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ABSTRACT

Demographic Stochasticity in Evolutionary Biology

by

Yen Ting Lin

Chair: C. R. Doering

Demographic stochasticity, the random fluctuations arising from the intrinsic discrete-

ness of populations and the uncertainty of individual birth and death events, is an

essential feature of population dynamics. Nevertheless theoretical investigations often

neglect this naturally occurring noise due to the mathematical complexity of stochas-

tic models. This dissertation reports the results of analytical and computational

investigations of models of competitive population dynamics, specifically the compe-

tition between species in homogeneous or heterogeneous environments with different

phenotypes of longevity or dispersal, fully accounting for demographic stochasticity.

A novel asymptotic approximation is introduced and applied to derive remarkably

simple analytical forms for key statistical quantities describing the populations’ dy-

namical evolution. These formulas characterize the selection processes that determine

which (if either) competitor has an evolutionary advantage. The theory is verified by

conventional asymptotic analysis and large-scale numerical simulations.

After introducing demographic stochasticity into the deterministic models and

motivating our mathematical approach to the analysis, we discover that the fluctua-

tions can (1) break dynamical degeneracies, (2) support polymorphism that does not

xviii



exist in deterministic models, (3) reverse the direction of the weak selection and cause

shifts in selection regimes, and (4) allow for the emergence of evolutionarily stable dis-

persal rates. Both dynamical mechanisms and time scales of the fluctuation-induced

phenomena are identified within the theoretical approach. The analysis highlights the

fundamental physical effect of the fluctuations and provides an intuitive interpreta-

tion of the complex dynamics. An interaction between stochasticity and nonlinearity

is the foundation of noise-driven dynamical selection.
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CHAPTER I

Introduction

1.1 General introduction

For centuries, theorists have been trying to develop mathematical models that

describe the dynamics of populations. The effort began in the 18th century with

T. R. Malthus’ philosophical argument, “population, when unchecked, increases in

a geometric ratio.” Later in the 19th century P. F. Verhulst successfully captured

more features of population growth including effects of intraspecies competition. In

the early 20th century, A. J. Lotka and V. Volterra generalized the model to in-

clude interspecies interactions. Soon after Lotka–Volterra model was developed, a

special model—the “competitive Lotka–Volterra model”—was proposed. Such model

describes the dynamics of multiple species with both intraspecies and interspecies

competition, and it soon became a modeling framework of competitive population

dynamics.

The original models only considered population dynamics in well-mixed pools, i.e.,

they neglected spatial distributions of the populations. Needless to say, a more real-

istic demographic model of most ecological systems should account for the effect of

spatial variations on interactions. There are two ways proposed to introduce spatially-

dependent population dynamics. The first approach, patchy-like models, connect a

number of “patches” each of which is a well-mixed pool. The population dynamics on
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each patch are assumed to be described by a single well-mixed-pool model (Malthu-

sian, Verhulst, Lotka–Volterra or Competitive Lotka-Volterra model) and exchange

(or transport) terms are added to account for the changes of the local population

due to dispersal from patch to patch. This approach results in sets of coupled or-

dinary differential equations that describe the population dynamics in a geometry

composed of patches. The second approach, reaction–diffusion models (and in some

more sophisticated cases with intelligent species, reaction–advection–diffusion mod-

els), consider continuous spatial domains. The population density is then described

by a continuous function of both space and time. The local birth-and-death processes

are characterized by “reaction” terms, and changes of populations due to dispersal

are characterized by the “diffusion” terms and the “advection” terms if active trans-

port effects are present as well. The evolution of the populations in reaction–diffusion

models is therefore described by a set of partial differential equations.

The inclusion of the spatial dependence raises an interesting problem, often re-

ferred to as the “dispersal problem”: is there a “best way” for a species to disperse

in a given space, given the intrinsic birth and death dynamics everywhere within the

system?

The inquiry to this problem originated from a novel idea proposed by W. D.

Hamilton in 1967, the concept of evolutionary stability. The theory of evolutionary

stability states that a currently existing species should have phenotypic traits which

resist the invasion of any species with other phenotypic traits (assuming the selection

is not neutral). The theory should apply on an evolutionary time scale, on which mu-

tations must have occurred in successive reproductions, and the most fit phenotype(s)

should be stronger competitors so that the dominant one(s) eventually exclude any

other phenotypic traits.

At an abstract level, this dissertation will investigate the dispersal problem in

the following framework. We place two “almost identical” species in a patchy-like

2



environment. The species have identical birth and death process, and compete for the

same resource. Therefore the demographic dynamics in each location can be modeled

by competitive Lotka—Volterra dynamics. The only difference between these two

species is their propensities to move in the space: one of the species moves “faster”

and the other moves “slower”. We study the dynamics with particular emphasis on

evolutionary time scales. In other words, we try to predict the populations of the

species after many generations. Furthermore, we search for an optimal,“unbeatable”

propensity to move such that the population of the species with such a mobility does

not decrease when competing with any other varieties with different mobilities. We

will refer such an unbeatable propensity as the evolutionarily stable propensity to

move. If such evolutionarily stable propensity to move exists, we can also explore

how it depends upon the structure and diversity of the environment.

As will be shown, the answer to the dispersal problem may be somewhat counter-

intuitive: when the dispersal is passive, i.e., when the per capita dispersal rates are

constants, both patchy-like models and reaction–diffusion models always select the

slowest dispersers in heterogeneous environments. These robust observations suggest

that the evolutionarily stable dispersal rate for passive dispersers is zero. Clearly

these mathematical models fail to explain the existence of the species which utilize

passive dispersal, for example, plants with airborne seeds.

On the other hand, agent-based models were developed to simulate the individual

birth, death, and relocation events with the inclusion of demographic stochasticity.

Surprisingly, in almost all such models, the inclusion of demographic stochasticity

favors the fast dispersers. Owing to the complexity of the stochastic models, most

of the studies relied on observations from numerical simulations and intuitive reason-

ing. The relation between demographic stochasticity and the selection of the faster

dispersers remains unclear.

These observations pose interesting questions in theoretical dynamical systems
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research: what is the mechanism by which faster dispersers are selected when demo-

graphic stochasticity is included? Can such mechanism provide with a driving force

to establish a finite evolutionarily stable dispersal rate? How does the environment

of the system affect such an evolutionarily stable dispersal rate?

The aim of this dissertation is to answer these questions analytically with the

support of numerical simulations.

1.2 Literature review

Dispersion is a vital process in biology and ecology and has drawn the attention of

many theorists and mathematicians. Various models have been proposed to explore

the nature and effect of various dispersal processes. One of the essential questions

is whether an evolutionarily stable dispersal rate (or strategy) exists for a species

living in a heterogeneous environment. A dispersal rate (or strategy) is defined to be

evolutionarily stable if species with such a dispersal rate (or strategy) can withstand

invasion by species with other dispersal rates or (strategies), eventually excluding

them in an isolated environment1. The existence of an evolutionarily stable disper-

sal rate (or strategy) is an important issue in evolutionary biology, since using the

rationale “survival of the fittest”, the species with the evolutionarily stable rate (or

strategy) will prevail over the course of time.

Population dynamics in spatially heterogeneous habitats has been studied for a

long time. Gadgil [13] first showed the complex nature of dispersal population dy-

namics on a set of globally connected patches. Hamilton and May [16] developed a

discrete-generation and discrete-state model to demonstrate the existence of a nonzero

evolutionarily stable dispersal rate. Comins et al. generalized Hamilton and May’s

model soon after it was proposed, and showed that the evolutionarily stable dispersal

1Hamilton first proposed the concept of a certain trait being “evolutionarily stable” to discuss
the stability of natural sex ratios [15], and soon applied the same philosophy to a biological dispersal
problem. [16]
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rate converges to zero as the population scale goes to infinity [4]. Hastings proposed a

continuous-time, continuous-state, and continuous-space model—a reaction–diffusion

model with a passive diffusion mechanism—specifically to explore competitive dy-

namics between two species with different dispersal rates [19]. “Passive diffusion”

refers to the case where the per capita migration rate of a species is a constant. By

local stability analysis, Hastings proved that in any heterogeneous environment an

established population distribution with a slower dispersal rate (the slow “residents”)

will drive an infinitesimal population of intruders with a faster dispersal rate (the fast

“mutants”) to eventual extinction. Hastings’ conclusion hinted that the only evolu-

tionarily stable dispersal rate should be zero, and the conclusion was coherent with

the large population limit in Comins et al. [4]. Dockery et al. further analyzed Hast-

ings’ model and proved that the stay-at-home strategy is a globally stable fixation in

pairwise competition with arbitrary initial populations [8].

In a separate line of thinking, Holt adopted Gadgil’s patchy model [13] and dis-

covered that connecting two separate patches increases the complexity of both com-

petitive and predator-prey dynamics [20]. When competitive dispersers are subject

to unconditional dispersal (i.e., passive diffusion), Holt showed the species with lower

dispersal rate has a higher fitness based upon the idea “ideal free distribution” pro-

posed by Fretwell and Lucas [12]. McPeek and Holt later found that the simplified

two-patch dynamics could be adopted to explore population dynamics in various en-

vironmental settings. One of their numerical discoveries is, the trait with slowest

dispersal always wins the competition with other different traits in heterogeneous en-

vironments, assuming all species are passive dispersers [21]. The evidence suggested

the evolutionary stability of zero dispersal rate is robust, in the sense that such a

trait always wins even when facing multiple types of intruders. Similar features were

also reported by Cohen and Levin [3].

The idea of evolutionary stable dispersal strategy intrigued game theorists and
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inspired several other investigations. We refer the interested reader to the review

article by Cressman [6], which discusses a distinct approach to study the problem.

Although game theoretic approaches seem remote from previous analyses, they all

have a common hinge on the concept “ideal free distribution” [12]. For example,

Cantrell et al. applied the concept to a model with a set of irreducibly connected

patches, similar to Gadgil’s model. He established theorems about the evolutionary

stability of a certain dispersal strategies [2]. The theorems are coherent with the

conclusion of McPeek’s and Holt’s numerical study on the 2-patch model [21]. Recent

works continue to apply the idea of ideal free distributions in searching evolutionary

stable strategy in dispersal problems.

Except for Hamilton and May’s model, the above-mentioned models are mostly de-

terministic and ignore demographic stochasticity. It is well known that demographic

stochasticity plays important roles in population dynamics. For example, Doering

et al. identified spontaneous extinctions as large-deviations phenomena [9, 10]. Holt

and McPeek first attempted to adopt Ricker model in the chaotic regime to mimic

fluctuating populations on two connected patches. They reported that the chaotic

fluctuation favors dispersal. Travis et al. generalized the McPeek–Holt model [29] to

an individual-based description and also discovered that the inclusion of stochastic-

ity favors the more frequent mover in competitive dynamics [37]. In the context of

adaptive dynamical systems, Metz and Gyllenberg proposed a model that is concep-

tually identical to Hamilton and May’s and defined a unique measure of the fitness,

namely the “metapopulation reproduction rate” [30]. Following Metz and Gyllen-

berg’s framework, both Cadet et al. [1] and Parvinen [33] numerically demonstrated

that stochasticity enhances dispersal. More recently, Kessler and Sander [25] pro-

posed an individual-based model and numerically discovered a regime shift between

the dynamics of fast and slow dispersers. With a heuristic argument, they deduced

a scaling law for the transition manifold in the parameter space. Waddell et al. [41]
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showed that, on globally connected patches, in the limit of an infinite fast species and

infinite slow species, it is possible to derive a set of closed moment equations that

accurately describe the population dynamics. It should be remarked that the work

of Waddell et al. took a dynamical approach, instead of the previously adopted local

stability analysis [16, 4, 19, 30, 1, 33]; the latter approach generally does not describe

global dynamics or provide conditions of coexistence or polymorphism.

The cumulative research suggests the generic features of competitive dynamics

with passive dispersal: In the infinite population limit the competitive dynamics fa-

vors slow, or even no, dispersal. On the other hand, numerical studies suggest that

demographic stochasticity, which is inevitable when the population is finite, favors the

fast dispersers. The underlying mechanism remains unclear and merits further inves-

tigation. The purpose of this dissertation is to provide a novel dynamical approach to

analytically study competitive population dynamics with demographic stochasticity.

The goal of the dissertation is to study stochastic competitive population dynamics

of two species that only differ in their propensity to move, in heterogeneous envi-

ronments. For simplicity, we only consider passive dispersal, i.e., the case where the

per capita dispersal rate is constant. Specifically, we are interested in the following

questions:

1. Given the temporally fixed environment, does the dynamics tend to select one

of the species?

2. When the answer of 1 is positive, which species—the fast moving or the slow

moving one—has the competitive advantage? What is the mechanism respon-

sible for the selection?

3. When the answer of 1 is negative, it suggests the dynamics is neutral and

these two species can coexist. What are the conditions so that coexistence

exists? Is coexistence stable or unstable? How are the populations of the
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species distributed?

4. Is there an “optimal dispersal rate”, or an evolutionarily stable dispersal rate,

for a species to adopt? (We define the dispersal rate to be evolutionarily stable if

a species with this dispersal rate always dominates species with other dispersal

rates.)

5. If there is an optimal dispersal rate, how does it functionally depend on the

parameters in the models?

By investigating the global dynamics, our analyses confirms the profound influ-

ences that demographic stochasticity has in the competitive dynamics, which in turn

exhibits complicated transitions between different evolutionary outcomes. Our predic-

tions and conclusions naturally extend the existing ones from local stability analyses.

1.3 Outline of the dissertation

Owing to the complexity of the problem, it is generally difficult to answer the

questions above by directly applying conventional analyses. In order to develop novel

techniques to resolve these difficulties, we performed multi-stage model reductions.

The intuition behind the top-down model reductions are

1. Complexity potentially arises from the geometry of the domains. To focus our

attention to the aspect of global stochastic dynamics, we developed two spe-

cific patchy models. The first model, which contains a domain of two patches,

characterize a conceptually minimal model of the dispersal problems. The sec-

ond model, which contains a countably infinite number of globally-connected

patches, corresponds to the “mean-field” limit of the dispersal problem. With

these specifications, we avoid complexity which is due to the geometry of the

domain, for example, spatial pattern formation [5, 17, 18] or front propagation

[26].
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2. To further reduce the complexity of the model, we can consider the homogeneous

spatial environments. That is, models where the patches are all identical. In

this limit, we discover the deterministic limit of the models are degenerate.

That is, the system has an infinite number of stable solutions.

3. To reduce the complexity of spatially-distributed models, we may further de-

velop a seemingly unrelated model to the dispersal problem, competitive popu-

lation dynamics of a fast and a slow living species on a single patch. This model

is constructed with the intention of preserving the deterministically degenerate

feature of the dispersal problems in homogeneous environments.

Having said that, the dissertation is organized in a bottom-up manner. A schematic

diagram is shown in Fig. 1.1. In Chapter 2, we first discuss the most reduced model

regarding to the competition of a fast and a slow living species. An essential and novel

theoretical approach to resolve the analytical difficulty in the model is developed and

verified by rigorous asymptotic analysis and direct numerical simulations. In Chap-

ter 3, the developed technique is generalized and applied to the dispersal problems in

homogeneous environments. We will see that when the population is large but finite,

the stochastic models exhibit a selection for the fast-moving species on an identifi-

able time scale. In Chapter 4, we digress and perform regular asymptotic analysis

to identify the time scale of the deterministic limits of the dispersal problems in het-

erogeneous environments. We conclude that in the deterministic limit, competitive

dynamics favors the slow dispersers on another identifiable time scale. In Chapter

5, we investigate the stochastic dispersal problems in heterogeneous environments.

As it turns out, the models combine the complexities in Chapter 3 and Chapter 4.

We further generalized the developed technique to compute the boundaries of regime

shifts between domination by faster or slower dispersing species. From Chapter 2 to

Chapter 5, direct numerical simulations are presented to support the analyses. In

Chapter 6, we discuss the bifurcation of the models in Chapter 5 and predict the

9



Figure 1.1: Outline of dissertation.

existence of an evolutionarily stable dispersal rate. Finally, in Chapter 7 we conclude

the dissertation and propose future work on this class of the problems. The analyses

of several remotely related problems are collected into the Appendices.
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CHAPTER II

Features of Fast Living: On the Weak Selection for

Longevity in Degenerate Birth-Death Processes

In this Chapter we develop and analyze a minimal model of degenerate competitive

dynamics. The Chapter is organized as follows. In the next section 1 we describe

the model in detail, discuss the degenerate deterministic dynamics, and define the

non-degenerate stochastic evolution1. The following section 2 contains the physically-

motivated analysis of the large carrying capacity (K) behavior and a derivation of

the asymptotic forms of the drift and diffusion along the deterministically degenerate

coexistence line. The subsequent section 3 contains the results of direct numerical

simulations of the full birth-death process verifying our asymptotic theory. Section

4 performs a conventional asymptotic analysis on the problem to support the theory

we develop in section 2. In the concluding section 5 we briefly conclude and discuss

the results.

1We refer the “degeneracy” to the property that a system has an infinite number of stable
solutions. As will be shown, in the deterministic model in section 2.1.1 is degenerate, and the
individual-level asymmetry in the corresponding stochastic model brakes the degeneracy (section
2.1.2).
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2.1 The models

2.1.1 Deterministic dynamics

Consider populations X(t) and Y (t) evolving according to

Ẋ =γXX

(
1− X + Y

K

)
,(2.1a)

Ẏ =γY Y

(
1− X + Y

K

)
.(2.1b)

This is a deterministic rate equation model of two species that compete equally for the

available resources and differ only in the time scales of their evolution (birth and death

rates) defined by the low-density growth rates γX and γY . The two species’ common

carrying capacity K indicates the total number of individuals in the non-empty steady

state. Such deterministic continuum descriptions are presumably applicable when X

and Y are O(K) and K � 1.

It is convenient to introduce the scaled population variables x = X/K and y =

Y/K and rescale the time variable by one growth rate (γY ) to write the system

ẋ =γx(1− x− y),(2.2a)

ẏ =y(1− x− y)(2.2b)

where the ratio of time scales is γ = γX/γY .

The dynamics of this system are elementary: the trajectories in the x-y phase

plane solve the first-order equation

(2.3) γ
dy

dx
=
y

x
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Figure 2.1: Deterministic trajectories and the (dashed) line of fixed points for Eq.(2.2)
with γ = 10.

so at each instant of time during the evolution

(2.4)
x(t)

x(t0)
=

(
y(t)

y(t0)

)γ

as illustrated in Fig. 2.1. Starting from any initial point in the first quadrant so-

lutions converge within an O(logK) time to a 1/K-neighborhood of the coexistence

line x + y = 1, each point of which is a marginally stable fixed point. Hence the

eventual division of the population into fast and slow individuals is completely de-

termined by the initial conditions, and once determined it remains fixed evermore.

Demographic stochasticity introduces two more essential time scales into the system:

the intermediate time until one or the other species goes extinct, which we will see

is O(K), and the longer exponential-in-K time until the surviving species disappears

[9, 10].
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Independent process Corresponding (per capita) rate

Birth of X βX
Birth of Y βY
Death of X δX [1 + (n+m)/K̃]

Death of Y δY [1 + (n+m)/K̃]

Table 2.1: The stochastic processes and the corresponding rates when the random
populations are Xt = n and Yt = m.

Figure 2.2: Schematic diagram of the stochastic processes and the corresponding per
capita rate. The random populations are Xt = n and Yt = m at this time.
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2.1.2 Stochastic dynamics

The next more primitive level of description involves specifying stochastic evolu-

tion of the integer-valued random processes Xt and Yt. We consider a Markov model,

the competitive birth-and-death processes, as listed in Table 2.1. A schematic diagram

is shown in Fig. 2.2. In addition, define K̃ = K/(ρ−1) with βX/δX = βY /δY = ρ > 1.

This means that pn,m(t) = P{Xt = n and Yt = m} evolves according to the master

equation

d

dt
pn,m(t) =−

(
βX + δX [1 + (n+m)/K̃]

)
n pn,m(2.5)

−
(
βY + δY [1 + (n+m)/K̃]

)
mpn,m

+ βX(n− 1)pn−1,m + δX [1 + (n+ 1 +m)/K̃](n+ 1)pn+1,m

+ βY (m− 1)pn,m−1 + δY [1 + (n+m+ 1)/K̃](m+ 1)pn,m+1.

The low-density growth rates appearing in the deterministic differential equations

are γX = βX − δX and γY = βY − δY , and the ratio of evolution time scales is

γ = δX/δY = βX/βY .

Now consider the carrying capacity to be large but finite, K � 1. For O(K)

initial data X(0) and Y (0), fluctuations in the time-scaled “continuum” variables

xt = K−1Xt/γY and yt = K−1Yt/γY are relatively small and their evolution closely

follows Eq.(2.2) for increasingly long times t as K → ∞ [27]. For large but finite

carrying capacities the discrete state space process’ continuum variables are well-

approximated by the Markov diffusion processes solving the Itô stochastic differential
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equations

dxt = γ xt (1− xt − yt) dt+ ε

√
γ xt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dW x

t(2.6)

dyt = yt (1− xt − yt) dt+ ε

√
yt

(
ρ+ 1

ρ− 1
+ xt + yt

)
dW y

t(2.7)

where W x
t and W y

t are independent Wiener processes and the “small” noise amplitude

is ε = 1/
√
K [28].

When K is large and ε is small, a trajectory of the diffusion process (xt, yt) start-

ing from (x0, y0) follows the deterministic dynamics2 (2.2) to a neighborhood of the

coexistence line in O(logK) time and then performs O(1/
√
K) fluctuations about

the coexistence line. We are particularly interested in the reduced dynamics of the

location of the joint process on the coexistence line:

(2.8) zt = xt − yt ∈ [−1, 1].

Considering the initial value of zt to be the position on the coexistence line where the

deterministic dynamics lands starting from (x0, y0), the subsequent unavoidable and

irreversible absorption of zt at the right or left boundary (i.e., at ±1) corresponds to

extinction of one species or the other (i.e., yt or xt). Then there are two key questions

to address:

1. What are the probabilities of absorption at ±1 starting from z ∈ (−1, 1)?

2. What is the mean time to absorption at either ±1 starting from z ∈ (−1, 1)?

(Note regarding notation: in the following the diffusion process will be distinguished

by the time subscript, e.g., zt, while undecorated quantities such as z indicate vari-

ables.)

2The effect due to the fluctuations can be ignored since the strength ε is small with respect to
the strength of the deterministic flow.
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We approximate the one-dimensional process zt as a Markov diffusion process in its

own right and seek drift v(z) and diffusion D(z) functions depending parametrically

on ε = 1/
√
K so that its statistics are faithfully approximated by solutions of the Itô

stochastic differential equation

(2.9) dzt = v(zt) dt+
√

2D(zt) dWt

where Wt is a Wiener process.

The drift and diffusion for the reduced process zt determine the desired statistical

features of the competitive exclusion dynamics. Indeed, let τ(z) = inf{t : |zt| =

1 | z0 = z} denote the random extinction time of one or the other species starting from

position z ∈ (−1, 1) on the coexistence line. Then the probability that xt reaches 0

before yt starting from z, i.e., the probability of domination of the Y -species over the

X-species, is

(2.10) u(z) ≡ P{zτ(z) = −1 | z0 = z}.

This probability satisfies the boundary value problem

0 = D(z)
d2u

dz2
+ v(z)

du

dz
,(2.11)

1 = u(−1),(2.12)

0 = u(+1).(2.13)

with explicit solution

(2.14) u(z) =

∫ 1

z
eΦ(z′)dz′∫ 1

−1
eΦ(z′′)dz′′
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where

(2.15) Φ(z) = −
z∫

0

v(ζ)

D(ζ)
dζ.

The mean time to extinction of one or the other species,

(2.16) m(z) ≡ E{τ(z)},

satisfies the boundary value problem

−1 = D(z)
d2m

dz2
+ v(z)

dm

dz
,(2.17)

0 = m(±1)(2.18)

with solution

(2.19) m(z) = G(z)H(1)/G(1)−H(z)

where

G(z) =

z∫
−1

eΦ(z′) dz′(2.20)

H(z) =

z∫
−1

eΦ(z′)

 z′∫
0

e−Φ(z′′)

D(z′′)
dz′′

 dz′.(2.21)

The task now is to determine v and D.
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2.2 Drift and diffusion along the coexistence line

2.2.1 A physically motivated asymptotic analysis

In the large K (small ε) regime, drift and diffusion along the coexistence line

x + y = 1 are the result of interaction between demographic fluctuations and the

nonlinear dynamics occuring near the coexistence line. In order to quantitatively

estimate v and D, we will average the displacements and mean-square displacements

of z = x−y following birth and death events in the populations under the admittedly

crude approximation that deviations are due to the stochastic terms in the stochastic

differential equations (2.6) and (2.7) while the returns are dominated by the deter-

ministic flow. As will be seen, this physically motivated approach produces the same

result as a more traditional asymptotic singular perturbation analysis [31, 32].

Suppose at some instant of time the system is at position z0 = 2x0 − 1, i.e., at

(x0, y0) with y0 = x0 − 1. We presume that in a small time interval dt the system is

“kicked” by the demographic fluctuations to position (x′, y′) = (x0+φa, y0+ηb) where

the independent random variables φ and η each take values ±1 with probability 1/2.

To be consistent with the noise terms in the stochastic differential equations (2.6)

and (2.7), the amplitudes should be

a ∼ ε

√
γx0

2ρ

ρ− 1
dt,(2.22)

b ∼ ε

√
y0

2ρ

ρ− 1
dt.(2.23)

The system then quickly flows according to the deterministic dynamics along the lines

xγy = constant to position (x0 − ξ, y0 + ξ) on the coexistence line. The net displace-

ment along the coexistence line during this event is −2ξ so the drift and diffusion

on the coexistence line are v = 〈dzt〉/dt = −2〈ξ〉/dt and 2D = 〈dz2
t 〉/dt = 4〈ξ2〉/dt

where 〈·〉 indicates an average over the fluctuations. These events are illustrated in
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( )x , y0 0

Figure 2.3: Mechanism for demographic fluctuation-induced drift and diffusion along
deterministic coexistence line. From (x0, y0)—solid dot—the system fluc-
tuates to (x′, y′)—indicated by the open circles—and subsequently re-
laxes back to corresponding (x0− ξ, y0 + ξ) point—indicated by the filled
squares—on the coexistence line along a deterministic trajectory.

Fig. 2.3.

Make the ansatz that the elementary displacement along the coexistence line has

an asymptotic expansion

(2.24) ξ ∼ ε ξ1 + ε2 ξ2 + . . . as ε→ 0.

Writing (x0 − ξ)(y0 + ξ)−γ = (x0 + aφ)(y0 + bη)−γ and expanding in powers of ε we

quickly find

(2.25) −εξ1(
1

x0

+
γ

y0

) =
aφ

x0

− γbη

y0

and

(2.26) −ε2ξ2(
1

x0

+
γ

y0

) + ε2ξ2
1

[
γ(γ + 1)

2y2
0

+
γ

x0y0

]
= −γabφη

x0y0

+
γ(γ + 1)b2η2

2y2
0

.

Then using 〈φ〉 = 0 = 〈η〉, 〈φη〉 = 0, and 〈φ2〉 = 1 = 〈η2〉, the mean displacement 〈ξ〉
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and mean-square displacement 〈ξ2〉 are determined to order ε2:

(2.27) 〈ξ〉 ∼ ε〈ξ1〉+ ε2〈ξ2〉 =
−γ(γ+1)b2

2y20
+ ε2〈ξ2

1〉
[
γ(γ+1)

2y20
+ γ

x0y0

]
1
x0

+ γ
y0

and

(2.28) 〈ξ2〉 ∼ ε2〈ξ2
1〉 =

a2

x20
+ γ2b2

y20

( 1
x0

+ γ
y0

)2
.

Now we write

a2 = Cε2γx0
2ρ

ρ− 1
dt(2.29)

b2 = Cε2y0
2ρ

ρ− 1
dt(2.30)

where the O(1) proportionality constant C > 0 is a pure number that should not

depends on ε, γ, or ρ.

It should be clear that, at least exactly on the line of the fixed points, the constant

C is equal to 1: the processes xt and yt are purely diffusive in Eqs.(2.6) and (2.7), from

which we can read off the exact strengths and the directions. It is our hypothesis that

the constant C is asymptotically equal to 1 in the O(ε)-neighborhood of coexistence

line. To support this hypothesis, we will perform an alternative analysis of a particular

simplified version of the problem in section 2.2.1.

Recalling x0 = (1 + z)/2 and y0 = (1 − z)/2 and inserting (2.30) into (2.28) and

then (2.27), we deduce that the drift and diffusion along the deterministic coexistence

line are

(2.31) v(z) = −2
〈ξ〉
dt
∼ Cε2

2ργ(1− γ)

ρ− 1
× 1− z2

[(1− z) + γ(1 + z)]2
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and

(2.32) D(z) = 2
〈ξ2〉
dt
∼ Cε2

2ργ

ρ− 1
× 1− z2

(1− z) + γ(1 + z)
.

The theory thus produces the conjecture that the drift and diffusion are both O(ε2) =

O(1/K) as ε = 1/
√
K → 0, and therefore that the time scale of the drift and diffusion

along the coexistence line, i.e., the typical time it takes to select between the species

is O(K) as K → ∞. This is much longer than the O(logK) time required for the

deterministic flow to drive the system to the coexistence line but much less than the

O(ecK) time to ultimate extinction.

The precise value of the mean time to extinction of one species or the other is

inversely proportional to yet-to-be-determined number C but, interestingly, the prob-

ability of domination of one species over the other does not depend on it. Indeed,

u(z) = Prob{zτ(z) = −1|z0 = z} in Eq.(2.14) depends only on Φ(z) = −
∫ z

0
v(ζ)/D(ζ) dζ

and according to the theory developed here,

(2.33) Φ(z) = ln

[
1 +

(
γ − 1

γ + 1

)
z

]

independent of C—and independent of ρ and K, too. Hence without further analysis

we predict the probability of domination of the Y -species over the X-species in the

large population limit with the simple expression

(2.34) u(z) =
1− z

2

[
1 +

(
γ − 1

γ + 1

)
1 + z

2

]
.

This implies that even in the K →∞ “deterministic” limit, demographic fluctuations

influence the selection of one of the species. Although it may not be immediately

evident from Eq.(2.34), as will be seen in the next section the slower, longer-lived

species is favored.
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2.2.2 Truly degenerate case: γ = 1

In order to determine C we examine the truly degenerate situation γ = 1 where

the two species are identical in every way except labeling. In this case the drift (2.31)

vanishes so (2.32) implies that the mean time to extinction of one or the other species

starting from z0 = z, m(z) = E{τ(z)} satisfies

(2.35) Cε2
ρ

ρ− 1
(1− z2)

d2m

dz2
= −1

with boundary conditions m(±1) = 0. The strategy is to derive the differential

equation for the leading approximation of the mean first passage time of the two-

dimensional process (xt, yt) to the axes by conventional asymptotic methods and, by

comparing it to (2.35), read off the value of C.

The stochastic differential equations (2.6) and (2.7) with γ = 1 imply that the

mean time T (x, y) for the two-dimensional process to hit either axis starting from

x0 = x > 0 and y0 = y > 0 satisfies the boundary value problem

−1 = LT,(2.36)

0 = T (x, 0),(2.37)

0 = T (0, y)(2.38)

where the backward Kolmogorov operator is L ≡ ε2L0 + L1 with

(2.39) L0 =
1

2

(
ρ+ 1

ρ− 1
+ x+ y

)[
x
∂2

∂x2
+ y

∂2

∂y2

]

and

(2.40) L1 = (1− x− y)

[
x
∂

∂x
+ y

∂

∂y

]
.
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Inserting the asymptotic expansion

(2.41) T (x, y) ∼ 1

ε2
T0 + T1 + ε2T2 + . . . ,

where the leading term ε−2T0 corresponds to m defined by (2.35), into (2.36) we find,

order by order,

0 = L1 T0(2.42)

−1 = L0 T0 + L1 T1(2.43)

0 = L0 Tn + L1 Tn+1 for n ≥ 1(2.44)

where each Tn satisfies homogeneous Dirichlet conditions on the x- and y-axes.

In order to make progress we transform to polar coordinates r =
√
x2 + y2 and

θ = arctan(y/x) ∈ (0, π/2). Then the advection operator simplifies to

(2.45) L1 = [1− r(cos θ + sin θ)] r
∂

∂r

and the leading equation (2.42) implies 0 = ∂rT0 so T0 is a function of θ alone. This

is because when γ = 1 the deterministic trajectories are rays, radial lines from the

initial condition to the stable coexistence line. Then the next leading order equation

(2.43) in polar coordinates is

−1 =
1

2

[
ρ+ 1

ρ− 1
+ r(cos θ + sin θ)

]
cos θ sin θ

r
×(2.46) [

2(cos θ − sin θ)
d

dθ
+ (cos θ + sin θ)

d2

dθ2

]
T0+

(1− r(cos θ + sin θ)) r
∂T1

∂r
.

This equation is valid throughout the first quadrant of the phase plane so we may

consider it restricted to the coexistence line r(cos θ + sin θ) = 1 where the T1-term
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disappears. This established that T0 satisfies

−1 =

(
ρ

ρ− 1

)
cos θ sin θ (cos θ + sin θ)×(2.47) [

2(cos θ − sin θ)
d

dθ
+ (cos θ + sin θ)

d2

dθ2

]
T0.

Change the independent variable from θ back to z = x− y, which is

(2.48) z =
cos θ − sin θ

cos θ + sin θ

when r(cos θ + sin θ) = 1. Noting that

(2.49)
d

dθ
= −(1 + z2)

d

dz

and

(2.50) cos θ sin θ =
1

2

(
1− z2

1 + z2

)
,

a little algebra reveals that T0 satisfies

(2.51) −1 =

(
ρ

ρ− 1

)
(1− z2)

d2T0

dz2
.

Comparing this with equation (2.35) for m = ε−2T0 we conclude that

(2.52) C = 1.

2.2.3 Summary

In this section, we have developed a theory based on the physical insight of the

dynamics. The theory implies that, asymptotically as the carrying capacity K =
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1/ε2 →∞, demographic fluctuations induce the stochastic dynamics for zt = xt − yt

of the form

(2.53) dzt = v(zt)dt +
√

2D(zt) dWt

on the coexistence line x+ y = 1 where the drift and diffusion are

(2.54) v(z) =
2ρ γ (1− γ)

K(ρ− 1)
× 1− z2

[(1− z) + γ(1 + z)]2

and

(2.55) D(z) =
2ρ γ

K(ρ− 1)
× 1− z2

(1− z) + γ(1 + z)
.

The remaining parameters in the theory are ρ = βX/δX = βY /δY > 1 and 0 <

γ = βX/βY = δX/δY < ∞, and that time in (2.53) is measured in units of 1/γY =

(βY − δY )−1.

2.3 Numerical simulations and asymptotic verification

We now turn to the numerical evaluation of the theoretical predictions. Contin-

uous time Markov chain simulations [35] are carried out by performing exact simu-

lations of the continuous time, discrete state space Markov process defined by the

master equation (2.5). That is, the waiting time in a given state (n,m) is exponen-

tially distributed with rate equalling the sum of the coefficients of pn,m in Eq.(2.5)

followed by a transition to (n ± 1,m) or (n,m ± 1) with probability proportional

to the corresponding coefficient of pn±1,m or pn,m±1. The carrying capacity K and

species’ life-cycle/longevity ratio γ are varied while the low-density birth-to-death

ratio is fixed at ρ = 2.

First we consider the probability of domination of the Y -species over the X-
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Figure 2.4: Probability of domination of the Y -species over the X-species starting
from position z on the coexistence line, i.e., u(z) from (2.56), for life-
cycle ratios γ = .1, .5, 1, 2, 10 (solid lines bottom to top) as a function of
starting position z on the coexistence line. The discrete data are from
104 independent simulations with K = 1000, and the dashed lines are the
limγ→0 and limγ→∞ forms for u(z).

species u(z) = P{zτ(z) = −1|z0 = z} in the large population limit given by (2.34) and

reproduced here for reference:

(2.56) u(z) =
1− z

2

[
1 +

(
γ − 1

γ + 1

)
1 + z

2

]
.

Figure 2.4 is a plot the theoretical predictions and the simulation results forK = 1000.

In the totally degenerate case γ = 1, the probability that the Y -species outlives the

X-species is simply proportional to the initial fraction of the Y -species in the total

population (u = (1 − z)/2 = y when γ = 1) and the simulations in this situation

simply serve to indicate the level of statistical noise associated with 104 samples at

carrying capacity K = 1000. It is evident that the asymptotic theory is in excellent

agreement with the data.

Figure 2.4 also illustrates how demographic fluctuations break the degeneracy

in the deterministic dynamics, endowing the longer-lived species with a competitive
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advantage. When γ > 1 the X-species reproduces and dies faster, and at every value

of z ∈ (−1, 1), the probability of the slower Y -species dominating is increased over

that in the γ = 1 case. Likewise, when γ < 1 the X-species reproduces and dies slower

than the Y -species, and at every value of the initial populations the probability of

the Y -species dominating is decreased over that in the γ = 1 case. In both cases the

slower-to-reproduce/longer-to-live species has an enhanced probability of winning the

competition battle.

It is also interesting to notice that the leading approximation of the competitive

advantage is limited as the longevity ratio varies between the extremes γ = 0 and

γ = ∞. In a head-to-head competition starting from a large population comprised

of exactly 50% X-species and 50% Y -species, the probability of Y outliving X is

u(0) = 3γ+1
4γ+4

so the probability of Y winning is never less than 25% or more than

75%. We stress that this conclusion applies in the K →∞ limit preceding the γ → 0

or γ → ∞ limit; simulations (not presented here) show clearly that the competitive

advantage enjoyed by the longer-lived species may be significantly greater at finite

K.

The leading large-K approximation for the mean time to extinction of one species

or the other starting from z on the coexistence line follows from equations (2.19) and

(2.21) given (2.54) and (2.55). The result is

m(z) =
K(ρ− 1)(γ − 1)

2ργ

[
2
γ + 1

γ − 1
log 2− γ − 1

γ + 1

(1− z2)

2
+(2.57)

+ (1 + z) log (1 + z)

(
1− z

2
− γ + 1

γ − 1

)
− (1− z) log (1− z)

(
1 + z

2
+
γ + 1

γ − 1

)]
.

Figure 2.5 shows data for the mean first passage time to Xt = 0 or Yt = 0 from

simulations of the discrete two-dimensional (Xt, Yt) process along with the predictions

of the asymptotic theory from equation (2.57). The parameters used in Figure 2.5

28



z
-1 0 1

m
(z

)/
K

0.0

0.8

1.6

Figure 2.5: Mean extinction time m(z) = E{τ(z)} of one species or the other start-
ing from position z on the coexistence curve. The solid lines are the
theoretical predictions of (2.57) and the discrete data are from 104 inde-
pendent simulations at K = 1000. The other parameters are ρ = 2 and
γ = 1, 2, 10, 50 (top to bottom). Note that the O(1) vertical axis is
m(z)/K, i.e., the mean time in units of the total carrying capacity K.

are K = 1000, ρ = 2, and γ = 1 (top curve), 2, 10, and 50 (bottom), and the exit

times for 104 independent simulations were averaged at each value of the parameters

and for each initial starting position z on the coexistence line. The agreement, es-

pecially for γ = 1 and 2, is excellent. The theory systematically overestimates the

simulation results at higher values of the longevity ratio, a sign that the approach to

the asymptotic limit as K →∞ is not uniform in γ.

2.4 Asymptotic analysis for arbitrary γ

In this section we show how to extract the leading order equation for the mean

exit time from the first quadrant in the general case γ 6= 1. The boundary value
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problem is

−1 = LT,(2.58)

0 = T (0, y),(2.59)

0 = T (x, 0)(2.60)

where the backward Kolmogorov operator L ≡ ε2 L0 + L1 contains with

(2.61) L0 =
1

2

(
ρ+ 1

ρ− 1
+ x+ y

)[
γx∂2

x + y∂2
y

]
and

(2.62) L1 = (1− x− y) (γx∂x + y∂y) .

Inserting the asymptotic ansatz T ∼ ε−2T0 + T1 + ε2T2 + . . . implies, order by order,

that the Tn satisfy

0 =L1T0,(2.63)

−1 =L0T0 + L1T1,(2.64)

0 =L0Tn + L1Tn+1 for n ≥ 1.(2.65)

Transform the problem into coordinates (Ψ,Φ) defined by

Ψ ≡x+ y,(2.66)

Φ ≡ x

yγ
.(2.67)

This transformation is a one-to-one mapping of the open first quadrant into itself, and

the degenerate coexistence manifold is the set {Ψ = 1, 0 ≤ Φ ≤ ∞}. The important
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point is that the coordinate Φ is constant on deterministic trajectories defined by the

drift. In these new coordinates the operators are

L0 =
1

2

(
ρ+ 1

ρ− 1
+ Ψ

)[
γ
x

y2γ
∂2

Φ + 2γ
x

yγ
∂Ψ∂Φ + γx∂2

Ψ(2.68)

+ γ (γ + 1)
x

yγ+1
∂Φ + γ2 x2

y2γ+1
∂2

Φ − 2γ
x

yγ
∂Φ∂Ψ + ∂2

Ψ

]
,

L1 = (1−Ψ) (γx+ y) ∂Ψ(2.69)

where we refer to the inverse mapping from (Ψ,Φ) back to (x, y) by

x ≡x(Ψ,Φ),(2.70)

y ≡y(Ψ,Φ)(2.71)

remarking that, at least for the leading asymptotic approximation of the mean first

passage time, the explicit form of these functions are irrelevant.

The leading equation 0 = L1T0 implies 0 = ∂ΨT0 so that T0 is a function of Φ

only. Then the next (inhomogeneous) equation −1 = L0T0 + L1T1 is

−1 =
1

2

(
ρ+ 1

ρ− 1
+ Ψ

)[
γ (γ + 1)

x

yγ+1
∂Φ +

γx

y2γ

(
1 + γ

x

y

)
∂2

Φ

]
T0(Φ)(2.72)

+ L1T1.

This is valid throughout the first quadrant of the (Ψ,Φ) plane, and in particular on

the coexistence line Ψ = 1 where L1 vanishes implying

(2.73) −1 =
ρ

ρ− 1

[
γ (γ + 1)

x

yγ+1
∂Φ +

γx

y2γ

(
1 + γ

x

y

)
∂2

Φ

]
T0(Φ).
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Now transform to the variable z = x− y, noting that

(2.74) Φ =
x

yγ
= 2γ−1 1 + z

(1− z)γ

is a monotone function of z on the coexistence line, and finally we deduced

(2.75) −1 =
2ργ

ρ− 1

[
1− z2

(1− z) + γ(1 + z)
∂2
z + (1− γ)

1− z2

[(1− z) + γ(1 + z)]2
∂z

]
T0(z)

from which the drift (2.54) and diffusion (2.55) on the coexistence line may be read

off.

2.5 Summary and discussion

Demographic fluctuations break the degeneracy displayed by the deterministic

rate equation description of the dynamics of two competing species differing only in

the time scales of their life cycles. The theoretical analysis presented here, along with

its confirmation via direct numerical simulations, shows that the longer-lived-slower-

to-reproduce species enjoys a slight competitive advantage over the shorter-lived-but-

faster-reproducing species. This in itself may not be surprising given the asymmetry

of the stochastic dynamics when birth-death noise is incorporated into the model, but

what is remarkable is that the effect persists all the way to the continuum limit. That

is, the competitive disadvantage of fast living remains an O(1) effect in the infinite

carrying capacity K → ∞ limit where the deterministic dynamics is in fact valid,

albeit over sufficiently bounded time intervals. The simple resolution of this apparent

dilemma is that the time for the distinction between the species to be realized, i.e., the

time required for the demographic fluctuations to substantially affect the population

balance, diverges ∼ K as K →∞.

The singular behavior of the species selection is illustrated in Figure 2.6 where
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Figure 2.6: Isoprobability curves for survival of the slow species (in this case the
Y -species) for γ = 10 in the limit K →∞. Compare with Fig. 2.3.

we plot isoprobability curves of dominance of the longer-lived species during times

O(K) ≤ t ≤ O(ecK) in the deterministic K → ∞ limit. The degenerate dynam-

ics described by differential equations faithfully carries the two-dimensional contin-

uum system from its initial position in the phase plane to the coexistence line in an

O(logK) where the stochastic dynamics takes charge and determines the victor of

the competition who subsequently survives until the ultimate extinction. If time is

measured in units proportional to K, the continuum limit is deterministic only during

a vanishingly small transient after which it is a Markov diffusion process restricted

to the coexistence line, eventually being absorbed and remaining ever thereafter at

z = ±1.

It is our original motivation to construct the model as a minimal model (stochas-

tic) degenerate competitive dynamics, as illustrated in section 1.3. Interestingly, this

sort of degenerate dynamics has been considered by other researchers. Over two

decades ago Katzenberger [24] studied the behavior of solutions of stochastic differ-

ential equations with strong drift driving the system onto a submanifold fixed points

of the deterministic dynamics in a formal setting. More recently Parsons and Quince
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[31] and Parsons, Quince, and Plotkin [32] considered the system analyzed here, us-

ing conventional asymptotic methods similar to those employed in Section 2.3 to fix

the constant C (and more generally in section 2.4), to evaluate both the probability

and mean time to “fixation”. Most recently Durrett and Popovic [11] studied the

stochastic dynamics of a different degenerate model where the coexistence curve is

not a simple straight line segment while the deterministic trajectories are.

The theoretical method introduced here consists of using the elementary fluctua-

tions away from the degenerate manifold and the subsequent deterministic relaxation

back to evaluate the effective drift and diffusion in a reduced description. This con-

stitutes a novel approach to the quantitative analysis with two advantages. First

is that it intuitively incorporates the physical processes that produce the drift and

diffusion on the coexistence curve. Such insight contributes substantially to our un-

derstanding of these dynamics and their quantitative description. Second is that it

produces accurate asymptotic predictions relatively quickly. Indeed, as developed in

detail in section 2.4, conventional perturbation theory analysis of the γ 6= 1 situation

is significantly more involved than the relatively straightforward γ = 1 calculations

presented in Section 2.3. This is because in order to implement the projection onto the

coexistence curve, the two-dimensional dynamics must be formulated in coordinates

incorporating the deterministic trajectories.
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CHAPTER III

Demographic Stochasticity and Evolution of

Dispersal in Homogeneous Environments

In this Chapter, we generalized the established physically motivated asymptotic

analysis in Chapter II to investigate competitive population dynamics in homogeneous

environments with demographic fluctuations. We investigate two specific models: the

two-patch model, presented in section 3.1, and the many-patch model, presented in

section 3.2. In section 3.3 we discuss and summarize the analyses in this Chapter.

3.1 The two-patch model

3.1.1 The model

We begin with a simple model of competing species in a spatially extended yet

homogeneous environment as illustrated in schematic Figure 3.1. The model consists

of two identical patches, each of which is a well-mixed pool with carrying capacity K.

Two species X and Y reside in the patches and compete locally for limited resources.

In this continuous-time Markov model, each individual randomly reproduces, dies,

or moves to the other patch at precisely defined rates. To explore the relation be-

tween survival probability and mobility under identical environment conditions it is

assumed that each individual of both species has the same birth rate and, in the same
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WX

WY

Patch 1

K

Patch 2

K

N 1 +
X1 + Y1

C
N 1 +

X2 + Y2

C

Figure 3.1: Dynamics of the interacting species distributed on two patches. The X
and Y populations compete locally, and individuals randomly move from
one patch to the other at rates µX and µY .

Independent process Corresponding (per capita) rate

Birth of X on patch i β
Birth of Y on patch i β
Death of X on patch i δ[1 + (Xi + Yi)/Λ]
Death of Y on patch i δ[1 + (Xi + Yi)/Λ]

Dispersal of X from patch i to patch j, i 6= j µX
Dispersal of Y from patch i to patch j, i 6= j µY

Table 3.1: The stochastic processes and the corresponding rates.

competitive environment, the same death rate. However, the hopping rates of the two

species are not restricted to be identical and they will be treated as two independent

parameters hereafter. From here on we refer this model as the (homogeneous) 2–patch

model.

More precisely, let (X1(s), X2(s), Y1(s), Y2(s)) be the non-negative integer-valued

populations of the X and Y species on patch 1 or 2, respectively, at (dimensional)

time s. Let i be the patch index, i.e., i ∈ {1, 2}. Per capita birth and death rates of

both species in patch i are, respectively, β and δ [1 + (Xi(s) + Yi(s))/Λ]. Here Λ is a

population scale, which will be shown to be proportional to the carrying capacity of

the patch. We will always consider parameter values where the low-density birth-to-
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death rate ratio ρ := β/δ > 1. The term Xi+Yi/Λ in the death rates characterize the

feature of competition to limited resources K := (ρ− 1) Λ. The hopping (dispersal)

rates of species X and Y are µX and µY respectively. Although we refer these rates as

“faster” or “slower” they do not represent movement speed, but rather the propensity

for individuals of either species to migrate to a new location. We consider both µX > 0

and µY > 0 although empirically we shall see that max {µX , µY } > 0 is sufficient to

draw the conclusions. Table 3.1 summarizes the random processes.

Let the probability of the state (a, b, c, d) at time s be

(3.1) pa,b,c,d (s) = P [{X1(s) = a} ∩ {Y1(s) = b} ∩ {X2(s) = c} ∩ {Y2(s) = d}] ,

and its evolution be given by the master equation

d

ds
pa,b,c,d = − (β + δ [1 + (a+ b) /Λ] + µX) apa,b,c,d(3.2)

− (β + δ [1 + (a+ b) /Λ] + µY ) bpa,b,c,d

− (β + δ [1 + (c+ d) /Λ] + µX) cpa,b,c,d

− (β + δ [1 + (c+ d) /Λ] + µY ) dpa,b,c,d

+ β (a− 1) pa−1,b,c,d + δ [1 + (a+ b+ 1) /Λ] (a+ 1) pa+1,b,c,d

+ β (b− 1) pa,b−1,c,d + δ [1 + (a+ b+ 1) /Λ] (b+ 1) pa,b+1,c,d

+ β (c− 1) pa,b,c−1,d + δ [1 + (c+ d+ 1) /Λ] (c+ 1) pa,b,c+1,d

+ β (d− 1) pa,b,c,d−1 + δ [1 + (c+ d+ 1) /Λ] (d+ 1) pa,b,c,d+1

+ µX (a+ 1) pa+1,b,c−1,d + µX (c+ 1) pa−1,b,c+1,d

+ µY (b+ 1) pa,b+1,c,d−1 + µY (d+ 1) pa,b−1,c,d+1.

Denote the carrying capacity K := (ρ− 1)Λ with ρ := β/δ > 1. As Λ and thus K →

∞, fluctuations in the time-scaled continuum variables xi(t) = Xi (t/(β − δ)) /K and

yi(t) = Yi (t/(β − δ)) /K are relatively small. For large but finite K the dynamics are
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well-described by a diffusion process with probability density f(x1, x2, y1, y2, t) gov-

erned by the Kolmogorov forward (a.k.a. Fokker–Planck) equation [28, 14] obtained

by Taylor expanding (3.2) in powers of 1/K,

∂f

∂t
= − ∂

∂x1

{[x1 (1− x1 − y1) + µx (x2 − x1)] f}(3.3)

− ∂

∂x2

{[x2 (1− x2 − y2) + µx (x1 − x2)] f}

− ∂

∂y1

{[y1 (1− x1 − y1) + µy (y2 − y1)] f}

− ∂

∂y2

{[y2 (1− x2 − y2) + µy (y1 − y2)] f}

+
1

2K

∂2

∂x2
1

{[
x1

(
ρ+ 1

ρ− 1
+ x1 + y1

)
+ µx (x1 + x2)

]
f

}
+

1

2K

∂2

∂x2
2

{[
x2

(
ρ+ 1

ρ− 1
+ x2 + y2

)
+ µx (x1 + x2)

]
f

}
+

1

2K

∂2

∂y2
1

{[
y1

(
ρ+ 1

ρ− 1
+ x1 + y1

)
+ µy (y1 + y2)

]
f

}
+

1

2K

∂2

∂y2
2

{[
y2

(
ρ+ 1

ρ− 1
+ x2 + y2

)
+ µy (y1 + y2)

]
f

}
− 1

K

∂2

∂x1 ∂x2

[µx (x1 + x2) f ]− 1

K

∂2

∂y1 ∂y2

[µx (y1 + y2) f ]

where the dimensionless time t = (β − δ)s with (now) dimensionless hopping rates

µx and µy suitably scaled by (β − δ).

(Note regarding notations: throughout rest of the dissertation the parameters

with capital decoration, for example µX , stand for the unscaled parameters, and the

parameters with lower-case decoration, for example µx, stand for the scaled ones. In

addition, the variable s is always the dimensional time, and the variable t is reserved

to be the scaled and dimensionless time.)

This is the evolution equation for the probability transition density of the solution
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of the coupled Itô stochastic differential equations

dx1 = [x1 (1− x1 − y1) + µx (x2 − x1)] dt(3.4a)

+ ε

√
x1

(
ρ+ 1

ρ− 1
+ x1 + y1

)
dW1 + ε

√
µx(x1 + x2) dW2,

dx2 = [x2 (1− x2 − y2) + µx (x1 − x2)] dt(3.4b)

+ ε

√
x2

(
ρ+ 1

ρ− 1
+ x2 + y2

)
dW3 − ε

√
µx(x1 + x2) dW2,

dy1 = [y1 (1− x1 − y1) + µy (y2 − y1)] dt(3.4c)

+ ε

√
y1

(
ρ+ 1

ρ− 1
+ x1 + y1

)
dW4 + ε

√
µy(y1 + y2) dW5

dy2 = [y2 (1− x2 − y2) + µy (y1 − y2)] dt(3.4d)

+ ε

√
y2

(
ρ+ 1

ρ− 1
+ x2 + y2

)
dW6 − ε

√
µy(y1 + y2) dW5,

where ε ≡ 1/
√
K and the Wi(t) are independent Wiener processes. (Pardon the con-

ventional abuse of notation here: in (3.3) the xi and yi are independent variables while

in (3.4) they random processes. Context inevitably resolves any possible confusion.)

In the infinite carrying capacity limit the continuum variables xi(t) = Xi(t/(β−δ))/K

and yi = Yi(t/(β−δ))/K evolve according to the classical deterministic rate (ordinary

differential) equations [27]

ẋ1 = x1 (1− x1 − y1) + µx (x2 − x1) ,(3.5a)

ẋ2 = x2 (1− x2 − y2) + µx (x1 − x2) ,(3.5b)

ẏ1 = y1 (1− x1 − y1) + µy (y2 − y1) ,(3.5c)

ẏ2 = y2 (1− x2 − y2) + µy (y1 − y2) .(3.5d)

As shown in the following theorem, solutions of Eqs.(3.5) are in equilibrium if and
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only if the state is on the line (x0, x0, y0, y0) with x0 ∈ [0, 1] and x0 + y0 = 1 in the

four-dimensional phase space. On the interior of this line segment, i.e., for x0 ∈ (0, 1),

the two species coexist in the deterministic limit. We will refer the open segment as

the coexistence line. In the following subsection we deduce that for large but finite K

the 2–patch model exhibits a weak selection for the fast disperser on an O(K) time

scale as a result of the fluctuations from individual-level processes.

Theorem III.1. [Fixed points of the deterministic dynamics of the 2-patch model.]

The state (x1, x2, y1, y2) is a coexistence fixed point of the deterministic 2-patch model

if and only if (x1, x2, y1, y2) = (x0, x0, y0, y0) with x0, y0 ∈ (0, 1) and x0 + y0 = 1.

Proof. It is trivial to check that states of the form (x0, x0, y0, y0) with x0 + y0 = 1

are stationary. We prove that every stationary state (x1, x2, y1, y2) has x1 = x2 and

y1 = y2, which then also necessarily satisfy xi + yi = 1, by contradiction. Assume

(x1, x2, y1, y2) satisfy

0 = x1 (1− x1 − y1) + µx (x2 − x1) ,(3.6a)

0 = y1 (1− x1 − y1) + µy (y2 − y1) ,(3.6b)

0 = x2 (1− x2 − y2) + µx (x1 − x2) ,(3.6c)

0 = y2 (1− x2 − y2) + µy (y1 − y2) ,(3.6d)

and x1 > x2 > 0. Then (3.6a) and (3.6c) imply x2 + y2 > 1 > x1 + y1 so that

y2 − y1 > x1 − x2 > 0. But then (3.6b) and (3.6d) require, in contradiction, that

x1 +y1 > 1 and 1 > x2 +y2. Thus x1 ≤ x2 and, by symmetry, x2 ≤ x1 so that x1 = x2

and y1 = y2.

3.1.2 Asymptotic analysis

In this section we generalize the physically motivated asymptotic analysis devel-

oped in section 2.2.1 to the Itô stochastic differential equations (3.4). There are two

40



x1

x2

Figure 3.2: Directions of independent events of species X. Red and blue arrows (along
the axes) represent birth and death events on specific patch respectively.
Green arrows (diagonal) shows the direction of the hopping events in the
phase space. Species Y has similar diagram but the diagonal arrows may
have different strength.

complications in the 2-patch model as compared to the model in Chapter II. First,

the approach developed in section 2.2.1 utilizes an analytically closed form for the

deterministic trajectories in order to connect the noise-perturbed state and its final

destination on the coexistence line. In the 2-patch model competition couples the

variables {xi, yi} locally while the hopping process couples populations on different

patches. Thus the entire 4-dimensional states are dynamically and nonlinearly de-

pendent and, owing to this complexity, an exact expression for the deterministic tra-

jectories is not known. To unravel this difficulty, we combine a regular perturbation

analysis with the proposed “intuitive” asymptotic approach. Second, the diffusive

terms contain cross derivatives ∂2/∂x1∂x2 and ∂2/∂y1∂y2 indicating that the fluctu-

ations along the coordinates (x1, x2) and (y1, y2) are coupled. The fact can also be

seen in the coupled noises that are proportional to dW2 and dW5 in the Itô stochastic

differential equations (3.4).

As illustrated in Fig. 3.2, independent noise processes at the individual level kick

the system in 12 distinct directions in the phase space. These directions can be paired
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Balanced Processes Direction Magnitude of the Fluctuation

Birth/Death of X on patch 1 (±1, 0, 0, 0) 41 ≡
[

2ρ
ρ−1

x0
K
dt
]1/2

Birth/Death of X on patch 2 (0,±1, 0, 0) 42 ≡
[

2ρ
ρ−1

x0
K
dt
]1/2

Birth/Death of Y on patch 1 (0, 0,±1, 0) �1 ≡
[

2ρ
ρ−1

y0
K
dt
]1/2

Birth/Death of Y on patch 2 (0, 0, 0,±1) �2 ≡
[

2ρ
ρ−1

y0
K
dt
]1/2

Hopping of X (±1,∓1, 0, 0) N ≡
[
2µx

x0
K
dt
]1/2

Hopping of Y (0, 0,±1,∓1) � ≡
[
2µy

y0
K
dt
]1/2

Table 3.2: Fluctuation strengths and shorthand notations of the homogeneous 2–
patch model.

into 6 balanced groups on the coexistence line: four from demographic birth and death

processes and two from the hopping between patches. As a result, the fluctuations

can effectively perturb a coexistent state into 26 possible directions. As K → ∞

the effective strength of the fluctuations due to random birth and death events in

a time interval dt were conjectured and verified by rigorous asymptotic analysis in

section 2.4. The effective strength of the fluctuations due to random hopping events

are obtained by evaluating their relative strengths to the birth and death fluctuations

from Eq.(3.3). In summary, the effective strength of each fluctuation, as well as the

shorthand notations are listed in the Table 3.2.

Next we present the outline of asymptotic calculation as K → ∞. A heuristic

diagram is provided in Fig. 3.3 and the detail derivation can be found in the fol-

lowing section 3.1.3. Suppose at some instance the system is at a coexistent state

(x0, x0, y0, y0) with x0 + y0 = 1. Define a coordinate z := x − y ≡ 2x − 1 on the

coexistence line such that z uniquely specifies a coexistence state. In a time interval
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1

1

2

2

Figure 3.3: Heuristic diagram of physical asymptotic analysis. 4–dimensional states
in this 2–dimensional diagram are represented by 2 points: open red
(x1, y1) and closed blue (x2, y2). Dashed green line represents the co-
existence line. Start from coexistent state (circles), two fluctuations (rep-
resented by arrows and noted by 1 and 2) kick the state out of the co-
existence line (squares), then the states flow back to the coexistence line
along deterministic trajectory (dotted curve) to the final destinations (tri-
angles).

dt, one of the fluctuations drives the system out of the equilibrium to a new state

(3.7)



x0

x0

y0

y0


Impact of fluctuation−→



x0 + φ141 + φ5N

x0 + φ242 − φ5N

y0 + φ3�1 + φ6�

y0 + φ4�2 − φ6�


where each independent variable φj, j ∈ {1, 2, 3, 4, 5, 6} takes values ±1 with prob-

ability 1/2. We will use ~φ to denote a specific combination of the φj’s. Then this

perturbed state is treated as the initial condition of the deterministic rate equations

(3.5) and we seek for the final destination in the 1/K-neighborhood of coexistence

line after relaxation. To achieve this goal, we note that each perturbation carries a
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small parameter ε ≡ 1/
√
K that suggests the perturbative ansatz

xi (t) ≡ x
(0)
i + ε x

(1)
i + ε2 x

(2)
i +O

(
ε3
)
,(3.8a)

yi (t) ≡ y
(0)
i + ε y

(1)
i + ε2 y

(2)
i +O

(
ε3
)
,(3.8b)

where x
(j)
i and y

(j)
i are ε-independent at every order j. The system then returns to

the coexistence line along the deterministic flow

(3.9)



x0 + φ141 + φ5N

x0 + φ242 − φ5N

y0 + φ3�1 + φ6�

y0 + φ4�2 − φ6�


Relaxation of rate equations−→



x~φ

x~φ

y~φ

y~φ


.

In the above, x~φ and y~φ represent the x- and y-coordinate of the relaxed state pre-

viously perturbed by ~φ. In the z-coordinate, the displacement of the final state z~φ

from the original state z0 is computed as ∆z~φ ≡ 2
(
x~φ − x0

)
. Consequently, in the

large K limit, the dynamics in the entire 4–dimensional space is approximated by an

effective one dimensional Markov process on the coexistence line, z(t), defined by the

Itô stochastic differential equation

(3.10) dz = v(z) dt+
√

2D(z) dW

with drift v(z0) = 〈∆z~φ〉/dt and diffusion D(z0) = 〈∆z~φ
2/2〉/dt (see section 2.2.1)

where 〈A~φ〉 denotes the expectation value of random variable A~φ.

Somewhat surprisingly, after unraveling the straightforward but nontrivial calcu-

lations described in Appendix B, we deduce the remarkably simple forms of the drift
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and diffusion:

v (z) =
1− z2

K

[
C0 +

C1

(µx − µy) z − C2

]
,(3.11)

D (z) =
ρ

2 (ρ− 1)

1− z2

K
,(3.12)

where the coefficients C0, C1, and C2 are functions of the parameters only:

C0 = − µx − µy
2

[
1

1 + 2 (µx + µy)

]
,(3.13a)

C1 = − µx − µy
2

[
ρ

ρ− 1
+

4µx µy
1 + 2 (µx + µy)

]
,(3.13b)

C2 = 4µx µy + µx + µy.(3.13c)

When µX 6= µY , the O (1/K) drift induced by demographic fluctuations breaks

the degeneracy of the deterministic dynamics (3.5) and there is a preference for the

fast disperser on an O (K) time scale. That is, if µx > µy, the drift v(z) is strictly

positive for z ∈ (−1, 1) (ref: Chapter 6). On the other hand the diffusion D(z)

does not depend on µx and µy. Therefore, there is no evolutionary stable dispersal

rate in the 2–patch model. That is, a faster-disperser will always have an advantage

over a slower disperser. Given these drift and diffusion functions we can also derive

integral forms of both the probability that one species outlives the other and the mean

“fixation” time as function of initial position by the formulae provided in section 2.1.2.

3.1.3 Detailed computation of the physically motivated asymptotic anal-

ysis

In this section, we present details of the computations in the physically motivated

asymptotic analysis.

We begin with applying regular perturbation theory to compute the time displace-

ment of an equilibrium point (x0, x0, y0, y0) on the coexistence manifold (x0 + y0 = 1)
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due to small initial displacements off the coexistence manifold in the deterministic

2-patch model. Following the intuition described in section 3.1.4 we presume an

asymptotic expansion of the solutions to (3.5) of the form

xi = x
(0)
i + ε x

(1)
i + ε2 x

(2)
i +O

(
ε3
)

(3.14a)

yi = y
(0)
i + ε y

(1)
i + ε2 y

(2)
i +O

(
ε3
)

(3.14b)

where ε := 1/
√
K is the magnitude of stochastic kicks from birth, death, and hopping

events. That is, we consider initial conditions within an O(ε) displacement from the

coexistence line:

xi (0) = x0 + ε x
(1)
i (0)(3.15a)

yi (0) = y0 + ε y
(1)
i (0).(3.15b)

with x
(n)
i (0) = 0 = y

(n)
i (0) for all n ≥ 2.

It is convenient to transform variables to total population nx, ny on both the

patches, and the population difference wx, wy between the patches

nx(t) = x1(t) + x2(t) = 2x0 + ε n(1)
x + ε2 n(2)

x + . . .(3.16a)

ny(t) = y1(t) + y2(t) = 2y0 + ε n(1)
y + ε2 n(2)

y + . . .(3.16b)

wx(t) = x1(t)− x2(t) = 0 + ε w(1)
x + ε2 v(2)

x + . . .(3.16c)

wy(t) = y1(t)− y2(t) = 0 + ε w(1)
y + ε2 v(2)

y + . . .(3.16d)
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with initial conditions of the form

nx(0) = 2x0 + ε n(1)
x (0)(3.17a)

ny(0) = 2y0 + ε n(1)
y (0)(3.17b)

wx(0) = 0 + ε w(1)
x (0)(3.17c)

wy(0) = 0 + ε w(1)
y (0)(3.17d)

and vanishing n
(n)
x (0), n

(n)
y (0), w

(n)
x (0), w

(n)
y (0) for n ≥ 2. At O(ε) the dynamical

equations (3.5) become the linear homogeneous systems

ṅx
(1) = −x0

(
n(1)
x + n(1)

y

)
(3.18a)

ṅy
(1) = −y0

(
n(1)
x + n(1)

y

)
(3.18b)

and

ẇx
(1) = −x0

(
w(1)
x + w(1)

y

)
− 2µxw

(1)
x(3.19a)

ẇy
(1) = −y0

(
w(1)
x + w(1)

y

)
− 2µyw

(1)
y .(3.19b)

The solutions for (3.18) are

n(1)
x (t) = y0 n

(1)
x (0)− x0 n

(1)
y (0) + x0

(
n(1)
x (0) + n(1)

y (0)
)
e−t(3.20a)

n(1)
y (t) = x0 n

(1)
y (0)− y0 n

(1)
x (0) + y0

(
n(1)
x (0) + n(1)

y (0)
)
e−t(3.20b)
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and the solutions for (3.19) are

w(1)
x (t) =

1

2κ

{[
(κ− η)w(1)

x (0)− x0w
(1)
y (0)

]
eλ+ t(3.21a)

+
[
(κ+ η)w(1)

x (0) + x0w
(1)
y (0)

]
eλ− t

}
w(1)
y (t) =

1

2κ

{[
(κ+ η)w(1)

y (0)− y0w
(1)
x (0)

]
eλ+ t(3.21b)

+
[
(κ− η)w(1)

y (0) + y0w
(1)
x (0)

]
eλ− t

}
where

κ =
1

2

√
1 + 4 (µx − µy)2 + 4 (µx − µy) (x0 − y0) ,(3.22)

η = µx − µy +
1

2
(x0 − y0) ,(3.23)

and the (strictly negative) eigenvalues in the exponents are

(3.24) λ± = −1

2
(1 + 2µx + 2µy)± κ.

Thus

lim
t→∞

x
(1)
1 (t) = lim

t→∞

1

2

(
n(1)
x (t) + w(1)

x (t)
)

(3.25)

= y0

(
x

(1)
1 (0) + x

(1)
2 (0)

)
− x0

(
y

(1)
1 (0) + y

(1)
2 (0)

)

and so on for the x
(1)
2 (t), y

(1)
1 (t), and y

(1)
2 (t). Because the initial perturbations εx

(1)
i (0)

and εy
(1)
i (0) are symmetrically distributed, to first order in ε, on average they relax

back to the starting point (x0, x0, y0, y0) on the equilibrium manifold. This means that

the leading order terms do not contribute to the drift on the equilibrium manifold

at O(ε). But because the average of their squares do not vanish, they do constitute

the leading approximation to the diffusion on the equilibrium manifold at O(ε2) as

shown later. In order to calculate the leading O(ε2) contribution to the drift, we must
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compute limt→∞ x
(2)
i and limt→∞ y

(2)
i .

At second order the differential equations are

ṅx
(2) = −x0

(
n(2)
x + n(2)

y

)
− 1

2

(
n(1)
x

2
+ w(1)

x

2
+ n(1)

x n(1)
y + w(1)

x w(1)
y

)
(3.26a)

ṅy
(2) = −y0

(
n(2)
x + n(2)

y

)
− 1

2

(
n(1)
y

2
+ w(1)

y

2
+ n(1)

x n(1)
y + w(1)

x w(1)
y

)
(3.26b)

and

ẇx
(2) = −x0

(
w(2)
x + w(2)

y

)
− 2µxw

(2)
x −

1

2

(
2n(1)

x w(1)
x + n(1)

y w(1)
x + n(1)

x w(1)
y

)
(3.27a)

ẇy
(2) = −y0

(
w(2)
x + w(2)

y

)
− 2µxw

(2)
y −

1

2

(
2n(1)

y w(1)
y + n(1)

x w(1)
y + n(1)

y w(1)
x

)
.(3.27b)

The matrix of coefficients of the linear terms on the right hand side of equations

(3.27) immediately above is invertible, and the last inhomogeneous terms on the

right hand side vanish as t → ∞, so limt→∞w
(2)
x (t) = limt→∞w

(2)
y (t) = 0. Thus

the ultimate displacements on the equilibrium manifold are determined, to O(ε2), by

limt→∞ x
(2)
i = limt→∞ n

(2)
x /2 and limt→∞ y

(2)
i = limt→∞ n

(2)
y /2.

We solve equations (3.26) as follows. First add them to obtain a closed linear

inhomogeneous differential equation for total population of both species n(2)(t) ≡

n
(2)
x (t) + n

(2)
y (t)

(3.28) ṅ(2) = −n(2) − 1

2

[(
n(1)
x + n(1)

y

)2
+
(
w(1)
x + w(1)

y

)2
]
,

and equivalently,

(3.29)
d

dt

[
et n(2)(t)

]
= −e

t

2

[(
n(1)
x + n(1)

y

)2
+
(
w(1)
x + w(1)

y

)2
]
.
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Since n(2)(0) = 0, the solution of Eq.(3.29) is

(3.30) n(2)(t) = −e
−t

2

t∫
0

et
′
[(
n(1)
x (t′) + n(1)

y (t′)
)2

+
(
w(1)
x (t′) + w(1)

y (t′)
)2
]
dt′.

Next, the equation of motion of

ṅ(2)
x = − x0 n

(2) − x(1)
1

(
x

(1)
1 + y

(1)
1

)
− x(1)

2

(
x

(1)
2 + y

(1)
2

)
.(3.31)

With the initial condition n
(2)
x (0) = 0 and Eq.(3.30), the evolution of the total popu-

lation of species X is

n(2)
x (t) = x0

t∫
0

t′∫
0

[(
n(1)
x (t′′) + n(1)

y (t′′)
)2

(3.32)

+
(
w(1)
x (t′′) + w(1)

y (t′′)
)2
]
et
′′
dt′′e−t

′
dt′

− 1

2

t∫
0

[
n(1)
x

2
(t′) + w(1)

x

2
(t′)

+ n(1)
x (t′)n(1)

y (t′) + w(1)
x (t′)w(1)

y (t′)
]
dt′

To proceed analysis, we prove the following technical lemma.

Lemma III.2. If λ < 0,

(3.33)

∞∫
0

e−t
t∫

0

et
′
eλt
′
dt′ dt = −1

λ
.
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Proof. Suppose λ 6= −1,

∞∫
0

e−t
t∫

0

et
′
eλt
′
dt′ dt =

∞∫
0

e−t
t∫

0

e(λ+1)t′dt′ dt(3.34)

=
1

λ+ 1

∞∫
0

[
eλ t − e−t

]
dt

=
1

λ+ 1

[
eλ t

λ
+ e−t

]∞
0

=
−1

λ+ 1

[
1

λ
+ 1

]
= −1

λ
.

If λ = −1,

∞∫
0

e−t
t∫

0

et
′
e−t

′
dt′ dt =

∞∫
0

e−ttdt = −
∞∫

0

tde−t(3.35)

=
[
−te−t

]∞
0

+

∞∫
0

e−tdt = 1 = −1

λ
.

We are now in the position to apply the physically motivated asymptotic analysis.

To alleviate the lengthy expressions in the computations, it is convenient to define

the following variables:

w
(1)
x+ ≡

1

2κ

[
(κ− η)w(1)

x (0)− x0w
(1)
y (0)

]
,(3.36a)

w
(1)
x− ≡

1

2κ

[
(η + κ)w(1)

x (0) + x0w
(1)
y (0)

]
,(3.36b)

w
(1)
y+ ≡

1

2κ

[
(κ+ η)w(1)

y (0)− y0w
(1)
x (0)

]
,(3.36c)

w
(1)
y− ≡

1

2κ

[
(κ− η)w(1)

y (0) + y0w
(1)
x (0)

]
,(3.36d)
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so the O(ε) solutions of the population differences (3.21) are

w(1)
x (t) = w

(1)
x+ e

λ+ t + w
(1)
x− e

λ− t,(3.37a)

w(1)
y (t) = w

(1)
y+ e

λ+ t + w
(1)
y− e

λ− t.(3.37b)

By reading off the initial conditions from Eq.(3.7), it is clear that the initial

perturbed states in the coordinates (n,w) are

n(1)
x (0) = φ1∆1 + φ2∆2,(3.38a)

n(1)
y (0) = φ3�1 + φ4�2,(3.38b)

w(1)
x (0) = φ1∆1 − φ2∆2 + 2φ5N,(3.38c)

w(1)
y (0) = φ3�1 − φ4�2 + 2φ6�.(3.38d)

Note regarding the notations that the “initial conditions” n
(1)
i (0) and w

(1)
i (0) are

inherently random variables. Their values depend on the stochastic perturbation

vector ~φ.

It is straightforward to evaluate the effective diffusion (toO(ε2)) on the coexistence

line,

D(z0) ≡

〈
∆z2

~φ

〉
2dt

= lim
t→∞

1

2dt

〈
∆
(
x~φ − y~φ

)2
〉

(3.39)

=
1

2

〈[
y0 n

(1)
x (0)− x0 n

(1)
y (0)

]2〉
.

and by exploiting the balance condition 〈φi〉 = 0, 〈φ2
i 〉 = 1, and the independency of

the fundamental fluctuations 〈φiφj〉 = δij, we arrive at a simple form of the effective

diffusion coefficient

(3.40) D (z) =
ρ

2 (ρ− 1)

1− z2

K
.
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The computation of the drift coefficient is more complicated. We start by plugging the

O (ε1) solutions into the inhomogeneous terms in Eq.(3.32). The expressions involve

the total population (of both species) and the population differences (of both species)

among patches

n(1)
x (t) + n(1)

y (t) =
[
n(1)
x (0) + n(1)

y (0)
]
e−t(3.41a)

= [φ1∆1 + φ2∆2 + φ3�1 + φ4�2] e−t,

w(1)
x (t) + w(1)

y (t) =
[
w

(1)
x+ + w

(1)
y+

]
eλ+ t +

[
w

(1)
x− + w

(1)
y−

]
eλ− t,(3.41b)

so that

[
n(1)
x (t) + n(1)

y (t)
]2

= n2
0 e
−2t,(3.42a) [

w(1)
x (t) + w(1)

y (t)
]2

= w++e
2λ+ t + 2w+−e

(λ++λ−) t + w−−e
2λ− t,(3.42b)

with the defined random variables

n0 ≡ [φ1∆1 + φ2∆2 + φ3�1 + φ4�2] ,(3.43)

w++ ≡
[
w

(1)
x+ + w

(1)
y+

]2

,(3.44)

w+− ≡
[
w

(1)
x+ + w

(1)
y+

]
×
[
w

(1)
x− + w

(1)
y−

]
,(3.45)

w−− ≡
[
w

(1)
x− + w

(1)
y−

]2

.(3.46)

Plug the inhomogeneous terms (3.1.3) into the O(ε2) solution (3.32), one immediately
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has

n(2)
x (t) =

x0

2

t∫
0

e−t
′

t′∫
0

(
n2

0e
−2t′ + w++e

2λ+ t′′+(3.47)

+ 2w+−e
(λ++λ−)t′′ w−−e

2λ− t′′et
′′
)
dt′′ dt′

− 1

2

t∫
0

(
ns1e

−t′ + ns2e
−2t′ + ws++e

2λ+ t′

+ ws+−e
(λ++λ−)t′ + ws−−e

2λ− t′
)
dt′

where the source terms in the second integration are defined as

ns1 ≡ n0 ×
[
y0 n

(1)
x (0)− x0 n

(1)
y (0)

]
,(3.48)

ns2 ≡ x0 n
2
0,(3.49)

ws++ ≡ w
(1)
x+ ×

[
w

(1)
x+ + w

(1)
y+

]
,(3.50)

ws+− ≡ w
(1)
x+ ×

[
w

(1)
x− + w

(1)
y−

]
+ w

(1)
x− ×

[
w

(1)
x+ + w

(1)
y+

]
,(3.51)

ws−− ≡ w
(1)
x− ×

[
w

(1)
x− + w

(1)
y−

]
.(3.52)

By applying Lemma III.2 to Eq.(3.47), one obtain an intermediate expression of

the drift

n(2)
x (t→∞) =

1

2

[
−ns1 +

x0w++ − ws++

−2λ+

(3.53)

+
2x0w+− − ws+−
−λ+ − λ−

+
x0w−− − ws−−
−2λ−

]
.

Note that the limt→∞ n
(2)
x (t) in above expression (3.53) is again a random variable

whose value depends on the stochastic perturbative vector ~φ. It is elementary to
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evaluate 〈limt→∞ n
(2)
x (t)〉 by inserting (3.38) into (3.53) to obtain

vc (z0) =
1− z2

0

Kκ2

{
(µx − µy)

4

z2
0 − 2η z0 − 1

1 + 2µx + 2µy
(3.54)

+
2 (1 + 2µx + 2µy)

4κ2 − (1 + 2µx + 2µy)
2 (µx − µy)

(
z2

0 + 4κ2 + 4η2 − 4ηz0 − 1
)

+
κ2

4κ2 − (1 + 2µx + 2µy)
2

(
ρ

ρ− 1
+ µx + µy

)
(z0 − 2η)

}
.

Further simplifications can be made by plugging (3.79) with z0 = x0− y0, and finally

we obtain Eq.(3.11).

3.1.4 Simulations and numerical computations

Exact continuous time Markov chain (CTMC) simulations [35] of the homogeneous

2–patch model were carried out. The fixed low density birth-death ratio is ρ = 2 and

the hopping rates µX and µY were varied along with the carrying capacity K (= Λ

when ρ = 2). For each of the parameter sets, 30 uniformly distributed points on

the coexistence line were sampled as initial populations, and 104 realizations were

performed for each initial condition. The simulations ran until one of the species had

total population 0 on both patches, and the winning probability π(z) of species X

was computed, where z denotes the initial difference of scaled population. Because

the measurement of winning probability is essentially a Bernoulli trial, the sample

error can be computed by the sample mean, i.e. π(z). The error of the mean of the

trials was bounded by 0.5 × 10−2 so for neatness we omit error bars in the figures.

The mean extinction time of either species, τ(z), was also measured.

Theoretical winning probabilities and mean extinction times were computed nu-

merically by using (3.11) and (3.12) in the general formulae provided in Chapter

II, section 2.1.2. We observe that the simulation results converge to the theoretical

predictions as K increases. With K = 125 the asymptotic result differs from the
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Figure 3.4: Comparisons of simulations (discrete dots) and theoretical predictions
(solid lines). Left column: winning probability π of species X as function
of initial state z; the inset of the left column shows the gained winning
probability of species X from the microscopic symmetric system µX = µY .
Right column: scaled mean extinction time τ/K of any of the species as
function of initial state z.
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simulations by less than 5% in general (not presented). However, it is noted that the

convergence is not uniform in (µX , µY ).

We present results of characteristic sets of parameters in Fig. 3.4. The carrying

capacity K = 200 in these sets of parameters and µY ≤ µX . When the hopping rate

of the slow species is small (µY ≈ 0.1) there exist significant gains of the winning

probability of the fast species X for various initial condition z. However, as soon as

µX ≈ 1, asymptotic analysis confirmed by numerical evidence suggests the advantage

of the more mobile species X saturates. On the other hand, if the slow species Y

increases the hopping rate to about unity, the advantage of the fast species X drops

down to be less than 5%.

The condition µX , µY > 0 is relaxed to max (µX , µY ) > 0 in the last set in Fig.

3.4. The winning probability of the theoretical analysis fits the simulations remark-

ably well, but the analysis does not give quantitatively correct predictions for mean

extinction time. The reason for this is that both µX > 0 and µY > 0 are necessary for

asymptotic convergence within the time scale O(K). When this condition is relaxed,

convergence breaks near the boundary of the coexistence line at z = ±1. When

computing the winning probability, due to the effective diffusion in this region, the

states near z = ±1 are still absorbed to the boundary z = ±1 without accumulating

significant errors. But when computing the mean exit time, the error in convergence

time builds up to invalidate the asymptotic analysis; in reality it takes longer time

for either of the species to go extinct.

Because the asymptotic approach faithfully reproduces many feature of the sim-

ulations we can confidently fix the initial condition z = 0 and explore the winning

probability of X in the parameter space (µX , µY ) theoretically. The result is presented

in Fig. 3.5. In such head-to-head competition, analysis suggests that the maximum

winning probability of the fast species is at most 75% among all possible (µX , µY ).

It is noteworthy that this sort of saturation (of the advantage) phenomenon was ob-
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Figure 3.5: Landscape of the winning probability of the species X in a head–to–head
competition.

served and analyzed in Chapter II. The analytical form of the winning probability

π(0) involves an incomplete Γ function and is beyond our interest.

In a short conclusion, the 2-patch model exhibits a weak preference for the higher-

mobility species on an O(K) time scale. The fast species is more likely to win in

head-to-head competition, but when the hopping rate of the slow species increases

to about unity, the winning probability of the fast species is not significantly greater

than 50%. There exists no finite evolutionarily stable rate for dispersion.

3.2 The many-patch model

3.2.1 The model

In this section we construct an extended model consisting of a countably infinite

number of identical patches. The motivation is to study how the number of patches

changes the behavior of the dynamics, and how demographic fluctuations affect the
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Figure 3.6: Dynamics of the interacting species distributed on many patches. The
X and Y populations compete locally, as in the 2-patch model, while
individuals randomly move from any patch to any other at rates µX and
µY .

competition outcome in such a system.

As in the 2-patch model we consider two species moving among patches and

competing locally for limited resources. The universe is homogeneous in the sense

that the carrying capacities of the patches are identical. Each species has identical

per capita rates of birth and death under identical environmental conditions, but

the per capita hopping rates of the species are not in general identical. When an

individual relocates, it moves to any other patch with equal probability. We choose

this global hopping dynamics to avoid local effects and exploit the extra level of

averaging to study the interplay of mobility and birth-death fluctuations.

It is natural to adopt a theoretical approach similar to that used for the homo-

geneous 2-patch model: write down the master equation based on the individual

processes, derive the Kolmogorov forward equation (Fokker-Planck equation) within

the large carrying capacity expansion, and perform the “intuitive” asymptotic analy-

sis. When the number of patches is countably infinite, fluctuations perturb the system

into uncountably infinite many directions which potentially presents analytical chal-
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lenges.

To address these challenges we note several facts:

• Because the patches are identical, when there are identical initial configurations

on each patch the distribution of the random populations on each patch will

always be identical.

• Correlations of the dynamics on different patches arise from the hopping events

when the number of patches is finite, but decorrelate in the infinite-patch limit.

• The hopping events can be viewed as birth and death events with ensemble-

averaged rates in the infinite-patch limit.

Moreover, as the number of patches increases the fluctuations between the population

on any one patch and the total population on all other patches should be approxi-

mately independent.

Consider a simple example to illustrate how these properties help us to build an

effective model. Let Xk(s) be the random population of X species at time s in k

patch. When Xk(s) = ak ∈ N (∀k ∈ N) the total hopping rate of species X out of

site 1 is µX · a1. On the other hand, the total hopping rate of species into patch 1 is

µX · limN→∞
∑N

k 6=1 ak/(N − 1), which converges to µX · 〈X1(s)〉 since the Xk(s) are

identically distributed. The point is that we can construct a model with only one

patch where the populations evolve at each instant of time according not only to the

local populations at that instant, but also in accord with the expectation values of

the populations.

With this in mind we consider the following effective homogeneous many-patch

model (referred to simply as the many-patch model later): there is only one patch in

the space and Xs and Ys represent the discrete nonnegative integer valued random

populations of species X and Y at time s. When Xs = a and Ys = b, the following
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transitions characterize the birth, death, and hopping events as a whole:

a→ a+ 1, with rate β a+ µX · 〈Xs〉(3.55a)

a→ a− 1, with rate δ a

(
1 +

a+ b

Λ

)
+ µX a(3.55b)

b→ b+ 1, with rate β b+ µY · 〈Ys〉(3.55c)

b→ b− 1, with rate δ b

(
1 +

a+ b

Λ

)
+ µY b,(3.55d)

with low-density per capita birth rate β, death rate δ and hopping rates µX and µY ,

and 〈Xs〉 and 〈Ys〉 the expectation values of the random variables at time s. The

probability pa,b(s) := P({Xs = a} ∩ {Ys = b}) evolves with the “nonlinear” master

equation

d

ds
pa,b =−

{
a

[
β − δ

(
1 +

a+ b

Λ

)]
+ µX(〈Xs〉 − a)

}
pa,b(3.56)

−
{
b

[
β − δ

(
1 +

a+ b

Λ

)]
+ µY (〈Ys〉 − b)

}
pa,b

+

[
δ (a+ 1)

(
1 +

a+ b+ 1

Λ

)
+ µX (a+ 1)

]
pa+1,b

+

[
δ (b+ 1)

(
1 +

a+ b+ 1

Λ

)
+ µY (b+ 1)

]
pa,b+1

+ [β (a− 1) + µX 〈Xs〉] pa−1,b

+ [β (b− 1) + µY 〈Ys〉] pa,b−1

and for enough large but finite carrying capacities (3.56) is approximated by the
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nonlinear Kolmogorov forward (Fokker-Plank) equation

∂f (x, y, t)

∂t
=− ∂

∂x
{[x (1− x− y) + µx (〈x〉 − x)] f}(3.57)

− ∂

∂y
{[y (1− x− y) + µy (〈y〉 − y)] f}

+
1

2K

∂2

∂x2

{[
x

(
ρ+ 1

ρ− 1
+ x+ y

)
+ µx(〈x〉+ x)

]
f

}
+

1

2K

∂2

∂y2

{[
y

(
ρ+ 1

ρ− 1
+ x+ y

)
+ µy(〈y〉+ y)

]
f

}

referring to time–scaled continuum variables xt = Xs/K and yt = Ys/K and dimen-

sionless time t = (β − δ)s. The parameters are defined identically to their counter-

parts in the 2-patch model: K = (ρ − 1)Λ with ρ = β/δ > 1, µx = µX/(β − δ) and

µy = µY /(β − δ). The time-dependent site-averages are 〈x〉 =
∫∫

x f (x, y, t) dydx

and 〈y〉 =
∫∫

y f(x, y, t) dx dy. We will now demonstrate that this many-patch model

also has a weak selection of the fast disperser in a time scale O(K).

3.2.2 Asymptotic analysis

We generally follow the strategy used for the 2-patch model to study this many–

patch model but because the distribution f evolves according to the expectation values

of random variables, the interpretation of each step must be carefully modified. In

this section we outline the analysis and the physical interpretations. Details of the

calculations are presented in the following section 3.2.3.

First, the rate equations for the effective many-patch model, the analogs of (3.5)

for the 2-patch model, are

ẋ =x (1− x− y) + µx (〈x〉 − x) ,(3.58a)

ẏ =y (1− x− y) + µy (〈y〉 − y) .(3.58b)

It is tempting to refer this system of ordinary differential equations as “deterministic”
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but it is important to realize that x and y are variables at one site (within one sample

path) of the random processes (xt, yt) whose dynamics are described by (3.57) (albeit

without the second order derivatives). The evolution of this particular sample path

actually depends upon other sites (realizations) through the coupling with 〈x〉 and

〈y〉. Once the initial distributions of x0 and y0 are specified, i.e., once f(x, y, 0) is

selected, the distribution is deterministically evolved by (3.57). We will call (3.58)

the “mean field rate equations”.

Furthermore, the dynamics of x and y in (3.58) consists of two parts: the first

part is the competitive dynamics from birth–death processes and the second part is

the effect of hopping events. Without hopping events, the competitive dynamics at

each site (in every realization) is independent of the others and the variables relax

to a 1/K-neighborhood of coexistence line on an O(logK) time scale. The effect

from hopping events is to push xt and yt toward an “equilibrium point” 〈xt〉 and 〈yt〉

among all equilibria on the O(logK) time scale. In the following theorem, parallel

to Theorem III.1, proves that the rate equations drive every realization onto the

coexistence line with identical x and y.

Theorem III.3. [Equilibrium of the deterministic many-patch model.] The popu-

lation of each species are the same on all sites when the many-patch model is in

equilibrium. That is, x = 〈x〉 and y = 〈y〉 at each site (equivalently, feq(x, y) =

δ(x − 〈x〉) δ(y − 〈y〉) in the distributional setting). Moreover, 〈x〉 + 〈y〉 = 1 unless

〈x〉 = 0 = 〈y〉.

Proof. The steady states at each site satisfy 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and

0 = x (1− x− y) + µx (〈x〉 − x)(3.59)

0 = y (1− x− y) + µy (〈y〉 − y) .(3.60)

Suppose there is a non-trivial equilibrium with 〈x〉 + 〈y〉 > 0 and, without loss of
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generality, 〈x〉 > 0. Then (3.59) implies x > 0 everywhere.

Now suppose that x 6= 〈x〉 on a finite fraction of sites so that there is a finite

fraction of sites with 1 ≥ x > 〈x〉 > 0. On those sites (3.59) guarantees that

x+ y < 1.

If y = 0 on those sites then (3.60) requires that 〈y〉 = 0 so y = 0 everywhere in

which case x is the unique positive solution to 0 = x2 + (µx − 1)x − µx〈x〉 at each

site, contradicting the assumption x 6= 〈x〉 on a finite fraction of sites.

If y 6= 0 on a finite fraction of the finite fraction of sites where 1 ≥ x > 〈x〉 > 0,

then 〈y〉 > 0. Because x + y < 1 on those sites, (3.60) implies that y > 〈y〉 on those

sites. Thus on those sites x + y > 〈x〉 + 〈y〉 and since x + y < 1 there, we deduce

that the averages satisfy 〈x〉+ 〈y〉 < 1. Therefore at every site (recalling that 〈x〉 > 0

guarantees that x > 0 everywhere),

(3.61) 0 = 1− x− y + µx

(
〈x〉
x
− 1

)

and, averaging over all sites,

(3.62) 0 = 1− 〈x〉 − 〈y〉+ µx

(
〈x〉〈1

x
〉 − 1

)
.

But the Cauchy-Schwarz inequality guarantees that 〈x〉〈 1
x
〉 ≥ 1 so (3.62) implies

〈x〉+ 〈y〉 > 1 contradicting the deduction above that 〈x〉+ 〈y〉 < 1.

Hence we conclude that x = 〈x〉 everywhere, and by symmetry, that y = 〈y〉

everywhere. It immediately follows from (3.59) and (3.60) that x+ y = 1 everywhere

and 〈x〉+ 〈y〉 = 1.

When the system is far away from a fixed point the dynamics is mainly governed

by the rate equations. Once the system approaches an equilibrium, as for the 2-patch

model, the second order derivative terms of (3.57) become comparable to the drift and

the local asymptotic approach is adopted to analyze the nonlinear fluctuation-driven

64



Figure 3.7: Heuristic diagram of of the physical asymptotic analysis of the homoge-
neous many patch model. Dashed green line represents the coexistence
line. The effective 1–patch system consists of 4 points, and start from a
coexistent state (closed circle). Fluctuations (denoted by arrows) perturb
each point to each of the 4 characteristic directions to the “kicked–out”
states (open squares). The rate equations evolves these 4 points back to
the coexistence line (denoted by dashed curves) to the final state (closed
triangle).

Balanced Processes Direction Magnitude of the Fluctuation

Birth/Death of X (±1, 0) 4X ≡
[(

2ρ
ρ−1

+ 2µx

)
x0
K
dt
]1/2

Birth/Death of Y (0,±1) 4Y ≡
[(

2ρ
ρ−1

+ 2µy

)
y0
K
dt
]1/2

Table 3.3: Fluctuation strengths and shorthand notations of the homogeneous many
patch model.

dynamics.

To begin local asymptotic analysis we notice that individual-based processes (3.55)

suggest that fundamental fluctuations are along (x, y) = (±1, 0) and (0,±1). At each

equilibrium, these paired directions balance, and the strength of the fluctuations can

be determined. Table 3.3 summarizes the directions and the strength of the demo-

graphic noises. As a first order approximation to examine the effect of fluctuations we

approximate the many-patch model as if there are only 4 realizations. Starting at an

equilibrium, each realization has identical x and y on the coexistence line, as inferred
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by Theorem III.3. When fluctuations act on the system, these variables are kicked in

4 different directions with precisely defined strengths. Then the whole system flows

back to the coexistence line by rate equations (3.58) where the arithmetic average

position of the four points is obviously substituted for the position of the mean field

(〈xt〉 , 〈yt〉). As a consequence, the process from perturbed states back to equilibrium

is described by 4 × 2 nonlinear ordinary differential equations which can be solved

with similar regular perturbation analysis in the 2-patch model. We remark that the

many-patch model does not have any effective diffusion on the coexistence line; the

system has self-attractions in the phase space, described by terms − (x− 〈x〉) and

− (y − 〈y〉) so the final states must be again an equilibrium. A heuristic diagram is

shown in Fig. 3.7. In the end we derive drift for z = 〈x〉 − 〈y〉, v̄ (z), similar to that

for the 2-patch model:

(3.63) v̄ (z) =
1− z2

K

[
C̄0 +

C̄1

(µx − µy) z − C̄2

]
,

where the constants C̄k with k ∈ {0, 1, 2} are functions of parameters only:

C̄0 ≡ −
µx − µy

2

[
1

1 + µx + µy

]
,(3.64a)

C̄1 ≡ − (µx − µy)
[

ρ

ρ− 1
+

µx µy
1 + µx + µy

]
,(3.64b)

C̄2 ≡ 2µx µy + µx + µy.(3.64c)

On the coexistence line, an effective evolution can be formulated as a nonlinear ordi-

nary differential equation:

d

dt
z (t) = v̄ (z) ,(3.65)

In the infinite patch limit the evolution of the system is then conceptually deter-
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ministic: starting at any z = z0, at any later time t the site-averaged state z(t)

is predictable with probability 1—but we have included the effect of fluctuations.

Solutions of (3.65) will be compared to the (exact) numerical simulations of actual

many-patch system in section 3.2.4.

3.2.3 Detailed computation of the physically motivated asymptotic anal-

ysis

As depicted in the previous section, we approximate the system with only N ≡ 4

realizations. Each realization will be released from a specific perturbed state (due to

stochastic “ kick”). As a consequence, the original field equations (3.58) are approx-

imated by

ẋi = xi (1− xi − yi) + µx

(
1

N

N∑
k=1

xk − xi

)
,(3.66a)

ẏi = yi (1− xi − yi) + µ y

(
1

N

N∑
k=1

yk − yi

)
,(3.66b)

with i ∈ {1 . . . N} and the initial conditions

x1 (0) = ∆X , x2 (0) = −∆X , x3 (0) = −∆X , x4 (0) = −∆X ,

y1 (0) = ∆Y , y2 (0) = ∆Y , y3 (0) = −∆Y , y4 (0) = −∆Y .(3.67)

The strengths of the noises ∆X and ∆Y can be found in Table 3.3. In addition, define

the “ensemble average” of a variable A to be

(3.68) 〈A〉 ≡ 1

N

N∑
i=1

Ai.

The final goal is to evaluate the deviation of 〈z(t)〉 ≡ 〈x(t)− y(t)〉 as t→∞. We
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begin by plugging in the ansatz

xi ≡ x0 + ε1x
(1)
i + ε2x

(2)
i +O

(
ε3
)
,(3.69a)

yi ≡ y0 + ε1y
(1)
i + ε2y

(2)
i +O

(
ε3
)
,(3.69b)

into Eq.(3.66). The linearized equations, i.e. to the order O(ε), are

ẋ
(1)
i = −x0

(
x

(1)
i + y

(1)
i

)
+ µx

(〈
x(1)
〉
− x(1)

i

)
,(3.70a)

ẏ
(1)
i = −y0

(
x

(1)
i + y

(1)
i

)
+ µy

(〈
y(1)
〉
− y(1)

i

)
,(3.70b)

which can be further simplified by noticing at O(ε), the “total population” n(1)(t) ≡∑N
i=1[x

(1)
i + y

(1)
i ] satisfies

(3.71) ṅ(1)(t) = −n(1)(t).

Therefore, the solution of the total population exponentially saturates to zero n(1)(t) =

n(1)(0) exp(−t). Since the stochastic perturbation is symmetric (ref: Table 3.3),

n(1)(0) = 0 = n(1)(t). In turn, consider n
(1)
x ≡

∑N
i=1 x

(1)
i , the “total population of

species X”, which satisfies

(3.72) ṅ(1)
x (t) = −x0(n(1)(t) = 0.

The solution of n
(1)
x (t) is conserved. With symmetrical initial conditions, we deduce

that n
(1)
x (t) = n

(1)
x (0) = 0, which implies 〈x(1)〉 = 0, and the equations of motion at

O(ε) is

ẋ
(1)
i = −x0

(
x

(1)
i + y

(1)
i

)
− µx x(1)

i ,(3.73a)

ẏ
(1)
i = −y0

(
x

(1)
i + y

(1)
i

)
− µy y(1)

i ,(3.73b)
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which have similar functional forms to the linearized equations of population differ-

ence of the 2-patch model, i.e. Eq.(3.19). The solutions can be obtained immediately

from (3.21) by the following transformations for i ∈ 1 . . . N :

wx → xi,(3.74)

wy → yi,(3.75)

µx →
µx
2
,(3.76)

µy →
µy
2
.(3.77)

For the reference of the reader, the solutions of (3.73) are

x
(1)
i (t) =

1

2κ

{[
(κ− η)x

(1)
i (0)− x0 y

(1)
i (0)

]
eλ+ t(3.78a)

+
[
(κ+ η)x

(1)
i (0) + x0 y

(1)
i (0)

]
eλ− t

}
y

(1)
i (t) =

1

2κ

{[
(κ+ η) y

(1)
i (0)− y0 x

(1)
i (0)

]
eλ+ t(3.78b)

+
[
(κ− η) y

(1)
i (0) + y0 x

(1)
i (0)

]
eλ− t

}

where

κ =
1

2

√
1 + (µx − µy)2 + 2 (µx − µy) (x0 − y0) ,(3.79)

η =
1

2
(µx − µy + x0 − y0) ,(3.80)

and the (strictly negative) eigenvalues in the exponents are

(3.81) λ± = −1

2
(1 + µx + µy)± κ.

Note that to this order, limt→∞ x
(1)
i = limt→∞ y

(1)
i = 0 and therefore there exists no

effective diffusion to O(ε2).
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For simplicity, we define the following constants (up to the initial conditions)

x+
i ≡

1

2κ

[
(κ− η) x

(1)
i (0)− x0 y

(1)
i (0)

]
,(3.82a)

x−i ≡
1

2κ

[
(κ+ η) x

(1)
i (0) + x0 y

(1)
i (0)

]
,(3.82b)

y+
i ≡

1

2κ

[
(κ+ η) y

(1)
i (0)− y0 x

(1)
i (0)

]
,(3.82c)

y−i ≡
1

2κ

[
(κ− η) y

(1)
i (0) + y0 x

(1)
i (0)

]
,(3.82d)

n+
i ≡ x+

i + y+
i ,(3.82e)

n−i ≡ x−i + y−i ,(3.82f)

so that

x
(1)
i (t) ≡ x+

i e
λ+ t + x−i e

λ− t,(3.83a)

y
(1)
i (t) ≡ y+

i e
λ+ t + y−i e

λ− t,(3.83b)

x
(1)
i (t) + y

(1)
i (t) ≡ n+

i e
λ+ t + n−i e

λ− t.(3.83c)

We move on to O(ε2). The equations of motions are

ẋ
(2)
i = −x0

(
x

(2)
i + y

(2)
i

)
− x(1)

i

(
x

(1)
i + y

(1)
i

)
+ µx

(〈
x(2)
〉
− x(2)

i

)
,(3.84a)

ẏ
(2)
i = −y0

(
x

(2)
i + y

(2)
i

)
− y(1)

i

(
x

(1)
i + y

(1)
i

)
+ µy

(〈
x(2)
〉
− y(2)

i

)
.(3.84b)

Define the total populations

n(2)
x ≡

N∑
i=1

x
(2)
i ,(3.85a)

n(2)
y ≡

N∑
i=1

y
(2)
i ,(3.85b)

n(2) ≡ n(2)
x + n(2)

y .(3.85c)

70



The evolution of the total population of X and Y follows

(3.86) n(2) = −n(2) −
N∑
i=1

(
x

(1)
i + y

(1)
i

)2

= −n(2) −N
〈
x(1) + y(1)

〉
,

which has solution

(3.87) n(2) (t) = −Ne−t
t∫

0

et
′
〈[
x(1) (t′) + y(1) (t′)

]2〉
dt′

because n(2)(0) = 0. Finally, the equation of motion of n
(2)
x (t) is

(3.88) ṅ(2)
x = −x0 n

(2) −
N∑
i=1

x
(1)
i

(
x

(1)
i + y

(1)
i

)
,

and the solutions can be obtained by integration:

n(2)
x (t) =x0N

t∫
0

t′∫
0

〈[
x(1)(t′′) + y(1)(t′′)

]2〉
et
′′
dt′′e−t

′
dt′(3.89)

−N
t∫

0

〈
x(1)(t′)

[
x(1)(t′) + y(1)(t′)

]〉
dt′

or equivalently

〈
x(2)(t)

〉
=x0

t∫
0

t′∫
0

〈[
x(1)(t′′) + y(1)(t′′)

]2〉
et
′′
dt′′e−t

′
dt′(3.90)

−
t∫

0

〈
x(1)(t′)

[
x(1)(t′) + y(1)(t′)

]〉
dt′.

Now we plug (3.83) into the final O(ε2) solution (3.89) and apply Lemma III.2 to
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obtain

lim
t→∞

〈
nx

(2) (t)
〉

=
N∑
i=1

{
x0

[(
n+
i

)2

−2λ+

+ 2
n+
i n
−
i

−λ+ − λ−
+

(
n−i
)2

−2λ−

]
(3.91)

−
[
x+
i n

+
i

−2λ+

+
x+
i n
−
i + x−i n

+
i

−λ+ − λ−
+
x−i n

−
i

−2λ−

]}
,

or equivalently

lim
t→∞

〈
x(2) (t)

〉
=

〈
x0

[
(n+)

2

−2λ+

+ 2
n+n−

−λ+ − λ−
+

(n−)
2

−2λ−

]
(3.92)

−
[
x+ n+

−2λ+

+
x+n− + x−n+

−λ+ − λ−
+
x− n−

−2λ−

]〉
.

From (3.87) we know that limt→∞〈x(2)(t)+y(2)(t)〉 = 0, hence the effective coordinate

〈z(2)〉 ≡ 〈x(2) − y(2)〉 = 〈2x(2)〉. Finally, inserting the initial conditions (3.67) and

taking the average in (3.92), we deduce test

v̄c (z0) =
1− z2

0

Kκ2

{
(µx − µy)

4

z2
0 − 2η z0 − 1

1 + µx + µy
(3.93)

+
2 (1 + µx + µy)

4κ2 − (1 + µx + µy)
2 (µx − µy)

(
z2

0 + 4κ2 + 4η2 − 4ηz0 − 1
)

+
2κ2

4κ2 − (1 + µx + µy)
2

(
ρ

ρ− 1
+
µx
2

+
µy
2

)
(z0 − 2η)

}
.

Further simplifications can be made by plugging (3.79) with z0 = x0− y0, and finally

we obtain Eq.(3.63).

3.2.4 Simulations and numerical computations

We performed exact continuous time Markov chain simulations of many-patch

competitive systems. The simulation are almost identical to those for the 2-patch

problem except that the number of patches N is increased. The birth, death, and

hopping rates are exactly the same as in 2-patch model with an additional rule that
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when a hopping event occurs the individual lands in any patch with the same proba-

bility (excluding the one it is currently on). With different parameter sets, the average

populations of each species as function of time were recorded and compared with the

corresponding asymptotic predictions, i.e., the numerical integration of (3.65).

Selected parameter sets are presented in Fig. 3.8. In particular, K = 200 in these

simulations. As shown in Fig. 3.8(a), the simulations confirm that the processes of

average populations converge to limit processes as the number of patches N increases.

The inset of Fig. 3.8(a) verifies that the total population stays on the coexistence line

almost all the time. In the simulations we fixed the number of realization to be 104/N ,

and it is clear in Fig. 3.8(a) that N = 1000 patches produces less noisy data than

the other N ’s with the same “total number of samples” 104 = N × (104/N). This

suggests the many-patch system has an intrinsic averaging effect, which is again a

feature of such globally coupled systems.

When µX , µY > 0, we observe that the qualitative behavior of systems with dif-

ferent (µX , µY ) are similar. One particular set, µX = 1 and µY = 0.1, with different

initial conditions are presented in Fig. 3.8(b-c) along with the corresponding theoreti-

cal predictions. It is clear that the asymptotic analysis produces excellent quantitative

predictions. Even when K as small as 100, the quantitative predictions have less than

10% error over the course of time for various parameter sets we have tested.

When the condition µX , µY > 0 is relaxed to max (µX , µY ) > 0, as shown in

Fig. 3.8(d), we observe a divergence of the theoretical prediction due to the previ-

ously mentioned break-down (non-uniformity) of the asymptotic analysis near the

boundaries z = ±1. Nevertheless, the analysis still provides quantitative predictions

accurately until y(t) gets close to 0 (i.e., z(t)→ −1) in the large K limit.

To summarize, as long as µX > µY there is a drift along the coexistence line

that persistently favors the X species. In this effective many-patch model it takes

infinite amount of time for any species to become extinct due to the fact that there
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Figure 3.8: (a) Continuous time Markov chain (CTMC) simulation results: position
on the coexistence line z = x − y as function of time t for different
numbers of patches N . These simulations started with the same number
of X and Y individuals (i.e., z(0) = 0), µX = 1, and µY = 0.1. Inset:
total population x + y as function of time. (b) Comparison of CTMC
simulations with N = 1000 (discrete dots) and the asymptotic prediction
(solid curves). Red: population of fast species and blue: population of
slow species. (µX , µY ) = (1, 0.1) and the initial condition z (0) = 0.
(c) Similar to (b) with different initial condition z(0) = 0.6. (d) The
asymptotic theory breaks down when µY = 0 but remains quantitatively
predictive before the theoretical Y population vanishes.
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are always colonies surviving somewhere among the infinite set of patches available

to repopulate locally depleted sites. For a finite but large number of patches N , a

species is effectively extinct as soon as its average population drops down to 1/N , i.e.,

as soon at there is an expectation of less than one individual remaining anywhere.

For finite N , due to demographic fluctuations the slow dispersers will go extinct in a

finite order O(K) time in the large K limit with probability close to 1. This means

that there is no finite evolutionarily stable rate for dispersion. It is always better to

move more often. There is no evolutionarily stable rate in the infinite-N many-patch

model either; the faster a species hops around the greater its evolutionary advantage

is.

3.3 Discussion and conclusion

In this Chapter, we have constructed, analyzed, and simulated two multi-patch

discrete population competitive dynamics models. Both are deterministically degen-

erate in the continuum, i.e., infinite carrying capacity K, limit in the sense that the

rate equations possess an infinite number of stable coexistence states. Asymmetry of

the disperse rates coupled with individual-level fluctuations breaks the degeneracy.

In both models, an evolutionary advantage for the faster disperser emerges on an

O(K) time scale. The preference originates in the interactions between demographic

fluctuations and the nonlinearity of the deterministic dynamics.

In the 2-patch model, the probability of the fast species winning is enhanced by at

most 25% throughout the phase space so the slow species still has positive probability

to win the competition with positive initial population. On the other hand, in the

globally coupled many-patch model the fast dispersers always out-compete the slower

dispersers.

We emphasize that in both these spatially homogeneous systems, demographic

fluctuations enhance the survival probability of the faster dispersers. This is notable
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because for deterministic dynamics in heterogeneous environments Hastings [19] and

Dockeryet al. [8] have shown that the slower dispersers typically have the evolutionary

advantage. The level of demographic fluctuations, depending also on the degree of

environmental variations, determines whether faster or slower dispersion is favored.

We will generalize the models in this Chapter to include spatial heterogeneity in

Chapter V.
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CHAPTER IV

Nonlinear Dynamics of Heterogeneous Patchy

Models

In this Chapter we take a short digression to investigate deterministic and non-

linear competitive population dynamics models. When the spatial resource is het-

erogeneously distributed, Hastings [19], Holt [20], and Dockery et al. [8] showed that

the species with low mobility (with passive diffusion) is vulnerable to the invasion

of species with high mobility in both patchy-like (in Holt [20]) and continuous-space

(in Hastings [19] and Dockery et al. [8]) models. Nevertheless, their analyses did not

provide dynamical insights, i.e., the time scale, the strength, and the mechanism of

the selection. The motivation of this Chapter is to investigate the deterministic, non-

linear, and patch-like models with dynamical approaches. With a novel asymptotic

expansion with respect to the normalized environmental variance σ2, we deduce that

the slow species has advantage in a quantitatively identified time scale O(σ−2). The

deterministic time scale O(σ−2) along with the time scale O(K) identified in Chapter

III predict the strengths of two competing effects (slow or fast species having the

advantage), and they will be matched in the following Chapter V when the most

general stochastic population dynamics with competition is considered.

This Chapter is organized into three parts. In section 4.1, we perform both ana-

lytical and numerical analyses on the deterministic two-patch model. In section 4.2,
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we perform parallel analysis on the spatially extended many patch model. In section

4.3 the conclusions and a discussion are presented.

4.1 The deterministic two-patch model

The space consists of two patches, labeled by 1 and 2, with distinct carrying ca-

pacities. Each patch is a well-mixed pool. Two species, X and Y , compete for limited

resource on the patches. In order to explore only the effect of spatial dispersions on

evolutionary advantages, we assume X and Y have identical demographic dynamics.

With proper scaling of time and population scales ref: Chapter II, the model becomes:

ẋ1 = x1 [1− (1 + σ)(x1 + y1)] + µx(x2 − x1),(4.1a)

ẏ1 = y1 [1− (1 + σ)(x1 + y1)] + µy(y2 − y1),(4.1b)

ẋ2 = x2 [1− (1− σ)(x2 + y2)] + µx(x1 − x2),(4.1c)

ẏ2 = y2 [1− (1− σ)(x2 + y2)] + µy(y1 − y2).(4.1d)

xi, yi ≥ 0 for i ∈ 1, 2 are the continuous population variables of species X and Y

respectively on patch i. Parameters µx, µy > 0 are respectively the species’ (scaled)

symmetric hopping rates between patches. The scale of the populations is normal-

ized by the harmonic mean of the carrying capacities, so patch 1 and 2 have carrying

capacity (1− σ)−1 and (1 + σ)−1 respectively. Notably, the parameter σ > 0 charac-

terizes the standard deviation of the inhomogeneous resource distribution (scaled by

the harmonic mean of the environmental distribution).

The complexity of the dynamics comes from the following facts: (1) Two species

interact via competitions, i.e. terms like (1 + xi + yi)/(1 ± σ). (2) The populations

among the patches are coupled via dispersion, i.e. terms like µx(xi−xj) and µy(yi−yj).

As a result, the whole 4-dimentional phase space is coupled in a nonlinear manner. To
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our knowledge, there exists no closed-form solution of (4.1). Therefore, we perform

perturbation analysis to solve the problem with the expansion of small environmental

variation, assuming σ � 1. Take the ansatz that the solution takes the form with

constants x0 and y0:

x1(t) = x0 + σ1x
(1)
1 (t) + σ2x

(2)
1 (t) +O(σ3),(4.2a)

x2(t) = x0 + σ1x
(1)
2 (t) + σ2x

(2)
2 (t) +O(σ3),(4.2b)

y1(t) = y0 + σ1y
(1)
1 (t) + σ2y

(2)
1 (t) +O(σ3),(4.2c)

y2(t) = y0 + σ1y
(1)
2 (t) + σ2y

(2)
2 (t) +O(σ3),(4.2d)

It is convenient to define total populations n
(k)
x and n

(k)
y among patches in various

orders k = 1, 2, 3 . . .

n(k)
x := x

(k)
1 + x

(k)
2 ,(4.3a)

n(k)
y := y

(k)
1 + y

(k)
2 ,(4.3b)

and the difference of the populations w
(k)
x and w

(k)
y among patches

w(k)
x := x

(k)
1 − x

(k)
2 ,(4.4a)

w(k)
y := y

(k)
1 − y

(k)
2 ,(4.4b)

We plug the ansatz (4.2) into the equations of motion (4.1), and then perform the

regular asymptotic analysis by the orders of σ. The lowest order O(σ0) does not

involve σ, and the dynamics is identical to the degenerate dynamics of the 2-patch

model in homogeneous space (section 3.1.3):

(4.5) x0 + y0 = 1.
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At the next order O(σ1) the dynamics reads

ẋ
(1)
1 = −x0

(
1 + x

(1)
1 + y

(1)
1

)
− µx

(
x

(1)
1 − x

(1)
2

)
,(4.6a)

ẏ
(1)
1 = −y0

(
1 + x

(1)
1 + y

(1)
1

)
− µy

(
y

(1)
1 − y

(1)
2

)
,(4.6b)

ẋ
(1)
2 = −x0

(
−1 + x

(1)
2 + y

(1)
2

)
− µx

(
x

(1)
2 − x

(1)
1

)
,(4.6c)

ẏ
(1)
2 = −y0

(
−1 + x

(1)
2 + y

(1)
2

)
− µy

(
y

(1)
2 − y

(1)
1

)
.(4.6d)

After the transformation to the variables (n,w), the dynamics is decoupled:

ṅ(1)
x = −x0

(
n(1)
x + n(1)

y

)
,(4.7a)

ṅ(1)
y = −y0

(
n(1)
x + n(1)

y

)
,(4.7b)

and

ẇ(1)
x = −x0

(
2 + w(1)

x + w(1)
y

)
− 2µxw

(1)
x ,(4.8a)

ẇ(1)
y = −y0

(
2 + w(1)

x + w(1)
y

)
− 2µxw

(1)
y .(4.8b)

It is clear that (4.7) is identical to its counterparts (3.18) in the homogeneous 2-patch

model. In addition, it is elementary to show that the fixed point of (4.8) is

w∗x := − 2x0µy
y0µx + x0µy + 2µxµy

,(4.9a)

w∗y := − 2y0µx
x0µx + y0µy + 2µxµy

.(4.9b)

Next, we linearize w
(1)
x and w

(1)
y with respect to the fix point (4.9),

w̃(1)
x (t) ≡ w(1)

x (t)− w∗x,(4.10a)

w̃(1)
y (t) ≡ w(1)

y (t)− w∗y,(4.10b)
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and deduce the equations of motion of the linearized fields, w̃
(1)
x and w̃

(1)
y , to be

˙̃
xw
(1) = −x0

(
w̃(1)
x + w̃(1)

y

)
− 2µxw̃

(1)
x(4.11a)

˙̃
yw
(1) = −y0

(
w̃(1)
x + w̃(1)

y

)
− 2µyw̃

(1)
y .(4.11b)

which is identical to their counterpart (3.19) in the homogeneous 2-patch model.

We will be interested in the case1 when the initial conditions are of order O(σ1),

therefore the solutions depend on the initial conditions. Let the initial conditions to

be

n(1)
x (0) = x

(1)
1 (0) + x

(1)
2 (0),(4.12a)

n(1)
y (0) = y

(1)
1 (0) + y

(1)
2 (0),(4.12b)

w(1)
x (0) = x

(1)
1 (0)− x(1)

2 (0),(4.12c)

w(1)
y (0) = y

(1)
1 (0)− y(1)

2 (0).(4.12d)

The analytical results are quoted from section 3.1.3: the solutions of the total popu-

lations are

n(1)
x (t) = y0 n

(1)
x (0)− x0 n

(1)
y (0) + x0

(
n(1)
x (0) + n(1)

y (0)
)
e−t(4.13a)

n(1)
y (t) = x0 n

(1)
y (0)− y0 n

(1)
x (0) + y0

(
n(1)
x (0) + n(1)

y (0)
)
e−t(4.13b)

and the differences of the populations are

w(1)
x (t) = w∗x + w̃x =

−2x0µy
y0µx + x0µy + 2µxµy

+ w̃x(t;wx0, wy0),(4.14a)

w(1)
y (t) = w∗y + w̃y =

−2y0µx
y0µx + x0µy + 2µxµy

+ w̃y(t;wx0, wy0),(4.14b)

1We only consider the initial conditions with order O(σ1) because in the stochastic models, the
demographic fluctuations is of the order O(1/

√
K) and we are interested in the cased when these

two effects are comparable; see Chapter V.
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where the transient terms are

w̃(1)
x (t) =

1

2κ

{[
(κ− η) w̃(1)

x (0)− x0 w̃
(1)
y (0)

]
eλ+ t(4.15a)

+
[
(κ+ η) w̃(1)

x (0) + x0 w̃
(1)
y (0)

]
eλ− t

}
w̃(1)
y (t) =

1

2κ

{[
(κ+ η) w̃(1)

y (0)− y0 w̃
(1)
x (0)

]
eλ+ t(4.15b)

+
[
(κ− η) w̃(1)

y (0) + y0 w̃
(1)
x (0)

]
eλ− t

}
.

For the convenience of the readers we reproduce the parameters κ and η:

κ =
1

2

√
1 + 4 (µx − µy)2 + 4 (µx − µy) (x0 − y0),

η = µx − µy +
1

2
(x0 − y0) ,

and the eigenvalues λ±:

λ± = −1

2
(1 + 2µx + 2µy)± κ.

At the order O(σ2), the equations of motions are

ẋ
(2)
1 = x0

(
−x(2)

1 − y
(2)
1

)
+ µx

(
x

(2)
2 − x

(2)
1

)
(4.16a)

+ x
(1)
1

(
−x(1)

1 − y
(1)
1

)
− x0

(
x

(1)
1 + y

(1)
1

)
− x(1)

1 ,

ẋ
(2)
2 = x0

(
−x(2)

2 − y
(2)
2

)
+ µx

(
x

(2)
1 − x

(2)
2

)
(4.16b)

+ x
(1)
2

(
−x(1)

2 − y
(1)
2

)
+ x0

(
x

(1)
2 + y

(1)
2

)
+ x

(1)
2 ,

ẏ
(2)
1 = y0

(
−x(2)

1 − y
(2)
1

)
+ µy

(
y

(2)
2 − y

(2)
1

)
(4.16c)

+ y
(1)
1

(
−x(1)

1 − y
(1)
1

)
− y0

(
x

(1)
1 + y

(1)
1

)
− y(1)

1 ,

ẏ
(2)
2 = y0

(
−x(2)

2 − y
(2)
2

)
+ µy

(
y

(2)
1 − y

(2)
2

)
(4.16d)

+ y
(1)
2

(
−x(1)

2 − y
(1)
2

)
+ y0

(
x

(1)
2 + y

(1)
2

)
+ y

(1)
2 .
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A parallel computation to section 3.1.3 shows that the dynamics of the total

population of X, i.e., nx ≡ x1 + x2 is described by

ṅ(2)
x = − x0n

(2) − x(1)
1

(
x

(1)
1 + y

(1)
1

)
− x(1)

2‘

(
x

(1)
2 + y

(1)
2

)
(4.17)

− x0

(
w(1)
x + w(1)

y

)
− w(1)

x ,

where the total population of X and Y , i.e., n(2) ≡ x1 + x2 + y1 + y2 satisfies

(4.18) ṅ(2) = −n(2) − 1

2

[(
n(1)
x + n(1)

y

)2
+
(
w(1)
x + w(1)

y

)2
]
− 2

(
w(1)
x + w(1)

y

)
.

Since the initial conditions for the O(σ2)-variables are zero, the solution of (4.18) is

n(2)(t) = − e−t

2

t∫
0

et
′
[(
n(1)
x (t′) + n(1)

y (t′)
)2

+
(
w(1)
x (t′) + w(1)

y (t′)
)2
]
dt′(4.19)

− 2e−t
t∫

0

et
′ (
w(1)
x + w(1)

y

)
dt′,
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and the solution of (4.17) is

n(2)
x (t) = + n(2)

x (0) + x0

[
n(2)(0)

]
t(4.20)

− 2x0

t∫
0

t′∫
0

(
w(1)
x (t′′) + w(1)

y (t′′)
)
et
′′
dt′′e−t

′
dt′

−
t∫

0

[
x0

(
w(1)
x (t′) + w(1)

y (t′)
)

+ w(1)
x (t′)

]
dt′

x0

t∫
0

t′∫
0

[(
n(1)
x (t′′) + n(1)

y (t′′)
)2

+
(
w(1)
x (t′′) + w(1)

y (t′′)
)2
]
et
′′
dt′′e−t

′
dt′

− 1

2

t∫
0

[
n(1)
x

2
(t′) + w(1)

x

2
(t′)

+ n(1)
x (t′)n(1)

y (t′) + w(1)
x (t′)w(1)

y (t′)
]
dt′

Note that the finite separation of the populations between patches, i.e. first terms

in (4.14), contributes an effective drift after the transient parts converge to zero in a

time scale O(log σ−1):

(4.21) lim
t→t0�1

n(2)
x (t) = − 4µxµy(µx − µy)x0y0

(y0µx + x0µy + 2µxµy)2
t0.

We then identify an effective drift veff(x0, y0) to be the rate of change of the total

populations of species X in this order

(4.22) veff(x0, y0) = − 4µxµy(µx − µy)x0y0

(y0µx + x0µy + 2µxµy)2
.

Define an effective coordinate, the difference of the average population per patch

z = (x1 + x2 − y1 − y2)/2 to order O(σ2). Then the effective dynamics to the order
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O(σ1) can then be formulated as

(4.23)
dz(t)

dt
= − 4µxµy(µx − µy)(1− z2)

[µx + µy − (µx − µy)z + 4µxµy]
2σ

2.

This analysis provides us with a detailed picture of the system. In the phase

space, starting from any initial conditions far away from the center manifold L:

(x1, x2, y1, y2) = (x0 +σw∗x/2, x0−σw∗x/2, y0 +σw∗y/2, y0−σw∗y/2) with x0, y0 ∈ (0, 1)

and x0 + y0 = 1, the state converges to the σ2−neighborhood of L in a log(σ−1) time

scale. States on L are “metastable” in the sense that they are stable in a time scale

of O(σ−1). The dispersion rates, µx and µy, serve a sort of the chemical potential for

the system. When the hopping rates µx and µy are zero, there is no coupling among

patches and the total populations on each patch (x1 + y1 and x2 + y2) converge to the

carrying capacity of the patch. On the other hand, as µx, µy →∞, the system mixes

the population more and more efficiently, and the populations (of X and Y ) on each

patch are identical (x1 = x2 and y1 = y2) in the limit. We aim to study the nontrivial

case 0 < µx, µy <∞, where the metastable population distributions fail to match to

the resource distribution. As a consequence, at the order O(σ2) there exists a slow

drift (4.22) near the center manifold L. Since the strength of the effective drift is of

O(σ2), the time scale of the dynamics along L is of order O(σ−2).

Direct numerical verifications, performed by integrating the equations of motion

(4.1), are presented in Fig.(4.1).

4.2 The deterministic many patch model

In this section we generalize the 2-patch model in section 4.1 to a globally con-

nected model with countably infinite patches. The space in the model consists of

countably infinite patches. Denote i ∈ N to be the patch index. Each patch has

constant carrying capacity (1 + σi)
−1, where σi’s are independent and identically dis-
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Figure 4.1: (a) Three trajectories of the deterministic 2-patch model with different
initial conditions are labeled by grey, red and blue markers. Circle and
square markers represent populations on patch 1 and patch 2 respectively.
Open markers represent the initial configurations. The dashed green lines
are x + y = (1 ± σ)−1, which are the solutions when the patches are
isolated (µx = µy = 0). Pale grey lines represent the center manifold
derived from the asymptotic analysis. µx = 1, µy = 0.5,σ = 0.1. (b-
d) Direct numerical simulations with σ = 0.05, 0.1, and 0.15 (discrete
markers) and the prediction of the asymptotic analysis (dotted line). (b)
µx = 1, µy = 0.1. (c) µx = 5, µy = 1. (d) µx = 10, µy = 1.
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tributed (i.i.d.) random variables which characterize the spatial heterogeneity. We

assume all the moments of σi to exist. Similar to the 2-Patch model, the populations

are normalized by the harmonic mean of the carrying capacities, so the first moments

of σi vanishes:

(4.24) 〈σi〉 ≡ E[σi] := lim
N→∞

1

N

N∑
i=0

σi = 0.

Hence, the second moment is the variance of the random variable σi:

(4.25) Var(σi) ≡
〈
σ2
i

〉
≡ E

[
σ2
i

]
:= lim

N→∞

1

N

N∑
i=0

σ2
i .

We also assume the magnitude of σi’s are small compared to identity: |σi| � 1,

although the results are not restricted by such limitation2. In the following analysis,

we adopt the notation that for any observable Ai on patch i ∈ N, the first moment is

defined as

(4.26) 〈A〉 := lim
N→∞

1

N

N∑
i=0

Ai.

Species X and Y live on the patches and have identical demographic dynamics. The

model is globally connected in the sense that respectively to its species, each individual

hops with rates µx or µy > 0 to each patch with equal probability. Therefore, the

dynamics of the system is

ẋi = xi [1− (1 + σi)(xi + yi)] + µx(〈x〉 − xi),(4.27a)

ẏi = yi [1− (1 + σi)(xi + yi)] + µy(〈y〉 − yi),(4.27b)

i ∈ N.(4.27c)

2The claim is verified by numerical observations in Fig. 4.2.
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The model represents a spatial case of Gadgil’s globally connected model [13]. In

the following paragraph, we apply the intuition from section 4.1—first solve for the

metastable distribution at the order O(σ), and then plug it into the O(σ2) to obtain

the effective drift along the center manifold.

Parallel to the analysis in section 4.1, we start with plugging in the ansatz

xi = x0 + x
(1)
i + x

(2)
i +O(σ3

i ),(4.28a)

yi = y0 + y
(1)
i + y

(2)
i +O(σ3

i ),(4.28b)

into Eqs.(4.27). Note that in the expansion, distinct from the previous analysis, we

assume x
(j)
i and y

(j)
i are of order O(σji ).

At the order O(σ0
i ), the constraint is

(4.29) x0 + y0 = 1.

We are interested in the nontrivial domain 0 < x0, y0 < 1.

At the order O(σ1
i ), the dynamics are

ẋ
(1)
i = x0

(
−σi − x(1)

i − y
(1)
i

)
+ µx

(〈
x(1)
〉
− x(1)

i

)
,(4.30a)

ẏ
(1)
i = y0

(
−σi − x(1)

i − y
(1)
i

)
+ µy

(〈
y(1)
〉
− y(1)

i

)
.(4.30b)

We now solve for the stable distribution of 4.30 by applying standard technique to

solve the implicit mean-field equations. Let ẋi = ẏi = 0, and express xi and yi in

terms of
〈
x(1)
〉

and
〈
y(1)
〉
:

x
(1)
i =

−x0 µy σi + (µx µy + µx y0)
〈
x(1)
〉
− x0 µy

〈
y(1)
〉

µx µy + µx y0 + µy x0

,(4.31a)

y
(1)
i =

−y0 µx σi + (µx µy + µy x0)
〈
y(1)
〉
− y0 µx

〈
x(1)
〉

µx µy + µx y0 + µy x0

.(4.31b)
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Take the average 〈·〉 over the patch index i, and notice 〈σi〉 = 0 by construction, we

arrive at

〈
x(1)
〉

=
(µx µy + µx y0)

〈
x(1)
〉
− x0 µy

〈
y(1)
〉

µx µy + µx y0 + µy x0

,(4.32a)

〈
y(1)
〉

=
(µx µy + µy x0)

〈
y(1)
〉
− y0 µx

〈
x(1)
〉

µx µy + µx y0 + µy x0

.(4.32b)

and then we deduce

µy x0

[〈
x(1)
〉

+
〈
y(1)
〉]
≡ 0,(4.33a)

µx y0

[〈
x(1)
〉

+
〈
y(1)
〉]
≡ 0.(4.33b)

Since we assume µy, µx, x0 and y0 6= 0 in general, we have

(4.34)
〈
x(1)
〉

+
〈
y(1)
〉

= 0

and the O (σ) solutions

x
(1)
i = −σi

x0 µy
µx µy + µx y0 + µy x0

+
〈
x(1)
〉
,(4.35a)

y
(1)
i = −σi

y0 µx
µx µy + µx y0 + µy x0

+
〈
y(1)
〉
.(4.35b)

In addition, note that the dynamics preserve
〈
x(1)
〉
−
〈
y(1)
〉

:

d

dt

〈
x(1) − y(1)

〉
=
〈
x0

(
−σi − x(1) − y(1)

)
− y0

(
−σi − x(1) − y(1)

)〉
(4.36)

=
〈
x0

(
−x(1) − y(1)

)
− y0

(
−x(1) − y(1)

)〉
= 0.

Therefore, at the order O (σ), we have conserved
〈
x(1)
〉
−
〈
y(1)
〉

for any time t ≥ 0.

The physical motivated asymptotic analysis (see Chapter V) will require
〈
x(1) (0)

〉
−〈

y(1) (0)
〉

= 0, which in turn indicates
〈
x(1)
〉

= 0 =
〈
y(1)
〉
, and the metastable
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distribution

x
(1)
i = −σi

x0 µy
µx µy + µx y0 + µy x0

,(4.37a)

y
(1)
i = −σi

y0 µx
µx µy + µx y0 + µy x0

.(4.37b)

At the second order O(σ2
i ), the equations of motions are

ẋ
(2)
i = x0

(
−n(2)

i − σi n
(1)
i

)
+ x

(1)
i

(
−σi − n(1)

i

)
+ µx

(〈
x

(2)
i

〉
− x(2)

i

)
,(4.38a)

ẏ
(2)
i = y0

(
−n(2)

i − σi n
(1)
i

)
+ y

(1)
i

(
−σi − n(1)

i

)
+ µy

(〈
y

(2)
i

〉
− y(2)

i

)
.(4.38b)

and the equation of motion of the average total population
〈
n

(2)
i

〉
≡
〈
x

(2)
i + y

(2)
i

〉
is

(4.39)
d

dt

〈
n(2)
〉

= −
〈
n(2)
〉
− 2

〈
σn(1)

〉
−
〈(
n(1)
)2
〉
,

With the initial condition
〈
n(2) (0)

〉
= 0, the solution can be obtained

(4.40)
〈
n(2)
〉
≡ −e−t

t∫
0

et
′
(

2
〈
σn(1)

〉
+
〈(
n(1)
)2
〉)

dt′.

Ignoring the transient parts,
〈
n(2) (t)

〉
is then identified as

(4.41) lim
t→t0�1

〈
n(2) (t)

〉
→ − lim

t→t0�1
2
〈
σn(1) (t)

〉
+
〈(
n(1) (t)

)2
〉
.

Therefore, for a sufficiently long time (so long as O (t) > O log (σ−1)), the dynamics
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of the average population difference
〈
z(2)
〉
≡
〈
x(2) − y(2)

〉
converges to

d

dt

〈
z(2)
〉

= +
〈
y0

(
n(2) + σn(1)

)
− y(1)

(
σ + n(1)

)〉
(4.42)

−
〈
x0

(
n(2) + σn(1)

)
+ x(1)

(
σ + n(1)

)〉
→ −2

〈(
σ + n(1)

) (
y0 x

(1) − x0 y
(1)
)〉

To compute these averages, we exploit the facts

σi + n
(1)
i = σi

2µx µy
2µx µy + µx y0 + µy x0

,(4.43a)

y0 x
(1)
i = −σi

y0 x0 µy
2µx µy + µx y0 + µy x0

,(4.43b)

x0 y
(1)
i = −σi

x0 y0 µx
2µx µy + µx y0 + µy x0

.(4.43c)

Finally we deduce 〈z〉 has nontrivial dynamics at the order O (σ2):

(4.44) lim
t→t0�1

〈
z(2)(t)

〉
= −2

x0y0µxµy(µx − µy)
(y0µx + x0µy + µxµy)2

〈
σ2
〉
t0,

hence the effective evolution of 〈z〉 is identified as

(4.45)
d 〈z〉
dt

= − 2µxµy(µx − µy)(1− 〈z〉2)

[µx + µy − (µx − µy) 〈z〉+ 2µxµy]
2

〈
σ2
〉
.

Eqs.(4.23) and (4.45) take similar form. The difference comes from different hopping

mechanism: in the globally connected model, the influx of specific site is proportional

to the mean of the population, while in the 2-patch model it is proportional to the

populations on the other patch. If the space consists of only 2 patches with carrying

capacity 1± σ and the hopping rates are doubled, Eq.(4.45) reduces to Eq.(4.23).

Direct numerical verifications are performed by integrating (4.27) are presented

in Fig. 4.2.
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(a)

(c) (d)

(b)

Figure 4.2: (a) Numerical simulation of the system (discrete markers) and the pre-
diction of the asymptotic analysis (dotted line). The simulated system
has 100 patches. {σi}100

i=1 are i.i.d. r.v. with bounded uniform, trun-
cated normal and truncated Laplace (double-exponential) distributions
(we truncate the tails of the distributions to avoid negative carrying ca-
pacities.) 10 samples are measured to compute the mean and the sam-
ple error. µx = 5, µy = 1. (b) The convergence to the infinite-patch
model as the number of patches N → ∞. {σi}Ni=1 are normal dis-
tributed, µx = 5, µy = 1. (c-d) Numerical simulations of the systems
with σ = 0.05, 0.1, 0.15 (discrete markers) and the prediction of asymp-
totic analysis (dotted line). N = 100. σi

N
i=1 are normal distributed. (c)

µx = 1, µy = 0.1 and (d) µx = 5, µy = 1.
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4.3 Discussion and conclusion

We come to the conclusion that the 2-patch and the many patch models shares

similar features in deterministic description. In the 2-patch model, the parameter σ

serves as a natural measure of heterogeneity. In the many patch model, we define

the corresponding inhomogeneity σ to be the standard deviation of the environmen-

tal distribution (E[σ2
i ])

1/2. Started with arbitrary initial conditions, in a time scale

O(log σ−1) the systems equilibrate to a metastable distribution. The metastable dis-

tribution remains stable in a time scale O(σ−1), and there exists a slow drift in a

longer time scale O(σ−2), predicted by (4.22) or (4.44). One important feature of the

drifts in (4.22) and Eq.(4.44) are always negative if µx > µy (the claim will be proved

in Chapter VI). This result, along with the lowest order constraint x0 +y0 = 1, shows

the deterministic dynamics always favors the slow species in the competition as long

as the spatial inhomogeneity σ is not equal to 0. In addition, the analysis shows such

evolutionary advantage prevails in a time scale of order O(σ−2). Our quantitative

analysis on the models confirms qualitative theorems Hasting [19] and Dockery et al.

[8] proved for similar PDE models with distinct settings.
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CHAPTER V

Demographic Stochasticity and Evolution of

Dispersal in Heterogeneous Environments

Two limits of the competitive population dynamics models have been investigated

thoroughly—in Chapter III we considered the dynamics with demographic stochastic-

ity in homogeneous environments, and in Chapter IV we investigated the dynamics

without demographic stochasticity in heterogeneous environments. The time scales of

the weak selection of the faster and slower mobility species are as respectively O(K)

and O(σ−2) respectively. In the first case, demographic stochasticity favors the fast

dispersers, and in the second one, nonlinear dynamics favors the slow dispersers.

It is a natural conjecture that the population dynamics with demographic stochas-

ticity in heterogeneous environments ought to be the outcome of the competition

between the effects—due to the stochasticity and due to the nonlinearity. Indeed,

numerical studies by Kessler and Sander [25], and Waddel et al. [41] revealed a clear

regime shifts in their models.

In this Chapter, we generalize the individual-based models developed in Chapter

III to investigate the competitive population dynamics with demographic stochasticity

in heterogeneous environments. As will be seen, the boundaries of regime shifts can be

analytically predicted. This Chapter is organized as follows. In sections 5.1 and 5.2,

we present analyses of the (heterogeneous) 2-patch model and the (heterogeneous)
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Independent process Corresponding (per capita) rate

Birth of X on patch i β
Birth of Y on patch i β
Death of X on patch i δ[1− (1− (−1)iσ)(Xi + Yi)/Λ]
Death of Y on patch i δ[1− (1− (−1)iσ)(Xi + Yi)/Λ]

Dispersal of X from patch i to patch j, i 6= j µX
Dispersal of Y from patch i to patch j, i 6= j µY

Table 5.1: The stochastic processes and the corresponding rates.

many patch model, respectively. The analyses are parallel to those in Chapter III.

In section 5.3 we verify the predictions from sections 5.1 and 5.2 via exact numerical

simulations. In the final section 5.4 we summarize and conclude the features of the

dynamics. Further discussion will be presented in Chapter VII.

5.1 Stochastic two-patch model

5.1.1 The model

In the stochastic 2-patch model, the universe consists of two well-mixed patches.

We denote the population of species X and Y on patch i ∈ {1, 2} at time s by non-

negative integer-valued random variables Xi(s) and Yi(s). Both species have identical

demographic dynamics. On patch i, every individual waits exponentially distributed

random times with rate β to reproduce one offspring. Similarly, individuals decease at

rate δ{1 + [1− (−1)iσ][Xi(s) +Yi(s)]/Λ}. The parameters β, δ, and Λ are positive; in

addition, the environment is assumed to be able to sustain large but finite populations,

hence ρ := β/δ > 1. As for dispersions, individuals of species X (or Y ) hop to the

other patch with rate µX (or µY ). The detailed processes are listed in Table 5.1, and

Fig. 5.1 schematically demonstrates the processes.

Denote the probability of the system at state (X1(s) = a,X2(s) = b, Y1(s) =

c, Y2(s) = d) at time s by pa,b,c,d(s), then the evolution of pa,b,c,d(s) can be described
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Figure 5.1: Dynamics of the interacting species distributed on two patches. The X
and Y populations compete locally, and individuals randomly move from
one patch to the other at rates µX and µY .

by the following master equation:

d

ds
pa,b,c,d =− {β + δ[1 + (1 + σ)(a+ b)/Λ] + µX}apa,b,c,d(5.1)

− {β + δ[1 + (1 + σ)(a+ b)/Λ] + µY }bpa,b,c,d

− {β + δ[1 + (1− σ)(c+ d)/Λ] + µX}cpa,b,c,d

− {β + δ[1 + (1− σ)(c+ d)/Λ] + µY }dpa,b,c,d

+ β(a− 1)pa−1,b,c,d + δ [1 + (1 + σ)(a+ b+ 1)/Λ] (a+ 1)pa+1,b,c,d

+ β(b− 1)pa,b−1,c,d + δ [1 + (1 + σ)(a+ b+ 1)/Λ] (b+ 1)pa,b+1,c,d

+ β(c− 1)pa,b,c−1,d + δ [1 + (1− σ)(c+ d+ 1)/Λ] (c+ 1)pa,b,c+1,d

+ β(d− 1)pa,b,c,d−1 + δ [1 + (1− σ)(c+ d+ 1)/Λ] (d+ 1)pa,b,c,d+1

+ µX(a+ 1)pa+1,b,c−1,d + µX(c+ 1)pa−1,b,c+1,d

+ µY (b+ 1)pa,b+1,c,d−1 + µY (d+ 1)pa,b−1,c,d+1.

After scaling the population by K := (ρ− 1)Λ, time by t := s(β − δ), and assuming

that the patches sustains large but finite population scale O(K), the solution of above
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Eq.(5.1) can be well-approximated by the following Fokker–Planck equation

∂f

∂t
=− ∂

∂x1

{[x1(1− (1 + σ)(x1 + y1))− µx(x1 − x2)]f}(5.2)

− ∂

∂x2

{[x2(1− (1− σ)(x2 + y2))− µx(x2 − x1)]f}

− ∂

∂y1

{[y1(1− (1 + σ)(x1 + y1))− µy(y1 − y2)]f}

− ∂

∂y2

{[y2(1− (1− σ)(x2 − y2))− µy(y2 − y1)]f}

+
1

2K

∂2

∂x2
1

{[
x1(

ρ+ 1

ρ− 1
+ (1 + σ)(x1 + y1)) + µx(x1 + x2)

]
f

}
+

1

2K

∂2

∂x2
2

{[
x2(

ρ+ 1

ρ− 1
+ (1− σ)(x2 + y2)) + µx(x1 + x2)

]
f

}
+

1

2K

∂2

∂y2
1

{[
y1(

ρ+ 1

ρ− 1
+ (1 + σ)(x1 + y1)) + µy(y1 + y2)

]
f

}
+

1

2K

∂2

∂y2
2

{[
y2(

ρ+ 1

ρ− 1
+ (1− σ)(x2 + y2)) + µy(y1 + y2)

]
f

}
− 1

K

∂2

∂x1 ∂x2

[µx(x1 + x2)f ]− 1

K

∂2

∂y1 ∂y2

[µx(y1 + y2)f ]

with scaled population xi, yi, scaled probability density f , scaled hopping rates µx

and µy. When taking K →∞ limit, Eq.(5.2) reduced to the deterministic description

in Chapter IV.

In addition, from Chapters III and IV, we know that the time scales of the effective

drifts in the center manifold are O(K) and O(σ−2). If one of the effect has much

shorter time scale than the other one, the effect with shorter time scale will prevail and

dominate the other one. We are interested in the boundary of regime shifts, that is,

when the time scales of the effect due to stochasticity and the effect of heterogeneity

are comparable. To investigate such parameter region, we impose a constraint on the

parameters that

(5.3) O(σ−2) ≈ O(K) = O((ρ− 1)Λ) = O(ε2).
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Balanced Processes Direction Magnitude of the Fluctuation

Birth/Death of X on patch 1 (±1, 0, 0, 0) 4′1 ≡
[

2ρ
ρ−1

1
K

(x0 + w∗xσ
2

) dt
]1/2

Birth/Death of X on patch 2 (0,±1, 0, 0) 4′2 ≡
[

2ρ
ρ−1

1
K

(x0 − w∗xσ
2

) dt
]1/2

Birth/Death of Y on patch 1 (0, 0,±1, 0) �′1 ≡
[

2ρ
ρ−1

1
K

(y0 +
w∗yσ

2
) dt
]1/2

Birth/Death of Y on patch 2 (0, 0, 0,±1) �′2 ≡
[

2ρ
ρ−1

1
K

(y0 −
w∗yσ

2
) dt
]1/2

Hopping of X (±1,∓1, 0, 0) N ≡
[
2µx

x0
K
dt
]1/2

Hopping of Y (0, 0,±1,∓1) � ≡
[
2µy

y0
K
dt
]1/2

Table 5.2: Fluctuation strengths and shorthand notations of the homogeneous 2–
patch model. w∗x and w∗y are defined in Eq.(4.9).

5.1.2 Physically motivated asymptotic analysis

Spatial inhomogeneity changes the structure of the deterministic flow of the 2-

patch model as compared to the homogeneous 2-patch model in Chapter III. The

stable line of fixed points exhibited in homogeneous 2-patch model becomes a center

manifold when the spatial variance is not equal to zero (verified in Chapter IV). As

a consequence, in the “physical” asymptotic analysis, we need to modify (compared

to Chapter III) (1) the initial conditions after the fluctuations “kick” the state out of

the center manifold and (2) the convergent trajectories back to the center manifold.

We first investigate the positions after the “kicks” of the fluctuations and argue

that the strengths of the stochastic “kicks” near the center manifold are asymptot-

ically identical to their counterparts in homogeneous model. Assuming the system

starts from the O(σ)-metastable distribution L

(5.4) L ≡
{

(x1, x2, y1, y2) = (x0 +
σw∗x

2
, x0 −

σw∗x
2
, y0 +

σw∗y
2
, y0 −

σw∗y
2

)

}

where wx and wy are defined in Eq.(4.9). Table 5.3 lists the directions and the strength

of the stochastic perturbations. Because the order O(ε) is matched to O(σ), to adopt
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Table 5.3 instead of Table 3.2 results in a correction which is of higher order O(ε2) =

O(σ2). On the other hand, in the asymptotic calculation in Chapter III, we learned

that the O(ε) “kicks” already result in the higher order O(ε2) drift and diffusion.

Therefore, it is sufficient to approximate Table 5.3 by Table 3.2, considering the

asymptotic functionals of effective drift and diffusion to O(ε2); the initial conditions,

which are parallel to (3.38):

n(1)
x (0) = φ1∆1 + φ2∆2 +O(ε2),(5.5a)

n(1)
y (0) = φ3�1 + φ4�2 +O(ε2),(5.5b)

w(1)
x (0) = w∗xσ + φ1∆1 − φ2∆2 + 2φ5N+O(ε2),(5.5c)

w(1)
y (0) = w∗yσ + φ3�1 − φ4�2 + 2φ6�+O(ε2).(5.5d)

where (∆1,∆2,�1,�2,N,�) are defined in Table 3.2.

Next we construct the effective diffusion and the effective drift in the center mani-

fold from the analytical results in Chapters III and IV. Asymptotically the trajectories

of the deterministic flow (4.1) near the center manifold had been analyzed in section

4.1. With the initial conditions (5.5), it is elementary to show that the effective dif-

fusion is identical to (3.40). The intuition behind the result is, the effective diffusion

is due to the fluctuations of the total populations nx and ny, and nx and ny in the

heterogeneous model and homogeneous model share the same dynamics and initial

conditions (that is, Eqs. (3.18) and (4.7), (3.38), and (5.5)). With the same initial

conditions, the outcomes to the order O(ε) must be identical—which in turn produce

identical O(ε2) effective diffusion. As for the effective drift, we first denote the state
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by the 4× 1 vector ~ψ(t) by

(5.6) ~ψ(t) ≡



n
(1)
x (t)

n
(1)
y (t)

w
(1)
x (t)

w
(1)
y (t)


.

Then the expression of Eq.(3.32) can be rewritten in the matrix form

n(2)
x ∼

t∫
0

t′∫
0

~ψ T (t′′) ·A(t′, t′′) · ~ψ(t′′) dt′′ dt′ +

t∫
0

~ψ T (t′) ·B · ~ψ(t′) dt′(5.7)

+

t∫
0

t′∫
0

~C T (t′, t′′) · ~ψ(t′′) dt′′ dt′ +

t∫
0

~D T · ~ψ(t′) dt′.

where the 4 × 4 matrix A and the 2 × 1 vector ~C involve the temporal propagators

et
′′−t′ , and the 4 × 4 matrix B and the 2 × 1 vector ~D are temporally constant. In

addition, the O(ε) solutions were derived in Chapter IV, i.e. Eqs. (4.13), (4.14), and

(4.15). It has the form

(5.8) ~ψ(t) =



n
(1)
x (t)

n
(1)
y (t)

w
(1)
x (t)

w
(1)
y (t)


=



n
(1)
x (t)

n
(1)
y (t)

w̃
(1)
x (t)

w̃
(1)
y (t)


+



0

0

w∗x

w∗y


.

Define the meta-stable “fixed point” of ψ

(5.9) ψ∗ ≡



0

0

w∗x

w∗y


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and the “transient part” of ψ

(5.10) ψ̃ ≡



n
(1)
x (t)

n
(1)
y (t)

w̃
(1)
x (t)

w̃
(1)
y (t),


then Eq.(5.7) becomes

n(2)
x ∼

t∫
0

t′∫
0

(ψ∗ + ψ̃(t′′))T ·A(t′, t′′) · (ψ∗ + ψ̃(t′′)) dt′′ dt′(5.11)

+

t∫
0

(ψ∗ + ψ̃(t′))T ·B · (ψ∗ + ψ̃(t′)) dt′

+

t∫
0

t′∫
0

~C T (t′, t′′) ·
(
ψ∗ + ψ̃(t′′)

)
dt′′ dt′

+

t∫
0

~D T ·
(
ψ∗ + ψ̃(t′)

)
dt′.

In the physically motivated asymptotic analysis, we need to perform an “ensemble

average” 〈·〉 to compute effective drift and diffusion. The average takes a finite number

of the characteristic directions and calculates their means. Because of the number of

the directions are finite (in this model, 26 = 64), the average 〈·〉 and the integrations

are order-exchangeable. In addition, we notice that the nontrivial contributions comes

from the quadratic terms of ψ̃; because the initial conditions are symmetrical (see
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Table 5.3 for reference), the averages involving odd order of ψ̃ must be zero:

0 = 〈ψ̃〉,(5.12a)

0 = 〈ψ∗ ·A · ψ̃〉,(5.12b)

0 = 〈ψ∗ ·B · ψ̃〉,(5.12c)

0 = 〈~C T · ψ̃〉, and(5.12d)

0 = 〈 ~D T · ψ̃〉(5.12e)

With the identities, after the ensemble average, (5.11) becomes

〈
n(2)
x

〉
=

t∫
0

t′∫
0

ψ∗ T A(t′, t′′)ψ∗ dt′′ dt′ +

t∫
0

ψ∗ T Bψ∗ dt′(5.13)

+

t∫
0

t′∫
0

~C T (t′, t′′) · ψ∗ dt′′ dt′ +
t∫

0

~D T · ψ∗(t′) dt′

+

〈 t∫
0

t′∫
0

ψ̃ T A(t′, t′′) ψ̃ dt′′ dt′

〉
+

〈 t∫
0

ψ̃ T B ψ̃ dt′

〉
.

After a sufficiently long time (& O(logK)), the terms

t∫
0

t′∫
0

ψ∗ T A(t′, t′′)ψ∗ dt′′ dt′ +

t∫
0

ψ∗ T Bψ∗ dt′

+

t∫
0

t′∫
0

~C T (t′, t′′) · ψ∗ dt′′ dt′ +
t∫

0

~D T · ψ∗(t′) dt′

are identified to be the drift due to the nonlinearity, i.e. Eq.(4.21), and the terms

〈 t∫
0

t′∫
0

ψ̃ T A(t′, t′′) ψ̃ dt′′ dt′

〉
+

〈 t∫
0

ψ̃ T B ψ̃ dt′

〉

are identified to be the drift due to the stochasticity, i.e. Eq.(3.53), since the transient
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terms in the heterogeneous model have identical dynamics to the corresponding ones

in the homogeneous model (compare Eqs.(3.19), (4.11), (3.38), and (5.5)).

The physically motivated asymptotic analysis therefore yields the following con-

clusions. For any given initial conditions, within O(logK) time, the system flows

along the deterministic trajectories to the 1/K−neighborhood of the one dimensional

center manifold L: (x1, x2, y1, y2) = (x0 + σω∗x/2, x0− σω∗x/2, y0 + σω∗y/2, y0− σω∗y/2)

with x0, y0 ∈ (0, 1) and x0 + y0 = 1. After convergence, the state exhibits a slow

motion with time scale O(K), due to the interaction of stochasticity and nonlinear-

ity near the center manifold. The effective drift v and diffusion D near the center

manifold are determined by K, ρ, µx, µy, σ, and an effective coordinate z in the center

manifold:

v(z) =
1− z2

K

{
C0 +

C1

(µx − µy)z − C2

+
C3

[(µx − µy)z − C2]2

}
,(5.14)

D(z) =
ρ

2(ρ− 1)

1− z2

K
,(5.15)

where the effective coordinate z is defined as

(5.16) z ≡ (x1 + x2)− (y1 + y2)

2
,

and the parameters are

C0 = − 1

2

µx − µy
1 + 2(µx + µy)

,(5.17a)

C1 = − (µx − µy)
2

[
ρ

ρ− 1
+

4µxµy
1 + 2(µx + µy)

]
,(5.17b)

C2 = 4µxµy + µx + µy,(5.17c)

C3 = − 4µxµy(µx − µy)Kσ2.(5.17d)

Incidentally, the analysis shows the 1-dimensional effective diffusion in the center
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manifold, Eq.(5.15), is identical to the effective diffusion (3.12) in the homogeneous

2-patch model, and the drift, Eq.(5.14) turns out to be the linear superposition of

the effective drift due to the heterogeneity (4.22) and the effective drift due to the

stochasticity (3.11). We emphasize that the physically motivated analysis, which

only assumes O(ε2) = O(σ2) from matching two dynamical time scales, does not

assume the separation of the two drifts a priori. In fact, the approach analyzes the

nonlinearity and stochasticity simultaneously, and predicts the separation of the drifts

mathematically. The fundamental reason for the separation is that both drifts come

from the nonlinearity to the same order, O(ε2) = O(σ2).

The drift due to the heterogeneity always favors the slow dispersers, and the drift

due to the stochasticity always favors the fast dispersers in the model (the claim will

be proved in Chapter VI). In Chapter VI, we will discuss the bifurcations of the

combined flow, which in turn determine which species has evolutionary advantage in

the competition.

With the predicted drift (5.14) and diffusion (5.15), standard analysis formulated

in section 2.1.2 is carried out to compute the extinction probability of the species, and

the mean extinction time of any species in the reduced center manifold. In section

5.3 we present numerical evidence to support the analysis in this section.

5.2 Stochastic many patch model

5.2.1 The model

The stochastic many patch model consists of countably infinite number of patches,

on which individuals of species X and Y lives. The carrying capacity of patch i ∈ N

is K/(1+σi) with i.i.d. random variable σi’s. The distribution of {σi}∞i=1 are assumed

to be bounded and E[σi] = 0. The heterogeneity of the environment is measured by
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Figure 5.2: Dynamics of the interacting species distributed on many patches. The X
and Y populations compete locally, and individuals randomly move from
one patch to the other at rates µX and µY .

σ := (E[σ2
i ])

1/2 and we also assume |σi| � 1 ∀i ∈ N for analytical convenience1. Each

individual has identical demographic processes as in the stochastic 2-patch model

(section 5.1.1). The low density birth rate β, low density death rate δ, and birth-

to-death rate ratio ρ are defined in parallel to the ones in the stochastic 2-patch

model. As for dispersion, each individual of species X (or Y ) waits an exponentially

distributed random time with rate µX > 0 (or µY > 0), and then moves to another

patch chosen with equal probability.

In addition, we match the time scale of the effective drifts due to the stochasticity

and effective drift due to the heterogeneity of the environment, so O(K) = O(σ−2),

where K ≡ 1/((ρ− 1)Λ) is the harmonic mean carrying capacity of the model. The

detailed processes are listed in Table 5.3, and Fig. 5.2 schematically demonstrates the

processes.

1The analytical conclusion is not limited by restriction, however, as verified by numerical simu-
lations in section 5.3.
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Independent process Corresponding (per capita) rate

Birth of X on patch i β
Birth of Y on patch i β
Death of X on patch i δ[1− (1− (−1)iσi)(Xi + Yi)/Λ]
Death of Y on patch i δ[1− (1− (−1)iσi)(Xi + Yi)/Λ]

Dispersal of X from patch i to patch j, i 6= j µX
Dispersal of Y from patch i to patch j, i 6= j µY

Table 5.3: The stochastic processes and the corresponding rates in the many patch
model.

5.2.2 Physically motivated asymptotic analysis

After scaling the population, time and hopping rates, in the infinite K limit the

dynamics converges to the deterministic dynamics discussed in Chapter IV, from

which we obtained the center manifold in the large K limit:

xi = 〈x〉
[
1− σi

µy
〈y〉µx + 〈x〉µy + µxµy

]
+O(σ2

i ),

yi = 〈y〉
[
1− σi

µx
〈y〉µx + 〈x〉µy + µxµy

]
+O(σ2

i ).(5.18)

with the mean populations per patch 〈x〉 and 〈y〉 and

〈x〉, 〈y〉 ∈ (0, 1),(5.19)

〈x〉+ 〈y〉 = 1.(5.20)

The constraint (5.20) suggests the difference of mean populations per patch 〈z〉 ≡

〈x〉−〈y〉 is an effective coordinate in the one-dimensional center manifold. Similar to

the analysis of the stochastic 2-patch models in section 5.1.2, near the center manifold,

the strengths of the demographic fluctuations in homogeneous and heterogeneous

models are identical to O(1/K) = O(ε2) = O(σ2), so we only need to modify the

computations regarding the convergence to the center manifold in homogeneous many
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patch model. The abstract constructions developed in section 5.1.2 can be adopted

to carry out the parallel computations of the many patch model, and it yields the

same conclusion—the effective drift in the center manifold is a linear superposition

of the drift due to stochasticity and the drift due to nonlinearity. As a consequence,

the reduced dynamics of the state in the center manifold is

(5.21)
d〈z〉
dt

= v̄(〈z〉),

where the effective velocity field v̄ in the center manifold is

(5.22) v̄(〈z〉) =
1− 〈z〉2

K

{
C̄0 +

C̄1

(µx − µy)〈z〉 − C̄2

+
C̄3

[(µx − µy)〈z〉 − C̄2]2

}
,

with

C̄0 = −1

2

µx − µy
1 + µx + µy

,(5.23a)

C̄1 = −(µx − µy)(
ρ

ρ− 1
+

µxµy
1 + µx + µy

),(5.23b)

C̄2 = 2µxµy + µx + µy,(5.23c)

C̄3 = −2µxµy(µx − µy)Kσ2.(5.23d)

As remarked in section 5.1.2, the separation is predicted by the analysis rather than

being assumed a priori.

The difference of the spatial average populations, 〈z〉, evolves according to (5.21),

which has incorporated the effect of the deterministic nonlinear dynamics—the term

that proportional to Kσ2 in (5.22)—and the effect of the stochastic dynamics. Fur-

thermore, the evolution of the metastable distributions (5.18) is predicted by 〈z〉 and

the constraint (5.20). Similar to the homogeneous many patch model in Chapter III,

the stochasticity—terms that proportional to C̄0 and C̄1 in (5.22)—has a non-trivial
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contribution to the overall deterministic evolution of the state, i.e. Eq.(5.21).

Eq.(5.21) resembles an one dimensional deterministic dynamical system for 〈z〉 ∈

(−1, 1). As will be shown in Chapter VI, the effective drift due to stochasticity always

favors the fast dispersers, and the effective drift due to the deterministic nonlinear

dynamics always favors the slow dispersers. Interestingly, only four independent

parameters, ρ, µx, µy and Kσ2 determine the solution as t → ∞. The expression

involving product of the population scale K and spatial environmental variance σ2

confirms the heuristic argument Kessler and Sander presented [25].

5.3 Simulations and numerical computations

Continuous time Markov chain simulation are constructed to simulate the sample

path of the processes in this Chapter. In the simulation, each individual belongs to

either species X or Y with corresponding parameters. Let i to be the patch index,

Xi and Yi to be the populations of species X and Y respectively on patch i. Every

agent waits for an exponentially distributed random time, and then proceed one of

the following possible processes with appropriate distribution [35]: (1) reproduces one

new agent of the same kind with rate β, (2) demises with rate δ[1+(1+σi)(Xi+Yi)/Λ],

and (3) hops to another patch with rate µX or µY . Many sample paths of the system

with the same initial conditions are generated to measure the ensemble averages of

the observables.

5.3.1 Stochastic two-patch model

Recall that σ1 ≡ σ and σ2 ≡ −σ with heterogeneity σ > 0 in the 2-patch model.

Parameters Λ ∈ N, µX > 0, µY > 0, ρ > 1 and σ > 0 are varied to examine the pre-

diction in section 5.1. Several sample paths are shown in Fig. 5.3. A typical character

observed in the 2-patch model is that the populations fluctuates dramatically—there

does not seem to be a significant trend that a certain species out-competes the other.
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In some sample paths, the fast moving species X extinct before the end of the simu-

lations, and in others Y extincts first.

Figs. 5.4 and 5.5 present the evolution of the system configurations in the two-

dimensional projected phase space, (X, Y ), for Λ = 500 and Λ = 200 respectively.

One hundred sample paths were generated to demonstrate the phase flow. One of

the observation of these preliminary simulations are, the time scale of the extinction

events does not scale exponentially with respect to the population scale K. This was

our principle motivation to develop the “physical” asymptotic approach—to explain

a phenomenon that is neither a large-deviations phenomenon, nor a spontaneous

extinction phenomenon.

To be more precise, we measure the winning probability of species X and the mean

extinction time (of any of the species) by measuring the observables in 104 identical

sample paths. The initial populations are set to be

X1(0) = X2(0) =
1 + z0

2
(ρ− 1)Λ,(5.24)

Y1(0) = Y2(0) =
1− z0

2
(ρ− 1)Λ.(5.25)

where the initial effective coordinate z0 in the center manifold is varied. In most of

the parameter sets we examined, the analysis in section 5.1 agrees with the continuous

time Markov chain simulations2— see for example, selective data of (β, δ) = (2, 1) in

Fig. 5.6.

The asymptotic analysis faithfully predicts the winning probability and mean ex-

tinction time. We can furthermore explore the landscape of the weak selection in

parameter space in a head-to-head competition by numerically computing the win-

ning probability of species X. Figs. 5.7 and 5.8 demonstrate the landscape of X- or

2The only exceptions is again when µx and µY � 1, as pointed out in Chapter IV. With such
parameters the patches are almost decoupled. The physical asymptotic analysis breaks down because
the separation of time scale no longer holds.
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Figure 5.3: Sample paths of the stochastic (heterogeneous) 2-patch model. The pa-
rameters are: β = 2, δ = 1, Λ = 500, σ = 0.09, µX = 1, µY = 0.1.
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Figure 5.4: The evolution of the stochastic 2-patch model. The ensemble has 100 sam-
ple paths, which are identically initiated with Xi(0) = Yi(0) = 0.5Λ(=
0.5K). The parameters are: β = 2, δ = 1, Λ = 500 (= K), σ =
0.09, µX = 1, µY = 0.1. Red and blue markers are populations on patch
1 and 2 respectively. Dashed green lines denotes X + Y equals to the
carrying capacity of both patches.
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Figure 5.5: Reproduction of Fig. 5.4. All the representations and parameters are
identical except for Λ (= K), the population scale, is lowered to 200.

Y -dominating regimes in the parameter space. In Fig. 5.7, (µX , µY ) are fixed, and we

plot the winning probability as function of the population scale Λ and the heterogene-

ity σ. In the log–log plot, the transition boundary of X- and Y -dominating regimes

is revealed to be Λσ2 = const. It is now clear that the fundamental mechanism of the

transition is the competition between effective drift due to stochasticity and effective

drift due to nonlinear dynamics in inhomogeneous environment, i.e. Eq.(5.14). In

Fig. 5.8, we fix (ρ,Λ, σ) and plot the winning probability of species X in a head-to-

head competition (z0=0) . The landscape in (µX , µY ) qualitatively changes as the

value of Λσ2 changes and has the following characteristics:

• When Λσ2 is very small, the faster disperser has greater chance to survive—

Fig. 5.8.(a).

• When Λσ2 is very large, the slower disperser has greater chance to survive—

Fig. 5.8.(b).
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Figure 5.6: Comparisons of exact continuous time Markov chain simulations (dis-
crete data) and the predictions of asymptotic analysis, color coded by
red (Λσ2 = 0.05), green (Λσ2 = 4.05) and blue (Λσ2 = 20). ρ = 2. The
circle markers are for Λ = 500 and the triangle markers are for Λ = 245.
Left: winning probability of species X vs. initial condition z0. Right:
Mean extinction time (normalized by Λ) vs. initial condition z0. Top
pair: µX = 2, µY = 0.2. Middle pair: µX = 4, µY = 2. Bottom pair:
µX = 10, µY = 2.
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Figure 5.7: The numerical calculated landscape of winning probability of X. (Λ, σ) is
plotted in log-log scale. (a) µX = 2, µY = 0.2 and (b) µX = 10, µY = 2.
ρ = 2.

• In Fig. 5.8.(b-c), there exists a very shallow saddle. The saddle indicates the

evolutionarily stable rate for dispersion—for any species, choosing the

rate at the saddle guarantees advantage in probability when competing to any

another species with any other rate of dispersal.

Unfortunately the winning probability cannot be explicitly expressed. Neverthe-

less, since the weak selection is driven by the effective drift in the center manifold, the

location of the saddle can be predicted by analyzing the bifurcations of the effective

drift, as will be shown in Chapter VI.

5.3.2 Stochastic many-patch model

We generalize the simulations to have a large number of patches to verify the anal-

ysis in section 5.2. In the following text we denote the number of patches to be N � 1.

The dynamically fixed spatial distribution is determined by generating i.i.d. random

variables {σi}Ni=1 drawn from specific distributions. The standard deviation of the

sample sequence {σi}Ni=1 is computed and will be denoted to be σ. We adopt different

distributions to generate σi, including (1) bounded uniform distribution, (2) trun-

cated normal distribution, and (3) truncated Laplace (bounded double-exponential)

distribution.

In contrast to the 2-patch model, an apparent characteristic observed from the
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Figure 5.9: One sample path of the stochastic (heterogeneous) many patch model.
The parameters are: β = 2, δ = 1, σ = 0.09, µX = 1, µY = 0.1, N = 500.
The blue and red curves denote respectively the mean populations of the
slow species Y and the fast species X among the patches. Grey band
represents the mean populations (among the patches) plus / minus one
standard deviation of the distribution.

simulations is that the stochastic dynamics in an environment with globally connected

patches seem more deterministic. For example, Fig. 5.9 shows one sample path of

the simulation with uniformly distributed {σi}N=500
i=1 , for systems with K = Λ = 200

and 500. In the case of K = 200 the fast species gains the population and in the case

of K = 500 it loses. In Figs. 5.10 and 5.11 the configurations of dynamical system

are projected onto a two-dimensional plane to show the evolution of a single sample

path.

In the simulation we discover that the final results are indeed not sensitive to the

choice of distributions, which confirms the prediction of our asymptotic analysis: as

long as the distributions have the same variance, the final dynamics are indistinguish-

able.

With large N , the mean-field effect decreases the probability of any species goes
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Figure 5.10: The evolution of a sample path of the stochastic many model. The
system starts with Xi(0) = Yi(0) = 0.5Λ(= 0.5K) for i ∈ {1 . . . N}.
The parameters are: N = 500, β = 2, δ = 1, Λ = 500 (= K), σ =
0.09, µX = 1, µY = 0.1. The green band is the environmental distribu-
tion (where the uniform σi’s are generated). Each red dot denotes the
populations (Xi, Yi) on patch i.
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Figure 5.11: Reproduction of Fig. 5.10. All the representations and parameters are
identical except for Λ (= K), the population scale, is lowered to 200.

to extinct in finite time. Hence, we adopt the average populations among the patches

〈X(t)〉 :=
1

N

N∑
i=1

Xi(t),

〈Y (t)〉 :=
1

N

N∑
i=1

Yi(t),

to be the observables. Fig. 5.12 shows the comparison between results from large-scale

continuous time Markov chain simulations of a head-to-head competition, together

with the analytical prediction from numerically integrating Eq.(5.21).

5.4 Summary

In this Chapter, we generalize the physically motivated asymptotic analysis to

analyze the most general model of competitive dynamics with demographic fluctua-
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Figure 5.12: σ’s are color coded by red (0.01), green (0.09), blue (0.11) and purple
(0.15). Open squares and filled circles are respectively the average pop-
ulation per patch of the fast species X and the slow species Y from
exact continuous time Markov chain simulations. Dotted and solid lines
are respectively the populations of species X and Y derived from the
asymptotic prediction. N = 1000, ρ = 2, Λ = 500, {σi}Ni=1 are generated
by bounded normal distributions, and 8 sample paths were generated to
compute the sample mean. (a) µx = 2, µy = 0.2. (b) µx = 5, µy = 0.2.
(c) µx = 2, µy = 1. (d) µx = 10, µy = 2.
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tion in heterogeneous environments. In the two patch model, the fluctuations of the

dynamics are large enough for the system to exhibit probabilistic behavior—it is not

possible for any of the species to win the competition as t → ∞ with probability 1.

On the other hand, the mean-field effect of the many patch model drives the sys-

tem to behave more “deterministically”, even though the effect due to demographic

stochasticity is taking into account.

In both the two-patch model and the many patch model, the dynamics show a

weak selection to a certain species (unless the two effects balances—see Chapter VI).

In general, when the environmental distribution is more heterogeneous, or when the

population scale is larger (that is, when the population density is more “continuous”

and the effect due to demographic stochasticity is smaller), the slower dispersers

enjoys the advantage in the competition. On the contrary, when the environmental

distribution is more uniform, or when the population scale is smaller (that is, the

population density is more “discrete” and the effect of stochasticity is larger), the

faster dispersers enjoys the advantage in the competition.

The time scale of the selection is proportional to the size of the population per

patch—and equivalently in our assumption of time-scale matching, the inverse of the

environmental variance. In a large but finite population size, the time scale is long,

but exponentially smaller than the time scale of spontaneous extinction (which is a

large-deviations phenomenon). The argument shows that the probability that one

species exclude the other before a spontaneous extinction event occurs converges to

1 as the population scale increases in the 2-patch model. We will show in Chapters

VI and VII that in the many patch model it is possible to reach to a coexistent

configuration in a suitable parameter set.

In both models, the critical parameters controlling the transition is identified as

Λσ2 ∝ Kσ2. The advantage of our analysis, comparing to the heuristic argument

provided by Kessler and Sander [25], is that we have identified the underlying mech-
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anism of the dynamics—it is due to the competition between two effects in the center

manifold: the drift caused by nonlinearity in heterogeneous models and the drift

caused by the demographic stochasticity (with its interaction with the nonlinear flow

near the center manifold). As a consequence, in addition to the scaling relation of the

regime shift boundary, we are able to predict the winning probability in the two-patch

model, and the global dynamics of the many patch model.
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CHAPTER VI

Bifurcation Analysis

One of the objectives of this dissertation is to understand how advantages or

disadvantages emerge and assert themselves to species with different dispersal rates

on an evolutionary time scale. We consider both stochastic and nonlinear effects

given the low-density birth-to-death ratio ρ, the population scale (ρ − 1)Λ, and the

environmental variance σ2. More precisely, in the many patch model, we are interested

in the following questions:

• Given ρ, Λ, σ, µx, and µy, what is (are) the possible solution(s) of Eq.(5.22) as

t→∞?

• As t→∞, given ρ, Λ and σ2, what is the “landscape” of selection in the space

(µx, µy) as t→∞?

• Does the pairwise-competition models exhibit an evolutionary stable dispersal

rate? If it does, how does the evolutionarily stable dispersal rate depend upon

the parameters?

For the 2-patch model, we can ask similar questions in a probabilistic setting:

• Given ρ, Λ, σ, µx, and µy, which species has greater probability of winning a

competition?
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• Given ρ, Λ and σ2, what is the landscape of the winning probability in the space

(µx, µy)?

• Does the model exhibit an evolutionarily stable dispersal rate (in probability)?

If it does, how does the evolutionarily stable dispersal rate depend upon the

parameters?

Since we have identified that the effective drifts in the center manifolds are the

driving force of the weak selection, the key objective of this Chapter is to investigate

the structure of effective drifts and how they parametrically depend upon parameters

of the system. In other words, we will perform bifurcation analysis of the effective

drifts. With knowledge of the effective drifts we can deduce which species has the

advantage for any given set of parameters. This analysis is standard, straightforward,

but technical; the Chapter also serves for the purpose of documenting details of the

computations.

The Chapter is organized as follows. In section 6.1 we identify the problem and

show that the qualitative features of the effective drift in the center manifold are

determined by four independent conditions. Section 6.2 identifies the sets satisfying

each condition in the four-dimensional parameter space, followed by section 6.3 where

the properties of the sets are presented. In section 6.4 we combine the results from

previous sections in this Chapter describe the bifurcations of the selection landscape

in the parameter space and show the existence of an evolutionarily stable rate of

dispersion.
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6.1 Analysis of the effective drifts in the center manifold

For the reader’s reference, we first reproduce the effective drifts in the center

manifold of the heterogeneous 2-patch model, Eq.(5.14),

v(z) =
1− z2

K

{
C0 +

C1

(µx − µy)z − C2

+
C3

[(µx − µy)z − C2]2

}
,(6.1a)

and the effective drifts in the center manifold of the heterogeneous many patch model,

Eq.(5.22),

v̄(〈z〉) =
1− 〈z〉2

k

{
C̄0 +

C̄1

(µx − µy)〈z〉 − C̄2

+
C̄3

[(µx − µy)〈z〉 − C̄2]2

}
.(6.1b)

The parameters are

C0 = − 1

2

µx − µy
1 + 2(µx + µy)

,(6.2a)

C1 = − (µx − µy)
2

[
ρ

ρ− 1
+

4µxµy
1 + 2(µx + µy)

]
,(6.2b)

C2 = 4µxµy + µx + µy,(6.2c)

C3 = − 4µxµy(µx − µy)Kσ2,(6.2d)

and

C̄0 = −1

2

µx − µy
1 + µx + µy

,(6.2e)

C̄1 = −(µx − µy)(
ρ

ρ− 1
+

µxµy
1 + µx + µy

),(6.2f)

C̄2 = 2µxµy + µx + µy,(6.2g)

C̄3 = −2µxµy(µx − µy)Kσ2.(6.2h)

We now show that it is sufficient to analyze the bifurcation of (6.1b). The effective
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drifts of these models, (6.1a) and (6.1b), share similar functional form. In fact, (6.1b)

are transformed to (6.1a) by the rescaling of variables

(6.3) µx → 2µx, µy → 2µy, and K → 2K.

So we only present the analysis of the effective drift in the many patch model. All

the derived conclusions will apply to the 2-patch model after the parameter transfor-

mation (6.3).

The reduced dynamics of the many patch model, Eq.(5.21), is an ordinary differen-

tial equation. The fate of the system depends on the structure of the one-dimensional

velocity field, (6.1b), and the initial condition. For the one-dimensional dynamics,

there can be only stable or unstable fixed points (it is impossible to have oscillations

in an one-dimensional dynamics [36]). Moreover, it is sufficient to analyze the sign

of the velocity field (6.1b) if we are interested in the fate of the dynamical system

as t → ∞ [36]. Finally, it is clear that the sign of (6.1b) depends only four free

parameters: µx, µy, ρ, and K × σ.

Now we can set up the domain of the variable and the parameters. The variable,

the effective coordinate 〈z〉, is in the open interval (−1, 1) because we are not inter-

ested in the cases when 〈z〉 = ±1 which are the certain fixations of one species or the

other. For the parameters, the model imposes the following constraint (see Chapter

V):

• ρ ∈ (1,∞),

• µx and µy ∈ (0,∞),

• K ∈ [1,∞),

• σ ∈ [0, 1).
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Therefore, the parameter space of our interest is

(6.4) (µx, µy, ρ, ξ) ∈ (0,∞)× (0,∞)× (1,∞)× [0,∞),

with

(6.5) ξ ≡ Kσ2.

In addition, we only need to analyze the domain when µx is strictly greater than µy,

since the case µx < µy can be derived by symmetry (that is, the exchange x→ y and

y → x.) In conclusion, the parameter space Ω of our interest is

(6.6) (µx, µy, ρ, ξ) ∈ Ω ≡ {(0,∞)× (0,∞)× (1,∞)× [0,∞) and µx > µy}

To simplify the expression of the calculations, we will adopt the set-theoretic

notation: {A is true} ∈ Ω is defined to be

(6.7) {A is true} ≡ {(µx, µy, ρ, ξ) ∈ Ω | A is true}.

We now demonstrate that the task is equivalent to determining the sign of a

quadratic polynomial. Define

(6.8)

$ (q;µx, µy, ρ, ξ) ≡ −
[

1

1 + µx + µy

q2

2
+

(
ρ

ρ− 1
+

µx µy
1 + µx + µy

)
q + 2µx µy ξ

]

with

(6.9) q (〈z〉) ≡ (µx − µy) 〈z〉 − C̄2.

126



It is straightforward to show

{$(q) > 0} = {v̄(〈z〉) > 0} ,(6.10a)

{$(q) = 0} = {v̄(〈z〉) = 0} ,(6.10b)

{$(q) < 0} = {v̄(〈z〉) < 0} ,(6.10c)

since in Ω,

(6.11)
1− 〈z〉2

K

µx − µy[
(µx − µy) 〈z〉 − C̄2

]2 > 0.

In addition, (µx − µy) 〈z〉− C̄2 in the denominator of (6.11) is never 0 for 〈z〉 ∈ (0, 1).

We will analyze $ instead of v̄ because $ is a quadratic polynomial in q, and it is

elementary to analyze the sign of a quadratic function.

The domain of q is obtained directly from (6.9):

(6.12) q ∈ (−2µx(µy + 1),−2µy(µx + 1)) ≡ (qleft, qright).

where qleft and qright are respectively the lower and upper bound of the interval. We

remind the reader the qleft < qright only if µx > µy. In addition, $ is concave in

q because the leading order has a negative coefficient. The strategy to analyze the

concave function $ is therefore as follows. We first enumerate the possible scenarios

of the sign change(s) of the concave $ in the domain (qleft, qright):

S1 $ is always positive.

S2 $ changes its sign once in q ∈ (qleft, qright); in addition, $(qleft) < 0 and

$(qright) > 0.

S3 $ changes its sign once in q ∈ (qleft, qright); in addition, $(qleft) > 0 and

$(qright) < 0.

127



S4 $ changes its sign twice in q ∈ (qleft, qright).

S5 $ is always negative.

Then, these scenarios (S1-S5) respectively indicate the following physical interpreta-

tion

S1 v̄(〈z〉) has one unstable fixed point at 〈z〉 = −1 and one stable fixed point at

〈z〉 = 1.

S2 v̄(〈z〉) has two stable fixed point at 〈z〉 = ±1 and one unstable fixed point in

〈z〉 ∈ (−1, 1).

S3 v̄(〈z〉) has two unstable fixed point at 〈z〉 = ±1 and one stable fixed point in

〈z〉 ∈ (−1, 1).

S4 v̄(〈z〉) has four fixed points: stable 〈z〉 = −1, unstable 〈z〉 = z1, stable 〈z〉 = z2,

and unstable z = +1 such that −1 ≤ z1 ≤ z2 ≤ 1.

S5 v̄(〈z〉) has one stable fixed point at 〈z〉 = −1 and one unstable fixed point at

〈z〉 = 1.

Fig. 6.1 shows the effective drift in each scenario.

Bifurcations occurs between the transitions of the scenarios. For example, in Ω,

crossing the “boarder” from scenario 4 to scenario 5 represents the transition where

two roots z1 and z2 in scenario 4 approaches and annihilates each other—that is, a

typical saddle–node bifurcation.

Lastly, we define the maxima of the polynomial $ to be $max and $(qmax) = $max

for simplicity. Then we can finally formulate the criterion of the sets which correspond

above scenarios respectively:

S1 {$(qleft;µx, µy, ρ, ξ) > 0} ∩ {$(qright;µx, µy, ρ, ξ) > 0}.

S2 {$(qleft;µx, µy, ρ, ξ) < 0} ∩ {$(qright;µx, µy, ρ, ξ) > 0}.
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Figure 6.1: Reduced velocity fields of the system in different scenarios with ρ = 2,Λ =
500. S1 : µx = 10, µy = 2, σ = 6.00%, S2 : µx = 10, µy = 2, σ = 6.35%,
S3 : µx = 40, µy = 1, σ = 6.5%, S4 : µx = 40, µy = 1, σ = 6.72%, and
S5 : µx = 10, µy = 2, σ = 6.45%. Dotted line is the reference v̄ = 0.

S3 {$(qleft;µx, µy, ρ, ξ) > 0} ∩ {$(qright;µx, µy, ρ, ξ) < 0}.

S4 {$(qleft;µx, µy, ρ, ξ) < 0} ∩ {$(qright;µx, µy, ρ, ξ) < 0} ∩ {qmax ∈ (qleft, qright)} ∩

{$max > 0}.

S5 The complement set of the above sets in Ω.

As a consequence, in section 5.2 we investigate how each pair of the sets

• {$(qright;µx, µy, ρ, ξ) ≤ 0} and {$(qright;µx, µy, ρ, ξ) ≥ 0},

• {$(qleft;µx, µy, ρ, ξ) ≤ 0} and {$(qleft;µx, µy, ρ, ξ) ≥ 0},

• {qmax ∈ (qleft, qright)} and {qmax /∈ (qleft, qright)},

• {$max ≥ 0} and {$max ≤ 0}

partition the entire parameter space Ω.
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6.2 Identifying the sets in the parameter space

The fact that the parameter space Ω is four dimensional poses difficulty for vi-

sualization. Nevertheless, from the perspective of searching for the evolutionarily

stable dispersal rate, it is natural to treat the parameter ρ as fixed, the parameter

ξ ≡ Kσ2 as the control parameter, and to analyze how the sets partition the reduced

two-dimensional µ-space, i.e. (µx, µy) ∈ (0,∞)× (0,∞).

Note regarding notation: In the following sections, we will use a short hand nota-

tion $(q) to denote $(q;µx, µy, ρ, ξ), and φ to denote the empty set.

6.2.1 {$(qright;µx, µy, ρ, ξ) ≤ 0} and {$(qright;µx, µy, ρ, ξ) ≥ 0}

Let S1 be the set {$(qright) ≤ 0} ∩ {(µx, µy) ∈ (0,∞) × (0,∞)}. After some

algebra, it can be shown that

S1 =

{
2(µx + 1)2µ2

y − 2

[
ρ

ρ− 1
(1 + µx + µy) + µx µy

]
(µx + 1)µy(6.13)

+2µx µy(1 + µx + µy)ξ > 0

}

and we notice in Ω, µy > 0, therefore

S1 =

{
2(µx + 1)2µy − 2

[
ρ

ρ− 1
(1 + µx + µy) + µx µy

]
(µx + 1)(6.14)

+2µx (1 + µx + µy)ξ > 0

}

and further computations yield

(6.15) S1 = {[1 + µx − (ρ− 1)µx ξ]µy ≤ [(ρ− 1)µx ξ − ρ(1 + µx)] (1 + µx)} .

Depending on the value of ξ, the polynomial 1 + µx − (ρ − 1)µx ξ may change its

sign and reverse the direction of the inequality in the end. The possibilities and the
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corresponding implications are:

• ξ ≤ 1/(ρ− 1):

(6.16) S1 = φ.

because µy > 0.

• 1/(ρ− 1) < ξ ≤ ρ/(ρ− 1):

(6.17) S1 =

{
1

(ρ− 1)ξ − 1
< µx

}
∩
{
µy ≥ Γ1

}

where Γ1 is defined to be

(6.18) Γ1(µx, ρ, ξ) ≡
(ρ− 1)µx ξ − ρ(1 + µx)

1 + µx − (ρ− 1)µx ξ
(1 + µx).

• ρ/(ρ− 1) < ξ:

S1 =

({
1

(ρ− 1)ξ − ρ
< µx <

ρ

(ρ− 1)ξ − 1

}
∩
{
µy ≥ Γ1

})
(6.19)

∪
{

ρ

(ρ− 1)ξ − ρ
≤ µx

}

A parallel computation shows the representation of S2 ≡ {$(qright) ≥ 0} ∩

{(µx, µy) ∈ (0,∞)× (0,∞)} in each case.

• ξ ≤ 1/(ρ− 1):
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(6.20) S2 = {(µx, µy) ∈ (0,∞)× (0,∞)} .

• 1/(ρ− 1) < ξ ≤ ρ/(ρ− 1):

S2 =

{
µx ≤

1

(ρ− 1)ξ − 1

}
(6.21)

∪
({

1

(ρ− 1)ξ − 1
< µx

}
∩
{
µy ≤ Γ1

})
.

• ρ/(ρ− 1) < ξ:

S2 =

{
µx ≤

1

(ρ− 1)ξ − 1

}
(6.22)

∪
({

1

(ρ− 1)ξ − 1
< µx <

ρ

(ρ− 1)ξ − 1

}
∩
{
µy ≤ Γ1

})

A more transparent way is presented in Fig. 6.2. When ξ ≤ 1/(ρ − 1), $(qright)

is positive in the entire µ–space. As soon as ξ > 1/(ρ− 1), the curve {µy = Γ1, µy >

0} separates the µ–space such that $(qright) becomes negative in the region above

{µy = Γ1, µx > 1/((ρ − 1)ξ − 1)} and remains positive in the region below. When

ξ > ρ/(ρ − 1), {µy = Γ1, µx > 1/((ρ − 1)ξ − 1)} intersects with the µx–axis, hence

$(qright) is always negative to the right of the intersection, µx = ρ/((ρ− 1)ξ − ρ).

Finally, we point out that the set {$(qright) = 0} = {S1 ∩ S2} is empty when

ξ ≤ 1/(ρ− 1), and {µy = Γ1, µx > 1/((ρ− 1)ξ − 1)} when ξ > 1/(ρ− 1).
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Figure 6.2: The landscape of the sign of $(qright) in the µ-space, with different values
of the control parameter ξ. The sets {$(qright;µx, µy, ρ, ξ) > 0} and
{$(qright;µx, µy, ρ, ξ) < 0} are plotted as red and blue respectively. ρ = 2,
and the black boundary is {µy = Γ1(µx, ρ, ξ), µx > 1/((ρ− 1)ξ − 1)}.
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Figure 6.3: The landscape of the sign of $(qleft) in the µ-space, with different val-
ues of the control parameter ξ. The sets {$(qleft;µx, µy, ρ, ξ) > 0} and
{$(qleft;µx, µy, ρ, ξ) < 0} are plotted as red and blue respectively. ρ = 2,
and the black boundary is {µx = Γ2(µy, ρ, ξ), µy > 1/((ρ− 1)ξ − 1)}.

6.2.2 {$(qleft;µx, µy, ρ, ξ) ≥ 0} and {$(qleft;µx, µy, ρ, ξ) ≤ 0}

It is not necessary to perform parallel computation for sets {$(qleft;µx, µy, ρ, ξ) ≥

0} and {$(qleft;µx, µy, ρ, ξ) ≤ 0} once we realize the symmetry relation

(6.23) $(qleft;µx, µy, ρ, ξ) = $(qright;µy, µx, ρ, ξ);

In Fig. 6.3 we show the graphical representation of the sets. Define

(6.24) Γ2(µy, ρ, ξ) ≡
(ρ− 1)µy ξ − ρ(1 + µy)

1 + µy − (ρ− 1)µy ξ
(1 + µy).
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When ξ ≤ 1/(ρ−1), $(qleft) is positive in the entire µ–space. As soon as ξ > 1/(ρ−1),

the curve {µx = Γ2, µx > 0} separates the µ–space such that $(qleft) become negative

in the region above {µx = Γ2, µy > 1/((ρ−1)ξ−1)} and remains positive in the region

below. When ξ > ρ/(ρ − 1), {µx = Γ2, µy > 1/((ρ − 1)ξ − 1)} intersects with the

µy–axis, hence $(qleft) is always negative above the intersection µy = ρ/((ρ−1)ξ−ρ).

The set {$(qleft) = 0} is empty when ξ ≤ 1/(ρ − 1), and {µx = Γ2 = 0} when

ξ > 1/(ρ− 1).

6.2.3 {qmax ∈ (qleft, qright)} and {qmax /∈ (qleft, qright)}

We focus on the set S3 ≡ {qmax ∈ (qleft, qright)} in this section (since {qmax /∈

(qleft, qright)} is the complement set). First, it is elementary to show the maxima of

the polynomial $(q) is at

(6.25) q = qmax = −
[

ρ

ρ− 1
(1 + µx + µy) + µx µy

]
,

therefore the set {qmax ∈ (qleft, qright)} is equivalent to

{qmax ∈ (qleft, qright)} =

{
−qleft >

ρ

ρ− 1
(1 + µx + µy) + µx µy

}
(6.26)

∩
{

ρ

ρ− 1
(1 + µx + µy) + µx µy > −qright

}

For the reference of the reader, we reproduce the definition of qleft and qright in (6.12):

qleft = − 2µx(1 + µy)

qright = − 2µy(1 + µx)

where µx > µy.
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A little algebra establishes the following relations

{
−qleft >

ρ(1 + µx + µy)

ρ− 1
+ µx µy

}
=

{(
ρ− 2

ρ− 1
+ µy

)
µx >

ρ(1 + µy)

ρ− 1

}
(6.27) {

ρ(1 + µx + µy)

ρ− 1
+ µx µy > −qright

}
=

{(
ρ− 2

ρ− 1
+ µx

)
µy <

ρ(1 + µx)

ρ− 1

}
(6.28)

Depending on the signs of (ρ − 2)/(ρ − 1) + µx and (ρ − 2)/(ρ − 1) + µy, the

directions of the inequalities may be reversed.

To proceed with the analysis we observe an important symmetry: if we swap µx

and µy in the set in Eq.(6.27) and reverse the direction of the inequality, we obtain

the set in Eq.(6.28). Therefore, it is sufficient to analyze the first set (6.27). We

enumerate all possibilities in the following list:

• ρ > 2:

In this case (ρ− 2)/(ρ− 1) > 0 and it is straightforward to obtain

(6.29)

{(
ρ− 2

ρ− 1
+ µy

)
µx >

ρ

ρ− 1
(1 + µy)

}
=

{
µx > Γ3

}
,

where

(6.30) Γ3(µy, ρ) ≡ ρ(1 + µy)

ρ− 2 + (ρ− 1)µy
.

• 1 < ρ ≤ 2, or equivalently (ρ− 2)/(ρ− 1) ≤ 0:

– When µy > −(ρ− 2)/(ρ− 1),

(6.31)

{(
ρ− 2

ρ− 1
+ µy

)
µx >

ρ

ρ− 1
(1 + µy)

}
=

{
µx > Γ3

}
,
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– When µy ≤ −(ρ− 2)/(ρ− 1),

(6.32)

{(
ρ− 2

ρ− 1
+ µy

)
µx >

ρ

ρ− 1
(1 + µy)

}
= φ

because µx, µy > 0 in Ω.

Regardless of the value of ρ, the above relations can be organized into a compact form

(6.33)

{(
ρ− 2

ρ− 1
+ µy

)
µx >

ρ

ρ− 1
(1 + µy)

}
=

{
µx > Γ3, µy > max

{
0,

2− ρ
ρ− 1

}}
.

It is clear that {µx = Γ3, µy > max{0, (2 − ρ)/(ρ − 1)}} is the boundary that

divide the µ-space. To the right of µx = Γ3 is the set

{
−qleft >

ρ(1 + µx + µy)

ρ− 1
+ µx µy

}

and to the left is the set

{
−qleft <

ρ(1 + µx + µy)

ρ− 1
+ µx µy

}
.

The symmetry argument prompts us to define the boundary

(6.34)

{
µy = Γ4, µy > max{0, 2− ρ

ρ− 1
}
}

with

(6.35) Γ4(µx, ρ) ≡ ρ(1 + µx)

ρ− 2 + (ρ− 1)µx
.

Above {µy = Γ4, µx > max{0, (2− ρ)/(ρ− 1)}} is the set

{
ρ(1 + µx + µy)

ρ− 1
+ µx µy < −qright

}
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and below to the boundary is the set

{
ρ(1 + µx + µy)

ρ− 1
+ µx µy > −qright

}
.

The analysis in this section focuses on µx > µy, therefore, the conclusion only

applies to the half quadrant. The conclusion of the other half quadrant will follow

naturally from the reflection µx → µy and µy → µx, that is, the mirror image with

respect to {µx = µy}.

We now prove a theorem asserting the set {qmax ∈ (qleft, qright)} is not empty.

Lemma VI.1. Γ4 and Γ3 are monotonic decreasing functions of µx and µy, respec-

tively.

Proof.

(6.36)
dΓ4

d µx
=

−ρ
(ρ− 1)2( ρ

ρ−1
− µx)2

< 0.

Similarly,

(6.37)
dΓ3

d µy
=

−ρ
(ρ− 1)2( ρ

ρ−1
− µy)2

< 0.

Theorem VI.2. {qmax ∈ (qleft, qright)} is not empty (with ρ > 1).

Proof. We consider the curves µx = Γ3 and µy = Γ4. The intersections of the sets

can be obtained by solving their roots, and the results are

{µx = Γ3} ∩ {µy = Γ4} =

{
µx = µy =

1 +
√

1 + ρ(ρ− 1)

ρ− 1

}
(6.38)

∪

{
µx = µy =

1−
√

1 + ρ(ρ− 1)

ρ− 1

}
.
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Nevertheless the second set is not in the domain of our interests, since when ρ > 1,

(6.39)
1−

√
1− ρ(ρ− 1)

ρ− 1
< 0

but µx and µy are strictly positive. Next, it is straightforward to show

(6.40)

{
µx = Γ3

}
=

{
µy =

(ρ− 2)µx − ρ
ρ− (ρ− 1)µx

}
.

Comparing the asymptotic behavior as µx →∞,

lim
µx→∞

(ρ− 2)µx − ρ
ρ− (ρ− 1)µx

=
2− ρ
ρ− 1

,(6.41)

lim
µx→∞

ρ(1 + µx)

ρ− 2 + (ρ− 1)µx
=

ρ

ρ− 1
,(6.42)

and when ρ > 1,

(6.43)
2− ρ
ρ− 1

<
ρ

ρ− 1
.

This shows the curve µx = Γ3 is below the curve µy = Γ4 as µx → ∞. On the other

hand, they have at most one intersection at

(6.44) µx = µy =
1 +

√
1 + ρ(ρ− 1)

ρ− 1
,

we deduce that for any µx > µy, the curve µx = Γ3 is below the curve µy = Γ4.

Finally it is clear that

(6.45) {qmax ∈ (qleft, qright)} =

{
µx > Γ3, µy > max

{
0,

2− ρ
ρ− 1

}}
∩ {µy < Γ4}

is not empty.

It is again more transparent to present the conclusion graphically in Fig. 6.5. The
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Figure 6.4: The landscape of the sets {qmax ∈ (qleft, qright)}—plotted in blue—and
{qmax /∈ [qleft, qright]}—plotted in red—in the µ-space, with different values
of ρ. The landscape does not involve in ξ. The black line represents the
boundaries {µx = Γ3(µy, ρ), µy > max{0, (2 − ρ)/(ρ − 1)}} and {µy =
Γ4(µx, ρ), µx > max{0, (2− ρ)/(ρ− 1)}}.
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set S3 ≡ {qmax ∈ (qleft, qright)} does not depend on the parameter ξ—instead, the set

S3 in the µ-space depends only on the value of ρ. It is clear that S3 is the intersection

of the open set in between the upper-right branches of the hyperbolas µx = Γ3 and

µy = Γ4, and the open quadrant {µx > 0, µy > 0}.

6.2.4 {$max ≥ 0} and {$max ≤ 0}

The analysis starts with two simple lemma.

Lemma VI.3. Given real-valued A,B > 0, and ζ ≤ 2. Then

(A+B)2 − 2ζAB ≥ 0.

Proof. By completing the square

(6.46) A2 + 2AB +B2 − 2ζAB ≥ A2 + 2AB +B2 − 4AB = (A−B)2 ≥ 0.

Lemma VI.4. Given real-valued A,B > 0, and ζ > 2. Then the set

{
(A,B) ∈ R+ × R+|(A+B)2 − 2ζAB > 0

}
is equal to

{
(A,B) ∈ R+ × R+|B − Aν+ > 0

}
∩
{

(A,B) ∈ R+ × R+|B − Aν− < 0
}

with

ν± = ζ − 1±
√
ζ2 − 2ζ > 0.
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Proof.

{
(A+B)2 − 2ζAB > 0

}
=

{
1 +

(
B

A

)2

+ 2(1− ζ)
A

B
> 0

}
(6.47)

=

{(
B

A
− ν+

)(
B

A
− ν−

)
> 0

}
= {B − Aν+ > 0} ∩ {B − Aν− < 0}

Next we identify the set {$max > 0}. It is elementary to show

(6.48) $max = $(qmax) =

[
ρ

ρ− 1
(1 + µx + µy) + µx µy

]2

− 4µx µy(1 + µx + µy)ξ.

We identify that

A ≡ ρ

ρ− 1
(1 + µx + µy) > 0,(6.49a)

B ≡ µx µy > 0,(6.49b)

ζ ≡ 2
ρ− 1

ρ
ξ > 0,(6.49c)

ν± = 2
ρ− 1

ρ
ξ − 1±

√(
2
ρ− 1

ρ
ξ

)2

− 4
ρ− 1

ρ
ξ(6.49d)

and then the lemmas yield

• When ζ ≤ 2, i.e., when ξ ≤ ρ/(ρ−1), $max is always non-negative. In addition,

it is straightforward to show the equality only holds on the set

(6.50)

{
ξ =

ρ

ρ− 1

}
∩
{
µx >

ρ

ρ− 1

}
∩
{
µy =

ρ(1 + µx)

(ρ− 1)µx − ρ

}
.
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• When ζ > 2, i.e., when ξ > ρ/(ρ− 1),

(6.51) {$max > 0} = {A > Bν+} ∩ {A < Bν−} .

After some computations, one can show the equalities

{
A > Bν+

}
=

{
µx ≤

ρ

ρ− 1
ν−

}
∪
({

µx >
ρ

ρ− 1
ν−

}
∩
{
µy < Γ5

})
,(6.52) {

A < Bν−

}
=

({
µx >

ρ

ρ− 1
ν+

}
∩
{
µy > Γ6

})
.(6.53)

where Γ5 and Γ6 are define respectively

Γ5(µx, ρ, ξ) ≡
ρ (1 + µx)

(ρ− 1) ν+ µx − ρ
,(6.54)

Γ6(µx, ρ, ξ) ≡
ρ (1 + µx)

(ρ− 1) ν− µx − ρ
.(6.55)

Furthermore, the boundaries {µy = Γ5} and {µy = Γ6} are monotonic decreasing

function of µx:

(6.56)
dΓ5,6

d µx
= −ρ2 1

[(ρ− 1)ν+,− µx − ρ]2
< 0.

Fig. 6.5 shows the sets in the µ-space. When ζ ≤ 2, i.e., when ξ ≤ ρ/(ρ−1), $max

is non-negative in the entire µ-space; it is zero only on the curve {µx > ρ/(ρ−1), µy =

ρ(1 + µx)/((ρ− 1)µx − ρ) when ζ = 2. As soon as ζ is greater than 2, the curve splits

into two,

{
µy >

ρ

ρ− 1
ν−, µy = Γ5

}
and

{
µy >

ρ

ρ− 1
ν+, µy = Γ6

}
(6.57a)

and $max < 0 in the open gap in between the curves, and remains positive elsewhere.

A final remark on these two curves is that they are symmetrical with respect to the
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Figure 6.5: The landscape of the sign of $max in the µ-space, with different values of
the control parameter ξ. $max is positive in the red region, and negative
in the blue. ρ = 2, and the black line represents the boundaries {µy >
ρν−/(ρ− 1), µy = Γ5} and {µy > ρν+/(ρ− 1), µy = Γ6}.
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Curve Set Definition of the boundary

C1

{
µx >

ρ
(ρ−1)ξ−1

, µy > 0, µy = Γ1

}
Γ1(µx, ρ, ξ) ≡ (ρ−1)µx ξ−ρ(1+µx)

1+µx−(ρ−1)µx ξ
(1 + µx)

C2

{
µy >

ρ
(ρ−1)ξ−1

, µx > 0, µx = Γ2

}
Γ2(µy, ρ, ξ) ≡ (ρ−1)µy ξ−ρ(1+µy)

1+µy−(ρ−1)µy ξ
(1 + µy)

C3

{
µy > max

{
0, 2−ρ

ρ−1

}
, µx > 0, µx = Γ3

}
Γ3(µy, ρ) ≡ ρ(1+µy)

ρ−2+(ρ−1)µy

C4

{
µx > max

{
0, 2−ρ

ρ−1

}
, µy > 0, µy = Γ4

}
Γ4(µx, ρ) ≡ ρ(1+µx)

ρ−2+(ρ−1)µx

C5

{
µx, µy >

ρ
ρ−1

ν−, µy = Γ5

}
Γ5(µx, ρ, ξ) ≡ ρ (1+µx)

(ρ−1) ν+ µx−ρ

C6

{
µx, µy >

ρ
ρ−1

ν+, µy = Γ6

}
Γ6(µx, ρ, ξ) ≡ ρ (1+µx)

(ρ−1) ν− µx−ρ

Table 6.1: Boundaries predicted in section 6.2.

diagonal line {µx = µy}.

6.3 Properties of the sets in the parameter space

In this section, we provide technical lemmas and theorems of the relations between

the boundaries of the sets in the parameter space. A list of important boundaries

predicted in section 6.2 are provided in Table 6.1. We will adopt the code names

defined in Table 6.1 in this section.

Lemma VI.5. When ζ > 2, i.e., ξ > ρ/(ρ− 1), C6 does not intersect with C3 and C4.

Proof. Because C4 is the mirror image of C3 and C6 is symmetric with respect to

{µx = µy}, it is sufficient to show that C6 has no intersection with C3 in the µ-space.

It is straightforward to solve the intersection of C3 and C6:

(6.58) C6 ∩ C3 =

{
µx =

2

ν− − 1

}
∩ C6.

Since ν− < 1, the intersection is not in the domain {µx > 0}.

Lemma VI.6. C6 is always above (and right to) C3 and C4.
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Proof. Asymptotically, as µx →∞,

(6.59) lim
µx→∞

Γ4(µx) =
ρ

ρ− 1
and lim

µx→∞
Γ6(µx) =

ρ

ρ− 1
ν+,

and since ν+ > 1, C6 is above C4 as µx →∞. By lemma VI.5 C6 and C4 never intersects

in the domain of interests; therefore, C6 is always above C4, and by symmetry, always

above C3.

Theorem VI.7. C6 is irrelevant to bifurcations of the system.

Proof. In the analysis, the conditions $max > 0 and qmax ∈ (qleft, qright) always come

together—the system could exhibit double roots if both the conditions are met. Since

C6 is always above C3 and C4, the subsets of {$max > 0, qmax ∈ (qleft, qright)} defined

by these two boundaries are empty. Therefore C6 is not involved in determining the

bifurcation.

Theorem VI.8. C3 and C5 have at most one intersection. In addition, C3 and C5

always intersect when ρ ≥ 2, and when ρ < 2, C3 and C5 intersect iff

ξ <
ρ2 − 2

2(ρ− 2)(ρ− 1)
.

Proof. We prove this theorem by directly solving for the intersection,

(6.60) C3 ∩ C5 =

{
µx =

2

ν+ − 1

}
∩
{
µy =

ρ(ν+ + 1)

ν+ (ρ− 2) + ρ

}

which has only one solution. The solution exists when ρ ≥ 2. If ρ < 2, the solution

is in the µ-space only when the denominator in the expression of µy is greater than
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0, and it is straightforward to show

{
ν+(ρ− 2) + ρ > 0

}
=

{
ν− >

2− ρ
ρ

}
(6.61a)

=

{
1− 2(ζ − 1)

(
2− ρ
ρ

)
+

(
2− ρ
ρ

)2

> 0

}

=

{
ξ <

ρ2 − 2

2(ρ− 2)(ρ− 1)

}
.

Corollary VI.9. C4 and C5 have at most one intersection. In addition, C4 and C5

always intersect when ρ ≥ 2, and when ρ < 2, C3 and C5 intersect iff

ξ <
ρ2 − 2

2(ρ− 2)(ρ− 1)
.

Proof. C4 is the mirror image of C3 with respect to {µx = µy}; on the other hand

C5 is symmetric about {µx = µy}. The transformations µx → µy and µy → µx to

Thm. VI.8 prove the corollary.

Theorem VI.10. C1 and C5 has at most one intersection, however, it is a double-root.

The intersection is {
µx =

ρ(1− ν−)

2(ρ− 1)ξ − 2

}
∩ C1,

The same statement applies to C2 and C5 with intersection

{
µy =

ρ(1− ν−)

2(ρ− 1)ξ − 2

}
∩ C1,

Proof. Solving for the µx at the intersection yields

(6.62) C1 ∩ C5 ⊂
{

0 = [(ρ− 1)ξ − ρ] ν+µ
2
x + ρ(1− ν+)µx + ρ

}
.
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The determinant of the quadratic equation turns out to be zero

ρ2(1− ν+)2 − 4ρ [(ρ− 1)ξ − ρ] ν+(6.63)

= ρ2

[(
ζ − 2 +

√
ζ2 − 2ζ

)2

− (2ζ − 4)
(
ζ − 2 +

√
ζ2 − 2ζ

)]
= 0.

Therefore it is a double-root, and the solution can be derived directly

(6.64) µx =
ρ(ν+ − 1)

2 [(ρ− 1)ξ − ρ] ν+

=
ρ(1− ν−)

2(ρ− 1)ξ − 2
.

With symmetry argument the statement applies to C2 and C5.

Lemma VI.11. C1 intersects {µx = µy} when ξ > (ρ + 1)/(2(ρ − 1)), and the

intersection is at µx = µy = µ∗ with

µ∗ ≡
(2ρ+ 1)− (ρ− 1)ξ +

√
(ρ− 1)2ξ2 + 2(2ρ− 1)(ρ− 1)ξ + 1

4(ρ− 1)ξ − 2(ρ+ 1)
.

The statement applies to C2.

Proof. With the symmetry argument, it is sufficient to prove the claim for C1. It is

elementary to show

C1 ∩ {µx = µy} = {µx = µy}∩(6.65) {
[(ρ+ 1)− 2(ρ− 1)ξ]µ2

x + [2ρ+ 1− (ρ− 1)ξ]µx + ρ = 0
}
,

and the (positive) solution is

(6.66) µx = µy =
(2ρ+ 1)− (ρ− 1)ξ +

√
(ρ− 1)2ξ2 + 2(2ρ− 1)(ρ− 1)ξ + 1

4(ρ− 1)ξ − 2(ρ+ 1)
.

It is positive iff ξ > (ρ+ 1)/(2(ρ− 1)).
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Lemma VI.12. When ξ > 1/(ρ−1), there is only one point on C1 at which the slope

of the tangent line is −1. In addition, the point locates at

µx =
(ρ− 1)ξ + 1

(ρ− 1)ξ − 1
.

Proof. For simplicity we define θ ≡ (ρ− 1)ξ. Some calculations yield

(6.67)
dΓ1

d µx
=

(1− θ)(θ − ρ)µ2
x + 2(θ − ρ)µx + (θ − 2ρ) + (1− θ)ρ

[1 + (1− θ)µx]2
,

and dΓ1/dµx = −1 can be simplified as

(6.68) 0 = (1− θ)µ2
x + 2µx − (1 + θ).

The solutions are

(6.69) µx =
−1± θ
1− θ

,

but because µx > 0 and θ = (ρ− 1)ξ > 1 , only the positive solution survives

(6.70) µx =
−1− θ
1− θ

=
(ρ− 1)ξ + 1

(ρ− 1)ξ − 1
.

Corollary VI.13. When ξ > 1/(ρ − 1), there is only one point on C2 at which the

slope of the tangent line is −1. In addition, the point locates at

µy =
(ρ− 1)ξ + 1

(ρ− 1)ξ − 1
.

Proof. Apply the symmetry argument (C1 and C2 with respect to µx = µy) to Thm. VI.12.
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Lemma VI.14. When ξ > 1/(ρ − 1), C1 is convex (from above) and C2 is convex

(from the right).

Proof. With the symmetry argument, it is sufficient to prove C1 is convex from above.

Rearranging the representation of Γ1 yields

(6.71) Γ1(µx, ρ) =
θ − ρ
1− θ

µx +
−θ2 + (2ρ+ 1)θ − 2ρ

(1− θ)2
+

(1− ρ)θ2 − θ + ρ

(1− θ)3

1

µx + 1
1−θ

,

therefore the sign of the second derivative of Γ1 (with respect to µx) is the same to

the sign of the prefactor

(1− ρ)θ2 − θ + ρ

(1− θ)3
.

The denominator is always less than 0 (θ > 1 when ξ > 1/(ρ−1)), and the numerator

is a quadratic polynomial of θ with negative leading coefficient. The maxima occurs

at θ = 1/(2 − 2ρ) < 0 and the value of the polynomial is equal to 0 at θ = 1.

Therefore the denominator is always negative for θ > 1, or equivalently ξ > 1/(ρ−1).

In turn, the prefactor is positive so the second derivative of Γ1 (with respect to µx)

is positive.

6.4 Bifurcation of the Landscape in Parameter Space and

Evolutionarily Stable Dispersal Rate

In this section, we combine the results from section 6.3 to investigate change of

the selection landscape in the µ-space.

Theorem VI.15. When ξ ≤ 1/(ρ− 1), the fast species always wins.

Proof. When ξ < 1/(ρ−1), $(qright) and $(qleft) are both positive (see sections 6.2.1

and 6.2.2). As a consequence, the concave function $(q) > 0 for q ∈ (qleft, qright), or

equivalently v̄(〈z〉) > 0 for 〈z〉 ∈ (−1, 1) when µx > µy. The effective flow always

drives the dynamical system to the X-dominating fixation 〈z〉 = 1.
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Symmetry shows when µy > µx, Y species always wins.

Theorem VI.16. When 1/(ρ − 1) < ξ ≤ ρ/(ρ − 1), the system could exhibit single

unstable fixed point in 〈z〉 ∈ (−1, 1) with proper (µx, µy).

Proof. When 1/(ρ − 1) < ξ ≤ ρ/(ρ − 1), the µ-space is divided by C1 and C2. The

region under C1 and to the right of C2 corresponds to $(qleft) < 0 and $(qright) > 0

(when µx > µy). Therefore, the system must exhibit a unstable fixed point in the

domain 〈z〉 ∈ (−1, 1).

Theorem VI.17. In µ-space, the selection landscapes are qualitatively distinct when

1/(ρ− 1) < ξ ≤ (ρ+ 1)/(2ρ− 2) and when (ρ+ 1)/(2ρ− 2) < ξ ≤ ρ/(ρ− 1).

Proof. By Lemma VI.11, C1 and C2 intersects only when ξ > (ρ+ 1)/(2ρ− 2).

Theorem VI.18. When ξ > (ρ + 1)/(2ρ − 2), the slow species could win the

competition with sufficient large µx and µy.

Proof. When ξ > (ρ+1)/(2ρ−2), there exists a region which is above C1 and right to

C2. In the region, $(qleft) < 1 and $(qright) < 1; therefore, the Y -dominating fixation

〈z〉 = −1 is stable.

Theorem VI.19. When ξ > ρ/(ρ− 1), there exists an evolutionarily stable dis-

persal rate

µES = µ∗ ≡
(2ρ+ 1)− (ρ− 1)ξ +

√
(ρ− 1)2ξ2 + 2(2ρ− 1)(ρ− 1)ξ + 1

4(ρ− 1)ξ − 2(ρ+ 1)
.

Proof. As soon as ξ > ρ/(ρ− 1), C1 intersects with {µy = 0} and every boundary Ci

is concave from above. The region above all the curves C1, . . . , C5 is the region that

the slow species always wins (when µx > µy). Similarly, the fast species always wins

in the region below all the curves C1, . . . , C5. As the consequence, the intersection of

C1 and C2, i.e. {µx = µy = µ∗} is evolutionarily stable.

151



Theorem VI.20. As soon as ξ > ρ/(ρ− 1), the dynamics could exhibit single stable

coexistent state and a pair of stable and unstable coexistent states (depending on the

values of ξ, µx, and µy).

Proof. Consider the asymptotic behavior of each curve:

lim
µx→∞

C1 →
{
µy =

(ρ− 1)ξ − ρ
1− (ρ− 1)ξ

µx

}
,(6.72a)

lim
µx→∞

C2 →
{
µy =

1

(ρ− 1)ξ − 1

}
,(6.72b)

lim
µx→∞

C3 →
{
µy =

ρ− 2

ρ− 1

}
,(6.72c)

lim
µx→∞

C4 →
{
µy =

ρ

ρ− 1

}
,(6.72d)

lim
µx→∞

C5 →
{
µy =

ρ

ρ− 1
ν−

}
.(6.72e)

It is clear that for a sufficiently large µx, C1 is below the other boundaries (because

it has negative slope). We have proved that C3 is below C4 in Thm. VI.2. We now

show that when ξ is close to ρ/(ρ− 1), for sufficiently large µx, C4 is above C5, which

is above C2, and the bottom one (except for C1) is C3.

When ξ & ρ/(ρ − 1), that is ζ = 2(ρ − 1)ξ/ρ & 2, we define ζ ≡ 2 + dζ with

dζ � 1. Then

(6.73) ν− = 1 + dζ −
√
dζ2 + 2dζ ≈ 1−

√
dζ,

and the asymptotes of the boundaries C2 and C5 are approximately

lim
µx→∞

C2 →
{
µy =

2

ρ(2 + dζ)− 2

}
≈
{
µy =

1

ρ− 1

(
1− ρ dζ

2ρ− 2

)}
,(6.74a)

lim
µx→∞

C5 →
{
µy =

ρ

ρ− 1

(
1−

√
dζ
)}

.(6.74b)

Therefore C2 is below C5 because ρ > 1 and dζ � 1. In the region above C2, above C3,
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and below C5 is the region where $(qright) < 0, $(qleft) < 0, qmax ∈ (qleft, qright) and

$max > 0—which is the condition that v̄(〈z〉) = 0 has two roots in 〈z〉 ∈ (−1, 1). On

the other hand, $(qright) < 0 and $(qleft) > 0 in the region below C2 and above {µx =

0}—which in turns means the system exhibits a single stable coexistent state.

Theorem VI.21. When

ξ ≥ 2ρ− 1 + 2
√
ρ2 − ρ+ 1

3(ρ− 1)

the system does not exhibit unstable coexistence.

Proof. It is elementary to show when ξ & ρ/(ρ−1), C1 and C2 have three intersections.

As ξ increases, the intersections approaches to the middle one ({µx = µy = µ∗}) and

eventually merges as one at a critical value of ξ = ξc. We solve for the critical value

ξc.

At the critical point, the slope (of C1 and C2) at {µx = µy} must be −1 by

symmetry. By Lemma VI.12, we know the slope is −1 only at µx = µ† with

(6.75) µ† ≡
(ρ− 1)ξ + 1

(ρ− 1)ξ − 1
,

and by inserting it into the equation for µ∗ (see proof of Thm.VI.11), we obtain

(6.76) [(ρ+ 1)− 2(ρ− 1)ξc]µ
2
† + [2ρ+ 1− (ρ− 1)ξc]µ† + ρ = 0

at the critical point ξ = ξc. Directly solving this equation yields the (positive) solution

(6.77) ξc =
2ρ− 1 + 2

√
ρ2 − ρ+ 1

3(ρ− 1)
.
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Theorem VI.22. When

ρ

ρ− 1
< ξ <

2ρ− 1 + 2
√
ρ2 − ρ+ 1

3(ρ− 1)

the dynamics could have a single unstable coexistent state (with proper µx and µy).

Proof. We show that the tangent line of C1 at µ∗ has slope that is less than -1 when

(6.78)
ρ

ρ− 1
< ξ <

2ρ− 1 + 2
√
ρ2 − ρ+ 1

3(ρ− 1)
.

First, as long as ξ > ρ/(ρ − 1), both µ∗ and µ† are continuous function of (ρ − 1)ξ.

From Thm. VI.20, we know that µ∗ = µ† iff ξ = ξc, so the sign of µ∗ − µ† must be

the same when ξ > ξc and when ξ < ξc. Let ξ = ρ/(ρ− 1) < ξc, we find

µ∗ =
ρ+ 1 +

√
5ρ2 − 2ρ+ 1)

2(ρ− 1)
,(6.79a)

µ† =
ρ+ 1

ρ− 1
,(6.79b)

therefore,

(6.80) sgn(µ∗ − µ†) = sgn(
√

5ρ2 − 2ρ+ 1)− ρ− 1).

Let f ≡
√

5ρ2 − 2ρ+ 1)− ρ− 1 and since ρ > 1, ρ2 > ρ,

f =
√
ρ2 + 4ρ2 − 2ρ+ 1)− ρ− 1(6.81)

>
√
ρ2 + 4ρ− 2ρ+ 1)− ρ− 1

>
√
ρ2 + 2ρ+ 1)− ρ− 1 = 0.

This proves µ∗ > µ† on the set {ξ < ξc}. On the other hand, when ξ > ξc we use
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parallel argument to show as ξ →∞,

(6.82) µ∗(ξ →∞) = 0 < 1 = µ†(ξ →∞),

which proves µ∗ < µ† on the set {ξ < ξc}.

Finally, from Lemma VI.14, we know C1 is convex. Since C1 is convex and µ∗ > µ†,

at {µx = µy = µ∗} the tangent slope must be greater than −1. By symmetry the

slope of C2 at {µx = µy = µ∗} is less than −1. As a consequence we can find a region

near {µx = µy = µ∗} that is above C2 but below C1, which corresponds to $(qleft) < 0

and $(qright) > 0—or equivalently, the dynamics support a single unstable fixed

points.

Fig. 6.6 presents the bifurcations when ρ = 2. A brief description of the bifurca-

tions is as follows:

• When ξ = Kσ2 < 1/(ρ − 1), i.e. the population scale is low or the space is

homogeneous, the fast species always wins the competition as t→∞, and the

heterogeneous many patch model is qualitatively the same as the homogeneous

many patch model discussed in Chapter III. See Fig. 6.6 (a).

• When ξ > (ρ + 1)/(2ρ − 2) and provided with proper µx and µy, the slow

dispersers could win the competition if initially their population is large enough

(that is, the model has a single unstable fixed point.) See Fig. 6.6 (b).

• When ξ > (ρ+1)/(2ρ−2) and with large enough dispersal rates of both species,

the slow species could always enjoy advantage regardless of the initial population

distribution. See Fig. 6.6 (c).

• As soon as ξ > ρ/(ρ− 1), a finite evolutionarily stable rate for dispersal µ∗ (see

Thm. VI.19 for functional dependence) emerges. In addition, the dynamics start
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(a) (b) (c)

(d) (e)

(f)

Figure 6.6: Landscape of evolutionary advantage in (µx, µy) for ρ = 2. As t→∞, the
space is separated by red: X always wins the competition, blue: Y always
wins the competition, grey: there exists a single unstable coexistence
state, green: there exists a single stable coexistence state, gold: there
exist a pair of stable/unstable states, and black (µx = µy): the system is
everywhere stable. (a) ξ = 1.0, (b) ξ = 1.5, (c) ξ = 1.7, (d) ξ = 2.08, (e)
ξ = 2.2, and (f) ξ = 6.
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to exhibit stable coexistent states and a pair of stable and unstable coexistent

states. See Fig. 6.6 (d).

• Further increasing ξ leads the evolutionarily stable dispersal rate µ∗ to decrease.

The large ξ corresponds to large population limit or large environmental vari-

ance. As ξ → ∞, µ∗ converges to 0, where the dynamics of the system ap-

proaches to the dynamics discussed in Chapter IV. See Fig. 6.6 (e-f).

Finally, we perform the transformation (6.3) to the conclusion to predict the

“landscape of selection” of the 2-patch model. Fig. 6.7 resembles the “analytical

landscape” parallel to the “numerically computed landscape” Fig. 5.8. It is clear

that Fig. 6.7 resembles the qualitative behavior of Fig. 5.8. In addition, it shows our

analysis predicts an evolutionarily stable dispersal rate accurately. We remark that in

the numerical computations of the 2-patch model, we do not observe the coexistent

state for the obvious reason: the effective diffusion creates random motion in the

center manifold, and as a consequence drives the system to the absorption states

〈z〉 = ±1.
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Figure 6.7: Bifurcation analysis of the stochastic 2-patch model for comparison to
Fig. 5.8. Color codes are the same to Fig. 6.6. ρ = 2 and Λ(= K) = 500.
(a) σ = 0.01, (b) σ = 0.05, and (c) σ = 0.10.
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CHAPTER VII

Discussion, Conclusion, and Future Work

7.1 Discussion and conclusion

Development of the physical asymptotic analysis

The two individual-based models discussed in Chapter V were originally developed

with the motivation to investigate the dynamical mechanism of the regime shift in

competitive dispersal problems reported by Kessler and Sander [25]. Soon after the

models were formulated, we realized that owing to the complexity of the dynamics,

it is beyond our ability to analytically solve the models. In fact, even in the very

special case that the space is homogeneous, i.e. the models discussed in Chapter III,

it is apparently infeasible to directly solve the master equations.

One of the key properties of the models in homogeneous environments is that they

are degenerate in the infinite population limit. That is, the rate equations describing

the population dynamics, which are a set of ordinary differential equations, have an

infinite number of solutions—as long as the spatial distribution of the population of

each species is homogeneous and the total population on each patch is equal to the

carrying capacity, the species could coexist in an arbitrary distribution. Due to the

simplicity of the solutions, such models are often neglected in the research literature.

Nevertheless, in the individual-based simulations where the population scale is
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large but finite, we observed that the degeneracy is broken and that the fast dis-

persers always enjoy an advantage—in the 2-patch model, the winning probability of

the fast dispersers is higher, and in the many patch model, the fast dispersers wins

the competition almost with probability 1. The fundamental difference between the

models describing by (deterministic) rate equations and the models with individual

setting is that the latter includes demographic stochasticity.

The observation raised a natural question: how does the demographic stochasticity

break the degeneracy of the deterministic dynamics? The answer of the question also

seemed to be the hinge to understand how the demographic stochasticity enhance the

survival of the fast species in the dispersal problems [25].

In order to proceed analytical inquiries, we performed a model reduction to develop

the competitive population dynamics in Chapter II where the competition is between

two species with different lifespans on a single patch. The objective was to reduce the

dimensionality of the dynamics while preserving the degenerate feature observed in

the dispersal problems in homogeneous environments. It is worth mentioning that the

model does have biological application [31, 32] even though our original motivation

was simply to “mimic” the dynamics of the model in Chapter III. See section 2.5 for

a more thorough discussion.

With the reduced dimensionality we were able to develop a special technique, the

“physically motivated asymptotic analysis”, to solve the problem analytically. The

analysis is developed based on the idea of separation of time scales, which is the

common feature of the models in Chapters II–V. The prediction of the physical

asymptotic analysis was verified by conventional asymptotic analysis and numerical

simulations. Compared to conventional asymptotic analysis, the physically motivated

approximate approach is much more intuitive. As a consequence it was straightfor-

ward to generalize the analysis to models with higher dimensionality, models for which

it is much more difficult to perform a conventional asymptotic analysis. In addition,
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the analysis provides insight of the dynamics: the combined effects of stochastic-

ity and nonlinearity cause a effective motion in the degenerate manifold (the center

manifold). Most importantly, the time scale of the effective motion is immediately

revealed to be proportional to the population scale of the system.

Demographic stochasticity in passive dispersal models

After introducing the model and its approximations in Chapter II, the physically

motivated asymptotic analysis was soon generalized and applied to the passive dis-

persal models with homogeneous environments in Chapter III. By combining the

physical asymptotic analysis and regular perturbation calculations, features of the

dispersal problem were discovered. The degeneracy in the dynamics is broken due

to the individual-level symmetry braking, i.e., one of the species moves faster than

the other. In the stochastic models, there exists effective motions in the degenerate

manifolds in a time scale which is again proportional to the total population (per

patch), and the effective dynamics weakly select the fast dispersers. The stochastic

models exhibit singular limits such that the fast species always enjoys the advantage

when the population scale is finite (but the time scale of the selection diverges as the

population scale goes to infinity), and in the infinite-population limit the models are

degenerate and neutral.

These discoveries in the passive dispersal models with homogeneous environments

show that demographic stochasticity is essential in the competitive population dy-

namics. The observation that the stochasticity favors the fast species in homogeneous

environments was reported by Travis [37], followed by several studies in adaptive pop-

ulation dynamics with various model settings [33, 1]. In this line of research, even

though the mechanisms of dispersion are usually more complicated, fundamentally

they are identical to passive diffusion: the migration rates of the individuals only

depend on the population density of their current habitat.
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A reasonable conjecture is that the demographic stochasticity still favors the fast

species in passive dispersal models with heterogeneous environments. On the other

hand, in the deterministic limit it has been observed and proven that the slow species

always enjoys the advantage in patchy-like systems by Gadgil [13], Comins [4], Holt

[20], and in the systems with continuous space by Hastings [19], and Dockery et

al.. [8].

This raised an interesting question: how does stochastic dynamics, favoring the

fast species, interact with the deterministic and nonlinear dynamics that favors the

slow species? What are the critical parameters that determine which species is more

likely to win the competition? The answer was partially answered by Kessler and

Sander [25], but we had not identified the dynamical mechanism of the selection.

With the derived time scale of the weak selection in the stochastic models with ho-

mogeneous environment, a reasonable step to move forward is to investigate the time

scale of the deterministic dynamics in heterogeneous environments and to compare

the two time scales. Most of the analysis developed in literature [16, 4, 19, 30, 1, 33]

are fundamentally stability analyses which do not reveal the time scale of the detail

dynamics. In order to proceed, we performed the standard asymptotic analysis in

Chapter IV, in which the time scale of the dynamics is identified to be proportional

to the inverse of the environmental variance. In addition, we discovered that the

selection is also weak when the environmental variance is small.

A time scale argument was presented in Chapter V—whichever effect has signifi-

cantly shorter time scale than the other will prevail and dominate the final dynamics.

Therefore the derived time scales, O(K) and O(σ−2), provide an objective measure

to determine which effect is “more important”: when O(Kσ2) is much greater than

unity, we should treat the models as if they are deterministic ones with heteroge-

neous environments, and when O(Kσ2) is much smaller than unity, the corresponding

stochastic models with homogeneous environments are more adequate. Furthermore,
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O(Kσ2) ≈ 1 corresponds to the critical cases where these two effects are equally

important, which correspond to the boundaries of the parameter regime shifts.

In Chapter V we applied the physically motivated asymptotic analysis to the

models with heterogeneous environments when O(Kσ2) ≈ 1. In contrast to the

tedious computations, the results turned out to be rather simple: when O(Kσ2) ≈ 1,

the overall effective drift in the slow manifold is the linear superposition of the effective

drifts in Chapter III and IV.

Demographic stochasticity and the emergence of a evolutionarily stable

dispersal rate

The combined effective drift in the slow manifold could support distinct solutions

depending on the values of the parameters. All possible scenarios were presented in

Chapter VI, in which the bifurcation analysis shows only four free parameters are

involved in predicting the fate of the dynamics

• ξ: the product of the harmonic mean population K and the environmental

variance, σ2,

• µx: the dispersal rate of species X,

• µy: the dispersal rate of species Y , and

• ρ: the birth-to-death rate ratio at low population level.

The emergence of ξ suggests a system with a larger population scale and a system with

more environmental variations could result in the same dynamical outcome as time

goes to infinity (but the time scale of the system with larger population is longer.)

The bifurcation analysis also shows that the parameter ξ plays an essential role

in the qualitative transitions of the selection landscape in (µx, µy) space. When the

parameter ξ is below a certain critical value, the dynamics behave as if the systems
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are in homogeneous environments, that is, the fast dispersers enjoy the advantage.

When ξ is higher than another critical value, the dynamics of both models exhibit

evolutionarily stable dispersal rates which depend solely on the parameters ρ and ξ.

As ξ increases to infinity, the evolutionarily stable dispersal rates (in both models) de-

crease to zero. In this limit the prediction converges to the conclusion in deterministic

models, that is, slower dispersers always win the competition.

The conclusions analytically explain many common features of general stochastic

population dynamics. First, the prediction of the hyperbolic regime shift boundary in

the (K, σ2) space explains Kessler’s and Sander’s observation in a model with distinct

geometry (a one dimensional lattice space with nearest neighbor connection) [25].

Second, with large ξ values, the predicted selection landscape in the (µx, µy) space

shows similar features to Holt’s numerical results of a model with chaotic population

dynamics on connected patches [21]. Third, the predicted existence of evolutionarily

stable dispersal rate was numerically reported by Comins et al. [4], Cadet et al. [1]

and Waddell et al. [41] in various model settings. Lastly, our model is a natural

generalization of the model in Waddell et al. [41].

Analytical predictions

In addition to explaining the known facts, our analysis yields the following pre-

dictions.

One feature of our global analysis is the prediction of the dynamics with arbi-

trary initial conditions, in contrast to the stability analysis of stochastic systems

[16, 4, 30, 1, 33]. With this approach, the analysis also identifies the niche space that

supports polymorphism (coexistence). It is clear that the coexistent state is noise-

driven, since without demographic stochasticity only the slow species endures. Nu-

merical evidence is presented in Fig. 7.1. The example in Fig. 7.1 may be biologically

unrealistic because the dramatic distinction of dispersal rates (µx = 40, µy = 0.1),
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Figure 7.1: Three sample paths of the stochastic many patch model with different
initial conditions z0 = 0.98, 0.5, and 0.1. µx = 40, µy = 0.1 ρ = 2, and
Λ(= K) = 460. The number of patches is N = 500. Solid lines are
the mean population among patches, and the grey bands represent the
mean populations plus / minus one standard deviation of the distribution.
The numerical results confirms the predicted coexistence from asymptotic
analysis.

nevertheless, the phenomenon is certainly of interest in general stochastic dynamical

system research.

Next, a common rationale reported in the literatures is that demographic stochas-

ticity creates variability that enhances the survival of fast species because the fast

ones are more capable of finding an unsaturated spot efficiently. This rationale is only

partially accurate. The weak selection is a second-order effect, and to lowest order

the fast and the slow species have the same fitness in models with passive dispersal.

The fast dispersers can indeed more efficiently spot an “oasis” caused by demographic

stochasticity, but they also leave established resident patches more frequently. Since

the demographic dynamics of both the fast and the slow species are identical, the

resulting vacancy will be filled by both fast and slow species and the final portion

of the fast species on the abandoned patch is lowered. The gain and loss of having

fast dispersal balance each other; to the lowest order, being fast or slow does not
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determine the evolutionary fate.

The analysis highlights what really matters is the curvature of the trajectories—

which is model dependent—of the nonlinear demographic dynamics near the slow

manifold. A concrete counterexample is provided by solely changing the form of

mutual competition: consider a model where the death rate

(7.1) δ

[
1− (Xi + Yi)

Ki

]
→ δ

{
1−

[
Xi + Yi
Ki

]λ}
.

When λ is sufficiently large, the curvature of the trajectories near the slow man-

ifold could reverse. Our numerical analysis of the trajectories (Fig. 7.2) predicts

that the slow dispersers have evolutionary advantage on a majority portion of the

slow manifold. The results of the continuous time Markov chain simulation in the

2-patch geometry (Fig. 7.3) supports the prediction—the slower dispersers have a

better chance to win the competition, as opposed to the claim that the demographic

stochasticity always enhances passive dispersal. That is, to accurately predict the

evolutionary outcome of the dynamics, one has to consider the detail interactions

between the demographic stochasticity and the nonlinearity near the slow manifold.

7.2 Future Work

In this section, we list prospective future work in three fields of research—population

dynamics, general mathematical biology, and applied mathematics.

Population dynamics

• Mutation—one of the essential driving forces in biology—is not considered in

these models. Mutation could be modeled as stochastic processes as well. A

general question to ask is, what happens if mutation is taken into account in

these models?
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Figure 7.2: Numerical computed effective drift in the slow manifold. µx = 5, µy = 1,
and σ = 0. We have shown when λ = 1 the dynamics always favors the
fast dispersers in Chapter III. When λ = 16, in a majority portion of
the domain (z . 0.7) the dynamics favors the species with slow dispersal
rate. Then one expects that in a head-to-head competition, the slower
dispersers prevail.
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Figure 7.3: Winning probability of faster species X measured in the continuous time
Markov chain simulations. µX = 5, µY = 1, ρ = 2, Λ = 200, σ = 0,
and λ = 16. 5 × 105 sample paths are performed. The black diagonal
line denotes the winning probability of species X in a degenerate case
µX = µY > 0. λ = 16 shows with initial conditions z . 0.8, the slower
dispersers have advantage.
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• All the models discussed in the dissertation have only two parties of competitors.

The motivation for such models originate from the objectives of early studies

[16, 19, 30] where models were developed to determine whether an infinitesimal

amount of mutants are able to invade a well-established population. In this

context, pairwise-competition models are enough. With a global picture of the

dynamics, it is now possible to utilize the analytical tools to investigate more

generic competitive population dynamics with more species.

• Combining two points above, a model with mutation in a continuous phenotyp-

ical space is adequate for the dispersal problems. The idea is that the species

should be able to mutate in an array or a continuous spectrum of migration

rates. One of the essential question is whether the competition among multiple

species (with mutation) also exhibits the evolutionarily stable dispersal rate we

predicted in Chapter VI.

• Recent interest in population ecology and evolutionary dynamics have shifted

from passive diffusion to more complicated dispersal mechanisms [6, 2]. Some

of the models exhibit degenerate “strategies” of dispersion—that is, the fitness

of several strategies are the same. How demographic stochasticity affects the

system is also an emerging field of research.

General mathematical biology

• It is suggested that the demographic stochasticity plays important role in virol-

ogy [38, 39, 23, 7, 40, 34]. Can we develop a similar tool to analytically compute

the asymptotic behaviors of the models?

• It has been recently proposed that stochasticity may be an important factor

in early cell differentiations and stem cell differentiations[42, 22]. Nevertheless,

the noise is often “put in by hand”. Can we utilize the knowledge gained in this

168



dissertation and develop better models and analytical tools for these problem?

Applied mathematics

• A theoretic inquiry into the “physically motivated asymptotic analysis” is the

next task. Even with the success to explain numerical results, we do not know

how the original stochastic processes converge to the reduce dynamics as the

scale of the fluctuation converges to 0. In addition, error estimation must be

performed. In addition, our results seem to suggest the large carrying capacity

limit (K → ∞) commutes with ordinary perturbation calculations. If one can

prove the commutativity of these limits, our asymptotic approach could be

widely applied to many stochastic dynamical systems with such separation of

time scales.

• A natural conjecture is that effective drifts should be determined only by the

curvature of the local trajectories. An operational approach may be constructed

by directly computing the local curvature along a specific direction (i.e. the

direction of the slow manifold in the phase space) from the rate equations.

This approach therefore avoid the necessity of knowing detail trajectories of

the “kick-out-flow-back” processes in the physical asymptotic analysis. If such

operational approach works, we may be able to apply it to multiple-species

problem mentioned above, where due to high dimensionality it is difficult to

describe the deterministic trajectories via perturbation theory.
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APPENDIX A

Single Species in a Power-law Distributed

Environment

In this dissertation, we performed an asymptotic calculation with respect to the

expansion of the “spatial variance” σ2 in the heterogeneous models. One of the

assumption of the expansion is the existence of every moment of environmental dis-

tribution. Nevertheless, when the environments have power-law distributions, some

of the higher moments may not exists.

In this appendix we examine a simple version of the problem: given a power-law

distributed environment, what are the resulting stationary population distributions of

a single species with dispersion in deterministic settings? We will show that, when the

power-law distribution has a small exponent, a single species with higher dispersal

rates will have higher average population. On the other hand, if the exponent is

higher than a critical value, there exists an “optimal dispersal rate”, and the species

with such dispersal rate can achieve maximum average population.

We must point out that the model only considers the stationary distribution of a

single species, so the analysis does not imply that the “optimal rate” is evolutionarily

stable. In fact, as we addressed in this dissertation, in pairwise competitions zero

dispersal has been proven to be optimal [19, 8]. The motivation to perform analysis
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in this appendix is a pure mathematical inquiry, rather than being motivated by

realistic biological phenomenon.

A.1 The problem

We consider a single species with logistic-like demographic dynamics. Let the

position be denoted by x and the carrying capacity at x ∈ Ω be denoted by k (x),

where Ω is the domain. The population u(x, t) is a function of position x and time t.

The mean-field dynamics is described by logistic-like equation of motion

∂u (x, t)

∂t
= u (x, t) [k (x)− u (x, t)]− µ [u (x, t)− 〈u〉] ,(A.1)

where µ is the dispersal rate and 〈u(x, t)〉 denotes the ‘average population over the

domain”

(A.2) 〈u〉 ≡
∫
x∈Ω

u(x)∫
x∈Ω

1

We shall denote 〈·〉 to be the spatial average of the observables as we did in the many

patch model.

We are interested in the stationary distribution u (x) which satisfies

(A.3) 0 = u (x) [k (x)− u (x)]− µ [u (x)− 〈u〉] .

Note that in this model, due to the dispersal rate µ > 0, u (x) must be nonzero unless

it is zero everywhere (that is, no population in the domain). By dividing u to (A.3)

we obtain

(A.4) u = k + µ

(
〈u〉 1

u
− 1

)
.
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After taking average on both side and using Cauchy-Schwartz inequality,

(A.5) 〈u〉 = 〈k〉+ µ

(
〈u〉
〈

1

u

〉
− 1

)
≥ 〈k〉 ,

which implies

(A.6) 〈u〉 ≥ 〈k〉 .

That is, for any distribution, it is better to disperse (and therefore increase the total

population) than to stay at home in the single-species setting. (Nevertheless in the

pairwise-competition setting, it is better to be slow in the deterministic limit [8].)

In addition, u can be implicitly solved by

(A.7) u =
k − µ

2
+

√(
k − µ

2

)2

+ µ 〈u〉.

Taking average on both sides, we obtain

(A.8) 〈u〉 =

〈
k − µ

2
+

√(
k − µ

2

)2

+ µ 〈u〉

〉
.

The key to solve this implicit equation is to find the 〈u〉 that solve this equation be-

cause 〈k〉 is given. Furthermore, the solution hinges on the term

〈√
(k − µ)2 + 4µ 〈u〉

〉
.

Note that this equation always has only one solution. Suppose

f1 (〈u〉) ≡ 〈u〉 ,(A.9)

f2 (〈u〉) ≡

〈
k − µ

2
+

√(
k − µ

2

)2

+ µ 〈u〉

〉
(A.10)

then f2 is increasing but concave in 〈u〉, and f2 (0) > f1 (0) = 0. Since f1 is linear in

〈u〉 there must exist a single positive solution for f1 (〈u〉) = f2 (〈u〉).
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Specifically, we assume the environmental distribution has a power-law tail, that is,

the frequency of the occurrence of a “patch” with carrying capacity k is proportional

1{k≥1}/k
n with indicator function 1{·}. In addition we assume the mean carrying

capacity exists, that is, n > 2. The following sections aim to evaluate the upper bound

of f2(x) ≡
〈√

(k − µ)2 + 4µx

〉
to establish an upper bound for 〈u〉 as µ→∞.

A.2 Change of variable

To find an upper bound for

(A.11) f2(x) ≡
〈√

(k − µ)2 + 4µx

〉
= (n− 1)

∞∫
1

√
(k − µ)2 + 4µx

1

kn
dk,

we consider to map the problem to a bounded set. Let y ∈ (0, 1) which satisfies

(A.12) k =
1

yα

and make a change of variable to (A.11). Then after some algebra,

(A.13) f2 = α (n− 1)

1∫
0

√
(1− yαµ)2 + 4µxy2α

ynα

y2α+1
dy.

We choose α such that nα = 2α + 1 (that is, α = 1/(n− 2)), therefore

(A.14) α (n− 1) =
n− 1

n− 2
≡ 〈k〉

and

(A.15) f2 = µ 〈k〉
1∫

0

√(
yα − 1

µ

)2

+
4x

µ
y2αdy.
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For simplicity, we define

(A.16) g (y) ≡

√(
yα − 1

µ

)2

+
4x

µ
y2α

in the following sections, we are using Lebesgue’s measure m (·). In addition, a special

value α = 1 can be integrated analytically; for the asymptotic upper bound analysis

we only consider α 6= 1.

A.3 Asymptotic upper bound

A.3.1 Set 1 S1 := {y : yα < 2/µ}

Consider the set {y : yα < 2/µ}. We will prove that the integration on such set is

bounded.

Claim A.1. One observation is that

(A.17) g (y) ≤ 1

µ

√
1 + 16

x

µ

Proof. Trivial.

Claim A.2. Integration on this set is bounded by O (1/µn−2) as µ→∞.

Proof.

µ 〈k〉
∫
S1

g (y) dy ≤ µ 〈k〉 1

µ

√
1 + 16

x

µ

∫
S1

dy(A.18)

= 〈k〉
√

1 + 16
x

µ
m (S1)

= 〈k〉
(

2

µ

)n−2(
1 +

16x

µ

) 1
2

.
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A.3.2 Set 2 S2 := {y : yα > 2/µ}

Note that

(A.19) g (y) = yα
√

1 +
4x

µ

√√√√√1 +
−2 1

µyα
+
(

1
µyα

)2

1 + 4x
µ

.

Define

(A.20) ε :=
−2 1

µyα
+
(

1
µyα

)2

1 + 4x
µ

,

notably, 0 < |ε| < 1 on S2. Then we expand g by Taylor series expansion and obtain

(A.21) g (y) = yα
√

1 +
4x

µ

[
1 +

ε

2
− ε2

8
+
ε3

16

]
+O

(
ε4
)

which suggests

(A.22) g (y) < yα
√

1 +
4x

µ

[
1 +

ε

2
− ε2

8

]

since ε3/16 < 0.

Next we compute ε/2−ε2/8. For simplicity let β ≡ 1/µyα < 1/2, γ ≡ (1 + 4x/µ)−1,

then ε = γ (−2β + β2) and

ε

2
− ε2

8
=

1

2
γ
(
−2β + β2

)
− 1

8
γ2
(
−2β + β2

)2
(A.23)

=
1

2
γ

[(
−2β + β2

)
− 1

4
γ
(
4β2 − 4β3 + β4

)]
< −βγ +

1

2
γβ2 (1− γ) +

1

2
γ2β3.
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The integration of βm with respect to y when m < 2 is

(A.24)

∫
S2

βm dy =
n− 2

n− 2−m

[
1

µm
− 1

2m

(
2

µ

)n−2
]
.

Note that when mα = 1, i.e.,m = n− 2, then

(A.25)

∫
S2

βm dy =
n− 2

µn−2
log
∣∣∣µ
2

∣∣∣
Overall, the integrand is bounded by

g (y) < yα
√

1 +
4x

µ

(
1 +

ε

2
− ε2

8

)
(A.26)

< yα
√

1 +
4x

µ

(
1− βγ +

1

2
γβ2 (1− γ) +

1

2
γ2β3

)
=

1

µ

√
1 +

4x

µ

[
1

β
− γ + 2xγ2β

1

µ
+

1

2
γ2β2

]
<

1

µ

√
1 +

4x

µ

(
1

β
− γ + 2xβ

1

µ
+

1

2
β2

)

Integrating both sides yields

f2 < 〈k〉
√

1 +
4x

µ

{
n− 2

n− 1

[
µ− 2

(
2

µ

)n−2
]

(A.27)

−γ

(
1−

(
2

µ

)n−2
)

+ 2xA1
1

µ
+

1

2
A2

}

where A1 and A2 are defined to be

A1 =

∫
S2

β dy > 0,(A.28)

A2 =

∫
S2

β2 dy > 0.(A.29)

Depending on the value of n, A2 and A3 may take different forms. For example, for
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n = 3,

A1 =
1

µ
log
∣∣∣µ
2

∣∣∣(A.30)

A2 = −3

[
1

µ2
− 1

2

(
2

µ

)]
(A.31)

and for n = 4,

A1 = 2

[
1

µ
− 1

2

(
2

µ

)n−2
]
,(A.32)

A2 =
2

µ2
log
∣∣∣µ
2

∣∣∣ .(A.33)

otherwise,

A1 =
n− 2

n− 3

[
1

µ
− 1

2

(
2

µ

)n−2
]

(A.34)

A2 =
n− 2

n− 4

[
1

µ2
− 1

22

(
2

µ

)n−2
]

(A.35)

A.4 Asymptotic solution of the upper bound as µ→∞

Recall that we are trying to solve the equation

(A.36) 〈u〉 =
〈k〉 − µ

2
+

〈√(
k − µ

2

)2

+ µ 〈u〉

〉
.

We now use the upper bound in (A.27) to substitute the f2(x) ≡
〈√

(k − µ)2 + 4µx

〉
and solve for x asymptotically as µ → ∞. Therefore, we solve for (from the upper
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bounds of (A.18) and (A.27))

x =
〈k〉 − µ

2
+
〈k〉
2

(
2

µ

)n−2(
1 +

16x

µ

)1/2

(A.37)

+
〈k〉
2

√
1 +

4x

µ

{
n− 2

n− 1

[
µ− 2

(
2

µ

)n−2
]
− γ

[
1−

(
2

µ

)n−2
]

+ 2xA1
1

µ
+

1

2
A2

}
.

By dividing µ/2 to both sides and plugging in the identity 〈k〉 = (n− 1)/(n− 2), we

obtain

2x

µ
=

1

µ

n− 1

n− 2
− 1 +

n− 1

n− 2

1

µ

(
2

µ

)n−2(
1 +

16x

µ

) 1
2

(A.38)

+
n− 1

n− 2

√
1 +

4x

µ

{
n− 2

n− 1

[
µ− 2

(
2

µ

)n−2
]
− γ

[
1−

(
2

µ

)n−2
]

+ 2xA1
1

µ
+

1

2
A2

}

Next, we take the ansatz

(A.39) x ≡ xb + xp

where xb is an order 1 number and xp ∈ o (µ0). Then

2xb + 2xp
µ

=
1

µ

n− 1

n− 2
− 1 +

n− 1

n− 2

1

µη

(
1 +

16xb + 16xp
µ

) 1
2

+
n− 1

n− 2

√
1 +

4xb + 4xp
µ

×

(A.40)

{
n− 2

n− 1

(
1− 2

µη

)[
− 1

1 + 4xb+4xp
µ

(
1

µ
− 1

µη

)
+ 2xA1

1

µ2
+

1

2µ
A2

]}
.

It is algebraically hard to solve for the equation. Therefore, we will perform

asymptotic computation to solve the equation as µ → ∞ for different n. We will

need to expand
√

1 + 4xb + 4xp/µ and 1/ (1 + 4xb + 4xp/µ) in the following sections
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√
1 +

4xb + 4xp
µ

= 1 +
2xb + 2xp

µ
− 2

x2
b + 2xbxp + x2

p

µ2
+ o

(
1

µ2

)
,(A.41a)

1

1 + 4xb+4xp
µ

= 1− 4xb + 4xp
µ

+ 16
x2
b + 2xb xp + x2

p

µ2
+ o

(
1

µ2

)
.(A.41b)

A.4.1 n > 4

In the case where n > 4, we have η > 3. Take the ansatz xp is of O (1/µ). We

expand (A.40) with (A.41), and after some computation, we arrive at the trivial O(1)

equation

(A.42) 0 = −1 + 1,

and the following O(µ−1) has

(A.43)
2xb
µ

=
1

µ

n− 1

n− 2
+

2xb
µ
− 1

µ

n− 1

n− 2
.

At the O(µ−2),

(A.44)
2xp
µ

=
2xp
µ
− 2

x2
b

µ2
− n− 1

n− 2

2xb
µ2

derives a nontrivial equation

(A.45)
2xp
µ

=

[
2xp
µ
− 2

x2
b

µ2
− 1

µ

n− 1

n− 2

2xb
µ

+
1

µ2

n− 1

n− 2
4xb

]

which implies

(A.46) xb =
n− 1

n− 2
= 〈k〉.
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To obtain the correction to the trivial mean 〈k〉, we have to go to O(µ−3). After some

computations we obtain the equation at this order

0 = 4xp
n− 1

n− 2

1

µ2
− 16

n− 1

n− 2

x2
b

µ3
+ 2xb

n− 1

n− 3

1

µ3
+

1

2

n− 1

n− 4

1

µ3
(A.47)

+
2xb
µ

4xb
n− 1

n− 2

1

µ2
− 2xp

µ

n− 1

n− 2

1

µ
− 2

x2
b

µ2

(
−n− 1

n− 2

1

µ

)
− 4

xbxp
µ2

+ 4
x3
b

µ3
.

Substituting xb by (A.46) yields

(A.48) xp =

(
(n− 1)

(n− 2)2 (n− 3)
+

1

4

n− 2

n− 4

)
1

µ

which demonstrates the solution is bounded by 1/µ as µ→∞.

A.4.2 n = 3

When n < 3, as µ→∞, numerical computations suggest 〈u〉 diverges as µ→∞.

n = 3 is the critical point for convergence to 〈k〉 at large µ. In this section we compute

the large µ behavior to the first order and compare to the numerical computations.

When n = 3 (consequently, α = 1 and 〈k〉 = 2), g(x), Eq.(A.19), can be integrated

analytically:

g(x) = 〈k〉 − µ+ 2µ

2
(

1 + 4x
µ

)
− 2

µ

4
(

1 + 4x
µ

) √
1− 2

µ
+

4x

µ
+

1

µ2
+

2

µ

1

µ

 1

4
(

1 + 4x
µ

)


(A.49)

+
2xµ

µ3
(

1 + 4x
µ

)3/2
log

∣∣∣∣∣
(

2 +
8x

µ

)
− 4

µ
+ 2

√
1 +

4x− 2

µ
+

1

µ2
+ 2

√(
1 +

4x

µ

)(
1

µ2

)∣∣∣∣∣
It is again unlikely to solve the equation analytically. Instead, we consider the large
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µ approximation, by taking the ansatz

(A.50) x = xb + xp +O
(
µ−2
)
.

and expand the square roots and logarithm in (A.49). Again we assume xp is of

O (µ−1)

The objective of the following analysis is to show that xb is not 〈k〉. To O (µ), we

have a consistent relation

(A.51) 0 = −µ+ 2µ

(
2

4

)
,

and so is to O (1),

(A.52) 2xb = 2 + µ×
[
− 1

µ
− 1

µ
+

2xb
µ

]
.

To the order O (µ−1), we obtained

(A.53) 2xp = µ

[
2xp
µ

+
1

2µ2
− 1

2µ2
(2xb − 1)2 − 1

µ

(
− 1

µ
+

2x0

µ

)
+

4x0

µ2
+ 1

]
,

which can be simplified after cancel xp out:

(A.54) 0 = x2
b − 2xb − 1,

and the (positive) solution is xb = 1 +
√

2.
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A.5 Small µ approximation

When µ is small, it is elementary to expand series expansion with respect to µn

2x = 〈k〉 − µ+ 〈k〉
1∫

0

√
(1− µyα)2 + 4xµy2αdy(A.55)

= 〈k〉 − µ+ 〈k〉
1∫

0

√
1− 2µyα + µ2y2α + 4xµy2αdy

= 〈k〉 − µ+ 〈k〉
1∫

0

(
1− µyα + 2xµy2α

)
dy +O

(
µ2
)

= 〈k〉 − µ+ 〈k〉 − µ+ 2x 〈k〉 µn− 2

n
+O

(
µ2
)
,

and to the order O (µ), and to the order O (µ),

(A.56) 2x− 2x 〈k〉 µn− 2

n
= 2 [〈k〉 − µ]

which implies

(A.57) x = 〈k〉+
µ

n(n− 2)
.

A.6 Numerical verification and discussion

The implicit equation (A.8) can be solved numerically by root-finding after the

mapping defined in A.2. We develop a set of standard root-finding algorithm to find

the root 〈u〉. Fig. A.1 shows the numerical solution in log-log scale to verify our

asymptotic analyses.

In the small µ region, the asymptotic analysis in section A.5 provides accurate

description. In the large µ region, the asymptotic computation in section A.4.1 shows

〈u〉 − 〈k〉 behaves like µ−1 when n > 4. When n = 3, the numerical solution also
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Figure A.1: The solutions of 〈u〉 − 〈k〉 from Eq.(A.8). From top to bottom,
n = 2.5, 3.0, 3.1, 3.5, 4.5, 10. Discrete markers are from directly solv-
ing Eq.(A.8) numerically. At low µ, continuous line are asymptotes,
Eq.(A.57). At large µ, continuous red line is the asymptotic behavior
〈u〉 → 1 +

√
2 from section A.4.2, and the dashed lines are the upper

bounds, (A.48), derived in section A.4.1.
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verifies our large-µ analysis: 〈u〉 = 1 +
√

2.

Recall that for our distribution 1{k≥1}/k
n, the moments of km

(A.58) 〈km〉 =

∞∫
1

km−ndk

diverge when m ≥ n−1. What is interesting about this system is that the solution of

〈u〉 has some sort of “critical transitions” at n = 4 and n = 3. When n > 4, the large-µ

behavior of 〈u〉 is ∼ µ−1, consistent with the results for a well-behaved environmental

distribution which is discussed in Appendix B. This implies when the environmental

distribution has a finite third moment, our small-σ expansion is good enough to

predict the large-µ behavior (at least for this single-species problem.) Between n = 4

and n = 3 the asymptotic (large-µ) power-law exponent, d log(〈u〉−〈k〉)/dµ, gradually

changes from −1 to 0. When n = 3, a sharp critical transition occurs—when n > 3,

limµ→∞〈u〉 = 〈k〉, but at n = 3, limµ→∞〈u〉 = 〈k〉−1 +
√

2. On the other hand, when

n < 3 numerical solution shows the exponent is positive.

In conclusion, this analysis suggests in an isolated universe with only one species,

it is more favorable to disperse and explore the “fat tail” if the environment has a

divergent second moment. Otherwise, there exists an optimal dispersal rate, indicated

by the maxima showed in Fig. A.1
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APPENDIX B

Single Species in an Environments with

Well-Behaved Distribution

In this Appendix, we briefly document our analysis of the stationary distribution

of a single species living in an environment whose every moment exists. The model

setting is the same as Appendix A. We seek for the stationary distribution u(x) which

satisfies

(B.1) 0 = u (x) [k (x)− u (x)]− µ [u (x)− 〈u〉] ,

by expanding the “small” environmental variance.

Starting with the assumption

(B.2) k(x) ≡ 〈k〉+ k̃(x)

such that |k̃| � 1∀x ∈ Ω, we take the ansatz

(B.3) u(x) ≡ u0 + u1(x) + u2(x) + . . .

where O(un) = O(|k̃n|) for n = 1, 2, . . .. A straightforward asymptotic computation
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shows

u0 = 〈k〉,(B.4)

u1 =
〈k〉
〈k〉+ µ

k̃,(B.5)

u2 =
µ

(〈k〉+ µ)3

(
〈k〉k̃2 + µ〈k̃2〉

)
,(B.6)

u3 =
µ(µ− 〈k〉)
(〈k〉+ µ)4

[
µ〈k̃3〉+ 〈k〉k̃3 + µ〈k̃2〉k̃

]
,(B.7)

Since we are interested in the “average population” in the domain, with

(B.8) 〈k̃〉 = 0

we arrive at

〈u0〉 = 〈k〉,(B.9)

〈u1〉 = 0,(B.10)

〈u2〉 =
µ

(〈k〉+ µ)2 〈k̃
2〉,(B.11)

〈u3〉 =
µ(µ− 〈k〉)
(〈k〉+ µ)3 〈k̃

3〉.(B.12)

Note that the functional form at the lowest order approximation is universal after

scaling µ by 〈k〉. The “optimal” rate of this problem, which can be obtained after

elementary calculation, is µopt = 〈k〉, and the maximum average population the

environment is able support (to the lowest order approximation) is 〈k2〉/(4〈k〉).

A final remark is that as µ → ∞, the first order correction scales 1/µ and the

prefactor is proportional to the environmental variance 〈k̃2〉. The scaling relation also

shows in Appendix A when n > 4.
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Numerical verification

We perform numerical simulations to verify our analysis. To justify the robustness

of our analysis, in addition to the one we presented in Appendix A, we develop an

alternative patch-like setting for the problem in this section.

In the simulation there are 500 patches. The carrying capacities {Ki}500
i=1 of the

patches are generated by a certain distribution. Similar to Chapter IV, we choose

(1) bounded uniform distribution, (2) bounded normal distribution, and (3) bounded

Laplace (double-exponential) distributions. Then we simulate the dynamics by inte-

gration the following equations of motion

(B.13)
dui(t)

dt
= ui(t) (Ki − ui) + µ

(
500∑
j=1

uj − ui

)
, i = 1, 2, . . . , 500,

until each patch reaches to the stationary equilibrium. Then we plot the average

population among the patches

(B.14) 〈u〉 ≡ 1

500

500∑
j=1

uj(t→∞)

versus the control parameter µ.

Note that since the final results of the asymptotic analysis only depend on the

moments, to the lowest order, distributions with identical mean and variance will

have the identical results. Such prediction is verified by large-scale simulations.

Figs. B.1 and B.2 present the results of bounded uniform distribution and the

bounded normal distribution.
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Figure B.1: Results of numerical simulations and asymptotic analysis when the envi-
ronment is normal distributed.
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Figure B.2: Results of numerical simulations and asymptotic analysis when the envi-
ronment is uniformly distributed.
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APPENDIX C

Deterministic Competitive Dynamics between

Multiple Species

In this Appendix we generalize the (deterministic) pairwise competitive dynamics

to (deterministic) competitive dynamics between multiple species with mutation. The

analysis is parallel to the analysis in Chapter IV, so we list only the essential steps

for documentation. The analysis of this Appendix will serve as a guide when we

investigate stochastic competitive dynamics between multiple species in the future.

C.1 The model

We consider an infinite number of species living on two patches. The competition

on each patch is still logistic-like, and the species differ only in their diffusion rate. In

addition, any individual can possibly mutate. The objective is to find the stationary

distribution of the population in the phenotypic space.

Specifically, assume the passive diffusion constant of the species is in some interval:

(C.1) µ ∈ D ≡ (µ1, µ2) ,
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with µ2 > µ1 > 0. We will refer such interval D to be the “phenotypic space” of the

system. Let the population density distribution of the species to be ρ (µ, t) with time

variable t, and the strength of unbiased mutation to be α. The reaction–diffusion

type of the dynamics on a patch is

(C.2)
∂ρ

∂t
= α∇2ρ+ ρ

[
1−

∫
ρ (µ′, t) dµ′

]
,

where the integration is over the phenotypic space D. In this Appendix, we will

adopt the notation that any integration symbol represents an integration over the

entire phenotypic space D. Now we put in the spatial distribution (see Chapter IV

for reference),

∂ρ1

∂t
= α∇2ρ1 + ρ1

[
1− (1 + σ)

∫
ρ1 (µ′, t) dµ′

]
+ µ (ρ2 − ρ1) ,(C.3a)

∂ρ2

∂t
= α∇2ρ2 + ρ

(0)
2

[
1− (1− σ)

∫
ρ2 (µ′, t) dµ′

]
+ µ (ρ1 − ρ2) .(C.3b)

where ρi (µ, t) is the population density of the species with dispersal rate µ on patch

i at time t.

The intuition behind the following analysis is that, in Chapter IV we gained

the knowledge that the population of the slower dispersers gradually increases on a

time scale O(K). It is a natural conjecture that the slower species still enjoy the

advantage in the multiple-species competition, and as t → ∞, the slowest species

dominates the entire population. Mathematically it means there exists a slow drift

in the phenotypic space. On the other hand, the mutation forbids the possibility of

a single species dominating the entire space. Since the effect of mutation is modeled

as a “diffusion” in the phenotypic space, the entire dynamics should have a certain

“fluctuation-dissipation” balance in the phenotypic space when the strengths of the

effects are comparable. We will show in section

191



C.1.1 Asymptotic analysis when α = 0

We begin with the assumption µ = 0. That is, we consider the problem without

any mutation. In this case, the dynamics can be described by

∂ρ
(0)
1

∂t
= ρ

(0)
1

[
1− (1 + σ)

∫
ρ

(0)
1 (µ′, t) dµ′

]
+ µ

(
ρ

(0)
2 − ρ

(0)
1

)
,(C.4)

∂ρ
(0)
2

∂t
= ρ

(0)
2

[
1− (1− σ)

∫
ρ

(0)
2 (µ′, t) dµ′

]
+ µ

(
ρ

(0)
1 − ρ

(0)
2

)
.(C.5)

Following the analysis in Chapter IV, we take the ansatz

ρ
(0)
1 := ρ

(0)
1 + σρ

(1)
1 (t) + σ2ρ

(2)
1 (t) + ...

ρ
(0)
2 := ρ

(0)
2 + σρ

(1)
2 (t) + σ2ρ

(2)
2 (t) + ...

and then we expand the equations of motion with respect to “small” σ.

Now we prove the following theorem which is parallel to Thm. III.1.

Theorem C.1. To O (1), the stationary solution is ρ
(0)
1 = ρ

(0)
2 .

Proof. Prove by contradiction. At this order O (1), we have

0 = ρ
(0)
1

[
1−

∫
ρ

(0)
1 (µ′, t) dµ′

]
+ µ

(
ρ

(0)
2 − ρ

(0)
1

)
,(C.6)

0 = ρ
(0)
2

[
1−

∫
ρ

(0)
2 (µ′, t) dµ′

]
+ µ

(
ρ

(0)
1 − ρ

(0)
2

)
.(C.7)

Suppose for any µ ∈ D, ρ
(0)
1 (µ) > ρ

(0)
2 (µ). This implies

∫
ρ

(0)
1 (µ′, t) dµ′ < 1,(C.8a) ∫
ρ

(0)
2 (µ′, t) dµ′ > 1.(C.8b)

Furthermore, by Eq.(C.6), ρ
(0)
1 > ρ

(0)
2 for every µ ∈ D . Since ∀µ ∈ D, ρ

(0)
1 (µ) >

ρ
(0)
2 (µ), we have a contradiction to the inequalities (C.8).
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Therefore, at order O (1), we have the trivial constraint:

(C.9) 0 = ρ
(0)
1

[
1−

∫
ρ

(0)
1 (µ′, t) dµ′

]
⇒
∫
ρ

(0)
1 (µ′, t) dµ′ = 1.

That is, the total population on each patch is the harmonic mean carrying capacity,

as expected.

Moving on to order O (σ), we have the equations of motion

σρ̇
(1)
1 =

(
ρ

(0)
1 + σρ

(1)
1

)[
1− (1 + σ)

∫ (
ρ

(0)
1 + σρ1

1

)]
+ σµ

(
ρ

(1)
2 − ρ

(1)
1

)
,(C.10)

σρ̇
(1)
2 =

(
ρ

(0)
2 + σρ

(1)
2

)[
1− (1− σ)

∫ (
ρ

(0)
2 + σρ

(1)
2

)]
+ σµ

(
ρ

(1)
1 − ρ

(1)
2

)
.(C.11)

We plug in
∫
ρ

(0)
1 =

∫
ρ

(0)
2 = 1 to obtain

σρ̇
(1)
1 =

(
ρ

(0)
1 + σρ

(1)
1

)[
1− (1 + σ)

(
1 + σ

∫
ρ

(1)
1

)]
+ σµ

(
ρ

(1)
2 − ρ

(1)
1

)
,(C.12)

σρ̇
(1)
2 =

(
ρ

(0)
2 + σρ

(1)
2

)[
1− (1− σ)

(
1 + σ

∫
ρ

(1)
2

)]
+ σµ

(
ρ

(1)
1 − ρ

(1)
2

)
.(C.13)

To order O (σ),

ρ̇
(1)
1 = −ρ(0)

1

(
1 +

∫
ρ

(1)
1

)
+ µ

(
ρ

(1)
2 − ρ

(1)
1

)
,(C.14)

ρ̇
(1)
2 = −ρ(0)

2

(
−1 +

∫
ρ

(1)
2

)
+ µ

(
ρ

(1)
1 − ρ

(1)
2

)
.(C.15)

Define the total population density (among patches) at this order to be ρ(1) (µ, t) ≡

ρ
(1)
1 (µ, t) + ρ

(1)
2 (µ, t), and by Thm. C.1, we define ρ0 = ρ

(0)
1 = ρ

(0)
2 . Then

(C.16) ρ̇(1) (µ, t) = −ρ0 (µ)

∫
ρ (µ′, t) dµ′.

If we integrate over the phenotypic space to get the total population of all the species
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Θ(1) (t) ≡
∫
ρ(1) (µ′, t) dµ′, then Θ(1) (t) has simple dynamics

(C.17) Θ̇(1) = −Θ(1).

Clearly the solution is

(C.18) Θ(1) (t) = e−tΘ(1) (0) ,

and the dynamics of ρ(1) is

(C.19) ρ̇(1) (µ, t) = −e−t × ρ0 (µ)×Θ(1) (0) .

The intuition behind the equation above is clear: at this order, the total populations of

the system exponentially decays to 0. For each species, the fraction of its population to

the total population is determined by the initial distribution ρ0 (µ). The convergence

rate to 0 is uniformly e−t among species. With the initial condition ρ(1) (µ, t = 0) =

ρ(1) (µ), then the solution of (C.19) is

(C.20) ρ(1) (µ, t) = ρ0 (µ)×Θ(1) (0)× e−t +
(
ρ(1) (µ, 0)− ρ0 (µ)×Θ(1) (0)

)
,

which implies as t→∞ the population density of such species is equal to

(C.21) ρ (µ) = ρ(1) (µ, 0)− ρ0 (µ)×Θ(1) (0)

with the constraint of Θ(1) (0)

(C.22) Θ(1) (0) =

∫
ρ(1) (µ′, 0) dµ′.

On the other hand, the dynamics of the difference of the population densities
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δ(1) := ρ
(1)
1 − ρ

(1)
2 are

(C.23) δ̇1 = −ρ(0)
1

(
2 +

∫
δ1

)
− 2µδ(1).

The ”fixed-point distribution” δ1
∗ satisfies:

(C.24) 0 = −ρ
(0)
1

2µ

(
2 +

∫
δ(1)
∗

)
− δ(1)

∗ .

After integrating over D, and defining

Φ ≡
∫
ρ

(0)
1 (µ′)

2µ′
dµ′,(C.25)

∆(1)
∗ ≡

∫
δ(1)
∗ ,(C.26)

we have

(C.27) 0 = −Φ
[
2 + ∆(1)

∗
]
−∆(1)

∗ ,

as a consequent,

(C.28) ∆(1)
∗ =

−2Φ

1 + Φ
.

For the distribution of a single species, we have

(C.29) δ(1)
∗ (µ) =

−ρ0 (µ)

µ

(
1

1 + Φ

)

We ignore the transient dynamics. The intuition behind this is that the transient

parts are not involved in determining the effective drifts, as depicted in Chapter IV.

To sum up, at O (σ1), we have the difference of the population density among
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patches will converged to a metastable distribution

(C.30) δ(1) (µ, t→∞) =
−ρ0 (µ)

µ

(
1

1 + Φ

)
,

and we will assume to this order the total population density among patches is 0 (see

Chapter V):

(C.31) ρ(1) (µ, t→∞) = 0.

Therefore, we arrive at the metastable distribution ρ
(1)
i∗

ρ
(1)
1∗ (µ, t→∞) = −1

2

ρ0 (µ)

µ

(
1

1 + Φ

)
,(C.32)

ρ
(1)
2∗ (µ, t→∞) =

1

2

ρ0 (µ)

µ

(
1

1 + Φ

)
.(C.33)

Next, consider O (σ2). The dynamics are

ρ̇
(2)
1 = −ρ0

(∫
ρ

(1)
1 +

∫
ρ

(2)
1

)
− ρ(1)

1

(
1 +

∫
ρ

(1)
1

)
+ µ

(
ρ

(2)
2 − ρ

(2)
1

)
,(C.34)

ρ̇
(2)
2 = −ρ0

(
−
∫
ρ

(1)
2 +

∫
ρ

(2)
2

)
− ρ(1)

2

(
−1 +

∫
ρ

(1)
2

)
+ µ

(
ρ

(1)
2 − ρ

(2)
1

)
.(C.35)

The total population density among patches at this order, defined to be ρ(2) ≡ ρ
(2)
1 +

ρ
(2)
2 , has equation of motion

(C.36) ρ̇(2) = −ρ0

(∫
δ(1) +

∫
σ(2)

)
− δ(1) −

[
ρ

(1)
1

∫
ρ

(1)
1 + ρ

(1)
2

∫
ρ

(1)
2

]
.

Parallel computations to the ones in Chapter IV yield

(C.37) Θ̇(2) = −∆(1) −Θ(2) −∆(1) −

[(∫
ρ

(1)
1

)2

+

(∫
ρ

(1)
2

)2
]
.
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The stationary solution is

Θ(2)
∗ = −2∆(1)

∗ −

[(∫
ρ

(1)
1∗

)2

+

(∫
ρ

(1)
2∗

)2
]

As a consequence, as t → ∞, the total population density of species with dispersal

rate µ changes with a rate

(C.38)

−ρ0

{
−∆(1)

∗ −

[(∫
ρ

(1)
1∗

)2

+

(∫
ρ

(1)
2∗

)2
]}
− δ1

∗ −
(
ρ

(1)
1∗

∫
ρ

(1)
1∗ + ρ

(1)
2∗

∫
ρ

(1)
2∗

)
.

Observe that

∫
ρ

(1)
1∗ =

∫
−1

2

ρ0

µ

(
1

1 + Φ

)
= − Φ

1 + Φ
,(C.39) ∫

ρ
(1)
2∗ =

∫
1

2

ρ0

µ

(
1

1 + Φ

)
=

Φ

1 + Φ
,(C.40)

which implies

(C.41)

[(∫
ρ

(1)
1

)2

+

(∫
ρ

(1)
2

)2
]

= 2
Φ2

(1 + Φ)2 ,

and straightforward computations establish the following “effective dynamics”

(C.42) ρ̇(2) =
ρ

(0)
1

(1 + Φ)2

(
1

µ
− 2Φ

)
.

This analysis provides us a detail picture, similar to the picture in Chapter IV.

Starting from any initial condition, in a short amount of time, the “distribution” of

the species converges to a metastable distribution—on patch 1 and 2, the population

densities of the species with dispersal rate µ is equal to ρ0 − ρ
(1)
1∗ and ρ0 + ρ

(1)
1∗ re-

spectively. The total population on each patch of such metastable distributions fail

to match the carrying capacities, and consequentially they produce a higher order

197



(O(σ2)) nonlinear motion, which is effectively described by Eq.(C.42).

C.2 Effective dynamics, dynamical interpretation, and nu-

merical simulations

The analysis in section C.1.1 shows that the phenotypic difference in the propen-

sity to relocate in the space results in a effective drift that drives the slower species

to increase their population. The critical measure is the weighted harmonic mean, 2Φ

in (C.25), of the dispersal rates; that is, if a species is moving slower than 1/(2Φ),

its population increases.

Most importantly, the time scale of the dynamics reveals in the analysis; similar

to the problem in Chapter IV, the time scale is O(σ−2).

The mutation, on the other hand, is modeled by pure diffusion in the phenotypic

space D. It is well-known that the such process has a time scale that is proportional to

its diffusivity, i.e., α−1. An time-scale argument similar to the one we made in Chapter

V can be made as follows. WhenO(σ2/α)� 1, the distribution is rather singular: the

population will be dominated by the species with the slowest rate. On the other hand,

when O(σ2/α)� 1 the distribution in the phenotypic space is uniform due to strong

effect of mutation. Only when O(σ2/α) ≈ 1, we have a nontrivial interaction between

the “selection by nonlinear dynamics” and the “mutation”. In such scenario, we will

have a nontrivial distribution with finite width determined by the “fluctuation”—the

mutation—and the “dissipation”—the effective drift due to nonlinear dynamics—in

the phenotypic space. This reminds us the famous fluctuation–dissipation theorem

in statistical mechanics.

Finally, the “effective” dynamics in this scenario can be formulated as

(C.43)
∂ρ(µ, t)

∂t
= ∇2ρ(µ, t) + σ2 ρ(µ, t)

(1 + Φ)2

(
1

µ
− 2Φ

)
,
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Figure C.1: Numerical simulation of a system with µ1 = 1 and µ2 = 3. (a) The
stationary solution obtained by direct simulation of Eqs.(C.3). The blue
distribution demonstrates when α = 10−4 and σ = 0.1, the effective
drift due to nonlinear demographic dynamics dominates the dynamics.
The distribution is therefore sharply peaked at the slowest species µ =
µ1 = 1. The red distribution demonstrates when α = 1 and σ = 0.1,
mutation dominates and we observe a rather uniform distribution. In
(b-d), α/σ2 is 0.5, 1, and 1.5 respectively. The dotted lines are the
stationary distributions which satisfy the effective dynamics (C.44), and
the discrete markers are from direct simulation of Eqs.(C.3). The circles
and the squares, represent σ = 0.05 and σ = 0.1 respectively.

and the stationary distribution ρ∗(µ), which satisfies

(C.44) 0 = ∇2ρ∗(µ) + σ2 ρ∗(µ)

(1 + Φ)2

(
1

µ
− 2Φ

)
,

can be obtained by numerical solution (or alternatively, standard asymptotic analy-

sis.) Fig. C.1 shows numerically obtained distributions from simulating the dynamics,

Eqs.(C.3), and the solutions of Eq.(C.44) agree, and the results verify our dynamical

interpretations.
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