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CHAPTER I

Introduction and Background

1.1 Introduction

Let d be a positive, non-square integer. It is a well known and classical result in

elementary number theory that the Pell equation,

x2 − dy2 = 1

has infinitely many solutions x, y ∈ Z. In the 1760’s, Euler [8] discovered several

identities for the Pell equation. Among them, he proved that if d = n2 + 1 for some

integer n then

(2n2 + 1)2 − (n2 + 1)(2n)2 = 1.

Such an identity has the potential for applications to the problem of computing class

numbers of real quadratic number fields. If, for example, we know that

(2n2 + 1) + (2n)
√
n2 + 1

is a fundamental unit in Q(
√
n2 + 1) then we may be able to use Dirichlet’s class num-

ber formula to compute class numbers of real quadratic fields of the form Q(
√
n2 + 1).

For more on the connection between Pell identities and class numbers we refer the

reader to [16].
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Motivated by Euler’s identity, we consider the following generalization of the Pell

equation.

Question I.1. Let R be an integral domain of characteristic different from 2. For

which non-constant, non-square d(x) ∈ R[x] does the Pell equation

f(x)2 − d(x)g(x)2 = 1(1.1)

have solutions f(x), g(x) ∈ R[x] with g(x) non-zero?

Remark I.2. We will call a solution to (1.1) with g(x) non-zero a non-trivial solution.

The way to address Question I.1 is to first develop an understanding of when

there exist non-trivial solutions in K[x] where K is the fraction field of R. Once one

knows how to find all of the solutions in K[x], there is hope of picking out those

solutions which have coefficients in R.

The theory of polynomial Pell equations over C was developed in the 1800’s by

Abel [1], Chebyshev [5] and others because of the connection of Equation 1.1 to

certain integrals. In particular, they were interested in understanding for which

d(x) ∈ C[x] do there exist polynomials F (x) ∈ C[x] such that the integral∫
F (x)√
d(x)

dx

can be expressed in terms of the logarithm of a function of
√
d(x). It was proved (for

a modern account see [2]) that such d(x) are precisely those for which Equation 1.1

has a non-trivial solution. Furthermore, F (x) must equal
f ′(x)

g(x)
where f(x) and g(x)

give a non-trivial solution to (1.1). Here, if we let u = f(x) +
√
d(x)g(x) then we

have ∫
F (x)√
d(x)

dx =

∫
du

u
.



3

In this thesis we will study Question I.1 over Z and Q in the case that d(x) is a

quartic polynomial. The quadratic case was worked on previously in [16, 18, 20, 21],

and worked out completely for monic, quadratic d(x) by Webb and Yokota in [31].

When d(x) is square-free and has degree at least 4, equation 1.1 over fields K

becomes interesting due to its connection with arithmetic geometry. Namely, (1.1)

has non-trivial solutions if and only if a certain explicit K-rational point on a certain

abelian variety is a torsion point. Furthermore, if (1.1) has a non-trivial solution

then the continued fraction of
√
d(x), when viewed as a Laurent series in K((x−1)),

will be periodic of period related to the torsion order of said point.

In Chapter II we use the theory of elliptic curves to work out a complete list of

all quartic, square-free polynomials d(x) ∈ Q[x] for which (1.1) has a non-trivial

solution in Q[x]. Using our classification, we are able to settle several open problems

about polynomial Pell equations for quartic polynomials.

The first conjecture pertains to the period of the continued fraction of
√
d(x)

where d(x) is a quartic, square-free polynomial in Q[x]. In 1962 Schinzel [23] con-

cluded that if d(x) ∈ Q[x] is quartic and square-free, and (1.1) has a non-trivial

solution, then the period of the continued fraction of
√
d(x) has value among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18, 22}.(1.2)

After the calculation of the list in (1.2), Schinzel questions whether periods 5, 7, 9

and 11 actually occur for any monic, quartic, square-free polynomials in Q[x]. In

Chapter III we answer Schinzel’s question for arbitrary quartic, square-free polyno-

mials in Q[x]. We prove

Theorem I.3. There are no quartic, square-free polynomials d(x) ∈ Q[x] for which

the continued fraction of
√
d(x) is periodic of period 9 or 11. Furthermore, we can
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find infinitely many quartic, square-free polynomials d(x) ∈ Q[x] for which the period

is 5 or 7. The period 7 case can only occur with d(x) non-monic.

Remark I.4. Moreover, for each possible period n we develop a complete list of all

quartic, square-free polynomials d(x) ∈ Q[x] for which the continued fraction of√
d(x) is periodic of period n.

In Chapter V we discuss what happens if we replace Q by a number field or allow

d(x) to have degree larger than 4. In the case of quartic polynomials over quadratic

number fields we are able to determine a list of possible periods which is analogous

to Schinzel’s list. We get

Theorem I.5. Let K be a quadratic number field and let d(x) ∈ K[x] be a quartic,

square-free polynomial for which the continued fraction of
√
d(x) is periodic. Then

the period is among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 22, 26, 30, 34}.

Furthermore, there do exist quartic polynomials having periods 9 and 11 over quadratic

number fields.

Existence of periods 13, 15 and 17 are still open, although we are able to give ideas

on how one might be able to produce examples.

The formulas obtained in Chapter II also allow us to tackle the Pell equation (1.1)

in the case R = Z. In this case, Webb and Yokota [29, 30, 31, 32, 33] have been

working towards an understanding of which monic, quartic polynomials d(x) ∈ Z[x]

have a non-trivial solution to (1.1) with f(x) and g(x) in Z[x]. In their work, Webb

and Yokota answer this question in the specific case that the period of the continued

fraction of
√
d(x) is either 1 or 2. They conjecture that for higher periods there

should never be a non-trivial solution. In Chapter IV we disprove their conjecture
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and completely answer Question I.1 for all monic, quartic, square-free polynomials

in Z[x]. We prove

Theorem I.6. Aside from Webb and Yokota’s list, there exist precisely two infinite

families of monic, quartic, square-free polynomials d(x) ∈ Z[x] for which the Pell

equation has a non-trivial solution in Z[x]. These polynomials are

x4 + (4c+ 2)x3 + (6c2 + 6c− 7)x2 + (4c3 + 6c2− 14c− 12)x+ c4 + 2c3− 7c2− 12c+ 6,

x4 + (4c+ 2)x3 + (6c2 + 6c− 7)x2 + (4c3 + 6c2− 14c− 4)x+ c4 + 2c3− 7c2− 4c+ 10.

where c ∈ Z. Both of these families have the property that the continued fraction of

their square root has period 6.

1.2 Background

Let K be a field of characteristic different from 2. Let d(x) ∈ K[x] be a non-

constant, square-free polynomial. We are concerned with studying the following

question about the polynomial analogue of the Pell equation.

Question I.7. Does the equation

f(x)2 − d(x)g(x)2 = c(1.3)

have a solution with f(x), g(x) in K[x] and c ∈ K× where g(x) is non-zero?

To answer Question I.7 we may make a few observations and simplifications. First,

observe that in order for (1.3) to have a non-trivial solution, necessarily we must

have that d(x) has even degree and leading coefficient in (K×)2. By absorbing the

leading coefficient of d(x) into g(x) we may, and often will, assume that d(x) is monic.

Observe also that for any a ∈ K, the right hand side of equation (1.3) is invariant

under the translation x 7→ x+ a. If

d(x) = xn + an−1x
n−1 + . . .+ a1x+ a0
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then the translation x 7→ x− an−1

n
allows us to assume without loss of generality that

an−1 is zero. We call a polynomial of degree n centered if the coefficient of xn−1 is

zero. Again, we may, and often will, assume that d(x) is centered.

The following lemma guarantees that there is no loss of generality in replacing

the right hand side of (1.3) with 1.

Lemma I.8. There exists a solution f(x), g(x), c to (1.3) if and only if there is a

solution f̃(x), g̃(x), 1.

Proof. One implication is clear. For the other one, suppose there exist c ∈ K× and

polynomials f(x) and g(x) in K[x] for which

f(x)2 − d(x)g(x)2 = c.

Set

f̃(x) =
1

c
· (f(x)2 + d(x)g(x)2)

and

g̃(x) =
1

c
· 2f(x)g(x).

It is then a simple matter to check that in fact

f̃(x)2 − d(x)g̃(x)2 = 1.

In view of Lemma I.8, we will restrict ourselves to looking for monic, centered,

square-free, even degree polynomials d(x) ∈ K[x] for which

f(x)2 − d(x)g(x)2 = 1(1.4)

has a solution with g(x) non-zero.

There are two main approaches to detecting and finding solutions to (1.4). The

first approach involves the use of continued fractions. We give a brief review of
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continued fractions in Laurent series fields. We can expand elements of K((x−1))

into continued fractions, which enjoy many of the formal properties possessed by

continued fractions in R. For

f(x) =
∑
n≤M

bnx
n ∈ K((x−1)),

we define

bf(x)c =
M∑
n=0

bnx
n ∈ K[x].

We can then form the continued fraction of f(x) as follows. Set a0(x) = bf(x)c and

α0(x) = 1
f(x)−a0(x) . For i ≥ 1 we recursively define

ai(x) = bαi−1(x)c

and

αi(x) =
1

αi−1(x)− ai(x)
.

This yields the continued fraction expansion

f(x) = [a0(x); a1(x), a2(x), . . .]

where

[a0(x); a1(x), a2(x), . . .] := a0(x) +
1

a1(x) +
1

a2(x) +
1

. . .

In the above definition for the continued fraction, the αi(x)’s are said to be the

complete quotients of f(x) and the ai(x)’s are said to be the partial quotients

of f(x). The truncations of the above continued fraction,

pi(x)

qi(x)
= [a0(x); a1(x) . . . , ai(x)]
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are said to be the convergents of f(x). Many of the properties enjoyed by continued

fractions in Laurent series fields can be found in [2, 3, 19, 27]. In the thesis we will

recall definitions and theorems about continued fractions as needed.

1.3 Continued Fractions

The connection between studying the equation

f(x)2 − d(x)g(x)2 = 1(1.5)

and studying continued fractions comes from the following proposition essentially

due to Abel. For a modern proof, see Adams and Razar [2]

Proposition I.9. Let K be a field of characteristic different from 2 and let d(x) ∈

K[x] be a monic, square-free polynomial of even degree. The equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution if and only the continued fraction of
√
d(x) is periodic.

Moreover, if the continued fraction of
√
d(x) is periodic it is necessarily of the form

√
d(x) = [a0(x); a1(x), . . . , an−1(x), 2a0(x)].

Unlike the integer version of the Pell equation, non-trivial solutions of (1.5) need

not exist. When analyzing the continued fraction of
√
d(x) one proves that for all

i ≥ 0 there exist polynomials Ai(x) and Bi(x) in K[x] such that

αi(x) =
Ai(x) +

√
d(x)

Bi(x)
.

Moreover, one proves that the degrees of all Ai(x) and Bi(x) are uniformly bounded

in terms of the degree of d(x). In the case that n ∈ Z and n > 1 is square-free,

this type of argument is enough to guarantee that the continued fraction of
√
n is
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periodic and hence that the integer Pell equation always has a non-trivial solution.

In our setting, if K has infinite cardinality then it may very well be the case that

the continued fraction of
√
d(x) is not periodic.

It is proved in [24] that if p(x) and q(x) are polynomials in K[x], with q(x) non-

zero, such that

p(x)2 − d(x)q(x)2 ∈ K×

then necessarily gcd(p(x), q(x)) = 1 and
p(x)

q(x)
is a convergent of

√
d(x). Thus to

actually produce solutions to (1.5), we only need to find convergents
pi(x)

qi(x)
of
√
d(x)

for which

pi(x)2 − d(x)qi(x)2 = c2.

If r is the period of the continued fraction of
√
d(x), then such an i is guaranteed

to exist with i < r so that we only need to check finitely many convergents. Before

moving on, we make a quick remark on the problem of determining whether or

not the continued fraction of
√
d(x) is periodic. As we have seen above, if K is

a finite field then the continued fraction of
√
d(x) is always periodic. For infinite

fields, the question is much more subtle. If K is a number field then Yu [34] gives a

deterministic algorithm for deciding whether or not the continued fraction of
√
d(x)

is periodic. His approach involves reducing d(x) modulo several primes for which

the reduction d̃(x) stays square-free. Piecing together information about the periods

of the continued fractions of

√
d̃(x) over the respective finite fields allows one to

determine whether the continued fraction of
√
d(x) is periodic. This is not relevant

to the thesis, but the interested reader is encouraged to look at Yu’s paper.
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1.4 Geometry

The second approach to determining whether or not

f(x)2 − d(x)g(x)2 = 1(1.6)

has non-trivial solutions involves the geometry of abelian varieties. Consider the

function field K(x, y) where y2 = d(x). Notice that by Lemma I.8, a non-trivial so-

lution to (1.6) exists precisely when the subring K[x, y] contains non-constant units.

Because K(x, y) is the function field of the curve C defined by y2 = d(x), it is reason-

able to guess that the problem of determining whether non-trivial solutions exist to

(1.6) might be translated into a geometric question about C. To translate this prob-

lem to geometry we will now assume, and our assumption will remain throughout,

that deg(d(x)) > 2.

Because d(x) is monic, square-free and has even degree, the curve C is smooth

everywhere except at∞, and the normalization of C, denoted by C̃, has two smooth

K-points P and Q lying above ∞. Let γ be the geometric genus of C̃. Then

γ =
deg(d(x))

2
− 1

and the Jacobian of C̃,

J := Pic0(C̃),

is an abelian variety of dimension γ. Consider the embedding φ : C̃ ↪→ J defined by

R 7→ [R−Q]. With this setup we get the following nice geometric interpretation for

investigating solutions of (1.6).

Lemma I.10. Equation (1.6) has a non-trivial solution in K[x] if and only if φ(P )

is a torsion point on J .
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Proof. If φ(P ) is a torsion point on J then there exists a positive integer n such that

n[P −Q] = [0]

in Pic0(C̃). Thus there exists u ∈ K(x, y) for which

div(u) = nP − nQ.

Because the the Galois group Gal(K(x, y)/K(x)) acts transitively on the places above

∞, we have that the conjugation automorphism on K(x, y) interchanges P and Q,

and so the divisor of u is

div(u) = nQ− nP.

write u = f(x)+g(x)y with f(x), g(x) ∈ K(x). Then because u and u = f(x)−g(x)y

have poles only at the infinite places, the same is true for

2f(x) = u+ u

and

2g(x)y = u− u.

Thus f(x), g(x) ∈ K[x] are polynomials, and u ∈ K[x, y]. Furthermore,

div(u · u) = 0

so

u · u = f(x)2 − d(x)g(x)2 ∈ K×

and by Lemma I.8 we get a solution to the Pell equation.

Conversely, if f(x), g(x) give a solution to

f(x)2 − d(x)g(x)2 = 1
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then u = f(x) + d(x)y is a unit in K[x, y] and u · u = 1. This immediately implies

that u and u cannot have zeros at the finite places of K(x, y). In view of u = 1
u

we

see that u cannot have any poles at the finite places either. Thus there exist integers

r, s such that

div(u) = rP − sQ.

Since this is a principal divisor, we must have r = s and hence φ(P ) is a torsion

point.

The above argument can be modified to prove even more. Suppose that there exist

non-trivial units in K[x, y], that is there exists u ∈ K[x, y]\K such that N(u) :=

u · u ∈ K×. By Lemma I.8 then there exists a unit ũ ∈ K[x, y] with N(u) = 1.

Among units u ∈ K[x, y] with N(u) = 1, let u0 be such that the degree of u0 is

minimal. That is, the divisor (u0) = nP −nQ is such that n is positive and minimal.

We then get the complete description of norm 1 elements in K[x, y] as follows.

Proposition I.11. Let v ∈ K[x, y]\K. Then N(v) = 1 if and only if v = ±uk0 for

some k ∈ Z.

Proof. Because the norm is multiplicative, it’s clear that N(±uk0) = 1 for k ∈ Z. For

the converse, suppose v ∈ K[x, y]\K is such that N(v) = 1. Then the divisor of v is

of the form (v) = mP −mQ for some integer m. Replacing v with v = 1
v

if necessary,

we may assume without loss of generality that m > 0. By our choice of u0, we know

that m ≥ n so there exists an integer k ≥ 1 such that nk ≤ m < n(k + 1). Consider

w =
v

uk0
= vu0

k ∈ K[x, y].

We have that the divisor of w is

(w) = (v)− (uk0) = (m− nk)P − (m− nk)Q.
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Because 0 ≤ m−nk < n by our choice of k, we necessarily have that w ∈ K×. Since

the norm is multiplicative, we also get that

1 = N(w) = w2

so in fact w = ±1 and the proof is complete.

The construction of J and φ(P ) is of the utmost importance in studying questions

regarding (1.6). Since we will refer to this construction often, we say that the pair

(J, φ(P )) corresponds to d(x). In our construction, we chose Q to be mapped to

the identity of J , and looked at the image of P . Of course geometrically the points P

and Q are indistinguishable since the conjugation involution of K(x, y) interchanges

P and Q. Thus we could have used either P or Q as the origin as long as we study

the image of the other point.

Heuristically, Lemma 1.6 says that if K has characteristic 0 then we shouldn’t

expect a random d(x) to admit a non-trivial solution to (1.6). This is because for

a generic pair (A, p), where A is an abelian variety defined over K and p ∈ A(K),

we expect that p is non-torsion. Of course this is only a heuristic since it’s not even

known which abelian varieties A and points p ∈ A(K) arise in this construction.

1.5 The Connection

Although it is not crucial for our study of quartic polynomials over Q, we briefly

digress to discuss the relationship between the geometry of Section 1.4 and the con-

tinued fractions of Section 1.3. Let K be a field of characteristic different from 2

and let f(x) ∈ K((x−1)) be a Laurent series. For i ≥ 0 we define αi(x) and ai(x)

in accordance with Section 1.2. We then say that the continued fraction of f(x) is
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quasi-periodic if there exist integers r ≥ 0 and s > 1 such that

αr+s(x) = cαr(x)(1.7)

for some c ∈ K×. The smallest s > 0 for which there exist such an r and c is then

said to be the quasi-period of the continued fraction of f(x). It is clear that if the

continued fraction of f(x) is periodic then its quasi-period divides its period.

Repeated application of the formulas for calculating the αi’s gives us the following

lemma.

Lemma I.12. Let f(x) ∈ K((x−1)) be a laurent series and let αi(x) denote the i-th

complete quotient for the continued fractions expansion of f(x). If

αr+s(x) = cαr(x)

for c ∈ K× and integers r ≥ 0 and s > 1 then for any n ≥ 0 we have

αr+ns(x) = c1+(−1)s+(−1)2s+...+(−1)(n−1)s

αr(x).(1.8)

Proof. We first show by induction that for i ≥ 0 we have

αr+s+i(x) = c(−1)
i

αr+i(x).(1.9)

This is true by assumption when i = 0. Assuming (1.9) is true for some i ≥ 0, we

have

αr+s+i+1(x) =
1

αr+s+i(x)− bαr+s+i(x)c

=
1

c(−1)iαr+i(x)− bc(−1)iαr+i(x)c

= c(−1)
i+1 1

αr+i(x)− bαr+i(x)c

= c(−1)
i+1

αr+i+1(x).
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Thus

αr+ns(x) = αr+s+(n−1)s(x) = c(−1)
(n−1)s

αr+(n−1)s(x).

A simple induction on n then proves (1.8).

Thus we have the following simple lemmas essentially due to Abel, and proved in

Adams-Razar [2].

Lemma I.13. If the continued fraction of f(x) is quasi-periodic of odd quasi-period

s then the continued fraction of f(x) is periodic with period either s or 2s. It will

have period s precisely when the value of c in (1.7) is 1.

Lemma I.14. If the continued fraction of f(x) is quasi-periodic of even quasi-period

s then the continued fraction of f(x) is periodic if and only if the constant c in (1.7)

is a root of unity. If c is a primitive m-th root of unity then the period is sm.

Proof. We have that αr+s(x) = cαr(x) for some c ∈ K×. If s is odd then by (1.8) we

have that

αr+2s = c(−1)
s

αr+s(x) = c(−1)
s+1αr(x)

so αr+2s(x) = αr(x). Thus the period is either s or 2s and in fact it can only be s if

c = 1.

If on the other hand s is even then by (1.8) we see that for any n ≥ 0 we have

αr+ns(x) = cnαr(x).

This implies that the continued fraction for f(x) will be periodic precisely when c

is a root of unity, and furthermore, if c is a primitive m-th root of unity then the

period will be sm.

We now specialize to the case f(x) =
√
d(x) where d(x) ∈ K[x] is a monic, square-

free polynomial of even degree at least 4. In this case if (A, p) is the associated abelian
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variety and K-point then
√
d(x) will have a periodic continued fraction precisely

when p is torsion. The following corollary to a theorem of Berry [3], which is a

generalization of Abel’s ideas, gives some indication of how to relate the period of

the continued fraction with the order of the corresponding torsion point.

Proposition I.15 (Berry). Let d(x) have degree 2n with n ≥ 2, let (A, p) be the pair

corresponding to d(x), and suppose that p ∈ A(K) is a torsion point of order m. If s

is the quasi-period of the continued fraction of
√
d(x) then s ≤ m−n+1. Moreover,

equality occurs if n = 2.

Proposition I.15 implies that if d(x) is a quartic polynomial and the corresponding

K-point is a torsion point of order m then the quasi-period of the continued fraction

for
√
d(x) is m − 1. In the case that m is even we have by Lemma I.13 that the

period of the continued fraction of
√
d(x) is either m − 1 or 2(m − 1). Notice that

generically one should expect the period to be 2(m− 1). This is because the period

will be m− 1 precisely when c = 1, and a priori there is no reason to expect this to

be the case. If on the other hand m is odd then it is a theorem of Adams and Razar

[2] that c = 1 and the period is in fact m− 1. In summary, we can relate the period

of the continued fraction to order of the torsion point as follows.

Theorem I.16 (Adams-Razar). Let K be a field of characteristic different from 2

and let d(x) ∈ K[x] be a monic, quartic, square-free polynomial. Let (E, p) be the

corresponding elliptic curve and K-point and suppose that p is a torsion point of

order m. If n is the period of the continued fraction of
√
d(x) then either

n = m− 1

or

n = 2(m− 1)
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where the second case can only occur if m is even.

1.6 To Come

For the remainder of this document, at least up until Chapter V, we study prop-

erties of quartic, square-free polynomials d(x) ∈ Q[x] for which the Pell equation

f(x)2 − d(x)g(x)2 = 1(1.10)

has non-trivial solutions. One reason to study quartic polynomials is that the cor-

responding abelian variety is an elliptic curve, and over Q, elliptic curves have been

very well studied for a long time. In particular, we know precisely which groups arise

as the group of rational torsion points on an elliptic curve. We have the following

celebrated theorem of Mazur [15].

Theorem I.17 (Mazur). Let E be an elliptic curve defined over Q. The torsion

subgroup of the group of rational points of E is isomorphic to one of the following

groups,

Z/NZ where 1 ≤ N ≤ 10 or N = 12

Z/2Z⊕ Z/2NZ where 1 ≤ N ≤ 4.

In our setting this yields the following important corollary.

Corollary I.18. Let E be an elliptic curve defined over Q. If p ∈ E(Q) is a torsion

point then the order of p is among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}.

Moreover, if 1 ≤ N ≤ 10 or N = 12 then Kubert [13] gave a parametrization of the

isomorphism class of pairs (E, p) where E is an elliptic curve defined over Q and

p ∈ E(Q) is rational torsion point of order N .
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In chapter II, we will use Kubert’s parametrizations, along with explicit formulas

from [2], to give a complete description of all monic, centered, square-free, quartic

polynomials d(x) ∈ Q[x] for which (1.10) has a non-trivial solution. Once we have

developed explicit formulas for such d(x), we will be able to settle several open

problems in the area of rational polynomial Pell equations.

The first problem we tackle is that of determining all possibilities for the period

of the continued fraction of
√
d(x) for quartic, square-free polynomials d(x) ∈ Q.

Combining Corollary I.18 with Theorem I.16, Schinzel points out in [23] that if the

continued fraction of
√
d(x) is periodic then its period is among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 18, 22}.(1.11)

The list in (1.11) represents the set of possible periods of the continued fraction,

but Schinzel questions whether periods 5,7,9 and 11 actually occur. The reason

why Schinzel singles out the odd periods goes back to our remarks in Section 1.5.

Malyshev partially answered this question in [14]. He asserts that if d(x) is monic

then the period of the continued fraction of
√
d(x) cannot be 7. In Chapter III, we

will fully answer Schinzel’s question using the formulas of Chapter II. In particular,

we will prove that periods 9 and 11 never occur for any d(x) ∈ Q[x]. We will also

expand on Malyshev’s result by proving that there are infinitely many non-monic

d(x) ∈ Q[x] for which the period is 7.

In another direction, several authors [29, 30, 31, 33] have specialized to the case

of looking at d(x) ∈ Z[x]. In this setting, they have been interested in obtaining

some sort of classification of monic, square-free, quartic polynomials d(x) ∈ Z[x] for

which there exists a non-trivial solution to (1.10) with f(x) and g(x) in Z[x] as well.

We will use the formulas obtained in Chapter II to give a complete answer to this

question in the case that d(x) is monic, quartic and square-free.



CHAPTER II

Parametrizations

2.1 Synopsis

In this chapter we will obtain parametrizations of all monic, square-free quartics

d(x) ∈ Q[x] for which the equation

f(x)2 − d(x)g(x)2 = 1(2.1)

has a non-trivial solution f(x), g(x) ∈ Q[x]. Notice that equation (2.1) is invari-

ant under the substitution x 7→ x + c for any c ∈ Q. Thus by choosing c ∈ Q

appropriately, we may assume that d(x) contains no cubic term.

Let C denote the normalization of the curve y2 = d(x). Since d(x) is monic, square-

free and has degree 4, the curve C has genus 1 and has two points, P and Q, above

∞. Consider the map

ϕ : C → Pic0(C)

defined by ϕ(R) = [R−Q]. We’ve already seen in Chapter I that equation (2.1) has

a non-constant solution if and only if ϕ(P ) is a torsion point on the elliptic curve

Pic0(C). Further, Adams and Razar [2] give an explicit embedding of Pic0(C) and

ϕ(P ) in P2. Namely,

Lemma II.1. The polynomial

d(x) = x4 − 6ax2 − 8bx+ c

19
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corresponds to the curve

v2 = u3 + Au+B

and the point (a, b) where

A =
−1

4
(c+ 3a2)

B = b2 − a3 − Aa.

Thus to parametrize all monic, square-free quartics d(x) ∈ Q[x] for which (2.1)

has a non-constant solution, it suffices to be able to write down all elliptic curves in

short Weierstrass form with a Q-rational torsion point.

The methods in this chapter work only when the torsion point in question has or-

der at least 4. Thus in accordance with Theorem I.16 we will be able to parametrize

all quartic polynomials for which the continued fraction of their square root is peri-

odic of period at least 3. For periods 1 and 2 we can just use brute force to write

down a parametrization.

Proposition II.2. Let d(x) ∈ Q[x] be a monic, centered, quartic, square-free poly-

nomial. The continued fraction of
√
d(x) will be periodic of period 1 if and only if

d(x) = (x2 + c)2 + 1 for some c ∈ Q.

Proposition II.3. Let d(x) ∈ Q[x] be a monic, centered, quartic, square-free poly-

nomial. Then the continued fraction of
√
d(x) will be periodic of period 2 if and only

if d(x) = (x2 − c2)2 + a(x− c) for some a, c ∈ Q with a 6= 0 or d(x) = (x2 + c)2 + a

for some a, c ∈ Q with a 6= 0, 1.

2.2 Tate Normal Form

While our goal is to write down all elliptic curves in short Weierstrass form with

a Q-rational torsion point, it is convenient to deal with curves in Tate normal form.
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Definition II.4. A non-singular plane cubic of the form

y2 + a2xy + a4y = x3 + a1x
2 + a3x+ x5

is said to be in Tate normal form if a3 = a5 = 0 and a4 = a1. For consistency with

the literature, we will typically write such a cubic as

y2 + (1− c)xy − by = x3 − bx2.

Remark II.5. The reason one works with Tate normal form is as follows. For n ∈

{4, 5, 6, 7, 8, 9, 10, 12} Kubert [13] writes down explicit formulas for b and c so that

the point (0, 0) on E is a torsion point of order n.

Because we would like to be able to write our curves in short Weierstrass form, we

need to know how to convert from one form to another. The following lemma works

over any field of characteristic not equal to 2. It essentially follows a procedure of

[12], which details how to convert an elliptic curve in Weierstrass form to Tate normal

form.

Lemma II.6. Let E/K be in short Weierstrass form, y2 = x3 + Ax + B. For

(r, s) = P ∈ E(K), a point of order neither 2 nor 3, there exist constants cE,P and

bE,P in K such that E is isomorphic to the curve

y2 + (1− cE,P )xy − bE,Py = x3 − bE,Px
2

for which maps P to (0, 0). Furthermore, if in our construction a curve E ′/K of the

form y2 = x3 +A′x+B′ with P ′ ∈ E(K) is such that cE′,P ′ = cE,P and bE′,P ′ = bE,P

then necessarily there exists u ∈ K such that A′ = A/u4, B′ = B/u6, and P ′ =

(r/u2, s/u3).

Proof. We first start out by transforming our curve in short Weierstrass form to a

curve in Tate Normal Form by a series of invertible isomorphisms. By making the
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substitution (x, y) 7→ (x+ r, y + s) we get the curve

y2 + 2sy = x3 + 3rx2 + (3r2 + A)x.

It is easy to check that since (r, s) doesn’t have order 2 then necessarily s 6= 0. Thus

we can make the substitution (x, y) 7→ (x, y +Qx) where Q =
3r2 + A

2s
to get

y2 + 2Qxy + 2sy = x3 + (3r −Q2)x2.

It is also easy to check that since (0, 0), the image of (r, s) on this curve, doesn’t have

order 3 then the coefficient of x2 is non-zero. Hence we may make the substitution

(x, y) 7→ (t2x, t3y), where t =
2s

3r −Q2
, to transform our curve into

y2 +
2Q

t
xy +

2s

t3
y = x3 +

3r −Q2

t2
x2.

By our choice of t we have that
2s

t3
=

3r −Q2

t2
so letting bE,P = −2s

t3
and cE,P =

1− 2Q

t
we have

y2 + (1− cE,P )xy − bE,Py = x3 − bE,Px
2.

All of our transformations are invertible, and (r, s) maps to (0, 0) so we have our

desired isomorphism. This is a priori just an isomorphism of varieties. But since

our isomorphism fixes the point [0, 1, 0], which is the identity element in the group

of K points in the projective closure of both of these plane cubics, our map is also

an isogeny and hence a group isomorphism as well.

If E ′/K is another curve in the form y2 = x3 + A′x + B′ with cE′,P ′ = cE,P

and bE′,P ′ = bE,P then we can compose isomorphisms to see that E ∼= E ′ over K.

Furthermore, this isomorphism fixes the identity element [0, 1, 0] so it is an isogeny

as well. It is proved in [25, p. 45] that the only isomorphisms of elliptic curves which

preserve short Weierstrass form are of the type (x, y) 7→ (x/u2, y/u3) with u ∈ K×.
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To see that u ∈ K, note that we have

A,B, r, s,
A

u4
,
B

u6
,
r

u2
,
s

u3
∈ K.

We know that s is non-zero. If either r or A is also non-zero then it is clear that

u ∈ K. Otherwise, we have the point (0, s) on y2 = x3 + s2. It is easy to check that

(0, s) has order 3, which contradicts the hypotheses of the lemma.

If we follow the proof of Lemma II.6 then we can write out explicitly which curves

in short Weierstrass form correspond to a given curve in Tate Normal Form.

Proposition II.7. Let E be an elliptic curve over K defined by y2 +(1−c)xy−by =

x3 − bx2. Then an elliptic curve y2 = x3 + Ax + B with K-rational point (r, s) is

isomorphic to E (in the sense of Lemma II.6) if and only if there exists u ∈ K× with

u4A = −1

3
b2 +

1

6
bc2 +

1

6
bc− 1

3
b− 1

48
c4

+
1

12
c3 − 1

8
c2 +

1

12
c− 1

48

u6B = − 2

27
b3 +

1

18
b2c2 +

1

18
b2c+

5

36
b2

− 1

72
bc4 +

1

72
bc3 +

1

24
bc2 − 5

72
bc

+
1

36
b+

1

864
c6 − 1

144
c5 +

5

288
c4

− 5

216
c3 +

5

288
c2 − 1

144
c+

1

864

u2r = −1

3
b+

1

12
c2 − 1

6
c+

1

12

u3s = − b
2
.

2.3 Parametrizing Quartics

Now that we know how to convert from Tate normal form to short Weierstrass

form, we can use Kubert’s parametrizations in order to write down all monic, square-

free, centered, rational quartic polynomials for which (2.1) has a non-constant solu-
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tion. We do this by writing down conditions on the coefficients of a curve in Tate

normal form for the point (0, 0) to have a given torsion order. Then we can com-

bine the formulas from Proposition II.7 and Lemma II.1 in order to write down the

corresponding quartics.

We begin by recording Kubert’s parametrizations [13]. For b, c ∈ Q let E(b, c)

denote the elliptic curve

y2 + (1− c)xy − by = x3 − bx2.

The discriminant of this curve is given by

∆(b, c) = b3(16b2 − 8bc2 − 20bc+ b+ c4 − 3c3 + 3c2 − c).(2.2)

In the list below n corresponds to the order of (0, 0). All of the parametrizations are

valid so long as ∆(b, c) 6= 0. Each parametrization will be in terms of one variable t.

n b c

4 t 0

5 t t

6 t(t+ 1) t

7 t2(t− 1) t(t− 1)

8 (2t− 1)(t− 1) (2t−1)(t−1)
t

9 t2(t− 1)(t2 − t+ 1) t2(t− 1)

10 t3(t−1)(2t−1)
(t2−3t+1)2

−t(t−1)(2t−1)
t2−3t+1

12 t(2t−1)(3t2−3t+1)(2t2−2t+1)
(t−1)4

−t(2t−1)(3t2−3t+1)
(t−1)2
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We are now ready to give our parametrizations. Write

d(x) = x4 + r2x
2 + r1x+ r0.

The formulas below will parametrize r2, r1, r0 in terms of two rational parameters a

and b. They are valid so long as the resulting quartic is square-free, which is equiva-

lent to the condition of the discriminant (2.2) being non-zero. The parametrizations

are organized by the corresponding order of the torsion point on the Jacobian.

Theorem II.8. The following list gives a complete parametrization of all monic,

centered, square-free, quartic polynomials

d(x) = x4 + r2x
2 + r1x+ r0 ∈ Q[x]

for which the equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ Q[x]. The formulas below are valid for any

a, b ∈ Q provided r2, r1, r0 are defined and d(x) is square-free. The square-free con-

dition can be checked by ensuring the discriminant of d(x) is nonzero. This discrim-

inant is given by

∆(r2, r1, r0) = 16r42r0 − 4r32r
2
1 − 128r22r

2
0 + 144r2r

2
1r0 − 27r41 + 256r30.

Order 4:

r2 = (8a− 2)/b2

r1 = 32a/b3

r0 = (16a2 + 24a+ 1)/b4

where b 6= 0 and a 6= 0,− 1

16
.
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Order 5:

r2 = (−2a2 + 12a− 2)/b2

r1 = 32a/b3

r0 = (a4 − 12a3 + 6a2 + 20a+ 1)/b4

where b 6= 0 and a 6= 0.

Order 6:

r2 = (6a2 + 12a− 2)/b2

r1 = (32a2 + 32a)/b3

r0 = (9a4 + 4a3 + 30a2 + 20a+ 1)/b4

where b 6= 0 and a 6= 0,−1,−1

9
.

Order 7:

r2 = (−2a4 + 12a3 − 6a2 − 4a− 2)/b2

r1 = (32a3 − 32a2)/b3

r0 = (a8 − 12a7 + 42a6 − 64a5 + 51a4 − 22a2 + 4a+ 1)/b4

where b 6= 0 and a 6= 0, 1.

Order 8:

r2 = (8a4 + 8a3 − 32a2 + 16a− 2)/(a2b2)

r1 = (64a2 − 96a+ 32)/b3

r0 = (16a8 − 96a7 + 336a6 − 576a5 + 536a4 − 296a3 + 96a2 − 16a+ 1)/(a4b4)

where b 6= 0 and a 6= 0, 1,
1

2
.
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Order 9:

r2 = (−2a6 + 12a5 − 18a4 + 20a3 − 12a2 − 2)/b2

r1 = (32a5 − 64a4 + 64a3 − 32a2)/b3

r0 = (a12 − 12a11 + 54a10 − 128a9 + 181a8 − 156a7 + 82a6 − 4a5 − 42a4 + 44a3

− 20a2 + 1)/b4

where b 6= 0 and a 6= 0, 1.

Order 10:

r2 = (−8a6 + 32a5 − 16a4 − 16a3 + 8a− 2)/(a4b2 − 6a3b2 + 11a2b2 − 6ab2 + b2)

r1 = (64a5 − 96a4 + 32a3)/(a4b3 − 6a3b3 + 11a2b3 − 6ab3 + b3)

r0 = (16a12 − 128a11 + 448a10 − 896a9 + 1024a8 − 416a7 − 408a6 + 608a5 − 304a4

+ 48a3 + 16a2 − 8a+ 1)/(a8b4 − 12a7b4 + 58a6b4 − 144a5b4 + 195a4b4

− 144a3b4 + 58a2b4 − 12ab4 + b4)

where b 6= 0 and a 6= 0, 1,
1

2
.

Order 12:

r2 = (24a8 − 240a7 + 672a6 − 936a5 + 744a4 − 336a3 + 72a2 − 2)/(a6b2 − 6a5b2

+ 15a4b2 − 20a3b2 + 15a2b2 − 6ab2 + b2)

r1 = (384a6 − 960a5 + 1088a4 − 672a3 + 224a2 − 32a)/(a4b3 − 4a3b3 + 6a2b3

− 4ab3 + b3)

r0 = (144a16 − 576a15 + 2112a14 − 9696a13 + 34016a12 − 82176a11 + 141936a10

− 181984a9 + 177240a8 − 132528a7 + 76096a6 − 33208a5 + 10760a4 − 2480a3

+ 376a2 − 32a+ 1)/(a12b4 − 12a11b4 + 66a10b4 − 220a9b4 + 495a8b4 − 792a7b4

+ 924a6b4 − 792a5b4 + 495a4b4 − 220a3b4 + 66a2b4 − 12ab4 + b4)
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where b 6= 0 and a 6= 0, 1,
1

2
.

Remark II.9. The parameters a and b have been rescaled by rational numbers in

order to make the formulas above more presentable.

2.4 Continued Fractions

As a consequence of equation (2.1) having a non-constant solution, the continued

fraction of
√
d(x) is periodic. Thus we can use the formulas developed in Section 2.3

in order to write down the corresponding continued fractions. To do so, we employ

an algorithm of Berry [3] in order to compute the partial quotients in the continued

fraction.

Let K be a field of characteristic not 2, and let d(x) ∈ K[x] be a monic, square-free,

even degree polynomial. Let B(x) ∈ K[x] be the unique monic polynomial for which

the degree of d−B2 is positive and minimal. If√
d(x) = [a0(x); a1(x), a2(x), a3(x), a4(x), . . .]

is the continued fraction for
√
d(x) then the partial quotients ai(x) ∈ K[x] are

computed by the following algorithm.

Algorithm 1 Calculate The Continued Fraction of
√
d(x)

L0 ⇐ 0
M0 ⇐ 1
for i ≥ 0 do

ri ⇐ Li +B mod Mi

ai ⇐ (Li +B − ri)/Mi

Li+1 ⇐ B − ri
if i = 1 then

M1 ⇐ d− L2
1

else
Mi+1 ⇐Mi−1 + ai(ri − ri−1)

end if
end for

We can use Algorithm 1 to compute the continued fractions of
√
d(x) corresponding

to the parametrizations given in Theorem II.8. We already know that if the torsion
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order is m then the period is at most 2(m− 1) so we only need to run our algorithm

for at most 2(m− 1) steps.

Theorem II.10. The complementary list of continued fractions of
√
d(x) to the

formulas of Theorem II.8 is given below.

Order 4: √
d(x) = [a0; a1, a2, a3, a2, a1, 2a0]

where

a0 = x2 + (4a− 1)/b2

16a1 = (b3/a) · x− b2/a

a2 = (4/b) · x− 4/b2

32a3 = (b4/a) · x2 + (4ab2 − b2)/a

Order 5: √
d(x) = [a0; a1, a2, a1, 2a0]

where

a0 = x2 + (−a2 + 6a− 1)/b2

16a1 = (b3/a) · x+ (ab2 − b2)/a

a2 = (4/b) · x+ (−4a− 4)/b2

Order 6: √
d(x) = [a0; a1, a2, a3, a4, a5, a4, a3, a2, a1, 2a0]
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where

a0 = x2 + (3a2 + 6a− 1)/b2

16a1 = (b3/(a2 + a)) · x+ (ab2 − b2)/(a2 + a)

a2 = (4/b) · x+ (−4a− 4)/b2

16a3 = (b3/a) · x+ (−ab2 − b2)/a

a4 = (4/(ab+ b)) · x+ (4a− 4)/(ab2 + b2)

32a5 = (b4/a) · x2 + (3a2b2 + 6ab2 − b2)/a

Order 7: √
d(x) = [a0; a1, a2, a3, a2, a1, 2a0]

where

a0 = x2 + (−a4 + 6a3 − 3a2 − 2a− 1)/b2

16a1 = (b3/(a3 − a2)) · x+ (a2b2 − ab2 − b2)/(a3 − a2)

a2 = (4/b) · x+ (−4a2 + 4a− 4)/b2

16a3 = (b3/(a2 − a)) · x+ (a2b2 − 3ab2 + b2)/(a2 − a)

Order 8:

√
d(x) = [a0; a1, a2, a3, a4, a5, a6, a7, a6, a5, a4, a3, a2, a1, 2a0]
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where

a0 = x2 + (4a4 + 4a3 − 16a2 + 8a− 1)/(a2b2)

32a1 = (b3/(a2 − (3/2)a+ 1/2)) · x+ (2a2b2 − 4ab2 + b2)/(a3 − (3/2)a2 + (1/2)a)

a2 = (4/b) · x+ (−8a2 + 8a− 4)/(ab2)

32a3 = (ab3/(a2 − (3/2)a+ 1/2)) · x− 2b2/(a− 1)

a4 = ((8a− 4)/(a2b)) · x+ (−16a2 + 16a− 4)/(a3b2)

64a5 = (a3b3/(a3 − 2a2 + (5/4)a− 1/4) · x+ (−2a4b2 + 2a3b2 − a2b2)/(a3 − 2a2

+ (5/4)a− 1/4)

a6 = ((8a− 4)/(a3b)) · x+ (16a3 − 40a2 + 24a− 4)/(a4b2)

128a7 = (a3b4/(a3 − 2a2 + (5/4)a− 1/4)) · x2 + (4a5b2 + 4a4b2 − 16a3b2 + 8a2b2

− ab2)/(a3 − 2a2 + (5/4)a− 1/4)

Order 9: √
d(x) = [a0; a1, a2, a3, a4, a3, a2, a1, 2a0]

where

a0 = x2 + (−a6 + 6a5 − 9a4 + 10a3 − 6a2 − 1)/b2

16a1 = (b3/(a5 − 2a4 + 2a3 − a2)) · x+ (a3b2 − a2b2 − b2)/(a5 − 2a4 + 2a3 − a2)

a2 = (4/b) · x+ (−4a3 + 4a2 − 4)/b2

16a3 = (b3/(a3 − a2)) · x+ (a3b2 − 3a2b2 + 2ab2 − b2)/(a3 − a2)

a4 = (4a/(a2b− ab+ b)) · x+ (−4a4 + 12a3 − 16a2 + 4a)/(a2b2 − ab2 + b2)

Order 10:

√
d(x) = [a0; a1, a2, a3, a4, a5, a6, a7, a8, a9, a8, a7, a6, a5, a4, a3, a2, a1, 2a0]



32

where

a0 = x2 + (−4a6 + 16a5 − 8a4 − 8a3 + 4a− 1)/(a4b2 − 6a3b2 + 11a2b2 − 6ab2

+ b2)

32a1 = ((a4b3 − 6a3b3 + 11a2b3 − 6ab3 + b3)/(a5 − (3/2)a4 + (1/2)a3) · x+ (−2a5b2

+ 8a4b2 − 6a3b2 − 5a2b2 + 5ab2 − 1b2)/(a5 − (3/2)a4 + (1/2)a3)

a2 = (4/b) · x+ (8a3 − 16a2 + 16a− 4)/(a2b2 − 3ab2 + b2)

32a3 = ((−a2b3 + 3ab3 − 1b3)/(a3 − (3/2)a2 + (1/2)a)) · x+ (2a3b2 − 6a2b2 + 4ab2

− b2)/(a3 − (3/2)a2 + (1/2)a)

a4 = ((−4a2 + 12a− 4)/(ab)) · x+ (−8a+ 4)/(ab2)

16a5 = (b3/(a3 − a2)) · x+ (2ab2 − b2)/(a5 − 4a4 + 4a3 − a2)

a6 = ((2a4 − 12a3 + 22a2 − 12a+ 2)/(ab− (1/2)b)) · x+ (−4a5 + 24a4 − 48a3

+ 38a2 − 14a+ 2)/(ab2 − (1/2)b2)

16a7 = (−b3/(a4 − 4a3 + 4a2 − a)) · x+ (−2a3b2 + 4a2b2 − 4ab2 + b2)/(a6 − 7a5

+ 17a4 − 17a3 + 7a2 − a)

a8 = ((−2a6 + 18a5 − 60a4 + 90a3 − 60a2 + 18a− 2)/(a3b− (1/2)a2b) · x+ (4a7

− 28a6 + 64a5 − 42a4 − 28a3 + 42a2 − 16a+ 2)/(a3b2 − (1/2)a2b2)

32a9 = (−b4/(a4 − 4a3 + 4a2 − a)) · x2 + (4a6b2 − 16a5b2 + 8a4b2 + 8a3b2 − 4ab2

+ b2)/(a8 − 10a7 + 39a6 − 75a5 + 75a4 − 39a3 + 10a2 − a)

Order 12:

√
d(x) = [a0; a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, 2a0]
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where

a0 = x2 + (12a8 − 120a7 + 336a6 − 468a5 + 372a4 − 168a3 + 36a2 − 1)/(a6b2

− 6a5b2 + 15a4b2 − 20a3b2 + 15a2b2 − 6ab2 + b2)

192a1 = ((a4b3 − 4a3b3 + 6a2b3 − 4ab3 + b3)/(a6 − (5/2)a5 + (17/6)a4 − (7/4)a3

+ (7/12)a2 − (1/12)a)) · x+ (−6a5b2 + 14a4b2 − 10a3b2 + 3ab2 − b2)/(a6

− (5/2)a5 + (17/6)a4 − (7/4)a3 + (7/12)a2 − (1/12)a)

a2 = (4/b) · x+ (24a4 − 40a3 + 32a2 − 16a+ 4)/(a3b2 − 3a2b2 + 3ab2 − b2)

96a3 = ((−a3b3 + 3a2b3 − 3ab3 + b3)/(a4 − (3/2)a3 + (5/6)a2 − (1/6)a)) · x

+ (2a4b2 + 2a3b2 − 6a2b2 + 4ab2 − b2)/(a4 − (3/2)a3 + (5/6)a2 − (1/6)a)

a4 = ((−6a2 + 6a− 2)/(a3b− 2a2b+ (3/2)ab− (1/2)b)) · x+ (−12a6 + 36a5

− 64a4 + 68a3 − 42a2 + 14a− 2)/(a6b2 − 5a5b2 + (21/2)a4b2 − 12a3b2

+ 8a2b2 − 3ab2 + (1/2)b2)

288a5 = ((a6b3 − 6a5b3 + 15a4b3 − 20a3b3 + 15a2b3 − 6ab3 + b3)/(a6 − (5/2)a5

+ (8/3)a4 − (3/2)a3 + (4/9)a2 − (1/18)a)) · x+ (−4a5b2 + 16a4b2 − 26a3b2

+ 22a2b2 − 10ab2 + 2b2)/(a5 − 2a4 + (5/3)a3 − (2/3)a2 + (1/9)a)
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a6 = ((24a3 − 36a2 + 20a− 4)/(a5b− 5a4b+ 10a3b− 10a2b+ 5ab− b)) · x

+ (−96a6 + 288a5 − 392a4 + 304a3 − 140a2 + 36a− 4)/(a8b2 − 8a7b2

+ 28a6b2 − 56a5b2 + 70a4b2 − 56a3b2 + 28a2b2 − 8ab2 + b2)

1152a7 = ((−a10b3 + 10a9b3 − 45a8b3 + 120a7b3 − 210a6b3 + 252a5b3 − 210a4b3

+ 120a3b3 − 45a2b3 + 10ab3 − b3)/(a9 − 4a8 + (89/12)a7 − (33/4)a6

+ (431/72)a5 − (26/9)a4 + (65/72)a3 − (1/6)a2 + (1/72)a)) · x+ (−2a11b2

+ 18a10b2 − 76a9b2 + 200a8b2 − 365a7b2 + 483a6b2 − 469a5b2 + 331a4b2

− 165a3b2 + 55a2b2 − 11ab2 + b2)/(a9 − 4a8 + (89/12)a7 − (33/4)a6

+ (431/72)a5 − (26/9)a4 + (65/72)a3 − (1/6)a2 + (1/72)a)

a8 = ((−72a5 + 180a4 − 192a3 + 108a2 − 32a+ 4)/(a8b− 8a7b+ 28a6b− 56a5b

+ 70a4b− 56a3b+ 28a2b− 8ab+ b)) · x+ (144a9 − 216a8 − 408a7 + 1536a6

− 2096a5 + 1652a4 − 824a3 + 260a2 − 48a+ 4)/(a11b2 − 11a10b2 + 55a9b2

− 165a8b2 + 330a7b2 − 462a6b2 + 462a5b2 − 330a4b2 + 165a3b2 − 55a2b2

+ 11ab2 − b2)

1728a9 = ((a11b3 − 11a10b3 + 55a9b3 − 165a8b3 + 330a7b3 − 462a6b3 + 462a5b3

− 330a4b3 + 165a3b3 − 55a2b3 + 11ab3 − b3)/(a9 − 4a8 + (29/4)a7

− (31/4)a6 + (16/3)a5 − (29/12)a4 + (19/27)a3 − (13/108)a2

+ (1/108)a)) · x+ (6a12b2 − 58a11b2 + 256a10b2 − 684a9b2 + 1237a8b2

− 1604a7b2 + 1540a6b2 − 1112a5b2 + 604a4b2 − 242a3b2 + 68a2b2 − 12ab2

+ b2)/(a9 − 4a8 + (29/4)a7 − (31/4)a6 + (16/3)a5 − (29/12)a4 + (19/27)a3

− (13/108)a2 + (1/108)a)
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a10 = ((36a5 − 90a4 + 96a3 − 54a2 + 16a− 2)/(a9b− 8a8b+ (57/2)a7b

− (119/2)a6b+ (161/2)a5b− (147/2)a4b+ (91/2)a3b− (37/2)a2b

+ (9/2)ab− (1/2)b)) · x+ (−216a9 + 828a8 − 1368a7 + 1200a6 − 504a5

− 34a4 + 156a3 − 82a2 + 20a− 2)/(a12b2 − 11a11b2 + (111/2)a10b2

− 170a9b2 + (705/2)a8b2 − 522a7b2 + 567a6b2 − 456a5b2 + 270a4b2

− 115a3b2 + (67/2)a2b2 − 6ab2 + (1/2)b2)

3456a11 = ((a11b4 − 11a10b4 + 55a9b4 − 165a8b4 + 330a7b4 − 462a6b4 + 462a5b4

− 330a4b4 + 165a3b4 − 55a2b4 + 11ab4 − b4)/(a9 − 4a8 + (29/4)a7

− (31/4)a6 + (16/3)a5 − (29/12)a4 + (19/27)a3 − (13/108)a2

+ (1/108)a)) · x2 + (12a13b2 − 180a12b2 + 1056a11b2 − 3468a10b2

+ 7332a9b2 − 10680a8b2 + 11076a7b2 − 8256a6b2 + 4367a5b2 − 1567a4b2

+ 338a3b2 − 26a2b2 − 5ab2 + b2)/(a9 − 4a8 + (29/4)a7 − (31/4)a6

+ (16/3)a5 − (29/12)a4 + (19/27)a3 − (13/108)a2 + (1/108)a).



CHAPTER III

Periods

3.1 Synopsis

Now that we have explicit formulas for monic, centered, quartic, square-free poly-

nomials d(x) ∈ Q[x] for which (2.1) has a solution, we can begin to use them. In

this chapter we will analyze the integers which occur as the period of the continued

fraction of
√
d(x).

Recall that Mazur’s theorem [15] implies that a rational torsion point on an elliptic

curve defined over Q can only have order among {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. Thus

Theorem I.16 yields that if the continued fraction of
√
d(x) is period then its period

is one of

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 18, 22}.

One of the deficiencies of Theorem I.16 is that if d(x) corresponds to a point on the

Jacobian of y2 = d(x) of order n, where n is even, then there is no nice criterion for

determining whether the period of the continued fraction of
√
d(x) is n−1 or 2(n−1).

In fact, the next proposition shows that the period of the continued fraction is not

an isomorphism invariant of the pair (E, p) where E is the Jacobian of y2 = d(x)

and p is the corresponding point of interest.

36
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Proposition III.1. There exist monic, quartic, square-free polynomials d1(x) and

d2(x) in Q[x] with corresponding isomorphic pairs (E1, p1) and (E2, p2) such that the

periods of the continued fractions of
√
d1(x) and

√
d2(x) are different.

Proof. Let

d1(x) = x4 − 1295

72
x2 +

1

6
x+

1687393

20736

and

d2(x) = x4 − 1295

648
x2 +

1

162
x+

1687393

1679616
.

For i ∈ {1, 2}, Lemma II.1 gives that di(x) corresponds to the pair (Ei, pi) where E1

is the elliptic curve

y2 = x3 − 1684801

62208
x+

2186869751

40310784

and p1 is the point (
1295

432
,− 1

48

)
,

and E2 is the curve

y2 = x3 − 1684801

5038848
x+

2186869751

29386561536

and p2 is the point (
1295

3888
,− 1

1296

)
.

The map φ : E1 → E2 given by

(x, y) 7→
(

1

9
x,

1

27
y

)
is an isomorphism with φ(p1) = p2. On the other hand, applying Algorithm 1 shows

that the continued fraction of
√
d1(x) is

[a0; a1, a1, 2a0]
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with

a0 = x2 − 1295

144

a1 = 12x− 36

whereas the continued fraction of
√
d2(x) is

[b0; b1, b2, b3, b2, b1, 2b0]

with

b0 = x2 − 1295

1296

b1 = 324x− 324

b2 = 4x− 4

b3 = 162x2 − 1295

8
.

In particular, the continued fractions of
√
d1(x) and

√
d2(x) have different periods

despite their corresponding Jacobians being isomorphic.

In view of Proposition III.1, we must take care when trying to prove properties of

the periods showing up in the expansions of continued fractions. It is worth remarking

that in the formulas from Section 2.3 and Section 2.4, the parameter a determines the

isomorphism class of the Jacobian, while the parameter b determines the embedding

in P2. Because the period is not determined by the isomorphism class alone, we must

take into account both parameters when proving theorems about periods.

One major open problem in the area of quartic d(x) ∈ Q[x] for which the continued

fraction of
√
d(x) is periodic is an understanding of which odd periods can actually

occur. In [23], Schinzel asks whether periods 5, 7, 9 or 11 actually occur for any such

d(x). Several authors have worked on this problem since. In [14], Malyshev proves
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that there are no monic d(x) for which the period is 7. In [28], van der Poorten

and Tran find examples of periods 1, 3 and 5, and also construct an example of

a non-monic polynomial d(x) for which the period is 7. Through parametrizations

similar to those found in Chapter II, van der Poorten and Tran also claim to prove

that periods 9 and 11 never occur. Unfortunately, in light of Proposition III.1, their

methods don’t solve the problem since they fail to take into account the embedding

of the corresponding elliptic curve.

In this chapter, we will completely solve the problem of understanding which odd

periods occur. Using the parametrizations found in Chapter II, we will first write

down complete parametrizations of all quartic, square-free, polynomials d(x) ∈ Q[x]

for which the period of
√
d(x) is 3, 5 or 7. We will then furnish correct proofs that

periods 9 and 11 never occur.

The strategies of these proofs are as follows. Suppose we want to write down all

d(x) for which the continued fraction of
√
d(x) has odd period r, where r > 1. First,

we note that it suffices to assume without loss of generality that d(x) is centered.

This is because of the following observation. If f(x) ∈ K((x−1)) is a Laurent series

with continued fraction expansion

f(x) = [a0(x); a1(x), a2(x), . . .]

where ai(x) ∈ K[x], then for any c ∈ K× for which f(x+ c) is well-defined, we have

f(x+ c) = [a0(x+ c); a1(x+ c), a2(x+ c), . . .].

Thus the continued fraction of f(x) is periodic if and only if the continued fraction

of f(x+ c) is periodic, and moreover the two periods must be the same.

Next, write our centered, square-free, quartic polynomial d(x) as α2d̃(x) where
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α ∈ K× and d̃(x) is monic. If the continued fraction of

√
d̃(x) is√

d̃(x) = [a0(x); a1(x), a2(x), . . .],

then a formula of Schmidt [24] says that

α

√
d̃(x) = [αa0(x);α−1a1(x), αa2(x), . . .].(3.1)

By Theorem I.16 we know that d̃(x) corresponds to a pair (E, p) where p ∈ E(Q) is

a torsion point of order r + 1. Thus the continued fraction of

√
d̃(x) is of the form√

d̃(x) = [a0(x); a1(x), . . . , ar−1(x), ar(x), ar−1(x), . . . , a1(x), 2a0(x)].

Notice that r is the quasi-period of this continued fraction and from the formulas of

Chapter II we notice that ar(x) is a constant multiple of a0(x). Coupling this fact

with (3.1), we see that
√
d(x) will have period r precisely when

α−1ar(x) = 2αa0(x)

or

ar(x)

a0(x)
= 2α2.

This will allow us to write down all d(x) corresponding to a given odd period. We

summarize all of this in the following proposition.

Proposition III.2. Let d(x) = c2d̃(x) where d̃(x) ∈ Q[x] is a monic, centered,

quartic and square-free polynomial. If the continued fraction of

√
d̃(x) is of the form√

d̃(x) = [a0(x); a1(x), . . . , ar−1(x), ar(x), ar−1(x), . . . , a1(x), 2a0(x)],

with r > 1 odd, then the continued fraction of
√
d(x) will have period r precisely

when

ar(x)

a0(x)
= 2c2.
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3.2 Period 3

From the formulas found in Theorem II.10, we have that if d̃(x) ∈ Q[x] is monic,

centered, square-free and quartic, and corresponds to a torsion point of order 4, then

a3(x)

a0(x)
=

b4

32a
.(3.2)

Thus finding all centered, quartic, square-free polynomials d(x) ∈ Q[x] for which√
d(x) has period 3, by Proposition III.2, amounts to solving in Q, with b and c

non-zero, the equation

b4 = 64ac2.(3.3)

Obviously, (3.3) has as solutions the triples(
b4

64c2
, b, c

)
where b, c ∈ Q× are arbitrary.

Plugging this into the formula from Theorem II.8 gives the following result.

Proposition III.3. The square-free, quartic polynomial

d(x) = c2x4 + r2x
2 + r1x+ r0 ∈ Q[x]

has the property that the continued fraction of
√
d(x) has period 3 if and only if there

exists b ∈ Q such that

8r2 =
b4 − 16c2

b2

2r1 = b

256r0 =
b8 + 96b4c2 + 256c4

b4c2
.

where b 6= 0, c 6= 0 and b4 6= −4c2.
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3.3 Period 5

From the formulas found in Theorem II.10, we have that if d̃(x) ∈ Q[x] is monic,

centered, square-free and quartic, and corresponds to a torsion point of order 6, then

a5(x)

a0(x)
=

b4

32a
.(3.4)

Thus finding all centered, quartic, square-free polynomials d(x) ∈ Q[x] for which√
d(x) has period 5, by Proposition III.2, amounts to solving in Q, with b and c

non-zero, the equation

b4 = 64ac2.(3.5)

Obviously, (3.5) has as solutions the triples(
b4

64c2
, b, c

)
where b, c ∈ Q× are arbitrary.

Plugging this into the formula from Theorem II.8 gives the following result.

Proposition III.4. The square-free, quartic polynomial

d(x) = c2x4 + r2x
2 + r1x+ r0 ∈ Q[x]

has the property that the continued fraction of
√
d(x) has period 5 if and only if there

exists b ∈ Q such that

2048r2 =
3b8 + 384b4c2 − 4096c4

b2c2

128r1 =
b5 + 64bc2

c2

224r0 =
9b16 + 256b12c2 + 213 · 15 · b8c4 + 220 · 5 · b4c6 + 224c8

b4c8
.

where b 6= 0, c 6= 0, b4 6= −64c2 and 9b4 6= −64c2.
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3.4 Period 7

From the formulas found in Theorem II.10, we have that if d̃(x) ∈ Q[x] is monic,

centered, square-free and quartic, and corresponds to a torsion point of order 8, then

a7(x)

a0(x)
=

1

128
· a3b4

a3 − 2a2 + 5a
4
− 1

4

.(3.6)

Thus finding all centered, quartic, square-free polynomials d(x) ∈ Q[x] for which√
d(x) has period 7, by Proposition III.2, amounts to solving in Q, with b and c

non-zero, the equation (obtained after factoring)

b4a3 = 256c2(a− 1)

(
a− 1

2

)2

.(3.7)

To solve (3.7) we make the substitution

(a, b, c) =

(
A,B,

B2CA

16
(
A− 1

2

))

which is valid since we are not interested in solutions with a = 1
2
. With this change

of variables we are reduced to solving the equation

B4A2(A− C2(A− 1)) = 0.(3.8)

Because we are looking for solutions with b and c non-zero, we can divide both sides

of (3.8) by B4A2, and we are left with

A =
C2

C2 − 1
.

Thus, after simplifying, all solutions to (3.7) are given by

a =
C2

C2 − 1

b = B

c =
B2C3

8(C2 + 1)
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where B 6= 0 and C 6= 0,±1. Combining this with the formula from Theorem II.8

gives the following parametrization.

Proposition III.5.

d(x) = c2x4 + r2x
2 + r1x+ r0 ∈ Q[x]

has the property that the continued fraction of
√
d(x) has period 7 if and only if there

exists B,C ∈ Q such that

8c =
B2C3

C2 + 1

32r2 =
−B2C2(C8 − 8C6 − 2C4 + 4C2 + 1)

(C − 1)2(C + 1)2(C2 + 1)2

2r1 =
BC6

(C − 1)2(C + 1)2(C2 + 1)

64r0 =
C16 + 16C14 − 4C12 − 24C10 + 6C8 + 12C4 + 8C2 + 1

(C − 1)4(C + 1)4(C2 + 1)2C2
.

where B 6= 0 and C 6= 0,±1.

Using our parametrization, we are in a position to give a new proof of Malyshev’s

theorem, [14]. We can reduce his theorem to a question about rational points on

certain elliptic curves.

Theorem III.6 (Malyshev). There do not exist monic, quartic, square-free polyno-

mials d(x) ∈ Q[x] for which the continued fraction of
√
d(x) has period 7.

Proof. By Proposition III.5, it suffices to prove that there do not exist B,C ∈ Q×,

with C 6= ±1, for which

±8(C2 + 1) = C3B2.(3.9)

Changing C to −C, if necessary, and making the substitution

(B,C) =
( y
x2
, x
)
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leaves us with

y2 = 8x(x2 + 1).(3.10)

Equation (3.10) defines an elliptic curve over Q. This is curve 32a1 in Cremona’s

tables [7]. He computes that the rank of this curve is zero and that its torsion

subgroup contains exactly four rational points. Besides the point at infinity, these

points are

(0, 0), (1,±4).

Therefore we see that (3.9) contains no rational points with C 6= 0,±1 and hence

the theorem is complete.

3.5 Period 9

From the formulas found in Theorem II.10, we have that if d̃(x) ∈ Q[x] is monic,

centered, square-free and quartic, and corresponds to a torsion point of order 10,

then

a9(x)

a0(x)
=
−1

32
· b4

a4 − 4a3 + 4a2 − a
.(3.11)

Thus finding all centered, quartic, square-free polynomials d(x) ∈ Q[x] for which√
d(x) has period 9, by Proposition III.2, amounts to solving in Q, with b and c

non-zero, the equation (after factoring)

b4 = −64(a− 1)a(a2 − 3a+ 1)c2.(3.12)

Theorem III.7. There are no quartic, square-free polynomials d(x) ∈ Q[x] for which

the continued fraction of
√
d(x) has period 9.

Proof. As noted above, this theorem is equivalent to proving that (3.12) has no

rational solutions with b and c non-zero, which means that certainly a 6= 0, 1. We
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then make the change of variables

(a, b, c) =

(
x, z,

yz2

8(x− 1)x(x2 − 3x+ 1)

)
to arrive at

z4((x− 1)x(x2 − 3x+ 1) + y2) = 0.(3.13)

Because we want solutions with b non-zero, we may divide both sides of (3.13) by z4

to arrive at

y2 = −(x− 1)x(x2 − 3x+ 1).(3.14)

The right hand side of (3.14) is a square-free quartic, and since this curve contains

the smooth point (0, 0), Equation (3.14) defines an elliptic curve over Q. This is

curve 80b2 in Cremona’s tables [7]. This curve has rank zero and that its torsion

subgroup contains exactly two rational points. These are the obvious points

(0, 0), (1, 0).

Thus we see that our original equation, (3.12), has no rational solutions with b and

c non-zero, and therefore there do not exist quartic, square-free polynomials over Q

for which the period of the continued fraction of their square root is nine.

3.6 Period 11

From the formulas found in Theorem II.10, we have that if d̃(x) ∈ Q[x] is monic,

centered, square-free and quartic, and corresponds to a torsion point of order 12,

then (after factoring)

a11(x)

a0(x)
=

1

3456
· b4(a− 1)11

a
(
a− 1

2

)2 (
a2 − a+ 1

3

)3 .(3.15)
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Thus finding all centered, quartic, square-free polynomials d(x) ∈ Q[x] for which√
d(x) has period 11, by Proposition III.2, amounts to solving in Q, with b and c

non-zero, the equation (after factoring)

b4(a− 1)11 = 6912c2a

(
a− 1

2

)2(
a2 − a+

1

3

)3

.(3.16)

Theorem III.8. There are no quartic, square-free polynomials d(x) ∈ Q[x] for which

the continued fraction of
√
d(x) has period 11.

Proof. As noted above, this theorem is equivalent to proving that (3.16) has no

rational solutions with b and c non-zero, which means that certainly a 6= 0, 1, 1
2
.

Making the change of variables

(a, b, c) =

(
x, z,

yz2(x− 1)5

48x
(
x− 1

2

) (
x2 − x+ 1

3

)2
)

changes (3.16) into

z4(x− 1)10(x(x− 1)

(
x2 − x+

1

3

)
− 3y2) = 0.(3.17)

Because we are looking for solutions with b 6= 0 and a 6= 1 we may divide both sides

of (3.17) by z4(x− 1)10 to arrive at

y2 =
1

3

(
x(x− 1)

(
x2 − x+

1

3

))
.(3.18)

The right hand side of (3.18) is a square-free quartic, and since this curve contains

the smooth point (0, 0), Equation (3.18) defines an elliptic curve over Q. This is

curve 48a4 in Cremona’s tables [7]. The rank of this elliptic curve is zero and its

torsion subgroup contains exactly two rational points. These are the obvious points

(0, 0), (1, 0).

Thus we see that our original equation, (3.16), has no rational solutions with b and

c non-zero, and therefore there do not exist quartic, square-free polynomials over Q

for which the period of the continued fraction of their square root is eleven.



CHAPTER IV

Integral Polynomial Pell Equations

4.1 Synopsis

In this chapter we shift our focus to monic, square-free, even degree polynomials

d(x) ∈ Z[x]. A fundamental problem in this area is as follows.

Problem IV.1. Classify all monic, square-free, even degree polynomials d(x) ∈ Z[x]

for which there exists a non-trivial solution to the Pell equation

f(x)2 − d(x)g(x)2 = 1(4.1)

with f(x) and g(x) in Z[x].

This problem essentially goes back to Euler [8], who produced several identities

for the continued fractions of square roots of certain positive integers. Among his

formulas is the following example. For any positive integer n > 1, we have

√
n2 + 1 = [n; 2n].

By computing the convergents of this continued fraction, we also obtain the identity

(2n2 + 1)2 − (n2 + 1)(2n)2 = 1

which gives a solution to a family of Pell equations. Although Euler didn’t think

48



49

about continued fractions over any fields other than R, he is essentially just comput-

ing the continued fraction of the polynomial
√
x2 + 1 in Q((x−1)) which is

√
x2 + 1 = [x; 2x].

This example naturally leads to studying Problem IV.1, for if we have a polynomial

identity

f(x)2 − d(x)g(x)2 = 1

with f(x), g(x), d(x) in Z[x] and g(x) non-constant, then by specializing at various

positive integers, we would obtain families of solutions to integral Pell equations.

Since the time of Euler, there has been much study of polynomial identities for the

Pell equation. Included in this history is Nathanson’s resolution [20] of Problem IV.1

in the case that d(x) is centered and quadratic. Ramasamy [21], Mollin [18] and

McLaughlin [16] have obtained many families of polynomial Pell identities, with

McLaughlin using his identities to construct the fundamental unit in a variety of real

quadratic number fields. In [22, 23], Schinzel studies the problem of determining

which polynomials will give rise to continued fractions of arbitrary large period by

specializing at various integers.

In this chapter, we will use the formulas of Chapter II to study Problem IV.1

when d(x) is a quartic polynomial. In a series of papers, Webb and Yokota lay the

groundwork for studying this instance of Problem IV.1. In [32], Yokota proves that if

d(x) ∈ Z[x] is monic and quartic, then if the continued fraction of
√
d(x) is periodic

then the period must be either 1 or even. In Section 4.2 we will use our formulas

to reprove this result. In [29, 31], Webb and Yokota completely classify the monic,

quartic d(x) ∈ Z[x] for which (4.1) has a non-trivial solution with integer coefficients

and for which the continued fraction of
√
d(x) has period 1 or 2. Most recently,
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Yokota proves in [33] that if
√
d(x) has period 4 then (4.1) will have no non-trivial

solutions with integer coefficients.

Yokota conjectures in [33] that there shouldn’t be any non-trivial integral poly-

nomial solutions to (4.1) whenever the period of the continued fraction of
√
d(x) is

larger than 2. In Section 4.3 we will disprove Yokota’s conjecture. Moreover, we will

prove the following result

Theorem IV.2. Let

d(x) = x4 + r3x
3 + r2x

2 + r1x+ r0

be a monic, quartic, square-free polynomial in Z[x] for which the continued fraction

of
√
d(x) is periodic of period at least 6. Then the equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution with f(x), g(x) in Z[x] if and only if (r3, r2, r1, r0) is one

of

(4a+ 2, 6a2 + 6a− 7, 4a3 + 6a2 − 14a− 12, a4 + 2a3 − 7a2 − 12a+ 6)

(4a+ 2, 6a2 + 6a− 7, 4a3 + 6a2 − 14a− 4, a4 + 2a3 − 7a2 − 4a+ 10)

where a ∈ Z is arbitrary.

In conjunction with Webb and Yokota’s work on periods 1, 2 and 4, Theorem IV.2

completely solves Problem IV.1 for quartic polynomials.

The formulas of Chapter II all assume that the quartic we have is centered. When

dealing with quartic polynomials in Z[x], the substitution required to center the

polynomial may introduce denominators to the coefficients. Thus there is a loss of

generality in assuming a given quartic is centered. Even so, we make the following
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observation about what types of denominators can be introduced in the process of

centering.

Lemma IV.3. Let d(x) = x4+a3x
3+a2x

2+a1x+a0 ∈ Z[x]. If we write the centered

version of d(x) as

dc(x) = d
(
x− a3

4

)
= x4 + b2x

2 + b1x+ b0

then 8b2, 8b1, 256b0 are integers.

4.2 Odd Periods

As a warmup to the types of arguments we will use repeatedly throughout this

chapter, we first use our explicit parametrizations to recover a theorem of Yokota

[32].

Theorem IV.4 (Yokota). Let d(x) ∈ Z[x] be a quartic, monic, square-free polyno-

mial. If the continued fraction of
√
d(x) is periodic of period at least 2 then its period

must be even.

In light of Theorems III.6, III.7 and III.8, we already know that if the continued

fraction of
√
d(x) is periodic with odd period, then its period must be either 3 or 5.

Thus we split the proof of Theorem IV.4 into two propositions.

Proposition IV.5. If d(x) ∈ Q[x] is a monic, quartic, square-free polynomial for

which the continued fraction of
√
d(x) is periodic of period 3 then d(x) 6∈ Z[x].

Proof. Assume for the sake of contradiction that there exists a monic, quartic, square-

free polynomial d(x) ∈ Z[x] such that the continued fraction of
√
d(x) is periodic

of period 3. Because
√
dc(x) will also have period 3, Proposition III.3 implies that

there exists b ∈ Q such that

dc(x) = x4 +
b4 − 16

8b2
x2 +

b

2
x+

b8 + 96b4 + 256

256b4
.
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In light of Lemma IV.3 we must have

b4 − 16

b2
, 4b,

b8 + 96b4 + 256

b4
∈ Z.

It’s then clear that b ∈ Z and b2 | 16, so b must be among {±1,±2,±4}. Thus dc(x)

is one of

x4 +
15

8
x2 ± 2x+

353

256
,

x4 − 15

8
x2 ± 1

2
x+

353

256
,

x4 ± x+
1

2
.

Our original polynomial, d(x), equals dc
(
x+ a

4

)
for some a ∈ Z. Thus d(x) is one

of

x4 + ax3 +
3a2 + 15

8
· x2 +

a3 + 15a− 32

16
· x+

a4 + 30a2 − 128a+ 353

256
,

x4 + ax3 +
3a2

8
· x2 +

a3 − 16

16
· x+

a4 − 64a+ 128

256
,

x4 + ax3 +
3a2 − 15

8
· x2 +

a3 − 15a− 8

16
· x+

a4 − 30a2 − 32a+ 353

256
,

x4 + ax3 +
3a2 − 15

8
· x2 +

a3 − 15a+ 8

16
· x+

a4 − 30a2 + 32a+ 353

256
,

x4 + ax3 +
3a2

8
· x2 +

a3 + 16

16
· x+

a4 + 64a+ 128

256
,

x4 + ax3 +
3a2 + 15

8
· x2 +

a3 + 15a+ 32

16
· x+

a4 + 30a2 + 128a+ 353

256
.

It is now a finite, but tedious computation to check that there is no a ∈ Z for which

any of these polynomials is in Z[x]. Since all the denominators are divisors of 256,

one only needs to check a in residue classes modulo 256. This gives our contradiction,

and we see that there is no monic d(x) ∈ Z[x] for which the period of the continued

fraction of
√
d(x) is 3.
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Proposition IV.6. If d(x) ∈ Q[x] is a monic, quartic, square-free polynomial for

which the continued fraction of
√
d(x) is periodic of period 5 then d(x) 6∈ Z[x].

Proof. The proof of non-existence of period 5 follows the same strategy as the proof

of Proposition IV.5. We assume for the sake of contradiction that there exists a

monic, quartic, square-free polynomial d(x) ∈ Z[x] such that the continued fraction

of
√
d(x) is periodic of period 5. The centered square root,

√
dc(x), will also have

period 5 so Proposition III.4 implies that there exists b ∈ Q such that

dc(x) = x4 +
3b8 + 384b4 − 4096

2048b2
x2 +

b5 + 64b

128
x

+
9b16 + 256b12 + 122880b8 + 5242880b4 + 16777216

16777216b4
.

By Lemma IV.3 we know that

b5 + 64b

16
∈ Z

and from this its easy to see that b ∈ Z. Furthermore, since

3b8 + 384b4 − 4096

256b2
∈ Z,

we can conclude that b2 | 4096, but then checking all such b shows that b must be

±4. Thus we see that dc(x) must be of the form

dc(x) = x4 +
71

8
x2 ± 10x+

3121

256
.

There exists an a ∈ Z such that d(x) = dc
(
x+ a

4

)
, so there two possibilities for d(x).

Again, we may iterate through the residue classes modulo 256 for a, and check if any

of these d(x) ∈ Z[x]. We suppress the computation, but doing the iteration yields

no d(x) ∈ Z[x]. This gives our contradiction, and we see that there is no monic

d(x) ∈ Z[x] for which the period of the continued fraction of
√
d(x) is 5.
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4.3 A Classification

In this section we will use elementary number theoretic arguments, coupled with

our parametrizations from Chapter II in order to prove Theorem IV.2. Before em-

barking on the proof of Theorem IV.2 we collect several observations and lemmas

which will be most useful for us.

Ultimately we would like to understand when we get solutions to the Pell equation

in Z[x]. We begin by trying to understand when we get solutions whose leading

coefficients are integers. This simplification of the problem will turn out to be enough

to get us the result in Theorem IV.2. We first observe that if there is a solution to

the Pell equation with integral leading coefficient then every solution to the same

Pell equation will also have integral leading coefficient.

Lemma IV.7. Let d(x) ∈ Q[x] be a monic, quartic, square-free polynomial. Suppose

there exists a non-trivial solution to

f(x)2 − d(x)g(x)2 = 1(4.2)

with leading coefficient in Z. Then every solution to (4.2) will also have leading

coefficient in Z.

Proof. If (4.2) has a solution, then it has a minimal solution (cf. Proposition I.11)

u = p(x) +
√
d(x)q(x). Let a denote the leading coefficient of p(x), which after

changing q(x) to −q(x) if necessary, is then also the leading coefficient of q(x). By

Proposition I.11 we know that every non-trivial solution to (4.2) is of the form ±uk

for k ≥ 1. Let

uk = pk(x) +
√
d(x)qk(x).
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Because we have the identity

(r(x) +
√
d(x)s(x))(w(x) +

√
d(x)t(x)) =

(r(x)s(x) + d(x)s(x)t(x)) +
√
d(x)(s(x)w(x) + r(x)t(x)),

a simple induction proves that the leading coefficient of qk(x) is 2k−1ak. By the

hypotheses of the lemma, there is some k0 ≥ 1 such that 2k0−1ak0 ∈ Z. Write a = m
n

with n > 0 and gcd(m,n) = 1. If p is a prime dividing n, then we must have

pk0 | 2k0−1 which is absurd. Thus n = 1 and a ∈ Z so ±2k−1ak ∈ Z for all k ≥ 1 and

lemma is proved.

Lemma IV.7 is useful because if there will exist a solution to the Pell equation

with integral coefficients then necessarily the leading coefficient of any solution must

be integral. Our parametrizations from Chapter II contain the assumption that the

quartic is centered. While we would like to prove results about arbitrary monic,

square-free, quartics, the following lemma allows us to pass off certain properties to

the centered version of the arbitrary polynomial.

Lemma IV.8. Let d(x) ∈ Q[x] be a monic, quartic, square-free polynomial, and let

dc(x) denote the centered version of d(x). Suppose there exists a non-trivial solution

to

f(x)2 − d(x)g(x)2 = 1

with the leading coefficient of f(x) an integer. Then every non-trivial solution to

f(x)2 − dc(x)g(x)2 = 1

has integral leading coefficient.
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Proof. Let d(x) = x4 + rx3 + sx2 + tx+ u, and suppose there exist p(x), q(x) ∈ Q[x]

such that

p(x)2 − d(x)q(x)2 = 1(4.3)

with p(x) non-constant and having integral leading coefficient. Put p̃(x) = p
(
x− r

4

)
and q̃(x) = q

(
x− r

4

)
. If in (4.3) we make the change of variables x 7→ x− r

4
then we

get

p̃(x)2 − dc(x)q̃(x)2 = 1.

Note that the leading coefficient of p̃(x) is integral since it is the same as the leading

coefficient of p(x). Thus by Lemma IV.7 we have that every non-trivial solution to

the Pell equation

f(x)2 − dc(x)g(x)2

will have integral leading coefficient.

We are now in a position to be able to prove Theorem IV.2, and we briefly detail

the strategy of proof. Let d(x) ∈ Z[x] be a monic, square-free, quartic polynomial,

and suppose there exists a non-trivial solution to

f(x)2 − d(x)g(x)2 = 1

with f(x), g(x) ∈ Z[x]. Because d(x) ∈ Z[x], Lemma IV.3 guarantees that if we write

the centered version of d(x) as dc(x) = x4 + rx2 + sx + t, then 8r, 8s and 256t are

integers. Furthermore, Lemma IV.8 guarantees that any non-trivial solution to the

Pell equation

f(x)2 − dc(x)g(x)2 = 1

will have an integral leading coefficient. In Chapter II we wrote down a complete

list of monic, centered, square-free, quartic polynomials in Q[x] which allow for a
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non-trivial solution to the Pell equation. We’ve also already seen in Chapter I that

any non-trivial solution to

f(x)2 − dc(x)g(x)2 = 1

has that f(x)
g(x)

arises as a convergent to
√
dc(x). Thus we may also use the parametriza-

tions found in Chapter II of the continued fractions in order to produce a solution

to the Pell equation. Thus we must figure out conditions on the parameters a and

b so that the leading coefficient of a solution is an integer, and that the coefficients

of the centered quartic have at worst appropriate powers of 2 showing up in their

denominators.

We perform our calculations by filtering based on the torsion order of the cor-

responding point on the Jacobian. Recall from Section 4.2 we need only consider

polynomials for which the continued fraction of their square root has even order.

Also, since periods 1, 2 and 4 have already been done by Webb and Yokota, we

assume that the torsion order is not 5.

It is proven in [27] that if the period of the continued fraction of
√
dc(x) is r, and

pk(x)
qk(x)

denotes the k-th convergent of
√
dc(x), then

pr−1(x)2 − dc(x)qr−1(x)2 = (−1)r.

We’ve already seen in Section 4.2 that we only need to consider continued fractions

with even periods. Thus if n is the order of the torsion element we are considering,

then we will use the leading coefficient of pr−1(x) where

r =


n− 1, n odd

2(n− 1), n even
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Throughout our computations, we will rely heavily on a formula for the leading

coefficient of a solution to the Pell equation. By our remarks above, we must compute

the leading coefficient of pr−1(x) for appropriate values of r. The next lemma allows

us to easily compute this leading coefficient.

Lemma IV.9. Let K be a field and let [a0(x); a1(x), a2(x), . . .] be a continued fraction

with all ai(x) being non-constant polynomials in K[x]. Consider the r-th convergent

pr(x)

qr(x)
= [a0(x); a1(x), . . . , ar(x)].

If ai(x) has leading coefficient αi then the leading coefficient of pr(x) is

r∏
i=0

αi.

Proof. If we set p−2(x) = 0, p−1(x) = 1, q−2(x) = 1 and q−1(x) = 0 then it is a

classical fact about continued fractions that for i ≥ 0 we have

pi(x) = ai(x)pi−1(x) + pi−2(x)

qi(x) = ai(x)qi−1(x) + qi−2(x)

(for a discussion of this, see Schmidt [24]). Notice that p0(x) = a0(x) so the leading

coefficient of p0(x) is α0. Furthermore, since a0(x) is assumed to be non-constant, we

have that deg p0(x) is strictly larger than deg p−1(x). Because all ai(x)’s are assumed

to be non-constant, a simple induction shows that the sequence (deg pi(x))i≥−1 is

increasing. Thus the recursive formula defining pi(x) implies that for i ≥ 0, the

leading coefficient of pi(x) is just the product of the leading coefficient of pi−1(x)

with αi. Another simple induction yields the conclusion of the lemma.

As mentioned above, we will try to find rational values of the parameters a and

b for which various rational functions in a and b are integer valued. By taking
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appropriate products of these rational functions, we will be able to kill off one of

the parameters, and only need to deal with rational functions in one variable. The

following two lemmas will be used repeatedly to get a handle on which values of the

parameter ensure that the value of our rational function is an integer.

Lemma IV.10. Let f(x), g(x) ∈ Z[x] with gcd(f(x), g(x)) = 1, deg(f(x)) > deg(g(x)),

f(0) 6= 0 and g(0) = 0. Then the set of α ∈ Q for which

f(α)

g(α)
∈ Z

is finite. Moreover, there is an effective algorithm for computing this set of α’s.

Proof. Write

f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

with ana0 6= 0, and write

g(x) = xr(bmx
m + bm−1x

m−1 + . . .+ b1x+ b0)

with r > 0 and bmb0 6= 0. If α ∈ Q× is such that

f(α)

g(α)
= c ∈ Z,

then α will be a rational root of the polynomial

f(x)− cg(x).(4.4)

If we write α =
p

q
with q 6= 0 and gcd(p, q) = 1 then the rational root theorem

says that p must divide the constant term of (4.4) and q must divide the leading

coefficient of (4.4).

Thus we see that p | a0 and q | an by the conditions imposed on f(x) and g(x).

This immediately implies that the set of α’s for which
f(x)

g(x)
∈ Z is finite. Moreover,
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we can effectively compute this set of α’s since we know that the numerator of α

divides a0 and the denominator divides an.

Lemma IV.11. For n and m positive integers, and r, s ∈ Q×, the set

{β ∈ Q : rβn, sβ−m ∈ Z},

is finite. Moreover, there is an effective algorithm for computing the set of β’s.

Proof. The condition that rβn and sβ−m are integers implies that

rβn − sβ−m =
rβn+m − s

βm

is an integer. Thus we may invoke Lemma IV.10 to reach the desired conclusion.

We now prove Theorem IV.2 one torsion order at a time. The proofs in all orders

are nearly identical, and where convenient, we sacrifice some computation (most of

which is done using MAGMA [4]) for the sake of presentation.

Order 4

Here we are dealing with period 6. Put

A =
8a− 2

b2

B =
32a

b3

C =
16a2 + 24a+ 1

b4
.

These are the coefficients arising in Theorem II.8, so we require that 8A, 8B, 256C ∈

Z. By Lemma IV.9 and Theorem II.10, the leading coefficient of p5(x) is

D =
1

512
· b

8

a3

which must be an integer as well. Hence the product

(8A)4D =
214a4 − 215a3 + 3 · 212a2 − 211a+ 27

a3
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is also an integer. Thus by Lemma IV.10 we see that for (8A)4D to be an integer,

certainly a must be of the form ±2k where −14 ≤ k ≤ 7. For each such value of a,

if we plug this number into the expressions for 8B and D, Lemma IV.11 gives us a

finite list of values of b for which both of these expressions can be integers. In total,

there are 60 pairs (a, b) for which 8A, 8B, 256C and D are all integers. These pairs

are

(±2−14,±2−4), (±2−12,±2−3), (±2−11,±2−3), (±2−10,±2−2), (±2−9, 2−2),

(±2−8,±2−1), (±2−7,±2−1), (±2−6,±2−1), (±2−5,±1), (±2−4,±1),

(±2−3,±1), (±2−2,±2), (±2−1,±2), (±2,±4), (±4,±4).

For each such pair (a, b), we form the polynomial f(a,b)(x) = x4 +Ax2 +Bx+C. In

order for this polynomial to be the centered version of some polynomial with integer

coefficients, there must exist c ∈ Z for which

f(a,b)

(
x+

c

4

)
∈ Z[x].

For example, if we look at the pair (−2,−4) then we get the polynomial

x4 + cx3 +
3c2 − 9

8
x2 +

c3 − 9c+ 16

16
x+

c4 − 18c2 + 64c+ 17

256
.

If we check all residue classes of c modulo 8, we notice that there is no residue class

for which 2c2 − 9 ≡ 0 (mod 8). Thus there is no integer c for which the polynomial

f(−2,−4)
(
x+ c

4

)
is in Z[x]. For each of the 60 polynomials corresponding to our 60

pairs, we can check residue classes to see if there is a value of c ∈ Z for which the

corresponding polynomial has integer coefficients. Surprisingly, among our list of 60

polynomials there are only 4 for which we can simultaneously make the coefficients

integers. They are:

x4 + cx3 +
3c2 − 68

8
x2 +

c3 − 68c+ ε · 64

16
x+

c4 − 136c2 + ε · 256c+ 2576

256
,
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x4 + cx3 +
3c2 − 20

8
x2 +

c3 − 20c+ ε · 32

16
x+

c4 − 50c2 + ε · 128c− 112

256

where ε = ±1. One can check that the second polynomial is not square-free! In fact,

it is divisible by (
x+

c− 2ε

4

)2

.

Since we are only dealing with square-free polynomials, we see that the only possi-

bility for a monic, quartic, square-free polynomial in Z[x], which corresponds to a

torsion point of order 4, for which there is a solution of the Pell equation with integer

coefficients is

x4 + cx3 +
3c2 − 68

8
x2 +

c3 − 68c+ ε · 64

16
x+

c4 − 136c2 + ε · 256c+ 2576

256

for ε = ±1. By looking at the coefficient of the x2 term, we see that the only hope of

this coefficient being integral is when c ≡ 2 (mod 4). Substituting c = 4d + 2 gives

the polynomials

x4 + (4d+ 2)x3 + (6d2 + 6d−7)x2 + (4d3 + 6d2−14d−12)x+d4 + 2d3−7d2−12d+ 6

x4 + (4d+ 2)x3 + (6d2 + 6d− 7)x2 + (4d3 + 6d2− 14d− 4)x+ d4 + 2d3− 7d2− 4d+ 10

which are obviously in Z[x] for any integer d. Thus it only remains to check if these

polynomials actually have a non-trivial solution to the Pell equation with integer

coefficients. In fact it is easy to check that the minimal degree solutions in these

two cases are already in Z[x]. The minimal solution to the Pell equation for the first

polynomial (found by checking convergents) is

f(x) = 4x4 + (16d− 8)x3 + (24d2 − 24d− 20)x2 + (16d3 − 24d2 − 40d+ 48)x

+ 4d4 − 8d3 − 20d2 + 48d− 20

g(x) = 4x2 + (8d− 12)x+ 4d2 + 12d− 8,
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and the minimal solution to the Pell equation for the second polynomial is

f(x) = 4x4 + (16d+ 24)x3 + (24d2 + 72d+ 28)x2 + (16d3 + 72d2 + 56d− 48)x

+ 4d4 + 24d3 + 28d2 − 48d− 76

g(x) = 4x2 + (8d+ 20)x+ 4d2 + 20d+ 24.

Order 6

In this case, we are looking at period 10 and the coefficients arising in Theorem II.8

are

A =
6a2 + 12a− 2

b2

B =
32a2 + 32a

b3

C =
9a4 + 4a3 + 30a2 + 20a+ 1

b4
.

The leading coefficient of p9(x) is

D =
1

8192
· b12

a5(a+ 1)4
.

Hence the product

(8A)6D =
21136

(
a2 + 2a− 1

3

)6
a5(a+ 1)4

is an integer. Using Lemma IV.10, we find that the only values of a for which this

expression is an integer are{
−2,−4

3
,−2

3
,−1

2
,−1

3
,−1

9
,
1

3
, 1

}
.

If, for each a, we use Lemma IV.11 with 8A and D we find that the only pairs (a, b)

for which 8A, 8B, 256C and D are all integers are

(−2,±4)

(
−1

2
,±2

)
, (1,±4), (1,±8).



64

For each pair (a, b) we look at the polynomial f(a,b)
(
x+ c

4

)
where

f(a,b) = x4 + Ax2 +Bx+ C.

For example, the pair (1,−4) gives rise to the polynomial

x4 + cx3 +
3c2 + 8

8
x2 +

c3 + 8c− 16

16
x+

c4 + 16c2 − 64c+ 64

256
.

It is easy to check that there is no value of c for which c4 + 16c2 − 64c + 64 ≡ 0

(mod 256). Thus there is no value of c ∈ Z for which this polynomial has integer

coefficients. Repeating this argument for each f(a,b)
(
x+ c

4

)
shows, somewhat sur-

prisingly, that there is no c ∈ Z for which any of these polynomials have all integer

coefficients. Thus there is no monic, quartic, square-free polynomial d(x) ∈ Z[x] for

which the continued fraction of
√
d(x) is periodic of period 10 and the Pell equation

has a solution with integral leading coefficient.

Order 7

This corresponds to the case of period 6. Letting A,B and C be the coefficients

arising in Theorem II.8, we require that 8A, 8B, 256C ∈ Z. By Lemma IV.9 we

compute the leading coefficient of p5(x) as

D =
1

256
· b7

a5(a− 1)3
.

Hence the product

(8A)2(8B)D =
256(a4 − 6a3 + 3a2 + 2a+ 1)2

a3(a− 1)2

is an integer. Lemma IV.10 gives that the only values of a for which this expression

is an integer are {
−1,

1

2
, 2

}
.
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For each value of a we can use Lemma IV.11 with 8A and D. The pairs (a, b) for

which 8A, 8B, 256C and D are integers are

(−1,±4),

(
1

2
,±1

)
, (2,±4).

Again, we look at the polynomials f(a,b)
(
x+ c

4

)
for each pair (a, b). For example,

the pair (2, 4) gives rise to the polynomial

x4 + cx3 +
3c2 + 15

8
x2 +

c3 + 15c+ 32

16
x+

c4 + 30c2 + 128c+ 97

256
.

Notice that there is no c for which 3c2 + 15 ≡ 0 (mod 8), so there is no c ∈ Z for

which this polynomial has integer coefficients. Looking at the quadratic term on

each of the polynomials that arise shows that there is no c ∈ Z for which any of

these polynomials has integer coefficients. Thus there are no other polynomials in

period 6 which give an integral solution to the Pell equation.

Order 8

This corresponds to the case of period 14. Letting A,B and C be the coefficients

arising in Theorem II.8, we require that 8A, 8B, 256C ∈ Z. By Lemma IV.9 we

compute the leading coefficient of p13(x) as

D =
1

223
· ab16

(a− 1)7
(
a− 1

2

)6 .
Hence the product

(8A)8D =
225
(
a4 + a3 − 4a2 + 2a− 1

4

)8
a15(a− 1)7

(
a− 1

2

)6
is an integer. If we appeal to Lemma IV.10 we find that there are no values of a

for which this expression is an integer. Thus there is no monic, quartic, square-free

polynomial d(x) ∈ Z[x] for which the continued fraction of
√
d(x) is periodic of

period 14 and the Pell equation has a solution with integral leading coefficient.
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Order 9

This corresponds to the case of period 8. Letting A,B and C be the coefficients

arising in Theorem II.8, we require that 8A, 8B, 256C ∈ Z. By Lemma IV.9 we

compute the leading coefficient of p7(x) as

D =
1

1024
· b9

a7(a− 1)4(a2 − a+ 1)3
.

Hence the product

(8A)(8B)(256C)D

is an integer. Lemma IV.10 gives that the only values of a for which this expression

is an integer are {
−1,

1

2
, 2

}
.

If for each a we use Lemma IV.11 on 8A and D, we actually get that there are no

values of b for which 8A and D are integers. Thus there is no monic, quartic, square-

free polynomial d(x) ∈ Z[x] for which the continued fraction of
√
d(x) is periodic of

period 8 and the Pell equation has a solution with integral leading coefficient.

Order 10

This corresponds to the case of period 18. Letting A,B and C be the coefficients

arising in Theorem II.8, we require that 8A, 8B, 256C ∈ Z. By Lemma IV.9 we

compute the leading coefficient of p17(x) as

D =
−1

229
· b20(a2 − 3a+ 1)15

a21(a− 1)9
(
a− 1

2

)8 .
Hence the product

(8A)10D

is an integer. If we appeal to Lemma IV.10 we find that there are no values of a

for which this expression is an integer. Thus there is no monic, quartic, square-free
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polynomial d(x) ∈ Z[x] for which the continued fraction of
√
d(x) is periodic of

period 18 and the Pell equation has a solution with integral leading coefficient.

Order 12

This corresponds to the case of period 22. Letting A,B and C be the coefficients

arising in Theorem II.8, we require that 8A, 8B, 256C ∈ Z. By Lemma IV.9 we

compute the leading coefficient of p21(x) as

D =
1

24339
· (a− 1)37b24

a11
(
a− 1

2

)10 (
a2 − a+ 1

2

)8 (
a2 − a+ 1

3

)9 .
Hence the product

(8A)12D

is an integer. If we appeal to Lemma IV.10 we find that there are no values of a

for which this expression is an integer. Thus there is no monic, quartic, square-free

polynomial d(x) ∈ Z[x] for which the continued fraction of
√
d(x) is periodic of

period 22 and the Pell equation has a solution with integral leading coefficient.

Combining our results with Webb and Yokota’s results, we obtain the following

theorems.

Theorem IV.12. Let d(x) ∈ Z[x] be a monic, quartic, square-free polynomial. If

the Pell equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ Z[x] then the period of the continued fraction

of
√
d(x) is either 1, 2 or 6.

Theorem IV.13. Let d(x) ∈ Z[x] be a monic, quartic, square-free polynomial for

which the period of the continued fraction of
√
d(x) is 6. Then the Pell equation

f(x)2 − d(x)g(x)2 = 1
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has a non-trivial solution f(x), g(x) ∈ Z[x] if and only if there exists c ∈ Z for which

d(x) is one of:

x4 + (4c+ 2)x3 + (6c2 + 6c− 7)x2 + (4c3 + 6c2− 14c− 12)x+ c4 + 2c3− 7c2− 12c+ 6,

x4 + (4c+ 2)x3 + (6c2 + 6c− 7)x2 + (4c3 + 6c2− 14c− 4)x+ c4 + 2c3− 7c2− 4c+ 10.

Theorem IV.14 (Webb-Yokota). Let d(x) ∈ Z[x] be a monic, quartic polynomial

such that the continued fraction of
√
d(x) is periodic of period 1 or 2. Then there exist

polynomials a(x), c(x) ∈ Q[x] for which d(x) = a(x)2 +2c(x) and b(x) =
a(x)

c(x)
∈ Q[x]

and either a(x) ∈ Z[x] or 2a(x) ∈ Z[x]. The Pell equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ Z[x] if and only if one of the following holds

• b(x), c(x) ∈ Z[x]

• a(x) ∈ Z[x] and 2c(x) = 1

• a(x), 1
2
b(x), 2c(x) ∈ Z[x], deg c(x) > 0 and the leading coefficient of c(x) is ±1

2
.

Moreover, in this case the minimal degree solution to the Pell equation has integer

coefficients.

4.4 Remarks

We conclude this chapter with some remarks on our classification of Section 4.3.

The crucial idea in the proof of Theorem IV.14 of Webb and Yokota comes from the

following proposition.

Proposition IV.15 (Webb-Yokota). Let d(x) = a(x)2+2c(x) be a monic polynomial

in Z[x], where deg c(x) < deg a(x) and
a(x)

c(x)
∈ Q[x] and 2a(x) ∈ Z[x]. Then the Pell
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equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ Z[x] if and only if the minimal degree solution

already has integral coefficients.

Remark IV.16. The condition
a(x)

c(x)
∈ Q[x] is equivalent to the condition that the

continued fraction of
√
d(x) is periodic of period 1 or 2. Furthermore, the condition

2a(x) ∈ Z[x] is automatically satisfied whenever d(x) is quartic. This proposition

allows Webb and Yokota to solve the corresponding classification problem for monic,

quadratic d(x). This is because if d(x) = x2 + ax+ b is square-free and in Z[x] then

one can write d(x) =
(
x+ a

2

)2
+
(
b− a2

4

)
.

Theorem IV.14 follows easily from this Proposition because one may easily com-

pute the minimal degree solution of the Pell equation using the continued fraction of√
d(x), and then check what conditions must be satisfied for this minimal solution

to have integer coefficients.

As a corollary of our proofs of Theorem IV.12 and Theorem IV.13, we observe

Corollary IV.17. Let d(x) ∈ Z[x] be a monic, quartic, square-free polynomial. If

the Pell equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ Z[x] then already the minimal degree solution

to the Pell equation has integer coefficients.

One can hope that Corollary IV.17 applies more generally. We may ask the following

question, for which there is no known counter-example.

Question IV.18. Let d(x) ∈ Z[x] be a monic polynomial of even degree. If the Pell

equation has a non-trivial solution with integer coefficients then is it necessarily the
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case that the minimal degree solution must also have integer coefficients?

An affirmative answer to Question IV.18 would greatly help the study of polyno-

mial Pell equation over Z[x]. This is because one can hope to explicitly write out the

continued fraction of
√
d(x), use its convergents to find a minimal degree to solution

to the Pell equation, and then check if the minimal solution has integer coefficients.

At this time we are also not able to analyze the case that d(x) is non-square free.

This is because if d(x) is divisible by the square of a non-constant polynomial then

the curve y2 = d(x) will not have geometric genus 1, and we cannot use results about

elliptic curves. In the course of our proof of Theorem IV.13, we did exhibit a non

square-free polynomial for which the Pell equation has a non-trivial solution. For

example, for a ∈ Z the polynomials

d1(x) = x4 + (4a+ 2)x3 + (6a2 + 6a− 1)x2 + (4a3 + 6a2 − 2a)x+ a4 + 2a3 − a2

d2(x) = x4 + (4a+ 2)x3 + (6a2 + 6a− 1)x2 + (4a3 + 6a2− 2a− 4)x+ (a+ 1)2(a2− 2)

are both non square-free, both have the property that
√
di(x) has a continued fraction

of period 6, and both have a minimal solution to the Pell equation which has integer

coefficients. It would be great to have an answer to the following question.

Question IV.19. Outside of periods 1 and 2, are these the only examples of monic,

quartic, non square-free polynomials in Z[x] for which the Pell equation has a non-

trivial solution with integer coefficients?

Most generally, it would be interesting to try to solve the problem of which quartic

polynomials in Z[x] have a non-trivial solution to the Pell equation with integer

coefficients, where we don’t require our polynomial to be monic. At this time we do

not have an answer for the most general problem, but there is hope that some of the

techniques in this chapter may lead to a resolution of this problem.



CHAPTER V

Generalizations and Questions

5.1 Synopsis

We conclude our discussion of polynomial Pell equations with a brief discussion

of potential directions, generalizations and conjectures pertaining to the material

in this thesis. First we will look at some of the challenges of working with quartic

polynomial Pell equations over number fields other than Q. Then we will examine

the difficulties of working with polynomials whose degree is larger than four.

5.2 Number Fields

Throughout our work we repeatedly made use of Mazur’s theorem to bound the

torsion order of a rational point on an elliptic curve defined over Q, and subsequently

we used this to conclude facts about the periods of certain continued fractions. There

is a generalization of Mazur’s theorem due to Merel [17].

Theorem V.1 (Merel). For all positive integers n there exists a positive constant

Bn such that for all elliptic curves E over a number field K with [K : Q] = n then

|E(K)tors| ≤ Bn.

Combining Theorem V.1 with Theorem I.16 gives the following corollary about

quartic polynomials over number fields.

71
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Corollary V.2. For all positive integers n there exists a positive constant Cn such

that the following holds. If K is a number field with [K : Q] = n and d(x) ∈ K[x] is

a quartic, square-free polynomial for which the Pell equation

f(x)2 − d(x)g(x)2 = 1

has a non-trivial solution f(x), g(x) ∈ K[x], then the period of the continued fraction

of
√
d(x) is bounded by Cn.

For values of n > 2 it is not known how small Bn can be taken in Theorem V.1.

The constant B2, however, is known for quadratic number fields. Kenku and Momose

[11], and Kamienny [9] prove exactly which finite groups can occur for E(K)tors when

K is a quadratic number field. We have as a corollary of their result

Theorem V.3 (Kamienny, Kenku, Momose). Let K be a quadratic number field, E

an elliptic curve defined over K and p ∈ E(K) a torsion point. If m denotes the

order of p in E(K) then m is one of

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18}.

Thus Theorem V.3 and Theorem I.16 allow us to conclude that if K is a quadratic

number field and d(x) ∈ K[x] is a quartic, square-free polynomial for which the

continued fraction of
√
d(x) is periodic then the period of the continued fraction is

among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 22, 26, 30, 34}.(5.1)

It is then natural to ask the following questions about this list of possible periods.

Question V.4. Let K be a quadratic number field. For which values n in (5.1) does

there exist a quartic, square-free polynomial d(x) ∈ K[x] for which the continued

fraction of
√
d(x) is periodic of period n?
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Question V.5. For which odd n in (5.1) does there exist a quadratic number field K

and a quartic, square-free polynomial d(x) ∈ K[x] for which the continued fraction

of
√
d(x) is periodic of period n?

The formulas of Chapter II remain valid over arbitrary number fields. Thus to

study periods 7, 9 and 11 over quadratic number fields K we only need to look for

K-points of the curves defined in Chapter III. By naively searching for points on

equations (3.10), (3.14), (3.18) over quadratic number fields of small discriminant,

we can find examples of periods 9 and 11, and an example of a monic polynomial

having period 7.

Example V.6. Consider the curve (3.10) defined by y2 = 8x(x2 + 1). Over Q(
√

5)

this curve has in addition to the solutions in Theorem III.6 the solution (2, 4
√

5).

Thus the polynomial

d7(x) = x4 +
271

360
x2 +

32
√

5

45
x+

288481

518400
∈ Q(

√
5)

has the property that the period of the continued fraction of
√
d7(x) is 7.

Example V.7. Consider the curve (3.14) defined by y2 = −(x − 1)x(x2 − 3x + 1).

Over Q(
√

2) this curve has the solution
(√

2+2
2
,
√
2+1
2

)
. By taking z = 2 in (3.13) we

get that the polynomial

d9(x) = (−2
√

2 + 3)x4 + (2
√

2− 1)x2 + 4x+
−2
√

2 + 11

4
∈ Q(

√
2)[x]

has the property that the period of the continued fraction of
√
d9(x) is 9.

Example V.8. Consider the curve (3.14) defined by y2 = 1
3
(x − 1)x

(
x2 − x+ 1

3

)
.

Over Q(
√

5) this curve has the solution
(√

5+1
2
,−2

3

)
. By taking z = 4 in (3.17) we

get that the Q(
√

5)[x] polynomial

d11(x) =
−72
√

5 + 161

45
x4+
−1384

√
5 + 3078

45
x2+
−1856

√
5 + 4160

15
x+

528
√

5 + 23161

45
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has the property that the period of the continued fraction of
√
d11(x) is 11.

For torsion orders other than the ones given in Mazur’s theorem we can no longer

obtain parametrizations. This is because Mazur [15] showed that for N not among

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12},

the compactification of the moduli space parametrizring isomorphism classes of ellip-

tic curves with a point of order N , denoted by X1(N), is no longer a genus 0 curve.

There is still some hope to get information in other cases, though, since we do have

explicit equations for X1(N) for higher values of N . In [10], Kamienny and Najman

give equations for X1(N) for 11 ≤ N ≤ 18 excluding 17. Given a quadratic number

field K one could hope to find all the K-points on the X1(N), thereby finding all

elliptic curves over K with a point of order N , and then use the methods of Chap-

ter II and Chapter III in order to reduce the existence question of certain periods of

continued fractions to a question about K-points on certain varieties.

In [10], the authors also tackle the the question of determining, for each N ∈

{11, 13, 14, 15, 16, 18}, the minimal discriminant field Q(
√
r) such that there exists

an elliptic curve defined over Q(
√
r) and a torsion Q(

√
r)-point of order N . For 14,

16, and 18 these fields are Q(
√
−7), Q(

√
−15) and Q(

√
33) respectively. Thus to

look for polynomials whose square roots have periodic continued fraction of period

13, 15 or 17, one must work over quadratic fields of sufficiently large discriminant.

The problem of finding all the K-points on a smooth, projective variety defined

over K is in general open and very difficult. There have been lots of advances of

finding all the K-points on curves, but even this case is open for genus greater than

0. Even so, there is some hope that if the equations produced are sufficiently nice,

then one could prove or disprove the existence of periods 13, 15, and 17 over various
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quadratic number fields.

5.3 Higher Degrees

Another direction for this research to go would be to look at the case where the

degree of d(x) is at least 6. Now, if K is a field and d(x) ∈ K[x] is a monic, square-free

polynomial of even degree at least 6, then the normalization of the curve

y2 = d(x)

has genus at least 2. Thus studying the existence of non-trivial solutions to the Pell

equation

f(x)2 − d(x)g(x)2 = 1

is equivalent to the assertion that a particular K-point on an abelian variety of

dimension at least 2 is a torsion point. For abelian varieties of dimension at least 2,

there is no known analogue of Merel’s theorem, Theorem V.1. There are, however, a

couple of conjectures in this direction. Both of these are taken from Alice Silverberg’s

lectures found in [6].

Conjecture V.9 (Torsion Conjecture for Abelian Varieties). If A is an abelian

variety of dimension d defined over a number field K of degree m, then |A(K)tors| is

bounded above by a constant depending only on d and K.

Conjecture V.10 (Strong Torsion Conjecture for Abelian Varieties). If A is an

abelian variety of dimension d defined over a number field K of degree m, then

|A(K)tors| is bounded above by a constant depending only on d and m.

In addition to it being open as to whether or not there is a uniform bound on how

large the torsion order of a K-point can be (which is a slightly weaker condition than

asserting that |A(K)tors| is uniformly bounded), there is another difficulty. Namely
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if (A, p) is the abelian variety and point at infinity associated with d(x), then there

is no known formula relating the period of the continued fraction of
√
d(x) and the

torsion order of p. We do however have an upper bound on the quasi-period of the

continued fraction of
√
d(x) in terms of the torsion order due to Berry [3]

Theorem V.11 (Berry). Let K be a field of characteristic different from 2 and

let d(x) ∈ K[x] be a monic, square-free polynomial of degree 2m where m > 4. If

d(x) corresponds to the pair (A, p) where A is an abelian variety defined over K and

p ∈ A(K) is a torsion point of order n, then the quasi-period of the continued fraction

of
√
d(x) is at most n−m+ 1.

Using Theorem V.11 we can show that a finiteness result on the set of periods of

continued fractions corresponding to fixed degree follows from Conjectures V.9 and

V.10.

Proposition V.12. Let m > 2 be an integer and K a number field. If Conjecture V.9

is true then there exists a positive constant C(m,K), depending only on m and K,

such that if d(x) ∈ K[x] is a monic, square-free polynomial of degree 2m for which the

continued fraction of
√
d(x) is periodic, then the period is bounded above by C(m,K).

Proof. Assume Conjecture V.9 and let B(m−1, K) be an upper bound for the torsion

order of a K-point on an abelian variety of dimension m − 1 defined over K. Let

d(x) ∈ K[x] be a monic, square-free polynomial of degree 2m for which the continued

fraction of
√
d(x) is periodic of period n. In this case, d(x) corresponds to an abelian

variety A of dimension m− 1 and a torsion point p ∈ A(K). Thus the order of p is

bounded above by B(m−1, K), and by Theorem V.11, we know that the quasi-period

q of the continued fraction of
√
d(x) is at most B(m− 1, K)−m+ 1.

We’ve already seen in Chapter I that q divides n and that if q is odd then neces-
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sarily n ≤ 2q. If on the other hand q is even then in the continued fraction expansion

for
√
d(x) we will have αq(x) = µα0(x) for some primitive r-th root of unity µ ∈ K

in which case n = rq. The field K contains only finitely many roots of unity so

let r(K) be the maximal order among the roots of unity in K. Then n is bounded

above by r(K)q which is at most r(K)(B(m − 1, K) − m + 1). Thus we have an

upper bound C(m,K), depending only on m and K, for the period of the continued

fraction of
√
d(x).

Proposition V.13. Let r and m be nonnegative integers with m > 2. If Conjec-

ture V.10 is true then there exists a positive constant C(m, r), depending only on

m and r, such that if K is a numbr field of degree r and d(x) ∈ K[x] is a monic,

square-free polynomial of degree 2m for which the continued fraction of
√
d(x) is

periodic, then the period is bounded above by C(m, r).

Proof. The proof is identical to that of Proposition V.12 except now we can bound

the maximal order of a root of unity in terms of the degree of the number field.

The hypothetical bounds given in Proposition V.12 and Proposition V.13 may or

may not be optimal. In the quartic case, we’ve already seen that if the quasi-period

is even then the root of unity showing up is just 1, and the quasi-period is also the

period. This is independent of the field we are working over, so it would be interesting

to understand which other roots of unity, if any, may arise in the case of polynomials

of higher degree. There are very few examples known of sextic polynomials for which

the continued fraction of their square-root is periodic. It would be useful to try to

find several examples over number fields and compute the continued fractions and

the constants arising.

Another interesting question in the higher degree case is to understand which pairs
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(A, p) correspond to polynomials. In the elliptic case, we saw that Adams and Razar

[2] proved that, given any elliptic curve E defined over Q and any Q-rational point p

on E, there exists a monic, square-free, quartic polynomial d(x) ∈ Q[x] corresponding

to (E, p). There is currently no analogue of this result to higher dimensional varieties.

Obviously one cannot expect to get every abelian variety because not every abelian

variety occurs as the Jacobian of some curve. Even so, it would be interesting to

consider the following analogue of Adams and Razar.

Question V.14. Let A be an abelian variety defined over Q for which A is isomor-

phic to the jacobian of some hyperelliptic curve. For which points p ∈ A(Q) do there

exist d(x) ∈ Q[x] such that (A, p) corresponds to d(x)?

This question seems a bit ambitious yet an answer to it would be useful since

it would allow one to construct many examples of polynomials in higher degree for

which we can test the periods of the corresponding continued fractions.
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