×1014h−1M� and 5×1013h−1M�, broken down into central and satellite components,
according to the suggested HOD parameter values in Table.5.1.
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value with an error function.

< Ngal
cen > (Mr,M,z) =

1
2

+
1
2

erf(
ln M− ln Mmin(Mr,z)

σln M
), (5.3)

in which Mmin(Mr,z) is the minimal mass above which, roughly speaking, a halo is ex-

pected to host a central galaxy brighter than Mr. The parameter σln M controls the scatter

in ln M for any given magnitude of the central galaxy.

Results of N-body simulations have found that the number of sub-haloes follows a

power law relationship to the halo mass with a slope close to 1. Since satellite galaxies

are formed in the centers of these sub-clumps, their number density is expected to exhibit

similar relations. Observational studies such as Johnston et al. [2007] have provided evi-

dences towards such claim. Hence, I model the expected number of satellite galaxies as the

following,

< Ngal
sat > (Mr,M,z) =< Ngal

cen > (Mr,M,z)(
M

Ms(Mr,z)
)α, (5.4)

in which Ms(Mr,z) is the scaling mass, at which a halo is expected to host a second galaxy

brighter than Mr. The < Ngal
cen > (Mr,M,z) term ensures that Haloes cannot have satellite

galaxies without a central one.

The quantities Mmin(Mr,z) and Ms(Mr,z) are observed to have different slopes at the

bright and faint end of the absolute magnitude axis [Brown et al., 2008, Zehavi et al., 2011,

Zheng et al., 2007], therefore, I parameterize them using a broken power law,

Mmin(Mr,z) = (1+z)β{exp[µ1(Mr−Mr
?)+ ln M?

min]+exp[µ2(Mr−Mr
?)+ ln M?

min]}, (5.5)

in which (1+z)β is the redshift evolution term, Mr
? is the turnover magnitude in the broken

power law, M?
min is approximately the minimal mass at Mr

? and redshift of 0, Mmin(Mr
?,0),

and µ1 & µ2 are the two slopes, respectively.
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Table 5.1: Fitted Values of the HOD Parameters

Parameter Best-fit Value σ

α 0.9519 0.0125
β 2.4518 0.0690

Mr? -20.297 0.0119
σln M 0.3 N/A
µ1 -0.2814 0.0208
µ2 -2.5816 0.0267

ln M?
min -6.8984 0.0858

ν1 -0.5204 0.0129
ν2 -2.1417 0.0309

ln M?
s -6.2093 0.0717

The best-fit values and 1σ uncertainties of the HOD model parameters in Eq. 5.2 through
5.6 constrained by MCMC. I fixed the value of σln M to 0.3 because the SDSS-DR7 data,

to which I fit this HOD model, is not sensitive to its value.

And similarly for the scaling mass,

Ms(Mr,z) = (1 + z)β{exp[ν1(Mr −Mr
?) + ln M?

s ] + exp[ν2(Mr −Mr
?) + ln M?

s ]}, (5.6)

in which M?
s is approximately the scaling mass at Mr

? and redshift of 0, Ms(Mr
?,0).

It is worth noting that through the parameterization in Eq. 5.5 and Eq. 5.6, I have im-

plicitly assumed the same redshift revolution for Mmin and Ms, as well as a common char-

acteristic magnitude, Mr
?.

Thus, the HOD model has α, σln M, β, Mr
?, ln M?

min, ln M?
s , µ1, µ2, ν1 and ν2, in total

10 parameters. I constrained values of these parameters by fitting the observed R-band

distribution of galaxies in the SDSS-DR7 main sample [Abazajian et al., 2009a], and in

the spectroscopic subset with redshifts, using an Markov Chain Monte Carlo (MCMC)

approach.

I list the best-fit HOD parameter values in Table 5.1 with their 1σ uncertainties sug-

gested by Markov chains. The HOD model’s goodness of fit to the SDSS-DR7 spectro-

scopic data can be seen in Figure 5.3, in which the observed galaxy number density in the

magnitude - redshift plane is plotted in noisy contours, whereas the prediction made by the
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Figure 5.3: The contour plot indicates galaxy density in the magnitude-redshift space as
observed in SDSS (shown in noisy thin contour lines) and that predicted by the empirical
HOD model with parameters suggested by Table 5.1 (shown in thick colored lines).
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HOD model is painted in solid lines.

I use a fiducial value of 0.3 for σln M because the observational data, i.e., the SDSS

main sample and the spectroscopic subset, are very insensitive to this value. More details

of fitting the SDSS-DR7 result using MCMC can be found in Appendix E.

The HOD model by itself cannot used to predict the MaxBCG richness of haloes, as

the latter one measures only the red-sequence galaxy fraction of the total population. For

this purpose, an additional piece to describe the colors of these galaxies is necessary in the

model.

5.4 The Color Model

Galaxy color obtained by multi-band photometry can be processed to provide photometric

redshift estimation or used directly as a proxy to redshift, particularly for the red-sequence

galaxies. The color of a galaxy observed using multi-band photometry is defined as the

differences in magnitude (or equivalently the ratio between fluxes) as received between

filter bands.

The SDSS five-band photometry (G, R, I, Z, and Y) yield 4 such colors, of which G−R,

R− I, and I −Z are frequently used from low to high redshifts. Since the 4000 angstrom

break shifts redder on observed spectra as redshift increases, G−R color is primarily used

at low redshift in the SDSS as a redshift proxy, while R− I and I −Z colors become useful

beyond z ≈ 0.35. For the purpose of this study, I shall focus on G−R in the color model in

coherence with the MaxBCG catalogue.

Analyses of the SDSS red-sequence galaxy color have shown that the mean G−R in-

creases almost linearly with z until z ≈ 0.35, at which point the evolution becomes almost

flat, until it begin increasing again around z = 0.6 [Hao et al., 2009].

Thus I model the SDSS galaxy G−R color in the red and blue populations (denoted by

79



subscripts r and b, respectively) using simple / piecewise linear models:

<G−R >r (z) =


ar z + cr, z ≤ 0.35

a′r(z−0.35) + c0.35, 0.35 < z ≤ 0.6

a′′r (z−0.6) + c0.6, z > 0.6

, (5.7)

σG−R
r (z) = br z + dr, (5.8)

<G−R >b (z) = abz + cb (5.9)

σG−R
b (z) = bb z + db (5.10)

in which a is the gradient of the expected <G−R > color against redshift z, b denotes the

slope in the scatter’s redshift evolution. The constant term c0.35 and c0.6 are the respective

values of <G−R >r at each turning point, which is determined by the value in the previous

segment as I enforce continuity in the model.

The two-population prescription requires a red galaxy fraction (red-fraction) to be de-

fined. While few observational studies of this fraction exists for the fainter galaxies, the

red-fraction should depends on galaxy luminosity with its value bounded between 0 and 1.

Therefore, the simplest model would be a linear model of magnitude bounded by lower

and upper limits of 0 and 1,

fr(Mr) = max{min[0 ,
1
2

+ s f (Mr −Mr
c)] , 1} (5.11)

in which Mr
c is the R-band absolute magnitude at which half of the galaxies are red, and

s f is the slope of fr(Mr).

I constrained the model parameters in Eq. 5.7 through 5.11 via an MCMC approach,

which attempts to fit the model to the joint color-magnitude distribution (Figure 5.4) of the

SDSS-DR7 main galaxy sample and the spectroscopic subset.

In Table 5.2, I list the best-fit model parameter values with their 1σ uncertainties sug-

gested by Markov chains. The goodness of fit to the SDSS-DR7 data of the G−R color
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Table 5.2: Fitted Values of the G−R Color Model Parameters

Parameter Best-fit Value σ

ar 2.7574 0.0031
a′r -0.6 N/A
a′′r 3 N/A
br 0.6899 0.0004
cr 0.4222 0.0020
dr 0.0011 0.0003
ab 0.9705 0.0083
bb 0.6294 0.0014
cb 0.4221 0.0053
db 0.1991 0.0008
s f -0.1636 0.0011

Mr
c -20.886 0.0089

The best-fit values and 1σ uncertainties of the G−R color model parameters in Eq. 5.7
through 5.11 constrained by MCMC. I fixed the slope a′r and a′′r to -0.6 and 3 respectively,
because the SDSS-DR7 data, to which I fit this color model, is not sensitive to their values.

model using values in Table 5.2 can be seen in Figure 5.3, in which the observed galaxy

number density in the G−R color - mr plane is plotted in filled color contours, whereas the

color model prediction is plotted in bold solid black lines.

I use fiducial values of -0.6 for a′r and 3 for a′′r because it is found that the fitting data

is insensitive to their values (there are simply not enough bright galaxies at high redshift

to constrain the G−R color evolution slope beyond z = 0.3.). The fiducial values of these

slopes are based on the results of Hao et al. [2009]. Please refer to Appendix E for more

details of fitting the SDSS-DR7 data using MCMC and the limitations.

5.5 Modeling the Observed Galaxy Velocity Dispersion

With the HOD and G−R color model, the fast halo sight-line technique in Chapter 2 can be

applied to generate sky patches with simulated galaxies that have R-band magnitude and

G−R color. Subsequently, these two pieces of information allow for predictions of clusters’

observed richness in MaxBCG and the number of galaxies that would have spectroscopic
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follow-up in SDSS, both essential to reproduce the stacked velocity dispersion histogram

in Figure 5.6.

Figure 5.5 shows an visualized sky patch of 0.4 × 0.4arcmin in size centered on a

2×1014h−1M� target cluster. The halo sight-line includes all haloes above Mmin = 5×1013h−1M�

to a maximum redshift of zmax = 1.2. Optical galaxies are simulated using the HOD model

in §5.3 and the G−R color model in §5.4. The “×” symbols represent galaxies in the target

cluster, while the “+” symbols are those residing in a projected haloes. The size of each

symbol correspond to the apparent R-band magnitude of that galaxy (a larger symbol in-

dicate a brighter galaxy, and vice versa). The color of each symbol reflects the simulated

G −R color of that galaxy, as indicated by the color scale to the right. In the top panel

of Figure 5.5, I plot the θ200 size of each halo in solid blue lines, with the exception of

the target one, which in shown in black color. In the lower panel, I circle galaxies whose

G−R color fall within the appropriate red-sequence color range as defined in the MaxBCG

cluster finding algorithm [Koester et al., 2007b] in green. These objects, if falling within

the θ200 aperture of the target cluster, would count towards the MaxBCG cluster richness.

It is worth mentioning that in my simulations, I use the correct halo centers and θ200

values to find the N200 richness. Such N200 measurements will have a smaller variance than

the actual MaxBCG clusters, as it ignores the mis-centering effect and the uncertainty in

θ200 estimation during cluster-finding.

Nonetheless, it is now possible to go into each sky patch like the one in Figure 5.5 and

identify galaxies brighter than mR = 17.76, then apply the analytical velocity dispersion

in Eq. 5.1 by Evrard et al. [2008]. The observed radial velocity dispersion cδz for each

BCG-galaxy pair with spectroscopy can be consequently computed and placed into the

corresponding N200 richness bin as in Figure 5.6.

The four panels (richness between 10 ∼ 15, 16 ∼ 30, 31 ∼ 50, and 51 ∼ 199) in Fig-

ure 5.6 cover all MaxBCG clusters with N200 ≥ 10. The “+” symbols correspond to the

observations in SDSS-DR7 by Becker et al. [2007] whereas the solid lines in cyan color
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Figure 5.6: The stacked galaxy radial velocity dispersion in four richness bins (10 ∼ 15,
16 ∼ 30, 31 ∼ 50, and 51 ∼ 199) of the MaxBCG catalogue. The “+” symbols correspond to
the observation by Becker et al., whereas the solid lines in cyan show the result predicted
by the projected halo model. The total signal is subcategorized into the intrinsic target con-
tribution (red dashed), correlated contribution (blue dashed), and the random background
(green dashed). For further details on the model prediction, see text in § 5.5.
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display the result predicted by the projected halo model using the HOD and color model

discussed previously. In the model prediction, the total contribution is broken down into

the intrinsic target (red dashed), correlated (blue dashed), and random background (green

dashed) contributions.

As can be seen in Figure 5.6, the modeled radial velocity dispersions fit the observations

well in the main Gaussian modes. The model also shows that the correlated structure has

an effect less than 5% on this measurement, mostly because of the spectroscopic selection

which limits the contributions from smaller haloes.

The discrepancy on the wings indicates that the HOD model is under-predicting the

number of galaxies brighter than mR = 17.76 in small haloes from the random background

component. Furthermore, the most massive clusters (51 < N200 < 199) exhibit an asymme-

try in the radial velocity dispersion in the observation, which is not accounted for by the

model.

5.6 Discussions

Modeling and explaining the stacked radial velocity dispersion in MaxBCG clusters was

an initial attempt to validate and apply the projected halo model to observations. Modeling

the HOD and red and blue galaxy populations were later found to be necessary in order to

reproduce the result in Figure 5.6.

The result showed that correlated contributions have a less than 5% effect on this mea-

surement, limited by the spectroscopic selection in SDSS. Furthermore, it also showed that

the asymmetry in observed cδz at the highest richness bin cannot be explained by correlated

haloes nearby.

While encompassing a wide range of topics and having its own historical significance,

the results shown in this chapter were not perfectly suitable for publication in refereed

journals. Though nontrivial, the HOD and color model describing the galaxy populations
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in SDSS were by-products of the process. In addition, the HOD model was modeled with

the absence of a spatial component and subsequently fitted without the galaxy angular

correlation data, which are considered canonical.

Hence, works shown in this chapter remained in the form of manuscripts as I moved on

to produce the results in Chapter 3 and Chapter 4.
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APPENDIX A

The Projected Halo Model Validation

To validate the projected halo model, I take two independent light cones (namely PO and

NO) from the Hubble Volume simulation catalogue [Evrard et al., 2002], and compare the

number of haloes projected within a quasi-cylindrical volume centered on a target halo from

the simulation with the analytical prediction. Note that in this appendix, I adopt the same

cosmology used in the Hubble Volume simulation, i.e., Ωm = 0.3, ΩΛ = 0.7, and σ8 = 0.9

for comparison. For the same reason, I use the mass function fitted by [Evrard et al., 2002],

too.

In the simulated light cones, I choose target haloes whose mass fall within Mt = 2×1014h−1M�±

10%1 and count all haloes, whose masses lie above the minimal mass of Mmin = 5×1013h−1M�

in the catalogue and are located within volume bounded by the θ200 aperture of the target

halo with a length of ±0.03 in redshift2.

I show, in Figure A.1, such number counts from the two light cones in red and blue

solid lines with their ±1σm error bars, and the analytical prediction using the projected

halo model in a solid black line. As can be seen, the analytical model yields numbers

consistent with the simulation results. In addition, results calculated including only the

random contribution, i.e., ignoring halo-halo correlations completely, are shown in solid

green color. Via highlighting the gap between the projected halo model and the random-

1I choose Mt = 2×1014h−1M� as opposed to the more frequently quoted Mt = 5×1014h−1M� in Chapter
3 and 4 for its greater statistical power.

2For consistency with the SDSS photometric redshift uncertainty of ±0.03.
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Figure A.1: A comparison to the Hubble Volume simulation, in which PO and NO are
two independent light cones in the simulation catalog. In this plot the target halo mass
Mt = 2×1014h−1M�; the redshift range is set to zt ± 0.03 to mimic the level of redshift
uncertainties in photometric redshift measurements; the aperture size is taken to be that
equivalent to the θ200 of the target and counted everything above 5×1013h−1M� within the
covered region. Error-bars indicate the Poisson uncertainty within each bin.
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only scenario, I show that i) a uniform background estimation is inefficient when dealing

with massive targets; and ii) the halo-halo correlation will dominate cluster projections as

one moves to deeper redshifts.

90



APPENDIX B

Computing the Conditional Signal Function

When a galaxy cluster lies in the same sight-line with the target cluster, one expects a

fraction of the projected halo’s signal to be counted towards S obs of the target cluster in Eq.

2.1. An obvious approach to compute this fraction is to lay the signal of each halo in the

sight-line onto a pixel map, as shown in Fig. 2.1, and apply the signal filters to get S obs.

However, this method suffers two major drawbacks. Firstly, in order to obtain accurate

values, the resolution of the pixel map needs to be sufficiently high, which quadratically

increases the computation time. Secondly, the stacked pixel map erases information of the

host haloes, without which the study of projection demographics in §3.1.2 would have been

impossible.

In this appendix, I explain how computations of this fraction can be quantified into a 4-

parameter mathematical problem, hence allowing for interpolations of pre-computed value

tables, which significantly reduce the computation time and save information of the host

haloes in the meantime.

As can be seen in Fig. B, the fraction, f CSF, of the projected signal that will get as-

signed to S obs depends on the following factors: the size and profile of the signal filter,

θ200
tar, θcore

tar; the size and profile of the projected cluster θ200
proj, θcore

proj; and the angular

separation between the centers dθ. Placing the projected cluster at the origin and integrating
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Figure B.1: An illustration of the Conditional Signal Function problem. The red circle
indicates the θ200 size of the projected halo in the sky and the blue circle shows that of the
target. For reference, this figure is produced using the sizes of a Mt = 5×1014h−1M�,zt =

0.3 target and a M = 1×1014h−1M�,z = 0.3 projected halo.
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its signal profile within θ200
proj in polar coordinates

f CSF =

∫ ∫
f filt(dx)λproj(θ) sinθdθdφ, (B.1)

dx =

√
d2
θ + θ2 + 2dθθcosφ, (B.2)

in which f filt is the filter function in §2.3.3.1 and λproj is the signal profile of the projected

cluster.

I pre-compute values of f CSF and store them in a 4-dimensional data table, by rescaling

everything to θcore
proj using self-similarities of the signals. In the case of the top-hat or

the Bg-sub filter, the number of parameters can be further reduce to 3 as their shapes only

depend on θ200
tar. When computing contributions to S obs from each projected halo, I simply

use a 4- or 3-D interpolation of the pre-computed tables.

In Figure B, I move a M = 1×1014h−1M�,z = 0.3 projected halo gradually towards the

center of a Mt = 5×1014h−1M�,zt = 0.3 target and compute f CSF as a function of their

separation dθ in the SZ wavelength using the interpolation (in solid lines) method versus

creating 1001×1001 pixel maps (in dashed lines). As indicated, the interpolation method

gives accurate results for both the top-hat and the matched filter along the entire dynamic

range.
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Figure B.2: A comparison of the conditional signal fraction, f CSF, computed using in-
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APPENDIX C

The Characteristic Mass Scale Defined by a Sky

Surface Density

In § 3.2, I explored the projection enhancement as a function of the target mass and redshift.

It is obvious that, when investigating the effect of varying target halo redshift, using a

constant target mass across the entire range from zt = 0.1 to zt = 1.5 is not optimal, as a

5×1014h−1M� halo may be common between redshift of z = 0.2 ∼ 0.4, but is much rarer

near z = 1.5.

Thus, I adopt a characteristic mass scale defined by a constant sky surface density, i.e.,

a series of halo masses at different redshifts that share a common sky surface density per

redshift. In Figure C.1, I show the two scales defined by M(z = 0.3) = 5×1014h−1M� and

M(z = 0.3) = 1×1014h−1M� using blue and green lines, respectively. For the first scale

defined by M(z = 0.3) = 5×1014h−1M�, one expects to observe 1 halo above such mass

scale per ∼ 100deg2 in a redshift shell of ±0.05 in thickness. The second scale (M(z =

0.3) = 1×1014h−1M�) approximately translates to a sky surface density of 1 per 2 deg2 in

the same redshift slice. The sharp decline towards z = 0.1 seen in Figure C.1 is driven by

the sky area effect, i.e., the physical space projected in the same redshift range becomes

rapidly smaller as z→ 0; and the decrease beyond z ∼ 0.4 corresponds to the decline in the

halo mass function as there are fewer massive haloes at earlier epoch.
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APPENDIX D

M200 with Respect to the Critical Density vs. the

Mean Density

It has been a controversy whether to use M200c or M200m in the halo mass convention. The

previous is defined with respect to the critical density whereas the latter is defined with

respect to the matter one. In this dissertation, I adopt the M200c convention, but confront

with the need to covert masses defined in M200m to M200c, or vice versa in several occasions.

For instance, in the Coupon et al. [2012] HOD model in Eq. 2.4, halo masses represented

by M′ use the M200m convention.

One possible mean to covert from M to M′ is re-integrating the NFW density profile

with an assumed concentration to the new boundary. In this work, I choose a simpler ap-

proach, which matches the sky surface densities of the two convention at each redshift,

creating a one-to-one mapping between M200c and M200m at each cumulative sky surface

density. I argue that this approach has the merit of being completely density profile inde-

pendent.

The author would like to note that such conversion is applied only when using the

Coupon et al. [2012] HOD model in Eq. 2.4. While the [Tinker et al., 2008] mass function

also adopts the M200m convention, I simply has to re-computed the δ(z) = 200 values with

respect to ρcrit to the corresponding ∆(z)s with respect to ρm.
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APPENDIX E

Using MCMC to Constrain HOD and Color

Model Parameters

In Chapter 5, I presented an HOD model (Eq. 5.2 through 5.6) and a G−R color model (Eq.

5.7 through 5.11) of the SDSS-DR7 galaxies. The HOD model has 10 parameters while

the color model uses 12. Due to the dimensions of these parameter spaces, I employed an

MCMC approach to constrain those parameters.

E.1 MCMC

MCMC was first introduced by Metropolis et al. [1953] as an efficient method to find the

minimum / maximum in an unknown probability distribution with a large number of pa-

rameters. Instead of computing the probability at each grid point, MCMC utilizes a Markov

chain and visits points along its path in a stochastic process. Therefore, the computational

complexity of MCMC scales linearly with the number of parameters, instead of exponen-

tially, making it particularly useful in this case.

An important piece of the MCMC approach is the random walk sampling algorithm.

In this work, I used a Metropolis-Hastings [Hastings, 1970] algorithm to sample the next

step. Specifically, at each step of the Markov chain with location vector xi in the parameter

space and its probability, P(xi), and number of stays si,
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• The trial step location xtrial
i+1 is proposed by

xtrial
i+1 = xi +δx, (E.1)

where δx is a random variable drawn from a multivariate normal distribution,

δx ∼ N(0, l2Σx), (E.2)

in which Σx is the covariance of the sampling distribution and l is the step-length.

• Probability at the trial step location P(xtrial
i+1 ) is then computed and compared to P(xi)

with a random number p sampled from a U(0, 1) distribution.

– If p < P(xtrial
i+1 )/P(xi), the chain accepts and moves into location

xi+1 = xtrial
i+1 , (E.3)

si+1 = 1. (E.4)

– Otherwise, stay at xi and add one to the number stays

si = si + 1. (E.5)

This process is repeated until the desired convergency is reached. A simple illustrative code

of this process using Matlab language can be seen in Program E.1.

E.2 The Score Functions

A key component in the MCMC method discussed in § E.1 is the computation of P(x). In

constraining both the HOD and the color model, I summarized the observation results into

binned distributions with galaxy counts in each bin. Thus, the score functions in both cases
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function AnboMCcore(scoreFun, probFun, chain, covMat, maxTrial)
%anboMCcore - MCMC core function
% scoreFun evaluates the position vector
% probFun takes in trialScore and lastScore, gives prob between 0 and 1
% chain must be a Java Stack object with {loc, stay, score} structure
% and not empty
% this allows resuming a previously run chain

lastLoc = chain.Loc.pop();
lastStay = chain.Stay.pop();
lastScore = chain.Score.pop();

for i = 1:maxTrial
trialLoc = mvnrnd(lastLoc,covMat);
trialScore = scoreFun(trialLoc);
prob = probFun(trialScore,lastScore);
if rand < prob

chain.Loc.push(lastLoc);
chain.Stay.push(lastStay);
chain.Score.push(lastScore);
lastLoc = trialLoc;
lastScore = trialScore;
lastStay = 1;

else
lastStay = lastStay + 1;

end
end

chain.Loc.push(lastLoc);
chain.Stay.push(lastStay);
chain.Score.push(lastScore);

end

Program E.1: A simple illustration of the MCMC process in Matlab code.
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are the χ2 statistics.

For the HOD model, initially, I used the galaxy sky surface density as a function of ap-

parent R-band magnitude in the SDSS-DR7 main galaxy catalogue and its joint distribution

in apparent magnitude - redshift space in the spectroscopic subset. It was later discovered

that these two benchmarks are not enough to tailor the 10-parameter model to yield results

consistent with the MaxBCG catalogue, hence, the MaxBCG results subsequently brought

in to the score function.

χ2
HOD = χ2

main +χ2
spec +χ2

MaxBCG, (E.6)

in which χ2
main is calculated via comparing the predicted galaxy sky surface density as a

function of apparent R-band magnitude to that observed in SDSS-DR7; χ2
spec is computed

via comparing the HOD prediction of galaxy distribution in mR − zspec space (solid thick

lines in Figure 5.3) to that observed in SDSS-DR7 (scattered thin lines in Figure 5.3);

and χ2
MaxBCG is calculated via comparing the predicted cluster distribution as a function of

richness versus the actual MaxBCG catalogue, as can be seen in Figure E.1.

In constraining the color model parameters, only the SDSS-DR7 main galaxy catalogue

and the spectroscopic subset data are used. In the main sample, the color model’s prediction

of the the galaxy distribution in G−R − mR space (shown as black solid lines in Figure 5.4)

is compared to the observation (shown as filled color contours) to yield χ2
main′ . For the

spectroscopic subset, the same quantity is calculated in individual redshift slices and then

combined to yield χ2
spec′ . Hence,

χ2
color = χ2

main′ +χ
2
spec′ . (E.7)

Note that primes are used to distinguish from the HOD model χ2s in Eq. E.6.
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Figure E.1: Histogram of the number of galaxy clusters as a function of Ngal in the
MaxBCG catalogue and that predicted by the HOD model using the parameters described
in Table.5.1.
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E.3 The Automated Optimizer

In practice, I found that the convergence rate for the HOD model using the canonical

MCMC process as described in § E.1 to be unsatisfactory. Because of the degeneracy

in the model parameters that cannot be well disentangled by observational data, the chain

wanders in the gigantic parameter space for a long time before converging. Each step of

the MCMC process takes about 5 seconds to compute, requiring more than 24 hours for

20,000 steps.

Furthermore, Dunkley et al. [2005] has shown that to gain the fastest convergency in

a rather complicated probability function space, the acceptance rate, i.e., the percentage at

which a trial step is accepted in the process described in § E.1, should roughly be around

0.3. The acceptance rate, can be tuned by the step-length l in Eq. E.2.

Besides the tuning to achieve optical acceptance rate, evaluation of the covariance, Σx,

in Eq. E.2 is equally crucial. Since the model is known to have degeneracies, it is much

more efficient to sample steps using the local covariance Σx, which essentially samples

along orthogonal directions in the eigenvector of x.

Both adjusting l and evaluating Σx require one to pause the running chain and engage

in command-line interactions. To exacerbate the situation, adjusting l to achieve optimal

acceptance rate usually requires a “trial and failure” approach that needs multiple rounds

of inputs / adjustments during a period of time. To obtain absolute automation such that

these MCMC can be run in parallel, I designed an Automated Optimizer, which works as

a master controller to oversee the individual MCMC segments and make adjustments in

between.

The Automated Optimizer runs MCMC segments in two modes, a long run (10,000

steps) and a short run (100 steps). The short run is executed for adjusting the acceptance

rate α to the desired value αoptimal, at which point a long run is then executed using the

step-length l and covariance matrix Σx.

From the controller’s point of view, at each break after the previous MCMC segment i,
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• if run i was a short run,

– if αi falls within an “acceptable” range αoptimal ±∆α, then execute a long run

i + 1 with the same parameters, i.e., li+1 = li, Σi+1 = Σi.

– otherwise, execute a short run with the adjusted step-length

li+1 = li ∗
√

αi

αoptimal . (E.8)

• if run i was a long run, re-evaluate the covariance matrix Σi+1 based on the i-th chain

and submit a short run i + 1 to allow for adjustments in the acceptance rate α.

By inserting a flag that test for overall drift of location x in the parameter space, the con-

troller even tell if the MCMC process has converged.

In practice, the above Automated Optimizer greatly increased the computation effi-

ciency by removing intermediate processing and allowed for execution in parallel on a

Central Processing Unit (CPU) cluster.

In Figure E.2, I show an illustration of a converged chain in the 10-dimensional pa-

rameter space of the color model (2 of the parameters were set to their fiducial values, as

explained in § 5.4). The lower left triangle of the plot matrix includes the scattered points of

visits in the Markov chain, whereas the upper right ones indicate the 1, 2, and 3σ contours

in joint parameter spaces. Distributions of each parameter are shown along the diagonal.

All results here have points weighted by their numbers of stays.

Finally, as an example to the Automated Optimizer described in this section, a Matlab

code that carries out such tasks is attached in Program E.2.
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Figure E.2: A sample snapshot of the MCMC simulation after parameters have converged
when constraining the color model parameters. Lower left shows the scatter plots of co-
variances among parameters with the sizes of symbols indicating the number of steps the
chain stayed there. Upper right convert these scattered points into a weighted covariance
contours with each contour representing 1, 2 and 3σ intervals. The diagonal contains the
variances of each parameter.
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function chain = AnboMCbot(scoreFun,probFun,startLoc,startCov,totTime,verbFun)
% A sample Matlab code performing the Automated Optimization process of MCMC

shortRun = 100;
longRun = 10000;
safeTimeFac = 1.1;
optimalAccRate = 0.3;
goodAccDiff = 0.05;
goodDrift = 1;
minAmp = 1e-4;

%identify the eval time
firstTic = tic;
startScore = scoreFun(startLoc);
eachTime = toc(firstTic);
verbFun(sprintf('Processing time each step = %.4f sec', eachTime));

chain.Loc = java.util.Stack;
chain.Stay = java.util.Stack;
chain.Score = java.util.Stack;
chain.Loc.push(startLoc);
chain.Stay.push(0);
chain.Score.push(startScore);

thisAmp = 2;
thisCov = startCov;
thisTrialN = shortRun;
thisRun = 1;
goodRun = 0;
adjAccFlag = true;

while totTime - toc(firstTic) > safeTimeFac*longRun*eachTime

AnboMCcore(scoreFun, probFun, chain, thisAmp.*thisCov, thisTrialN);

thisCP = AnboMCchainProp(chain);
verbFun(sprintf('\nRun #%d',thisRun));
verbFun(sprintf('\tSteps = %d',thisTrialN));
verbFun(sprintf('\tAccRate = %.2f',thisCP.accRate));
verbFun(sprintf('\tDrift = %.2f',norm(thisCP.drift)));
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if adjAccFlag
% if we were adjusting the acceptance rate
if abs(thisCP.accRate - optimalAccRate) < goodAccDiff

% if it is good enough, continue running
adjAccFlag = false;
thisTrialN = longRun;

else
% else resubmit the chain with adjusted Amp
thisAmp = max(minAmp,...

thisAmp*sqrt(thisCP.accRate/optimalAccRate));
thisTrialN = shortRun;
chain.Loc.clear();
chain.Stay.clear();
chain.Score.clear();
chain.Loc.push(thisCP.bestLoc);
chain.Stay.push(0);
chain.Score.push(thisCP.bestScore);

end
else

% if it were a long run
if norm(thisCP.drift) < goodDrift

% if it is also stable
goodRun = goodRun + 1;
verbFun(sprintf('\nPossible covergence [%d]',goodRun));
verbFun(sprintf('Current location: %s',...

num2str(thisCP.bestLoc)));

if goodRun > 5
break;

end

chain.Loc.clear();
chain.Loc.push(thisCP.bestLoc);
chain.Stay.clear();
chain.Stay.push(0);
chain.Score.clear();
chain.Score.push(thisCP.bestScore);

thisCov = thisCP.covmat;
adjAccFlag = true;
thisTrialN = shortRun;
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else
% if it has not converged
goodRun = 0;

chain.Loc.clear();
chain.Loc.push(thisCP.bestLoc);
chain.Stay.clear();
chain.Stay.push(0);
chain.Score.clear();
chain.Score.push(thisCP.bestScore);

thisCov = thisCP.covmat;
adjAccFlag = true;
thisTrialN = shortRun;

end
end

thisRun = thisRun + 1;

end

end

Program E.2: An illustration of the Automated Optimizer described in § E.3 using Matlab.
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U. Dörl, M. Douspis, X. Dupac, G. Efstathiou, T. A. Enßlin, F. Finelli, I. Flores-Cacho,
O. Forni, M. Frailis, E. Franceschi, S. Fromenteau, S. Galeotta, K. Ganga, R. T. Génova-
Santos, M. Giard, G. Giardino, Y. Giraud-Héraud, J. González-Nuevo, K. M. Górski,
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G. Morgante, D. Mortlock, D. Munshi, A. Murphy, P. Naselsky, P. Natoli, C. B. Netter-
field, H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, S. Osborne, F. Pajot,
F. Pasian, G. Patanchon, O. Perdereau, L. Perotto, F. Perrotta, F. Piacentini, M. Piat,
E. Pierpaoli, R. Piffaretti, S. Plaszczynski, E. Pointecouteau, G. Polenta, N. Ponthieu,
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G. Pignata, B. Popescu, M. A. Read, A. Rojas, A. Roman-Lopes, M. T. Ruiz, I. Saviane,
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