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ABSTRACT

Prospects for a New Account of Time Reversal

by

Daniel Peterson

Chair: Gordon Belot

Recent literature concerning the symmetry of time reversal has left unclear both

what this symmetry is and what physical theories are invariant under it. In this

dissertation, I argue that to understand how time reversal transforms physical states,

we should seek symmetry transformations that meet minimal criteria of time reversal-

hood under which all of the fundamental physical laws are invariant. If there is a

unique transformation that emerges from this procedure, that transformation may be

properly called time reversal. I apply my methodology to model worlds governed by

various differential equations and examine the consequences of my account in each

world. In the final chapter, I discuss the implications of failures of time reversal

invariance in the fundamental laws for the nature of spacetime and conclude that two

prima facie promising arguments for a connection between temporally asymmetric

features of the laws and spacetime rest on questionable assumptions.
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CHAPTER I

Introduction

Discussions of contemporary physical theories mention numerous physical sym-

metries, such as spatial translations, spatial rotations, and Lorentz boosts. But the

focus of this dissertation is primarily on the time reversal symmetry transformation.

What makes this symmetry so special that it should be the focus of this entire work,

and, more generally, why exactly should we care about physical symmetries in the

first place? My answer to this latter question may be found in the next chapter, but

my answer to the first question unites the numerous chapters in this dissertation and

explains how they fit together. Time reversal is a particularly important symmetry

to philosophers who work on the metaphysics of time because our understanding of

time is generally so poor. Contemporary philosophers of time still argue about ba-

sic, fundamental issues like the duration of the present and the existence of the past

and future, suggesting that, despite years of inquiry, it is still difficult to make even

incremental progress in understanding the nature of time. Physics provides us with

a new perspective on some of these issues, and it seems likely that, by examining

temporal symmetries like time translations and time reversal and their role in fun-

damental physical theories, we may gain a better understanding of what time is and

what necessary and contingent features it has.

The unifying focus in this work is on the tantalizing suggestion that the failure of
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the fundamental physical laws to be time reversal invariant gives us good reason to

believe that spacetime itself may be temporally asymmetric which, in turn, may help

explain the numerous and varied temporal asymmetries found in physical phenomena

from entropy to causation to human experience and memory.1 This suggestion has

most recently, most clearly, and most forcefully been advocated by Maudlin (2007),

but it has a long history. To my knowledge, it was first brought to the attention

of contemporary analytic philosophers in the guise of the “Time Direction Heresy”

discussed by Earman (1974), and something like this suggestion has appeared in

works by Horwich (1987) and Zeh (2001), among others. This suggestion gives us

reason to hope that a solution to one of the most difficult problems in the philosophy

of time may be at hand, but I will argue that the hope it gives us is merely false hope.

To thoroughly understand both the motivations for Maudlin’s argument in particular

and explore its significance, I assess two separate claims in this work: 1) that the

fundamental laws of physics fail to be time reversal invariant, and 2) that the failure

of the fundamental laws to be time reversal invariant would give us sufficient reason

to posit a fundamental temporal asymmetry in spacetime.

The majority of this dissertation concerns an assessment of the first claim. In

chapter 2, I pull back from the specific topic of time reversal invariance to give an

account of physical symmetries more generally. I argue that, if we are to concern our-

selves with physical symmetries that are useful for doing both the work of physics and

the work of metaphysics, we ought to only consider symmetries that act consistently

across physical theories. This consistency criterion provides the primary motivation

for the account of time reversal I examine in chapter 3, where, after discussing and

1Throughout the course of this dissertation, I will treat the following claims as equivalent to one
another: 1) Spacetime is temporally anisotropic; 2) Spacetime is temporally “handed” (see Callender
(2000)); 3) Spacetime is temporally asymmetric. While there are subtle differences between the
claims, they are not differences that matter for my analysis, and my argument that, for example,
the failure of the fundamental laws of physics to be time reversal invariant does not support the
temporal anisotropy of spacetime will support conclusions about spacetime’s temporal asymmetry
and temporal “handedness” as well.
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rejecting what I call the ”intuitive” and ”theory-relative” accounts of time reversal,

I argue for a promising new account of time reversal that avoids the problems of its

competitors by steering a middle course between them. The mathematical underpin-

nings of this account are briefly discussed in chapter 4, and in chapter 5, I provide

some toy models as test cases of my account and compare them to the verdicts of

other accounts. In these chapters I argue that, in order to determine whether the

fundamental laws of physics are time reversal invariant, an account of time reversal

more mathematically involved than the ones currently available is needed, and I argue

that, given my analysis of a few toy models, we have a good (if defeasible) reason to

believe that the fundamental laws of physics fail to be time reversal invariant.

My final chapter of the dissertation thus returns to Maudlin’s argument in partic-

ular and asks what to make of the previous chapters’ results. My focus in this final

chapter is primarily on the arguments Maudlin could rely on to justify his claim that,

if the laws of physics fail to be time reversal invariant, this gives us a good reason

to believe that there is some preferred temporal arrow in spacetime. Maudlin’s claim

here is not supported by further argument in his own work, so I draw on the work of

Earman (1989) and Brown (2005) to provide two separate arguments for Maudlin’s

claim that seem, prima facie, fairly appealing. However, neither argument ultimately

supports Maudlin’s position, and so I argue that the consequences of physical laws’

invariance (or lack thereof) under the time reversal symmetry may not be as meta-

physically informative as we might have hoped. Even if the hope Maudlin gives us for

explaining various “arrows of time” is false hope, the examination of why Maudlin’s

argument fails helps us to better understand physical symmetries generally, time re-

versal symmetries in particular, and the explanatory criteria that help us determine

when we ought to adopt or accept a particular interpretation of a given physical the-

ory, and these lessons will be important for other projects in philosophy of physics,

philosophy of science, metaphysics, and even physics itself.
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CHAPTER II

Physical Symmetries, Overarching Symmetries,

and Consistency

Symmetries of various sorts play an extremely important role in our understanding

of our best physical theories. Spacetime symmetries, dynamical symmetries, and

empirical symmetries all tell us important information both about the world we live

in and the physical theories we posit to explain and aptly represent that world. The

focus of my project in this dissertation is on the symmetry of time reversal, one of

the most important symmetries in physics. Physicists like Carroll (2010) frequently

claim that the fundamental laws of physics are invariant under the symmetry of time

reversal while at the same time acknowledging apparent violations of this symmetry

at the fundamental level, such as the violation of CP invariance (and thus, by the

CPT theorem, the violation of T invariance) by K-mesons. My purpose in this second

chapter of my dissertation is to provide and justify a new methodology for determining

whether a physical theory is time reversal invariant that will help to assess claims

like Carroll’s, but before discussing time reversal in particular, I will provide, in this

chapter, a general account of two kinds of symmetries appealed to by physicists and

justify a particular approach to investigating these symmetries that I will utilize later

in the dissertation.

The word “symmetry” is bandied about in numerous contexts to various ends, so
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it seems reasonable to begin a discussion of a symmetry like time reversal by isolating

exactly what it is we generally mean by a “symmetry” within the context of the

physical sciences. The following are examples of sentences we are likely to encounter

involving the terms “symmetry” or “symmetric”:

(1) Starfish have radial symmetry.

(2) Humans have bilateral symmetry.

(3) The “is equal to” relation is symmetric.

(4) The relationship between friends is more symmetric than the one

between parent and child.

(5) Time reversal is a symmetry of the fundamental laws of physics.

The focus of my discussion in this chapter will be on what symmetry means

as it appears in sentences like (5) above, not as it appears in sentences like (1) to

(4) (though, as we’ll see, sentences like (1) to (4) may help us understand some

general features of what I call physical symmetries); that is, I am interested in the

notion of symmetry as it appears in our best fundamental physical theories. I divide

such symmetries into two classes, namely a more fine-grained class of “physical”

symmetries that are defined within the context of a specific physical theory, and the

more coarse-grained “overarching” symmetries, which hold across numerous physical

theories. My first task in this chapter is to lay out an account of physical symmetries,

for while authors like Belot (2013), Earman (1989), and Greaves (2010) have provided

their own formal treatments of similar symmetries, I hope to provide an account that

better captures what it is for some transformation to be a symmetry of a particular

physical theory.1

However, my focus in this work is on time reversal, an overarching symmetry, and

as such most of this chapter will focus on overarching symmetries and the relation-

1My approach will ultimately be similar to Belot’s but with a few important tweaks.
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ship between overarching symmetries and the physical symmetries they connect. In

particular, I will discuss “realism” and “conventionalism”, two different stances one

may take towards certain overarching symmetries, and provide several examples of

how overarching symmetries, depending on which stance we take, may guide scientific

inquiry. My central claim in this section is that should we wish to use overarching

symmetries as guides to which new theories to accept or to the underlying metaphysi-

cal structure of the world, we ought to care most or only about overarching symmetries

that act consistently across physical theories. The alternative stance towards overar-

ching symmetries, which broadens the physicist’s and philosopher of physics’ domain

of interest to include symmetries whose action on the same physical quantities may

vary from theory to theory, does not allow overarching symmetries to do the work that

both physicists and philosophers frequently require of them. I thus argue that both

realists and conventionalists have good reason to prefer an account of time reversal

that satisfies the realist’s constraint of acting consistently across different physical

theories.

2.1 What are Physical Symmetries?

Symmetries, generally speaking, are of interest because they reveal meaningful

operations under which certain basic structures are preserved. In example (1) above,

the starfish’s radial symmetry tells us that, should the starfish be rotated by certain

intervals about an axis passing through its stomach perpendicular to its legs, the

starfish’s shape will be preserved (or approximately preserved). The operation of

interest in this example is a rotation, and the structure preserved is the starfish’s

shape. Likewise, in the case of bilateral symmetry, the figure’s general shape is the

relevant structure preserved by some transformation, but the operation of interest

is different: bilateral symmetry picks out a structure that remains invariant under

spatial reflection, unlike radial symmetry’s reference to spatial rotations. And so in
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fundamental physics as well, what counts as a symmetry is a kind of operation which

leaves a certain structure invariant.2

As these examples suggest, there are essentially three features one must identify

in order to understand exactly what a particular kind of symmetry is supposed to be:

the relevant structure(s) left invariant by the symmetry, the objects acted on by the

symmetry, and the way in which the symmetry transforms those objects. These three

features of a symmetry are invariably linked. Consider spacetime symmetries, for

instance. Spacetime symmetries are maps from spacetime points to spacetime points

that are required to leave the spacetime interval (defined as ds2 = −c2dt2+dx2+dy2+

dz2 for Minkowski spacetime) invariant. Dynamical symmetries are transformations

that take a particular solution in the solution space of some set of equations to some

other solution in that same solution space. Both spacetime and dynamical symmetries

are thus maps from objects defined on a particular topological space (spacetime and

the space of solutions respectively) to objects on that same particular topological

space that leave some particular feature of those objects (the spacetime interval and

solution structure respectively) invariant. Given that the first part of my project is

to determine what sorts of transformations constitute physical symmetries, I should

likewise explain what sorts of topological spaces and invariant structures are utilized

by all physical theories.

2.1.1 A Formal Account of Physical Theories

Physical theories, as I use the term for the purposes of this paper, are essentially

ordered tuples of the form 〈E,X,U,N〉, where E is the set of equations utilized by

a particular theory (usually differential equations), X is the set of all independent

variables appearing in the equations in E, U is the set of all dependent variables

2Something like this general notion of a symmetry can be found in numerous contemporary
discussions of symmetries in the philosophy of physics literature. See, for instance, Belot (2013),
Brading and Castellani (2007), Healey (2009), Ismael and van Fraassen (2003), Roberts (2008), and
van Fraassen (1989).
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appearing in the equations in E, and N is the “interpretation function” of that

physical theory (more on that in a moment).34 By dependent variables here I mean

variables that can be represented as functions of the independent variables and whose

derivatives in terms of these independent variables we take to be of physical interest.

For instance, in Newtonian mechanics the variable representing the position of a

ball rolling down an inclined plane can be represented as a function of the time

that has passed since the ball was released, and so the variable “position” here is

taken to be a dependent variable and “time” is taken to be an independent variable.

There may be some conventional element in selecting which variables are dependent

and which are independent for any particular physical theory; for instance, in the

case of Newtonian mechanics, because the position x can be given in terms of the

time t by x = f(t), it is also the case that, for invertible f , t = f−1(x), so we

may appeal to some conventional element to tell us whether time or position is the

dependent variable here. Alternatively, we may take the velocity of the ball, v = dx
dt

,

to be more fundamental than its inverse dt
dx

and so take there to be some principled,

non-conventional reason for taking t as the independent variable here instead of x.

Typically, the variable which is easier for experimenters to control or manipulate is

taken to be the independent variable, but this need not always be the case. My point

here is only that it is up to the theory we are interested in to tell us what quantities

we care about and how to assign dependent and independent variables in any given

situation.

The equations e ∈ E on my account are conditions on functions of independent

variables, dependent variables, and, in the case of differential equations, derivatives of

3I should note that I am not trying to give a full account of what it is for something to count as
a physical theory; rather, what I refer to here as a “physical theory” is a set of necessary features
that I take all physical theories to have and all of which I will exploit in my account of symmetries
later in this paper.

4Over the course of this paper I will refer to X as both the set of independent variables and the
space whose axes correspond to the independent variables in X. The context will help to determine
which of the two I mean at any given time, and I will similarly equivocate with my usage of U .
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the dependent variables with respect to the independent variables that require these

functions be zero.5 So, for instance, in cases where there is only one independent

variable x and one dependent variable u, a differential equation can be represented

as the condition that the function d(x, u, u(1), ..., u(n)) = 0, where u(i) is the nth

derivative of u with respect to x (e.g. u(2) = ∂2u
∂x2 ).6 An equation can be characterized,

then, by the function it sets equal to zero, and so I will take the elements of the

set E to be the functions that the equations of the physical theory set equal to zero.

Differential equations serve as constraints on the dependent and independent variables

utilized by a theory and help us determine how the dependent variables depend on

the independent variables of a theory, but they are more difficult to deal with than

algebraic equations which do not depend on any of the derivatives of the dependent

variables. Unfortunately, physics is complicated, and so many of our most successful

physical theories postulate differential equations instead of algebraic equations and

are better at representing, predicting, and explaining the world for it.

Differential equations and the variables they utilize would fail to interest physi-

cists if these mathematical objects did not tell us anything about the physical world;

however, as it turns out, many important physical systems are aptly modeled by dif-

ferential equations, and, as previously stated, the differential equations we appeal to

in our physical theories have been extremely good at predicting and explaining various

physical phenomena. Differential equations allow us to represent physical constraints

because we take the variables appealed to by our physical theories to represent mea-

surable features of the physical world. Physical theories necessarily contain what I

will call an interpretation function N , which is a map from the variables appealed

to by a physical theory and functions of these variables to the set of measurement

processes in the physical world that provide the values for these variables. Interpreta-

5This account follows the one given in Olver (1993).
6Throughout this paper I will use D instead of E and di instead of ei when speaking of a set of

differential equations and a particular differential equation respectively.
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tions are necessary components of physical theories because two physical theories may

utilize similar equations and variables to different ends. For instance, the differential

equation:

d(x, t, u) =
∂2u

∂2t
− c2∂

2u

∂x2
= 0 (2.1)

is the one-dimensional wave equation and can be used to model different kinds of

waves, including compression waves (like sound) and transverse waves (like light).

The context in which we find this differential equation, then, tells us a great deal

about its content, and we need that information if we want to use this differential

equation to make useful predictions. The interpretation function helps us in this case

by telling us both which measurements will give us the values we need to implement

the wave equation and how these variables are similar to (or differ from) variables

that show up in other physical theories. The function N can be as complicated or

simple as one likes, but at the very least it must provide a link between variables

and the physical measurements we perform to determine the values of those variables

when using a theory’s equations. I want to emphasize here that I’m not providing

a theory of where N comes from, only stating what it does (tells us which variables

represent which quantities) and assuming that, for any given physical theory, we have

some N readily available to us for our purposes. The interesting question of just how

one determines what N is in the context of a particular physical theory lies beyond

the scope of this dissertation.

One may object here that physical theories do not all come equipped with par-

ticular interpretations; after all, many physical theories (most notably quantum me-

chanics) have numerous interpretational difficulties, and so stipulating that a physical

theory like quantum mechanics comes with “an interpretation” seems strange. Note,

however, that my technical usage of the “interpretation function” differs from what is

typically meant by an interpretation of a physical theory in other contexts: the job of
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my “interpretations” is only to tell us what measurement processes give us the values

for the variables postulated by a physical theory, not to tell us anything about the

underlying metaphysics of the world described by this theory. Note also that I have

not stipulated anything about what sort of map N must be. This is simply because

not all of the variables utilized in our equations correspond directly to measurable

features of the world. The quantum mechanical wave function, for instance, may not

be directly measurable, but the Born rule tells us that its modulus squared corre-

sponds to the probability of finding the system described by the wave function in a

certain state. Assuming that probabilities are empirical features of the world (which

itself is something of a contentious assumption), it is clear that, even if the theory of

quantum mechanics has no agreed-upon interpretation in the traditional sense of the

word, it does have an agreed-upon N in my technical sense.

Let’s turn from my discussion of what physical theories are to the question of

what topological space the central objects of the physical theory live in. For starters,

I will examine the simple case of a physical theory all of whose equations are algebraic

equations; that is, I will restrict my consideration only to physical theories containing

sets E such that:7

∀ei ∈ E,∃f such that ei = f(X,U) (2.2)

That is, assume that the equations in question depend only on the dependent and

independent variables, not their derivatives. Such equations are represented by curves

on a given manifold, namely the space of dependent and independent variables X

and U which I will henceforth call the variable space X × U .8 Each point in this

space corresponds to a set of values for the variables in X and U , and the theory

7To be precise, we require here that f be a differentiable function.
8I should mention that, while I call the representations of these equations “curves”, they are more

correctly n-1-dimensional submanifolds of n-dimensional manifolds. For instance, in cases where the
variable space is greater than 2-dimensional, the “curve” of the equation will likewise be greater
than 1-dimensional, standard terminological implications to the contrary.
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differentiates between those sets of values that are physically possible according to a

particular equation, which correspond to points on the equation’s curve, from those

sets of values which are not physically possible according to that equation. Few

theories contain singleton sets of equations, and so typically we are interested not

in each curve on its own but rather the intersections of the curves corresponding to

all of the equations contained in a particular physical theory. It is these curves that

determine which sets of variable values the theory takes to be physically possible

simpliciter and which values it does not. Relative to this curve, then, we can define

a solution of an algebraic equation as a map from the space of independent variables

X to the space of dependent variables U such that, when this map is identified in

the obvious way with a subset of the variable space X×U , this subspace lies entirely

within the curve determined by the equations. This notion of a solution extends

naturally to characterize solutions of differential equations as well, as we’ll see in the

next section.

2.1.2 Physical Symmetries and How We Find Them

Following this definition of solution, one can now posit a notion of symmetry that

lines up nicely with the previously discussed notion of a dynamical symmetry. A

symmetry of a physical theory T is a transformation that maps points in T ’s variable

space to other points in T ’s variable space that keep the solution structure the same.9

That is, a symmetry cannot map the points in a subspace that lies entirely within

the curve determined by T ’s equations to points outside of the curve determined

by T ’s equations. The objects transformed by a physical symmetry are thus points

in a theory’s variable space, and the structure preserved by a physical symmetry

9I will restrict my talk of symmetries in this paper to point symmetries. Generalized physical
symmetries may be of interest as well, and my account of point physical symmetries may extend
to an account of generalized physical symmetries, but as time reversal is a point symmetry, I will
restrict my notion of a physical symmetries to only point symmetries for the purposes of this paper.
Those interested in generalized symmetries should consult chapter 5 of Olver (1993).
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transformation is the solution structure of that space.

The set of all transformations of a physical theory, along with a binary operation

that defines the product of any two such transformation, composes a group, meaning

that a symmetry group GT can be defined as the set of all transformations of a

physical theory T with a binary operation ∗ (in this case, functional composition)

satisfying the following four conditions:

1. Closure: ∀A,B ∈ GT , A ∗B ∈ GT

2. Associativity: ∀A,B,C ∈ GT , A ∗ (B ∗ C) = (A ∗B) ∗ C

3. Identity: ∃e ∈ GT such that ∀A ∈ GT , e ∗ A = A ∗ e = A

4. Inverse: ∀A ∈ GT , ∃A−1 ∈ GT such that A−1 ∗ A = A ∗ A−1 = e.

In essence, each of these conditions says the following: from 1, the product of any

two symmetry transformations must itself be a symmetry transformation; from 2, the

binary operation utilized by the group is associative; from 3, the identity operation

(i.e. the operation that maps every point in a theory’s variable space to itself) must

always be a member of a group of physical symmetries; and from 4, every symmetry

transformation has an inverse that is also a symmetry transformation.

The search for physical symmetries is thus just the search for the group of sym-

metries that leaves the solution structure of a variable space invariant. I will forego

some technical details here, but there are available mathematical methods that take

advantage of the infinitesimal generators of groups that allow us to determine what

the symmetry group of any particular differential or algebraic equation is.10 So, in

short, once we restrict our attention to physical theories that utilize only algebraic

equations and define physical symmetries as I have, there are mathematical results

that make the calculation of these symmetries (relatively) easy in many cases. So far,

10Those who would like more detail on just how this process works for the case of symmetries
continuously connected to the identity transformation should consult Section 2.1 of Olver (1993)
and chapter 4 of this dissertation.
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so good.

The problem is that, as stated previously, most physical theories consist of differ-

ential, not algebraic, equations, and unlike algebraic equations, differential equations

cannot be represented as curves on a theory’s variable space. So how do we extend

the notion of a symmetry group, which was so useful in the case of algebraic equa-

tions, to the case of differential equations? The answer is that, as in the algebraic

case, we must find some geometric object (like a curve) defined on a manifold (like

variable space) that corresponds to the vanishing of some function. Differential equa-

tions, like algebraic equations, can be represented by vanishing functions, albeit of a

slightly different sort. A differential equation is just an equation

d(X,U, U (1), ...U (n)) = 0 (2.3)

where U (i) is the set of all ith-derivatives of each variable in U with respect to each

variable (and each combination of variables) in X. So, for instance, if a theory has

two independent variables x, y ∈ X and one dependent variable u ∈ U , U (2) is given

by the following:

U (2) =

{
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y2

}
. (2.4)

If we’re willing to treat each of these derivatives as its own variable (which we can

do so long as we impose some constraints later on in our process), we can take each

differential equation to represent a curve in the space X × U × · · · × U (n) for some

fixed n. Such a space is said to be the nth prolongation of the base space X × U

since this variable space can be identified with a subspace of the prolongation space.

The point here is just that, as required, we can now represent differential equations

as curves on a manifold (the nth prolongation of variable space), which means that

the previously discussed symmetry group methods are applicable again.
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One final result, which I will only state but not prove, is that, for each symmetry

group of the nth prolongation of the variable space Gp, there is a corresponding sym-

metry group of the variable space Gv such that Gp is the prolongation of Gv.
11 What

this means, in essence, is that every element of Gv is a transformation of variable

space that induces a transformation of the nth prolongation of that variable space in

Gp and such an element of Gv exists for every element of Gp. So, once we know the

symmetry group of a differential equation (or set of differential equations) in the pro-

longation of variable space, we can work backwards to find a group of transformations

of the original variables in X and U such that each transformation of X and U in this

group takes solutions of that differential equation (or set of differential equations) to

other solutions of that differential equation (or set of differential equations).12

If my account of physical theories and physical symmetries is correct, then we

have an intuitively simple (if complicated to implement) procedure for determining

all of the physical symmetries of a given physical theory: determine the equations

and variables of interest to the theory you want to consider, and then use the method

outlined above to determine all of the physical symmetries of those equations. In the

next section, I’ll discuss how this analysis helps us determine the form of “overarching”

symmetries like time reversal, which in turn will suggest my methodology for the rest

of this project.

11Again, parties interested in the technical details are referred to chapter 2 of Olver (1993).
12I should note here that, as sketched above, this method only gives us all of the symmetries

of a physical theory that are continuously connected to the identity transformation, which may
leave some scratching their heads since my investigation concerns a discrete symmetry, namely time
reversal. In a series of publications, Hydon (1998a,b, 2000a,b) provides a method of determining
all of the discrete symmetries of a differential equation from the symmetry group obtained using
the methods I outlined above. I will use Hydon’s method in later chapters to determine all of the
discrete symmetries of a series of differential equations from these differential equations’ continuous
symmetry groups.
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2.2 The Problem of Overarching Symmetries

My account of physical theories and symmetries in the last section gives us some

idea of what it is to be a symmetry of a certain physical theory; however, there are

plenty of contexts in which one may speak of a symmetry without referring to a par-

ticular physical theory. For instance, physicists may speak of translations, rotations,

boosts, time reversal, parity reversal, and the consequences of these symmetries with-

out making reference to any one theory in particular. What’s more, symmetries can

sometimes pull double-duty, both arising as a consequence of, say, the background

spacetime of some theory and serving as a constraint on the dynamical equations of

that same theory. The classical Klein-Gordon theory provides an example of symme-

tries pulling such double duty since the spacetime symmetries that arise from taking

Minkowski spacetime as the background for the theory serve as constraints on the

classical Klein-Gordon Lagrangian and the Klein-Gordon equation itself.

Such examples lead to the following problem for any account like mine that utilizes

both theory-relative and theory-independent symmetries, which I call the “Problem

of Overarching Symmetries”: on one hand, my account tells us that physical symme-

tries are defined relative to a particular theory since they are transformations defined

on the theory’s variable space or prolongation of the theory’s variable space, but on

the other hand, we seem quite capable of extending our notion of some particular

physical symmetry beyond the theory invariant under it to identify two seemingly

different transformations on different variable spaces as one and the same. What,

then, is the relationship between theory-relative symmetries (physical symmetries)

and theory-independent symmetries (overarching symmetries)? My statement of this

problem is a bit abstract, so let’s look at an example: classical Newtonian gravity and

classical electromagnetism are two different physical theories with different sets of de-

pendent and independent variables, and the two theories are governed by different sets

of equations; however, despite these differences, both theories are said to be invariant
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under a number of the same symmetries, such as spatial translations and rotations.

So we have a set of symmetries called “spatial translations and rotations” that, in

various contexts, may seem to pick out 1) point symmetries in Newtonian gravity’s

variable space and 2) point symmetries on classical electromagnetism’s variable space.

We lump these two “fine-grained” physical symmetries under a single heading and

associate two different physical symmetries with one and the same “overarching sym-

metry”, which is just a map that assigns a particular physical symmetry or a set of

physical symmetries to every theory. But the question still remains: in what sense

can we say that Newtonian gravity and classical electromagnetism are invariant under

“the same” symmetries on my account? And what is the strength of this “sameness”?

Though I will not answer this question in full, my analysis in the remainder of this

chapter will shed some light on how we treat or ought to treat these overarching

symmetries.

Overarching symmetries clearly need to be treated differently from physical sym-

metries, but before saying more, I should say a bit about the importance of over-

arching symmetries. Later on in this chapter I will give examples of the kind of

work overarching symmetries can do for physicists and philosophers of physics, but

despite their usefulness, I take overarching symmetries to be less fundamental than

physical symmetries. Overarching symmetries can be thought of as ways of picking

out properties of interest that relate symmetries we care about. We might claim

that what unites some set of physical symmetries under the overarching symmetry

of, say, spatial translation is that all of these symmetries map solutions of a theory

to solutions that differ from the first solution only in their spatial coordinates in that

theory’s variable space, or we might say that the relevant property that unites spatial

translations is that it performs this mapping without changing any other features

of the mapped solution. I will leave aside for now the question of whether there is

any natural property á la Lewis (1983) picked out by all overarching symmetries and
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instead focus on the pragmatic question of which properties are the most practical

for physicists and philosophers to use. My account thus allows that the question “Is

X really an overarching symmetry?” may or may not be substantive; the real project

for those investigating overarching symmetries (as opposed to physical symmetries),

I contend, isn’t to figure out what overarching symmetries correspond to the real

overarching symmetries in the world (if there are any) but rather to lay down a useful

criterion for what constitutes a particular overarching symmetry and argue why this

criterion is the most useful one.

So, even if we treat physical symmetries rather than overarching symmetries as

the more fundamental objects and admit that the question “which overarching sym-

metries are the real overarching symmetries?” may not be substantive, the follow-

ing problem still remains: when should we count two physical symmetries as cor-

responding to the same overarching symmetry? Or, put more formally, the prob-

lem of overarching symmetries can be cast as follows: suppose that some theory

T1 = 〈E1, X1, U1, N1〉 with n independent variables and m dependent variables is

invariant under the point symmetry transformation S1, which operates on a point

p = (x1
1, . . . , x

n
1 , u

1
1, . . . , u

m
1 ), where xi1 ∈ X1 and ui1 ∈ U1, as follows: S1(p) =

(f1(x1
1, . . . , x

n
1 , u

1
1, . . . , u

m
1 ), . . . , fn+m(x1

1, . . . , x
n
1 , u

1
1, . . . , u

m
1 )) for some functions f1, . . .

, fn+m. Now, suppose there is another theory T2 = 〈E2, X2, U2, N2〉 with k indepen-

dent variables and l dependent variables and points (x1
2, . . . , x

k
2, u

1
2, . . . , u

l
2) which is

invariant under the point symmetry transformation S2, which operates on a point

q = (x1
2, . . . , x

k
2, u

1
2, . . . , u

l
2), where xi2 ∈ X2 and ui2 ∈ U2, as follows: S2(q) =

(h1(x1
2, . . . , x

k
2, u

1
2, . . . , u

l
2), . . . , hk+l(x

1
2, . . . , x

k
2, u

1
2, . . . , u

l
2)) for some functions h1, . . . ,

hk+l. Under what conditions can we say that T1 and T2 are invariant under the same

overarching symmetry transformation?

The problem perhaps wouldn’t be so serious if it weren’t for the fact that variables

that appear in two different physical theories may correspond to the same feature of
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the physical world or may be calculated by exactly the same methods. We may refer

to the length of a metal bar both in the context of the classical theory thermodynamics

when we heat up one end of the bar and want to know how long it will take for the

temperature to rise by a certain amount at the other end of the bar, and we may refer

to it in the context of the theory of special relativity when we accelerate the metal bar

to some near-light velocity and want to determine the effects of length contraction. In

both cases the length of the bar can be calculated by the same sorts of measurements

because the physical quantity, length, is the same in each case. In essence, we may

be especially worried about how to pick out the symmetry corresponding to S2 in the

formalism above when, for some a ∈ X1 ∪ U1 and b ∈ X2 ∪ U2, N1(a) = N2(b) or

N1(f(a)) = N2(f(b)) for some f .

Though I cannot address all of the criteria one could lay down as good candidates

for determining which physical symmetries fall under the same overarching symmetry,

I can outline two positions that one could take regarding these overarching point

symmetries based on the criterion that I will use for the purposes of my project. The

difference between these two positions requires us to posit the following definition of

what I will call “interpretive identity”, which I take to be a necessary (but not always

sufficient) condition for saying that two variables correspond to the same physical

property:

(Interpretive Identity): Take T1 = 〈E1, X1, U1, N1〉 and T2 = 〈E2, X2, U2, N2〉

to be two different physical theories. Two variables vi1 ∈ X1 ∪ U1 and

vj2 ∈ X2 ∪ U2 are said to be interpretively identical just in case N1(vi1) =

N2(vj2) or N1(f(vi1)) = N2(f(vj2)) for some function f .13

13A more complicated (and likely correct) theory would also utilize a property of Approximate
Interpretive Identity (AII) in much the same way. We could define AII as follows: Take T1 =
〈E1, X1, U1, N1〉 and T2 = 〈E2, X2, U2, N2〉 to be two different physical theories. Two variables
vi
1 ∈ X1 ∪ U1 and vj

2 ∈ X2 ∪ U2 are said to be approximately interpretively identical just in case
N1(f1(vi

1)) = N2(f2(vj
2)) for some functions f1 and f2. The consistency definition would then carry

the additional constraint that approximately interpretively identical variables are transformed in the
same way; that is, for any two approximately interpretively identical variables x1 in T1 invariant
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Essentially, two variables are said to be interpretively identical if those variables or the

same function of those variables are mapped by each theory’s interpretation function

to the same measurement processes. With this definition under our belts, we can

formulate the following definition:

(Consistency): Take T1 = 〈E1, X1, U1, N1〉 to be a physical theory invari-

ant under the symmetry transformation S1, which maps each coordinate

vi1 ∈ X1 ∪ U1 to fvi
1
(v1

1, v
2
1, . . . ), and take T2 = 〈E2, X2, U2, N2〉 to be a

physical theory invariant under the symmetry transformation S2, which

maps each coordinate vj2 ∈ X2 ∪ U2 to fvj
2
(v1

2, v
2
2, . . . ). Take the two sets of

variables A ⊆ X1 ∪ U1 and B ⊆ X2 ∪ U2 to be such that ∀vi1 ∈ X1 ∪ U1, if

∃vj2 ∈ X2 ∪ U2 such that vi1 and vj2 are interpretively identical, then vi1 ∈ A,

and ∀vj2 ∈ X2 ∪ U2, if ∃vi1 ∈ X1 ∪ U1 such that vj2 and vi1 are physically

identical, then vj2 ∈ B. S1 and S2 are consistent if and only if, ∀ai ∈ A

and ∀bi ∈ B, the interpretive identity of ai and bi implies fai
(v1

1, v
2
1, . . . )

= fbi(v
1
2, v

2
2, . . . ) for some fixed values of the variables vi1 /∈ A and vj2 /∈ B

for which fai
and fbi are not constant functions.

Despite its formal complexity, Consistency is intuitively easy to understand. Es-

sentially, two physical symmetries are consistent only if both symmetries treat the

“same variables” in the “same way”. By “same variables” here I mean variables

that are interpretively identical, and by treating these variables in the “same way”,

I mean that, ignoring any variables that aren’t interpretively identical, S1 treats the

variables in X1∪U1 in the same way that S2 treats those variables’ interpretively iden-

tical counterparts. To give an example: suppose that our first theory has a symmetry

S1 that transforms its points as follows: S1(x, y, z) = (z(x + y), y, z), and suppose

under S1 and x2 in T2 invariant under S2, S1 and S2 would be consistent only if f1(S1x1) = f2(S2x2).
I have excluded this extra criterion from my main treatment because it extends quite naturally from
the account I provide and I don’t wish for an already complicated definition to be made more
complicated than it needs to be.
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that our second theory has a symmetry S2 that transforms its points as follows:

S2(x, y, w) = (x + y + w, y, w), where I have used the same variable name to denote

variables in different theories that are interpretively identical with one another. S1

and S2, according to my definition, are consistent since, in cases where z = 1 and

w = 0, S1(x, y, z) = (x+y, y, 1) and S2(x, y, w) = x+y, y, 0); however, S3, which acts

as follows: S3(x, y, w) = (x+ y, x+ y, w), is not consistent with S1 per Consistency

since it is not generally the case that y = x+ y.

Consistency has the form it does for several reasons. First, it requires that the sets

A and B consist of all variables in one theory with interpretively identical counterparts

in the other theory. Otherwise, physical symmetries of two theories that treat the

“same” variable x consistently but not the “same” variable y might mistakenly be

called consistent with one another. What Consistency tries to capture is not merely

consistency relative to some subset of variables or another but rather consistency with

respect to all variables interpretively identical to variables in the other theory under

consideration. Secondly, it requires that consistent symmetries map interpretively

identical variables to the same function of those interpretively identical variables

modulo some variables that have no interpretively identical counterparts in the other

theory considered. These variables with no interpretively identical counterparts in

the other theory may sometimes make it hard to determine whether two different

symmetries are acting consistently, so Consistency requires that the identity of the

outputs of the two functions fai
and fbi hold only for at least one case where the

variables without interpretively identical counterparts take on constant values.14 We

14This feature of Consistency makes it fairly weak constraint, and we might prefer to accept
a constraint that requires variables that appear in one theory but not another to assume some
particular value when comparing the symmetries of the two theories, perhaps due to the fact that
one theory is “approximately” equivalent to the other when this extra variable takes on a particular
value. For instance, if we treat the speed of light c as a variable in special relativity, we may
require that symmetries in Newtonian mechanics and special relativity can only be called “the
same” symmetry if they transform the same variables the same way in the case where c is idealized
as infinitely large. Such a constraint would be reasonable, but as a discussion of this extension of
Consistency would lead to a detailed, albeit interesting, digression, a discussion of this constraint
will have to wait for another time. However, note that adding this constraint would still make one
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can ignore cases where these variables not in A or B are added to otherwise identical

functions by setting these variables to zero, and we can ignore cases where these

variables not in A or B are multiplied by otherwise identical functions by setting these

variables to one. Finally, Consistency requires that the functions not be constant

functions to rule out cases where, for instance, one might claim that the symmetry S1,

which takes the variable x to wxy and S2, which takes the variable x to z(x+ y) are

consistent because, when w and z are zero, these two functions are the same (more

specifically, both functions are equal to 0).

I find the above treatment of variables in one theory not interpretively identical to

variables in another theory adequate for many of the cases I have in mind, but I admit

that some may reasonably object to my treatment because of cases like the following:

imagine that we have two theories, T1 and T2, the first of which is invariant only under

the symmetry transformation S1c(x, t) = (x+c, t) and the second of which is invariant

only under the symmetry transformation S2c(x, y, z, t) = (y4x+ c
z
, y, z, te1−y + z− 1),

where x and t are interpretively identical across the two theories but y and z have

no counterparts in T2. S1c and S2c are consistent in my sense of the term because

S2c(x, 1, 1, t) = (x+c, 1, 1, t). But, my objectors say, this is crazy! Look at the strange

y- and z-dependent changes that S2c induces. Given such strange changes, how can

we call S1c and S2c consistent symmetries in any sense?

My response to this objection is, in part, to bite the bullet: if one has the intuition

that S1c and S2c cannot be consistent and that any theory of overarching symmetries

that treats them as such is wrong, theres little I can do to make my account seem

compelling. I will say that, absent any concrete physical theories to examine in this

toy example, we may be ignoring features that may make the consistency between the

two symmetries more palatable in a more fully fleshed-out case. For instance, it may

a realist in my sense of the term, meaning that nothing in my arguments for the rest of this chapter
relies on the inclusion or lack of this constraint in Consistency. I will have more to say about the
case of velocity boosts in special relativity and Newtonian mechanics shortly.
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be the case that T2 is the more fundamental theory than T1 and the new variables y

and z tell us something important about the structure of our variable x that leads us

to think of S1c as an idealized version of S2c. Absent more details about T1 and T2,

this is, of course, mere posturing, but it doesnt seem unreasonable to me to think that

there are many contexts in which calling S1c and S2c consistent would be perfectly

reasonable.

But lets assume that the objector has a more principled objection than just that

calling these symmetries consistent seems weird. Perhaps the objector thinks that

the deal-breaker here is the fact that the coordinate t is unchanged by S1c in T1 but is

changed by S2c in T2, albeit by variables with no interpretively identical counterparts

in T1. My consistency criterion, the objector thinks, should be amended to require

that two consistent symmetries transform the same variables and leave the same

variables unaffected. This seems a prima facie well-motivated amendment, but I take

the following case to give us a reason to leave my consistency criterion as-is.

Consider Newtonian mechanics and special relativity. Newtonian theories are in-

variant under Galilean boosts, which act on the Newtonian variable subspace (x, t, u)

as follows: Gv(x, t) = (x + vt, t, u + v), where x is position, t is time, and u is ve-

locity. The Lorentz boosts under which special relativistic theories are invariant act

on the variable subspace (x, t, u) as follows: Lv(x, t, u) = ((x − vt)/
√

1− v2

c2
, (t −

vx
c2

)/
√

1− v2

c2
, v+u

1+( vu
c2

)
), where c is the speed of light. Note that, while Gv leaves t

unchanged, Lv indeed changes t. As written, these two symmetries are quite differ-

ent from one another and are inconsistent. However, if one adopts a broad read-

ing of my consistency criterion and takes 1
c

to be a “variable” in special relativity

with no interpretively identical counterpart in Newtonian mechanics, look at the

result on the parameter (not variable, since c is a constant) subspace (x, t, u, 1
c
):

Lv(x, t, u, 0) = (x + vt, t, u + v, 0). That is, as any good first year physics under-

graduate knows, when we idealize c away by setting 1
c

= 0, Lv and Gv transform
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the interpretively identical variables consistently. There seems to be a sense in which

Galilean boosts and Lorentz boosts are actually consistent. But again, this is ob-

vious: theyre both velocity boosts! Galilean boosts tell you how to transform the

coordinates of some event in your inertial frame so that theyll agree with the coor-

dinates assigned to that same event by a traveler in a different inertial frame in the

context of Newtonian mechanics, and Lorentz boosts tell you exactly the same thing

in special relativity. So I take it to be a welcome consequence of my account that,

depending on what we think of the role of c in special relativity, we may conclude

that Lorentz boosts and Galilean boosts bear important similarities to one another

despite looking so different from one another. But note that this conclusion could

not be drawn if we were to amend Consistency in the way my objector suggests since

Lorentz boosts dont leave t unaffected as Galilean boosts do. It seems to me, then,

that despite having to accept some strange consequences like the consistency of S1c

and S2c, we have good reason to accept the account of Consistency I have proposed

unamended.

At least two positions can be defined relative to my notion of consistency: those

who require that all physical symmetries associated with some overarching symmetry

be consistent or who adopt some equally strong or stronger criterion of overarching

symmetry-hood I will call “realists”, and those who deny consistency as a constraint

on uniting physical symmetries under the label of some overarching symmetry and

adopt some weaker criterion I will call “conventionalists”15. Realists hold, basically,

15Note that, as defined, realism and conventionalism are relative to the particular overarching
symmetry under consideration. I see no reason to disallow, say, realism about time reversal and
conventionalism about gauge transformations, supposing one has good reason for treating these
symmetries differently.

Also, for the purposes of this paper, I will take Consistency to be realists’ necessary criterion
of overarching symmetry-hood, though as I state, any equally strong or stronger criterion would
qualify as a realist position as well. I believe there are good reasons to take consistency to be the
defining criterion of overarching symmetries even over other realist symmetries (for instance, the
realist criterion that requires that physical symmetries be consistent and act on the same variable
space, which seems to limit the notion of an overarching symmetry to the point where it is no longer
useful or applies to many motivating cases for overarching symmetries like classical mechanics and
classical electrodynamics as discussed above), but my target in this work is the conventionalist, or
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that some overarching symmetry (or, in its most radical form, all overarching sym-

metries) must be a transformation that acts consistently (or at least in accordance

with some criterion at least as strong as Consistency) across physical theories in

all cases. Consistency provides a necessary (though not necessarily sufficient) con-

dition for uniting two physical symmetries under the same overarching symmetry.

For instance, if two different theories both refer to, say, time16, then if one theory is

invariant under the physical symmetry “time translation” that transforms the time

coordinate t by taking it to the coordinate t+ a, then the second theory can only be

invariant under the same overarching symmetry of “time translation” if it is invariant

under a transformation that likewise takes t to t+a (modulo some variables that may

appear in one theory but not the other). More importantly, if the two theories refer to

some common set of parameters (e.g. time, position, and momentum), then the two

theories are invariant under the same overarching symmetry, according to the realist,

only if there is some symmetry transformation defined on the first theory that treats

time, position, and momentum the same way that some symmetry transformation

defined on the second theory treats these parameters.

Conventionalists, on the other hand, reject consistency or any equally strong or

stronger constraint as a constraint on overarching symmetries and embrace something

weaker, making it easier for two different symmetries to be identified with the same

overarching symmetry. For instance, in the previous example, some sort of conven-

tionalist could argue that, despite the fact that, say, one theory is only invariant

under a symmetry that takes t to t+ a and the other theory is only invariant under a

symmetry that takes t to −t, we may still consider these two different theories to be

at least the conventionalist who doesn’t believe in investigating consistent symmetries first. I leave
it to other realists who believe my definition of Consistency to be too weak to provide and defend
an alternate criterion for overarching symmetries.

16I will not speculate in this paper on just how to determine whether one of the variables appealed
to within the context of a particular physical theory is, in fact, time, but two promising proposals
for what makes time distinctive which are similar in spirit (if not in the stances they take regarding
lawhood) are put forward by Skow (2007) and Callender (2011).
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related by a single overarching symmetry because both symmetries satisfy the weaker

criterion of changing the same variable. Conventionalists can adopt any number of

constraints, some of which may be quite close to consistency. For instance, the con-

ventionalist may adopt a criterion that physical symmetries must act consistently on

one particular variable only in order to be united under one overarching symmetry,

or they may require that all physical symmetries that act in a particular way on one

particular variable may be united under the same overarching symmetry. Regard-

less of the specific criterion, however, what separates realists and conventionalists is

that conventionalists allow strictly more physical symmetries to qualify as potential

instances of a particular overarching symmetry than realists allow.

The difference between realism and conventionalism becomes salient when trying

to determine certain important features of physical theories. We may be interested,

as many philosophers of time and philosophers of physics have been, in the question of

whether or not the fundamental laws of physics are invariant under the time reversal

operator T . Realists trying to answer this question may proceed quite differently from

conventionalists. Realists will look at each fundamental physical theory in question

to determine whether or not its time reversal symmetry (if it exists) can be unified

with the symmetries of the other fundamental physical theories consistently. Con-

ventionalists, meanwhile, will likewise examine each physical theory to be sure that

there is some point symmetry suitably called “time reversal” (under some weaker

standard) under which it is invariant, and should they find such a transformation

(or such transformations) for all fundamental physical theories, they will be happy

to agree that the fundamental laws of physics are invariant under time reversal. For

the rest of this chapter, I will refer to the general strategy of looking for an overar-

ching symmetry that acts consistently across a number of different physical theories

as the realist strategy and the strategy of broadening this search for an overarching

symmetry’s physical manifestation within a particular theory to include operations
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that differ significantly from theory to theory as the conventionalist strategy. I should

point out that conventionalists can adopt the realist strategy just as easily as realists

can and may be led to do so if we have reason to think that consistent convention-

alist overarching symmetries have some advantage over inconsistent conventionalist

overarching symmetries. It is to the realist strategy that I refer when I say that we

ought to “act like realists” even if we are not.

Realism is a stronger and more severe stance towards the identity of symmetry

transformations across theories than conventionalism is, and as such we can expect

that realism will make the invariance of a set of theories under some particular sym-

metry harder to obtain than conventionalism would make it. So, when we ask the

question of whether or not the fundamental laws of physics are time reversal invari-

ant, for instance, which strategy should we adopt, or perhaps more importantly, which

one should we adopt first? The answer seems fairly clear (to me, at least): adopt

the stronger standard at first (that is, use the realist strategy), and should we find

that there is no single symmetry under which all of the laws in question are invariant,

perhaps then we can fall back to the weaker conventionalist stance and try to find

some notion of time reversal invariance there.

My intuition in this case follows from the more general philosophical strategy

that, when faced with an easier question and a harder version of the same question,

tackling the harder version first will usually be more enlightening than tackling the

easier question first would be. There are many other cases where our intuitions tell us

that we ought to consider one particular theory instead of its rival(s). For instance,

though this may be a minority opinion, I agree with Belot (2011, Appendix A) that

the simplicity of a physical theory may not be a mark in favor of that theory’s truth,

but it gives us a good reason to test this theory first. After all, simpler theories are

typically easier to test, and so adopting simpler theories first will allow us to test a

greater number of theories in the same amount of time than we would have if we tested
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only more complicated theories. We are typically better off testing more unifying and

universal theories first as well. If we find three white swans, we are inclined to test the

hypothesis “All swans are white” before we weaken this hypothesis to “Most swans

are white”, which is harder to disconfirm.

I do not mean to rest the bulk of my argument in favor of acting like a realist on this

particular intuition that theories with certain theoretical virtues are the ones we ought

to adopt and/or test first, but I do believe that this intuition may provide a strong

point in favor of realism among those who have intuitions similar to mine. Still, it

remains to be shown that the realist strategy, when applied to time reversal invariance,

for instance, is likely to yield better and more useful results than the conventionalist

strategy. In the remainder of this chapter, I will argue that the realist strategy

ought to be the first one that philosophers and physicists pursue when investigating

a symmetry like time reversal, and I will do so by providing several examples of

the philosophical work that realist symmetries can do for us that conventionalist

symmetries cannot. I want to reiterate that what follows is not an argument for

always adopting the realist stance towards all symmetries; rather, I merely claim that

adopting the realist stance towards symmetries is likely to yield more interesting fruit

for physicists and philosophers alike, so such a stance is generally the best one to

adopt.

2.2.1 Overarching Symmetries and Theory Change

One important role overarching symmetries play within the physical sciences be-

comes apparent when one considers how such symmetries help us to determine which

new theories should replace older, falsified theories. Typically, when an earlier theory

has been rejected because of some disconfirming evidence and physicists are searching

for a new theory to replace the old theory, physicists don’t just start from scratch.

When faced with a previously good theory’s inadequacies, we typically (rightly) as-
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sume that many of the features of the old theory were, in fact, correct, especially if

the older theory has been around for a while and provided correct predictions when

tested. There must have been something that the older theory got right to explain

the fact that it was so successful, so if we want our new theories to be strictly better

than our old theories, we need to identify those successful components of our old the-

ories and carry them over into our new theories. Successful features of older theories

can thus serve as constraints on what good candidates for these theories’ replace-

ments should look like. This is, essentially, the insight that may lead philosophers

and physicists to appeal to a theoretical virtue like methodological conservatism.17.

Symmetries are typically features of the world that carry over from older theories

to newer theories. Imagine, for instance, a fictitious history of physics in which

Newtonian mechanics is falsified after repeatedly observing the behavior of particles

traveling close to the speed of light. Under such circumstances, we would certainly

be justified in searching for a successor to Newtonian mechanics like special relativity

that isn’t invariant under Galilean boosts; however, since the observations made can

be reproduced exactly in laboratories in Germany and in the United States, and since

these observations can be reproduced both now and later, we have no reason to reject

the symmetries of spatial and temporal translation under which Newtonian mechanics

was invariant. So even if our evidence gives us good reason to reject important features

of a previous theory, including some of its symmetries, that same evidence may still

uphold many of the symmetries of the old theory. For our new theory to be at least

as good as our old theory was, we may need to make our new theory invariant under

many of the same symmetries under which the old theory was invariant, but since

the old theory may have different variables from our new theory, we must rely on

overarching symmetries, not physical symmetries alone, to tell us how to properly

constrain our new theory in light of its predecessor.

17See Sklar (1975).
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The importance of symmetries in such periods of transition has been the focus

of much work in contemporary philosophy of science. Recent work by Lange (2007,

2009a,b) emphasizes the fact that in both the context of discovery and the context

of justification, physicists employ “meta-laws” to help determine the form the laws

must take.18 Numerous principles or rules can serve as meta-laws on Lange’s account,

including most notably conservation laws and symmetry principles. The value of

meta-laws is that they provide a set of constraints which all of the first-order laws

need to obey, and what’s more, in many cases they explain why certain laws of nature

must hold.

For instance, imagine that we are trying to choose between two theories of the

electrostatic interaction between electrons and protons T1 and T2, which both account

for some set of data we’ve already collected equally well (allowing for a certain amount

of experimental error); T1 and T2 are not empirically indistinguishable theories, but

at the moment all of the data we have collected does not favor one theory over

the other. Both T1 and T2 refer to positively and negatively charged particles, and

both T1 and T2 have only one law that refers to charge. In the case of T1, that law

is Coulomb’s law, which requires that |F | = kq1q2
r2

, where the values of qi are the

charges of two particles, F is a vector field on Newtonian spacetime representing the

electrostatic force, and r is the distance between two charged particles. In the case

of T2, however, there is an extra term added to Coulomb’s law, which makes this law

|F | = kq1q2
r2

+ q1.19 Switching positive and negative charges in a world described by

T2, then, would change the electromagnetic force experienced by any two particles

since the mass of each particle remains constant while switching positive and negative

charges in a world described by T1 would have no effect since the electromagnetic force

18It is worth noting that, while the existence of meta-laws is a point in favor of Lange’s account
of first-order lawhood in that Lange’s account of lawhood extends quite naturally to account for
meta-laws, it is not clear that Lange’s is the only account of lawhood that can do so. The nomic
primitivist, for instance, can simply take these meta-laws as primitives.

19I also assume that both theories provide us with the convention that the more massive particle
counts as particle 1 so that this amended Coulomb’s law actually makes sense
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between any two charged particles would remain the same. If we assume that the

overarching symmetry of “charge swapping” C : N → N , where N is the variable

space of both T1 and T2, is such that C(F ) = F , then we find that T1 has charge-

swapping as a symmetry while T2 does not. Finally, if we take it to be a meta-law

that all laws must be invariant under charge-swapping, we have a justification for

rejecting T2 in favor of T1.

So overarching symmetries as meta-laws provide methodologically conservative

constraints that may help us to determine which of the proposed laws we are consid-

ering is the best successor to some older physical theory. One special subclass of argu-

ments like the one above are what Belot (2003) calls symmetry arguments, which are

arguments of essentially the following form20: Take some theory T1 = 〈E1, X1, U1, N1〉.

We may find that, relative to some problem we are trying to solve, T1 is inadequate,

and so posit a theory T2 = 〈E2, X2, U2, N2〉, where none of the equations or variables

referred to by T1 necessarily appears in T2. We may reasonably ask whether or not

all of the (overarching) symmetries under which T1 is invariant are also symmetries

under which T2 is invariant. If T2 is not invariant under all of the overarching sym-

metries under which T1 is invariant, then we may have a good reason to reject T2 and

search for some other replacement for T1; after all, in many cases, the symmetries

under which T1 is invariant have the status they have for a reason, namely that they

represent physical transformations that leave the world essentially the way we found

it. Belot provides a number of examples, specifically from Platonic cosmology, spe-

cial relativity, classical mechanics, and dust cosmology (among other examples) that

show that these sorts of symmetry arguments are ubiquitous in physics, and I will

not rehearse Belot’s examples again here.

What symmetry arguments and other examples of using symmetries to figure out

20The following paraphrase of Belot’s characterization of symmetry arguments is formulated in
terms of my own account of symmetries, and as such, since Belot is committed to a different account
of symmetries from my own, what follows is not necessarily a characterization he would agree with.
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which theories are the best ones to accept a time show is that we can appeal to

symmetries in many cases to determine what form the laws of nature should take.

Assume that we have some situation where the newer theory keeps the variable spaces

of the older theory but adds new equations to them. A strange consequence of some

conventionalist views is that, in such cases, two different operations (or sets of opera-

tions) on the very same variable space may be treated as one and the same operation.

Symmetry arguments will be drastically less effective for the conventionalist since in

many cases there will be some symmetry under which the new theory is invariant that

one may be able to justify identifying with a symmetry of the old theory, and without

consistency as a criterion for two physical symmetries’ falling under the same over-

arching symmetry, it is not clear to what the conventionalist can (or should) appeal

in order to determine which physical symmetries correspond to the same overarching

symmetries.

This worry has been stated rather abstractly, so let’s examine a more concrete

example. Imagine that we are dealing with a system that we originally assumed

could be modeled as something close to the harmonic oscillator. Such a system is

governed by a single algebraic equation which sets e1 = c cosx − u equal to zero,

where c is some constant and u and x are the dependent and independent variables

respectively. Since the equation is unchanged by a reflection (call it R) that maps a

solution at (x, u) to its mirror image at (−x, u) because cosine is an even function

(that is, for any x that satisfies this equation, there’s a −x that satisfies it too with

the same value of u), this reflection constitutes a symmetry of our system. However,

imagine that we now propose changing our theory to one governed by the equation

that sets e2 = c cosx + k sinx − u equal to zero, where c and k are constants. This

new function e2, unlike e1, has an odd function of x in it, meaning that it is no longer

invariant under the reflection that takes (x, u) to (−x, u). However, is invariant

under the transformation that takes (x, u) to (−x, u − 2k sinx), and as such this
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transformation (call it S) represents a symmetry of the damped harmonic oscillator

of our new theory.

Now, suppose that we want to ask ourselves whether the new theory governed by

e2 = 0 is invariant under the same symmetry (namely, R) as the old theory. The

realist has an easy answer: since both theories appeal to the same variable space and

(presumably) x and u are interpretively identical, the overarching symmetry of spatial

reflection must behave the same way in the damped theory as in the simple theory,

which is to say by mapping the point (x, u) to the point (−x, u). Since the newer

theory has an equation that includes an odd function of x, it is not invariant under

this transformation, and so the damped theory fails to be invariant under spatial

reflection in the way that the original theory was. The mere fact that both e1 and

e2 are each invariant under some symmetry (R and S respectively) does not give

us any reason to associate these two physical symmetries with the same overarching

symmetry “spatial reflection”.

Some conventionalists, however, may be incapable of saying anything given only

the information I have provided; after all, R is similar in some ways to S, especially

in its transformation of x, and so there may be some sense in which we can call S the

counterpart to R and so unite them under the same overarching symmetry21. But

this seems absurd! The two theories utilize the same variable space and differ only in

one term found in the equations of these theories. If one is going to import so much of

the essential structure of the older theory into the newer theory, how can one justify

changing the form of the symmetry we’re interested in? Perhaps not all my readers

share this intuition that the information given in my setup of this problematic case

should be sufficient to allow us to determine whether the two symmetries in question

21This is not to say, of course, that the so-called conventionalist could not adopt some condition
other than consistency as her criterion for determining which physical symmetries correspond to
the same overarching symmetries; my point is only that in the situation described above, I see no
principled way that the conventionalist could rule out identifying R and S with the same overarching
symmetry without relying on something like the realist’s notion of consistency.
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correspond to the same overarching symmetry, but what is clear is that symmetry

arguments and symmetries as meta-laws will be much less useful as guides to the truth

if one adopts the conventionalist standard since the more permissive conventionalist

stance allows for more theories to be invariant under the same symmetries than does

the realist stance.

Even if cases of theory change where the variable space remains unchanged do

not move one to prefer realism to conventionalism, cases where our new theory has

a very different variable space from its predecessor may motivate one to embrace

realism. After all, if we are to use overarching symmetries as guides to our theorizing

that provide us with useful constraints on new theories, these helpful constraints will

be more or less helpful insofar as they provide us with only one physical symmetry

(or, at most, a few) that corresponds to our overarching symmetry of interest in the

new theory. Since realist overarching symmetries will correspond to fewer physical

symmetries in the new theory than conventionalist overarching symmetries, it seems

like realist symmetries will serve as a more helpful guide for us. Thus, regardless of

whether our new theory leads us to abandon the variable space of our old theory, we

seem to have good reasons to care more about realist than conventionalist symmetries

if we want to use the overarching symmetries of our current theories as constraints

on our future physical theories.

To sum up: if we want overarching symmetries to serve as meta-laws that help

us determine when we have a good proposal for a successor for some failed physical

theory, we need some principled way of determining what the physical symmetries

of the new theory should look like given the physical symmetries of the old theory.

Realists provide us with such a principle in consistency, and conventionalists do not. I

take it, then, that if we’re looking for overarching symmetries that will serve as useful

meta-laws to guide our scientific inquiry, the ones we should focus our attention on are

those realist symmetries that require all physical symmetries corresponding to them
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to be consistent with one another, not the conventionalist symmetries whose corre-

sponding physical symmetries may differ wildly in their treatment of interpretively

identical variables.

2.2.2 Overarching Symmetries and Ontology

Overarching symmetries don’t only serve as guides to which theories we should

believe to be true in light of their predecessors; they may also serve as guides to

extracting metaphysics from our best available physical theories. In some cases (es-

pecially when the symmetries in question are spacetime symmetries) the failure of a

particular theory we currently accept to be invariant under an overarching symmetry

provides us with a good reason to think that there is some special structure in the

world whose existence keeps the theory in question from being invariant under that

overarching symmetry. For instance, Pooley (2003) takes the fact that quantum field

theory is not invariant under parity reversal to indicate that there is some spatial

orientation field fixed everywhere by the laws that should be added to our spacetime

theory. As stated earlier in this dissertation, Maudlin (2007) similarly argues that

we should posit some preferred orientation in spacetime since the fundamental laws

of physics fail to be invariant under time reversal. For spacetime substantivalists, of

course, the failure of a particular theory to be invariant under some symmetry may

indicate geometric features of the background spacetime structure. If this sort of

reasoning is correct, then there is a sense in which we ought to rely on overarching

symmetries (and the features of the physical theories invariant under those symme-

tries) to determine what fundamental objects must be represented in our physical

theories.22 It seems reasonable to think that an account that requires consistency

22There is a kind of circularity at work here: a physical theory allows us to derive the symmetries
of that theory, and the symmetries of the theory tell us what sorts of physical features we ought
to include in our physical theory. But this circularity is better understood as a kind of internal
consistency between the equations/variables of a theory and that theory’s symmetries. As such,
when we know what features of the world our theory represents, this constraint determines the form
the symmetries take, while in cases where we know the symmetries of the theory, the symmetries
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from overarching symmetries will provide more useful information about the geo-

metric features of spacetime than an account that doesn’t since the former makes it

clearer when a theory is invariant (or not) under a particular overarching symmetry.

As such, there is good reason to think realism is a more natural account of symmetries

than conventionalism.

There is a flip-side to the relationship between symmetries and ontology as well,

namely the view embraced by Baker (2010), North (2009), and Ismael and van

Fraassen (2003) among others, that symmetries act as a guide to surplus structure.

Proponents of this view of what I will call physical equivalence (PE) take it to be

the case that, when two solutions are related to one another by a symmetry, those

two solutions represent the same physical state of affairs, meaning that any difference

in the characterization of these two solutions is merely conventional or an artifact of

the notation used; that is, the notational differences between two solutions related by

a symmetry do not correspond to a deep physical difference between the two while

a notational difference between two solutions which are not related by a symmetry

does correspond to some deep difference between two physical states. The infamous

Leibniz shift arguments provide an example of PE in action, and it is commonplace to

use especially empirical symmetries for such arguments; if we were to shift every par-

ticle in the universe one meter to the left, no one would be able to tell that anything

had changed, so we seem to have good reason to believe that there does not exist

any physical structure (like, say, absolute space) that privileges one position in space

over another. Belot (2013) provides some good reasons to reject PE as applied to all

symmetries, though I will not rehearse his argument or examples here; however, even

if one rejects PE generally, there is no reason why one can’t accept a more specific

version of PE that refers to particular overarching symmetries. For instance, though

I may not take all solutions related by a symmetry to represent the same state of

help us determine what features are present in the physical world if it is as our theory tells us it is.
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affairs, I may still take all solutions related to one another by a time reversal trans-

formation or a parity reversal transformation to represent the same state of affairs.

These overarching symmetries serve as a way to apply something like Occam’s razor,

allowing us to pare down our theory’s metaphysical commitments where notational

differences may lead us astray in our metaphysical theorizing.

Using the overarching symmetries to pare down our metaphysical commitments

may pull us either towards realism or conventionalism depending on our desiderata for

projects in metaphysics. Since conventionalists are frequently able to find symmetries

where the realist finds none by flouting consistency, we may feel compelled to take

a conventionalist stance if we prefer metaphysical desert landscapes, though note

that these landscapes may require us to treat two states characterized by completely

different assignments of values to variables as the same if the symmetries appealed

to by the conventionalist are permissive enough. The realist, on the other hand, can

point to the fact that a criterion like consistency allows us to determine what form

a symmetry must take within the context of a particular physical theory given only

information about the variables it utilizes and how the transformation in question acts

on these variables. Should we believe something like PE for a particular overarching

symmetry, realists will have an easier time of recognizing physically equivalent states

than will conventionalists who ignore consistency.23 The pragmatic utility of the

realist approach seems more compelling to me than do desert landscapes, and so I

take PE to provide us with a good reason to prefer realism (or at least acting like a

realist) to conventionalism, but this reason is certainly not decisive.

Yet the relationship between symmetries and the ontology of physical theories

23Note that it is possible to have your cake and eat it too here; one can adopt the stance of the
conventionalist who acts like a realist when deciding which symmetries to examine. This conven-
tionalist doesn’t take consistency to be the true gauge of what unites physical symmetries under a
single overarching symmetry but believes that overarching symmetries that satisfy it are the ones
we should examine first and think are the best candidates for the sorts of overarching symmetries
we care about. Again, I have no quarrel with such conventionalists; my task is only to argue that we
ought to act like realists when searching for overarching symmetries as these peculiar conventionalists
do.

37



gives us another reason to think that, even if we are conventionalists, we should focus

our attention on those symmetries that transform the same objects and relations

consistently across physical theories. If we do think that symmetries can help us

determine the ontological commitments of our physical theories, and if we think that

all of the physical theories are, in fact, representations of the same objective world,

then it would seem desirable to have the ontologies identified by different physical

theories line up nicely with one another. For instance, if one theory is committed

to the existence of a preferred inertial reference frame (as some formulations of non-

relativistic quantum mechanics are) and another theory is committed to the physical

equivalence of all inertial reference frames (in the way that special relativity is if we

assert something like PE for velocity boosts), we obviously have good reason to think

that one of these theories is correct and one is wrong since only one can accurately

represent the way the world actually is.

If we want to use symmetries as a guide to surplus structures or use asymmetries

to justify the existence of certain structures, then it would seem that the symmetries

even the conventionalist would most want to focus on should be those that can be

extended consistently beyond the scope of one particular theory to act on all variables

that represent the same physical property consistently. For instance, take two theories

T1 and T2 which are both invariant under Galilean velocity boosts (they could be, for

example, classical mechanics and classical electrostatics). If we have good reason to

think that both T1 and T2 are true, then we have good reason to think that any two

inertial frames are physically equivalent to one another, and thus that any additional

structure posited to distinguish the two frames (such as, for instance, some absolute

velocity) doesn’t really exist. If T2 is invariant under Lorentz boosts but not Galilean

boosts, however, our ontological commitments based on accepting both T1 and T2

would be quite different (now take T2 to be, for example, special relativity); after

all, a world in which I’m traveling inertially at five times the speed of light would be
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allowed by T1 but not by T2 since superluminal velocities are forbidden by the laws

of T2. In such cases, we have good reason to believe that either T1 or T2 is false since

there can be no single theory that respects the symmetries and asymmetries of both

physical theories simultaneously24.

If we want to know what we really ought to believe exists, we need to look at the

commitments of all of our best physical theories, not just one or two. If we want to get

a consistent picture of what the world is like from these theories, and if we think that

symmetries can tell us something about the ontological commitments of our physical

theories, then even the conventionalist needs to accept the fact that overarching

symmetries that act consistently on the fundamental objects and relations of lots of

different physical theories will be more interesting than overarching symmetries that

take entirely different forms depending on the theory being examined. So, one could

say that, despite her conventionalism, if a conventionalist has the inclination to draw

a connection between physical symmetries and ontology, then she should be prepared

to act as a realist in certain situations.

2.2.3 Unification

As discussed in the previous section, the fact that we take all physical theories to

represent the nature of one and the same world gives even the conventionalist reason

to act like a realist in many cases by focusing her attention on overarching symmetries

that act consistently across a number of different physical theories before examining

symmetries whose form varies from theory to theory. The fact that our best physical

24Here, and later on in the paper, one may worry about the clear inconsistencies among our best
physical theories, most notably general relativity and quantum mechanics. Such inconsistencies
typically lead to one of two conclusions: either the physical world is not the sort of thing that can
be completely modeled by completely consistent physical theories, or else the world is capable of
being so modeled and at least one of the best physical theories we are currently working with is
either simply false or, perhaps more charitably, incomplete and misleading. Though my sympathies
lie with the latter of these two camps, I will not try to defend this position here. All I mean to argue
is that those who think fundamental physical theories can and should be made consistent with one
another ought to adopt the realist strategy when seeking out overarching symmetries.
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theories tend to bump up against one another and interact with one another gives

us further reason to look for realist symmetries first as well. We infrequently think

that any single theory we’ve discovered so far is sufficient to account for all of the

phenomena we’d like our physical theories to be able to account for, so we rely on

a cast of different physical theories to provide us with an accurate representation of

what the world is really like and accurate predictions of what experimental outcomes

we will observe.

There are some, however, who still hold out for a “Grand Unified Theory of

Everything” (GUTE) that will eventually replace the multiplicity of theories we rely

on to do science’s explanatory and predictive work. The hope is something like

the following: there have been several cases in the history of science where older

theories were replaced by more unifying theories. For instance, Newtonian mechanics

was capable of predicting and explaining both celestial and terrestrial motion, a feat

that had not been reproduced by any empirically adequate prior physical theory.

Maxwell’s theory of electromagnetism provided an unexpected unified theory of a

electricity, magnetism, and optics. The electroweak theory provides a single theory

to account for both the weak and electromagnetic forces. The hope of the scientists

(and philosophers) who anticipate some future GUTE is that, at some future point,

physics will provide suitable accounts of all forces (including the strong nuclear force

and gravity) under the same theory. We may not know what form the GUTE will

take, but we can hope that we will discover such a theory and prepare our current

theories to make them as amenable to a future GUTE as possible.

It is perhaps with a GUTE in mind that searching for realist symmetries first

seems most appealing. The advocate of a future GUTE has the hope that, at some

point in the future, there will be a single theory that accounts for the disparate

phenomena that we today rely on a number of different scientific theories to account

for. The GUTE advocate, then, is looking for clues as to the form the GUTE will
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take, and in this regard the sorts of symmetries the realist searches for provide more

helpful information than do symmetries of the sort the conventionalist allows because

they pick out fewer candidate symmetries. If all of our best current theories are

invariant under some set of symmetry transformations, then we have good reason to

think that the GUTE will be invariant under such symmetry transformations as well,

and if all of our best physical theories are not invariant under a particular symmetry

transformation, then we may have no good reason to believe that the GUTE we

hope for will be invariant under this particular symmetry either (assuming, of course,

that the GUTE utilizes many of the same parameters that our current best physical

theories use).25

Realist symmetries here will be more useful because the consistency constraint

ensures that physical symmetries united under the same overarching symmetry will

transform the same variables in the same ways. So, for instance, if all of our best

theories are invariant under a realist spatial translation, then, when positing a GUTE,

we have good reason to think that it will be invariant under a spatial translation

that behaves in our new theory just the way it behaved in our old theories. Realist

symmetries thus provide the GUTE advocate with potentially helpful information

about what form the GUTE may take, assuming of course that there is something

basic that our current scientific theories have gotten right about the world, namely

what symmetry transformations physical theories ought to be invariant under. Again,

I do not mean to don the mantle of the GUTE advocate myself; it simply seems a

reasonable view to take about the progress of science, and it’s one that seems to lend

itself to adopting the realist strategy over the conventionalist strategy. My point

is only that the consistent symmetries, in this situation, may provide us with more

information than the symmetries the conventionalist allows. Whether one be realist

25My point here is, in a sense, an extension of my point about realist symmetries being the most
useful ones for helping us determine the form of successor theories since the GUTE is supposed to
be the successor for all of our current physical theories.
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or conventionalist in one’s understanding of symmetries like time reversal, it seems

the best course of action, in most cases, to look for consistent symmetries first to

glean as much information as possible from these symmetries about the world our

scientific theories purport to represent.

2.3 Conclusion

Assuming that my approach to physical symmetries is correct, we are left with at

least two ways to proceed: when searching for overarching symmetries, we can follow

the realist and search for symmetries that transform the same objects and relations

consistently across physical theories (for only such transformations deserve to be

labeled overarching symmetries), or we can follow the conventionalist and also search

for symmetries that may not transform the same objects and relations consistently

across physical theories but instead preserve some other important feature of what

it means to be a time reversal operation, say, or a parity reversal operation. As

the preceding sections show, conducting the realist’s narrow search is more likely

to yield the kinds of results that both scientists and philosophers are likely to find

pragmatically useful, so it may be in the best interest of even the conventionalist to

carry out the realist’s narrow search first before conducting the broader search.

The moral of this story is one that needs to be taken to heart in the discussion

of time reversal in particular. What my analysis suggests is that, when looking for a

suitable candidate for a time reversal operator that may have interesting philosophical

or physical consequences (e.g. one that may be able to guide our ontology, or one

that may be suggestive of the form the GUTE may take), we should not broaden

our search to include inconsistent symmetries that intuitively seem to play the role

of a time reversal operator within the context of a specific theory; rather, we should

narrow our search and count as candidate time reversal transformations only those

which act consistently on the same variables across a number of different physical
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theories. In the coming chapters, I will use this approach to provide a new account

of time reversal and derive from it a number of interesting consequences.
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CHAPTER III

Background

3.1 What is time reversal?

The following two questions about time reversal are intimately related to one

another:

1. What does the time reversal operator look like (or, equivalently, how do

physical properties change under time reversal)?

2. Which physical theories are time reversal invariant?

In the philosophical literature on time reversal, authors frequently attempt to answer

one of these questions by assuming an answer to the other question and using the

details from this first solution to argue for a solution to the original question. Why

they do so seems obvious: if one knows how the time reversal operator acts on physical

states, it is relatively easy to conjure up a time reversal operator in the context of a

particular physical theory and then check to see whether this time reversal operator

maps solutions of this physical theory to solutions. Conversely, if one assumes from

the beginning that a particular theory is time reversal invariant, one can utilize the

mathematical structures of the theory (e.g. the symmetries under which the theory’s

differential equations are invariant) to determine what properties a time reversal
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operator should satisfy. I will call accounts of time reversal that assume an answer to

1 and use this response to generate an answer to 2 “intuitive” and accounts of time

reversal that assume an answer to 2 and use this response to generate an answer to

1 “theory-relative”.

In this chapter I examine several accounts of time reversal all of which are ei-

ther intuitive or theory-relative. In the first section I consider the work of Horwich

(1987), Albert (2000), Malament (2004), and Arntzenius and Greaves (2009), all of

whom provide intuitive accounts of time reversal. In the second section I consider the

work of Roberts (2010a,b) and some claims made by the “textbook account” consid-

ered by Arntzenius and Greaves, both of which are theory-relative accounts of time

reversal. Finally, I conclude with some thoughts about the general shortcomings of

both intuitive and theory-relative accounts and sketch a third approach that may

provide a better account of time reversal than any in the literature to date.

3.2 Intuitive accounts of time reversal

Intuitive accounts of time reversal may differ from one another, but they all employ

the same general strategy for determining whether particular theories are time reversal

invariant, which runs basically as follows:

1. Begin with familiar physical properties (such as position and perhaps

velocity) of whose behavior under the time reversal operator we have an

intuitive grasp.

2. Utilize some formal relations provided for you by the theory in question

to determine how the values of other fundamental physical properties of

the theory transform under time reversal.

3. Check to see if any solution of the theory is mapped to a solution by

45



the putative time reversal procedure. If so, then the theory is time

reversal invariant. If not, then the theory is not time reversal invariant.

A general procedure for laying out a taxonomy of intuitive accounts of time reversal,

then, can be given by providing the following information about each account: 1) the

intuitions which drive the particular characterization of time reversal needed for the

author’s account, 2) the consequences of this characterization of time reversal for the

transformation of the fundamental properties of a physical theory under time reversal,

and 3) the verdict the account delivers concerning the time reversal invariance of

particular theories. I will now characterize four different intuitive accounts of time

reversal to examine how such accounts of time reversal work, what their strengths

are, and where their weaknesses lie.

3.2.1 Horwich

I begin my inquiry into intuitive accounts of time reversal with chapter 3 of Hor-

wich (1987). Horwich, the first to my knowledge to provide a rigorous philosophical

account of time reversal in general and an intuitive account of time reversal in particu-

lar, begins by pointing out that it is not enough for a time reversal operator to simply

reverse the order of physical states; that is, it is not sufficient to characterize Sn...S1,

a simple inversion of some sequence of physical states S1...Sn, as the result of every

time reversal operation. Though Horwich agrees that intuitively time reversal should

at the very least reverse the temporal ordering of instantaneous physical states, some-

thing more is needed for a full account of time reversal. Thus, some operator (which

I shall call T , using my own notation instead of Horwich’s) should be employed to

transform the individual states into their time-reversed counterparts. Horwich claims

that the true time-reversed version of the sequence S1...Sn is T (Sn)...T (S1).

Having appealed to the time reversal operator T above, Horwich now owes us an

account of how that operator acts on physical states. Horwich begins his rather quick
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analysis of T by drawing the distinction between what he calls “basic” properties,

which are (presumably monadic) properties held by instantaneous physical states, and

“non-basic” properties, which are relations between numerous instantaneous states

across time. Spatial positions and time, for instance, count as basic properties in

Horwich’s account while velocity is non-basic. Horwich defines the operation of T

on the instantaneous state P1 = 〈xn, t〉, where xn is the position of the relevant

instantaneous physical state and t is temporal coordinate, as follows:1

T (xn) = xn (3.1)

T (t) = −t (3.2)

These are the only basic properties that Horwich identifies, and so Horwich’s account

will, of course, be of limited use; however, it does provide enough information for us

to understand how the operator T acts on the velocity v of P1. Since the velocity is

the time derivative of position, and since T flips the sign of time but not of position,

it follows that:

T (v) = −v. (3.3)

Horwich does not explicitly discuss the ways in which other non-basic properties

transform under T , but he does hint that the magnetic field B should be treated

similarly to v since flipping the direction in which electrons flow in a wire would

1For the purposes of this paper, I will use the notation T (x) = x′ to represent the projection of
the transformation T onto the subspace characterized by the variable x. Less technically, when I use
the notation T (x) = x, I isolate the effect of the time reversal operator to those components of the
state Ψ that depend on certain variables (in this case, x) while ignoring the effect of time reversal
on all other components of Ψ. This is also what I mean when I say that T is “acting on” a property
or variable x.
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likewise flip the sign of the magnetic field these electrons induce:

T (B) = −B. (3.4)

Note that Horwich’s maneuver here seems at odds with my interpretation of him as

giving an intuitive account of time reversal because it essentially assumes the time-

reversal invariance of Ampere’s circuital law (with Maxwell’s correction):

∇×B =
∂E

∂t
+ j; (3.5)

that is, the only reason why flipping the directions of the electrons in a loop of wire

would flip the sign of the magnetic field induced by those electrons would be if the

above equation were time reversal invariant. So Horwich’s intuitions about time and

velocity alone are not sufficient to justify his account of the action of the magnetic

field under a time reversal transformation. It is worth noting Horwich’s treatment of

B under T and his justification for it here because these will be points of contention

between Horwich and Albert, as I shall discuss in the next section.

Finally, given the above descriptions of how the time reversal operator T acts on

instantaneous physical states, what can we conclude about the time reversal invari-

ance of particular physical theories? Horwich does not draw any conclusions of his

own on this matter in chapter 3 of his book, but his suggestion that the magnetic

field flips its sign under time reversal allows us to extrapolate Horwich’s views on the

time reversal invariance of classical electromagnetism. The fundamental equations in

classical electromagnetism are Maxwell’s:
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∇ · E = ρ (3.6)

∇×B =
∂E

∂t
+ j (3.7)

∇ ·B = 0 (3.8)

∇× E = −∂B

∂t
(3.9)

(3.10)

and the Lorentz force law:

F = q(E + v ×B) (3.11)

As it stands, Horwich does not provide us with enough information to determine

whether or not these equations are invariant under time reversal because he does not

state how T operates on the electric field E, the current j, or the electromagnetic force

F. However, it seems like Horwich would likely support the following characterizations

of the action of T on these variables:

T (E) = E (3.12)

T (j) = −j (3.13)

T (F) = F (3.14)

The transformation of these properties under the time reversal operator can be jus-

tified as follows: first, since F = ma = md2x
dt2

by Newton’s second law, it seems that

F should only flip signs if m flips its sign under T since x does not flip signs under T
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and the sign flip of t under T does not matter because we are dealing with a second

derivative.2 But there seems to be no good reason to think that time reversal should

have any effect on m, and so our intuitions suggest that T (m) = m. Just as mass

seems to be a property that has nothing to do with time, the electric field E likewise

seems a property that time reversal should not affect, and so Horwich seems likely

to advocate the transformation of E suggested above. Finally, since the current j is

a quantity that involves a single time derivative, it should intuitively flip signs under

time reversal. All three of the above extrapolations, then, seem fairly reasonable

given Horwich’s view, and as we’ll see shortly, Albert agrees with Horwich on these

points.

All that remains now is to check and see if T , as I have characterized it, leaves

Maxwell’s equations and the Lorentz force law invariant. As a matter of fact, the

operator T does transform physical states in such a way that if some state P1 has

properties that obey Maxwell’s equations and the Lorentz force law, the time-reversed

state T (P1) has properties that obey Maxwell’s equations and the Lorentz force law

too, and so classical electromagnetism appears to be time reversal invariant.

3.2.2 Albert

Over a decade after Horwich’s book was published, Albert (2000), in the first

chapter of his book, provides an account of time reversal that, for the most part,

agrees with Horwich’s in spirit even as it differs from Horwich’s account on details

pertaining to classical electromagnetism. In many ways Albert’s general project fol-

lows Horwich’s closely. Like Horwich, Albert divides physical properties into basic

properties and non-basic properties, and he agrees with Horwich’s assessment that

2I assume here that F = ma is essentially definitional and not a statement of some sort of
substantive law. Definitions, I take it, are assumed to be time reversal invariant and cannot fail
to be so while substantive physical laws can fail to be time reversal invariant. If we take Newton’s
second law here to be a substantive physical law, then we have to make an assumption about the
time reversibility of this law to determine how T acts on F, just as Horwich did with B.
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the time reversal operator T acts in the following way on the following basic and

non-basic physical properties:

T (xn) = xn (3.15)

T (t) = −t (3.16)

T (v) = −v (3.17)

However, Albert’s intuitions differ from Horwich’s on a few important points. The

difference between Horwich and Albert, in a sense, boils down to the fact that Horwich

assumes to time reversal invariance of Ampere’s circuital law, either because he takes

it to be definitional or just “obviously” time reversal invariant, while Albert takes

Ampere’s circuital law to be just another of the laws of classical electromagnetism

whose invariance under time reversal is up for grabs. Albert suggests that time

reversal ought to simply reverse the temporal ordering of physical states but leave all

of the fundamental quantities invariant.3 That is, according to Albert, T should never

flip the sign of a property’s value unless that property is either a temporal coordinate

or a non-basic property defined as a time-derivative of some other, more basic property

whose values do not flip sign under time reversal. Despite Horwich’s motivations for

flipping the sign of the magnetic field under time reversal, Albert claims that the

magnetic field, since it is a basic property and not explicitly the time-derivative of

some more fundamental property, should not flip sign under time reversal. Thus,

Albert defines the operation of T on the basic and non-basic properties of classical

electromagnetism as follows:

3On this point, Callender (2000) agrees with Albert, though Callender’s own analysis focuses on
the time reversal invariance of non-relativistic quantum mechanics as opposed to electromagnetism.
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T (B) = B (3.18)

T (E) = E (3.19)

T (j) = −j (3.20)

T (F) = F (3.21)

Albert’s version of T thus yields the same transformations as Horwich’s with the sole

exception of the magnetic field; however, this change is sufficient to render classical

electromagnetism, which was invariant under Horwich’s proposed time reversal op-

erator, non-invariant under Albert’s. To see this, consider again Ampere’s circuital

law, ∇ × B =
∂E

∂t
+ j. The right-hand side of this equation flips signs under time

reversal while the left-hand side does not. There are no non-zero values of B which

would satisfy both Maxwell’s second equation and its time-reversed counterpart, so

classical electromagnetism is not, according to Albert, time reversal invariant.

3.2.3 Malament

Up to this point I have ignored the specific ways in which intuitive accounts typi-

cally interpret or understand how the time reversal operator acts on states; however,

the issue of interpretation cannot be avoided when discussing the distinctive features

of the account given by Malament (2004), so a little bit of backtracking is in order. As

North (2008) and Arntzenius and Greaves (2009) point out, time reversal is typically

interpreted or understood in one of two essentially equivalent ways. The first sort of

time reversal, active time reversal, involves a temporal flipping of physical states (as

characterized by the contents of spacetime and their fundamental physical properties)

while leaving the coordinate system and background spacetime of these states unal-

tered. One can think of such time reversals as making the necessary changes to the
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progression of physical states such that, if you observed the time-reversed sequence

of a movie, for instance, the movie would appear to be running backwards. The

second sort of time reversal, passive time reversal, involves simply a reassignment of

coordinates without changing any intrinsic features of the physical states in question.

One can perhaps think of the passive time reversal of some sequence of events as the

way in which someone moving backwards in time would view the original sequence.

Essentially, these two physical interpretations of the time reversal operator amount

to the same thing: whether one keeps the coordinates fixed while time-reversing the

physical states or keeps the physical states fixed while time-reversing the coordinates,

the fundamental characterization of the time reversal operator should remain the

same.

Malament proposes a new physical interpretation of time reversal. Rather than

supposing that time reversal acts on the physical states alone or coordinates alone,

Malament takes the time reversal operator to invert the temporal orientation of

the background spacetime structure. This interpretation, which he calls “geomet-

ric”, is more general than the passive interpretation since it applies to coordinate-

independent models, and Malament claims that, unlike active and passive interpreta-

tions of time reversal, his geometric interpretation applies to curved spacetimes. So

it seems that of the intuitive accounts considered thus far, Malament’s is the best-

suited to deliver verdicts on the notion of time reversal in our best currently available

physical theories.4

So, what verdict does Malament’s geometric interpretation deliver in the case of

classical electromagnetism? Malament begins by providing us with the entities and

properties he takes to be basic. In the context of classical electromagnetism, these are

charged particles and fields, in particular the electromagnetic field F which Malament

takes to be a map from the pair 〈L, q〉 at some point p, where L is the line tangent to

4This point is also made by North (2008).
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some particle’s worldline at p and q is the charge of the particle at p, to a four-vector

indicating the direction in which the test particle characterized by 〈L, q〉 would move if

placed at p. Malament notes that some information is missing in his characterization

of F because, for any timelike worldline, there are two possibilities for the unit tangent

vector at a given point: one which points towards the past, and one which points

towards the future. Since there is nothing in Malament’s characterization so far to

suggest that L should be future-directed instead of past-directed, Malament relies on

the temporal orientation of the background spacetime to determine the direction in

which L points. So F , according to Malament, takes the pair of objects 〈L, q〉 to some

four-vector given a specific background temporal orientation.5

Geometric time reversal involves keeping the fundamental quantities the same

while flipping the temporal orientation, so the operator T should have no effect on

the position or charge of a particle. Thus, according to Malament’s view:

T (xn) = xn (3.22)

T (q) = q (3.23)

However, Malament agrees with both Horwich and Albert that velocities flip sign

under time reversal:

T (v) = −v (3.24)

This follows from the fact that velocities are future-directed four-vectors that lie

5It is worth noting that a similar convention for an orientation in spacetime could be picked out
by positing something like the local orientation field considered by Pooley (2003). I will discuss sim-
ilarities and differences between orientation fields and inherent temporal orientations in background
spacetime structure in the final chapter of this dissertation.
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tangent to worldlines. Thus, the role of temporal orientation in determining velocity

requires a velocity sign flip under geometric time reversal. Like velocity, the field F

requires a temporal orientation for its mapping to work. Intuitively, L and q do not

flip signs under geometric time reversal since the fundamental quantities of a physical

theory remain untouched by a geometric time reversal; however, the four-vector that

results from the mapping ought to flip its sign under time reversal because of the

temporal orientation introduced to F as discussed above. Thus, we should expect the

electromagnetic field, represented by the Maxwell-Faraday tensor F ab, to transform

as follows:

T (F ab) = −F ab (3.25)

This does not, however, tell us how E and B transform, so it is hard to compare

Malament’s account to Horwich’s and Albert’s accounts without saying a bit more

about the relationship between E, B, and F ab. Skimming over the technical details

of Malament’s account, he defines the electric field E as the product of the tensor F ab

and a “frame”, which is a future-directed time-like vector field and thus a physical

quantity whose value flips signs under geometric time reversal. Since both F ab and

the frame flip signs under time reversal, E itself is not affected by the time reversal

operator. The magnetic field B, however, is determined to be proportional to the

product of F ab, the frame, and a volume element representing an antisymmetric tensor

field whose values also flip sign under geometric time reversal. Thus, B itself flips

sign under geometric time reversal. So, like Horwich, Malament takes T to operate in

the following way on the following quantities of interest in classical electromagnetism:
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T (B) = −B (3.26)

T (E) = E (3.27)

T (j) = −j (3.28)

T (F) = F (3.29)

As previously discussed, Maxwell’s equations and the Lorentz force law all still hold

under these transformations, and thus classical electromagnetism, according to Mala-

ment, is time reversal invariant.

3.2.4 Arntzenius and Greaves’s “Feynman” account

The last intuitive account of time reversal I consider comes from Arntzenius and

Greaves (2009). Arntzenius and Greaves agree with Malament’s general strategy but

also provide a new strategy (which, they claim, is equivalent to Malament’s) inspired

by Feynman’s claim that “antiparticles are just particles moving backwards in time”.

Essentially, the Arntzenius-Greaves (henceforth AG) program begins by building in

an intrinsic temporal orientation to the tangent worldlines L utilized by Malament

in his analysis. If worldlines are intrinsically-directed, as Malament claims they are

not, then L flips signs under time reversal, which means that the field F is no longer

only defined relative to a specific temporal orientation, so:

T (F ab) = F ab. (3.30)

If one follows Malament’s procedure for deriving the behavior of E and B under time

reversal from the behavior of F ab under time reversal as described in the previous
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section, then one finds that E is defined in terms of the product of a frame which

flips signs under time reversal and a F ab which does not, meaning that E now flips

signs under time reversal. Likewise, B now does not flip its sign under time reversal.

A few more important quantities should also be discussed. If one is to take

Feynman at his word on the idea that anti-particles are simply particles moving

backwards in time, one must saddle Feynman with the view that the time reversal

operator flips the charge of the particle instead of just leaving it invariant; after all,

how else could electrons and positrons have opposite charges? Perhaps more curiously,

velocity and velocity-dependent quantities like j now do not flip signs under time

reversal because their temporal directness is treated as basic instead of parasitic on

the underlying temporal orientation of spacetime. Thus, the “Feynman proposal” of

AG defines the operation of T as follows:

T (xn) = xn (3.31)

T (q) = −q (3.32)

T (t) = −t (3.33)

T (v) = v (3.34)

T (B) = B (3.35)

T (E) = −E (3.36)

T (j) = j (3.37)

T (F) = F (3.38)

If T is defined in this way, it turns out that any set of values 〈T (xn), T (q), T (t), T (v),

T (B), T (E), T (j), T (F)〉 will satisfy Maxwell’s equations and the Lorentz force law

just in case the set of values 〈xn, q, t,v,B,E, j,F〉 does; thus, classical electromag-

netism is invariant under the “Feynman” time reversal operator just as it was under
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Malament’s time reversal operator even though these two operators act very differ-

ently on physical states.6

3.3 Theory-relative accounts of time reversal

The alternative to the intuitive accounts of time reversal examined above are

what I have called theory-relative accounts of time reversal. These accounts proceed

in two seemingly simple but technically complex steps by 1) singling out a particular

physical theory which intuitively seems time reversal invariant and 2) determining

what features the time reversal operator would need to have in order for the given

theory to be time reversal invariant. This approach has been fairly unpopular in

the philosophical literature on time reversal, so much so that there are only two

truly theory-relative accounts discussed in the literature at the moment: one briefly

discussed in Arntzenius and Greaves’s work and one provided by Roberts (2010a,b).

3.3.1 Arntzenius and Greaves’s “textbook” account

Arntzenius and Greaves (2009) discuss what they call the “textbook account”

of time reversal at the beginning of their paper on the time reversal invariance of

electromagnetism as a foil for the accounts that follow. Very quickly, Arntzenius

and Greaves claim that most classical electromagnetism textbooks argue first that

electromagnetism ought to be time reversal invariant and, from this assumption,

derive the following properties of the time reversal operator:

6It is worth noting, having discussed AG’s “Feynman” account and Malament’s geometric ac-
count, that AG believe that the difference between these two accounts is merely conventional. They
provide a “structuralist” ontology according to which certain choices of convention allow one to de-
rive the basic features invoked by Malament’s account or the basic features invoked in “Feynman’s”
account. There may, then, be no genuine, non-conventional difference between these two accounts
despite appearances to the contrary.
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T (xn) = xn (3.39)

T (q) = q (3.40)

T (t) = −t (3.41)

T (v) = −v (3.42)

T (B) = −B (3.43)

T (E) = E (3.44)

T (j) = −j (3.45)

T (F) = F (3.46)

Clearly, the above operator is the same as the one invoked by Horwich and Malament,

at least in its operation on these particular properties. Two points are worth noting

here that I will come back to in the final section of this chapter as I critique both the

intuitive and theory-relative accounts of time reversal. First, note that the “textbook

account” is able to deliver the features of the time reversal operator T without making

any assumptions about the fundamental properties of the physical theory or which

interpretation of time reversal (active, passive, geometrical) was best. Given this

ontological or interpretive agnosticism, the textbook account may seem alluring to

many philosophers of physics. However, my second point suggests a problem with

the textbook account, which is that the operator it delivers in this case isn’t the only

candidate for T that keeps electromagnetism time reversal invariant. As discussed

in the last section, the “Feynman” account provides a time reversal operator that

acts very differently from the one provided by the textbook account, and yet classical

electromagnetism is still time reversal invariant under this strange-looking operator.

One may rightly worry, then, that theory-relative accounts of time reversal do not

provide enough information to pick out a unique form for the time reversal operator
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to take within the context of a particular physical theory. Both of these worries will

be raised again and discussed in more detail in the next section.

3.3.2 Roberts

Roberts (2010a,b) also provides a theory-relative account of time reversal, pri-

marily in the context of quantum mechanics. By assuming that quantum mechanics

is time reversal invariant, Roberts is able to derive a number of properties of the

quantum mechanical time reversal operator, including 1) its antiunitarity, 2) its com-

mutation and anticommutation relations with the position and momentum operators,

3) its commutation relations with spin operators, and 4) its operation on position and

momentum values in classical mechanics. Since the purpose of this section of the pa-

per is to deliver a comparison among many different accounts of time reversal, and

since the other authors I have considered do not deliver verdicts on the time re-

versability of quantum mechanics, I will focus primarily on Roberts’s fourth result

instead of his first three.

After Roberts determines the general time reversal operator for quantum mechan-

ics, he ventures into the classical realm to check and see how it operates on classical

position and momentum. The following are his strange but interesting results: the

time reversal operator in classical mechanics is either T1 or T2, where

T1(xn) = xn (3.47)

T1(v) = −v (3.48)

and
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T2(xn) = x0 − xn (3.49)

T2(v) = v (3.50)

for some fixed x0. Either T1 or T2, Roberts claims, serves as a suitable time reversal

operator for classical mechanics, strange as that may sound since T2 seems more like

a space and time reversal operator, flipping xn around some constant x0 (which,

according to Roberts, represents our freedom to choose an axis about which to flip

space), but Roberts’s account gives us no reason to prefer T1 to T2 as the best time

reversal operator for classical mechanics. Again, more will be said about this feature

of Roberts’s account in the next section.

3.3.3 A third way?

Though both intuitive and theory-relative accounts have their advantages, both

of these general strategies seem unappealing for a number of reasons. In this section,

I first discuss the problems facing each account and then suggest a potential reconcil-

iation of the two accounts as well as the kinds of problems that such a third account

could solve.

3.3.4 Problems for intuitive and theory-relative accounts

The most popular approach to time reversal seems to be the intuitive approach,

and sophisticated accounts such as Malament’s and AG are certainly interesting and

allow for exciting work on time reversal; however, the intuitive approach has problems

generally, and many particular intuitive accounts run into idiosyncratic problems. I

begin with the specific problems and then work outwards toward more general issues.

One worry about Malament’s and Arntzenius and Greaves’s projects is that both
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assume an affirmative answer to the question “Is our spacetime temporally ‘handed’?”.

One of the uses for a time reversal operator may be to help us answer the questions

of 1) whether time is handed or not, and 2) if time is handed, why it is so. Hor-

wich is moved by these questions to provide his own analysis of time reversal. If

one is committed to something like the spacetime symmetry principles advocated by

Earman (1989), one of which is states that all spacetime symmetries are dynamical

symmetries, then perhaps we should conclude that a time reversal asymmetry in one

of our dynamical theories should indicate a temporal handedness in spacetime. In

short, the existing literature gives us a good reason to believe that an analysis of time

reversal may help to answer the question of whether or not time is handed;7 however,

because Malament and AG assume that time is handed in order to formulate their

accounts of time reversal, these accounts are incapable of providing evidence for the

handedness of time, so those interested in such questions need to look elsewhere for

accounts of time reversal that will further their projects.

Perhaps a more difficult challenge to intuitive projects in general is the one that the

AG program suggests, namely that all intuitive accounts rely on some basic assump-

tions about the fundamental ontology of a certain physical theory. The division of

properties into basic and non-basic certainly seems a metaphysically weighty endeavor

with potentially enormous consequences for one’s preferred intuitive account of time

reversal. One might prefer, as I suggested in my discussion of the “textbook account”,

some account of time reversal that does not require such assumptions. What is more,

while it may be easy to determine what sorts of elements are best admitted into one’s

ontology in theories such as classical electromagnetism and classical mechanics, more

recent physical theories such as string theory and quantum chromodynamics may

be such that even our best physical intuitions do not lead straightforwardly to one

7I will argue in the final chapter of the dissertation that this argument is not nearly as straight-
forward as it seems to be, but this does not mean that that a well-motivated account of time reversal
has no bearing on questions about the handedness of time.
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particular ontology or another.8 With such dubious metaphysics, one wonders if the

success of accounts like Malament’s and AG’s “Feynman” proposal can be repeated

in the context of these new theories, and if not, it again seems like there are many

cases where our intuitions should not be our guide for determining what the time

reversal operator looks like.

Roberts provides his own challenge to these intuitive accounts, arguing that, while

our intuitions may be good guides to determining how properties like classical position

and momentum transform when time-reversed, our intuitions may mislead or abandon

us when we’re faced with strange new physical theories and odd physical properties.

We may know intuitively how velocity should transform under time reversal, for

instance, but what about lepton number, isospin, quark color or flavor, or any of

the other numerous properties that we find in our best available physical theories?

What’s more, should we consider these properties to be “basic” in Horwich’s and

Albert’s sense? With few, weak, or unreliable intuitions to guide us, it seems likely

that we will miss something when providing an intuitive account of time reversal, so

we have good reason to turn to some other approach in these cases.

Finally, when compared to the theory-relative approach, the intuitive accounts

seem to rely on the problematic assumption that we know, a priori, what the time

reversal operator looks like in the context of a given physical theory. As my previous

criticisms have suggested, our intuitions do not seem to be excellent guides for what

we should believe to be true in our fundamental physical theories, so why should

we think our assumptions about the time reversal operator hold fixed in the context

of new physical theories? What mechanism is in place in an account like Albert’s,

Horwich’s, or Malament’s to allow us to revise our conception of time reversal given

enough empirical evidence? One advantage of the theory-relative approach is that it

makes the question of what the time reversal operator looks like an empirical one:

8Take, for instance, the disagreement over the particle and field ontologies of quantum field
theory.
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since our theories are open to revision, the discrete symmetries of these theories may

be too, and so our conception of what operator represents time reversal in a particular

physical theory may evolve as our theory does. Thus, those swayed by empiricist or

positivist considerations may think that the a priori character of time reversal as

characterized by intuitive accounts gives us a good reason to abandon such accounts

in favor of their competitors, the theory-relative accounts.

The upshot of these criticisms is simply that even the best intuitive accounts are

only as good as our intuitions, and there are unfortunately many cases in contem-

porary physics where our intuitions should only guide us so far. So while intuitive

accounts may work well in cases like classical mechanics or electromagnetism, such

approaches are not suitably general to deliver the best results in cases like quantum

mechanics or quantum field theory. For this reason, then, theory-relative accounts

may seem the superior alternative, especially for the empiricist philosopher of physics.

However, theory-relative accounts have problems of their own. First, as pointed

out by Arntzenius and Greaves, physical theories have many symmetries, and if one is

willing to devote the time and effort, one can determine a class of symmetries under

which any particular physical theory is invariant. However, after doing all of this work,

Arntzenius and Greaves ask, why do we have any reason to call one of these operations

“time reversal” in particular? If “time reversal” simply becomes synonymous with

“that symmetry under which our theory is invariant”, it seems like all theories are

tautologously time reversal invariant and questions about time reversal are no longer

of any physical interest. But let us grant that the proponent of the theory-relative

account wants to provide a better definition and restricts his claims about the time

reversal operator to one theory, as Roberts does with quantum mechanics. Even

then, one could argue, it seems that we have no good reason to think that quantum

mechanics is time reversal invariant. Why should it be? If the theory-relative account

advocate accuses the intuitive account advocate of extending her intuitions of how
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quantities transform under time reversal beyond their reasonable bounds, the intuitive

account advocate can just as easily accuse the theory-relative account advocate of

extending his intuitions of which theories are time reversal invariant beyond their

reasonable bounds. As Roberts himself points out, appealing to the time reversal

invariance of classical mechanics does not give anyone a good reason to presume the

time reversal invariance of quantum mechanics, so what reason do we have to think

quantum mechanics or any other physical theory is time reversal invariant without

some basic notion of what the time reversal operator is to work from?

But the problems for theory-relative accounts run deeper, for in some cases such

as those I have considered here, the theory in question underdetermines its time

reversal operator. Roberts’s account, for instance, provides us with two time reversal

operators while Arntzenius and Greaves’s textbook account seems like it should allow

for an operator that acts as Arntzenius and Greaves’s “Feynman” account suggests.

This underdetermination would not be so problematic if, as with the “Feynman”

and Malament accounts, according to the AG project, all such disagreements can be

directly attributed to specific disagreements about fundamental ontology, but at least

in Roberts’s classical mechanics case there seems to be a deeper difference between

the two time reversal operators; specifically, it seems that any operator that flips

the position and time of a particle across an axis while leaving its velocity invariant

should be called a spacetime reversal operator instead of a time reversal operator, but

Roberts is content to call his T2 a time reversal operator nonetheless. One may thus

have legitimate worries that the procedure utilized in the creation of theory-relative

accounts of time reversal will not yield true time reversal operators but rather a class

of similar-looking symmetries, some of which may be time reversal operators and

some of which may not be.
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3.4 Prospects for a third way

If both the intuitive and theory-relative accounts run into the kinds of problems

I have suggested, one may be tempted to look for a third way to answer questions

about time reversal. Is there some way to avoid assuming an answer to the question

“what does a time reversal operator look like?” while still providing an adequate

answer to the question “which theories are time reversal invariant?” and vice-versa?

I believe there is. Here is the basic procedure I suggest we rely on to tell us what the

time reversal operator looks like in the context of a particular set of physical theories,

leaving out some of the more complicated details: take the set TRP to be composed

of the physical symmetries of some set of physical theories P . The elements of TRP

must possess the following properties:

1. Each symmetry in TRP must have some basic intuitive properties, such

as being a discrete symmetry of a physical theory or being an involution.

2. Every theory in P must be invariant under a symmetry consistent with

every physical symmetry in TRP .9

If TRP is the null set, then the theories in P are not invariant under time reversal.

If TRP is non-empty, then we can rely on consistency to help us identify elements of

TRP with one another. For instance, the symmetry that takes a point (x, y) to (x,−y)

and the symmetry that takes a point (x, y, z) to (x,−y, z) may be identified with one

another while the symmetry that takes a point (x, y) to (x,−y) and the symmetry

that takes a point (x, y, z) to (−x,−y, z) may not be. If we can use the consistency

criterion to identify every element of TRP with every other element of TRP , then

the elements of TRP are physical symmetries representing the same overarching time

reversal symmetry in different physical theories. If there is no such way to unify all

9Clearly, much more must be said about what it is for a theory to be invariant under a certain
symmetry, and I will discuss this issue in more detail in the next chapter.
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of the elements of TRP , then the set TRP picks out a number of different overarching

time reversal symmetries, no one of which is the time reversal symmetry. Either way,

so long as TRP is non-empty, we can say that the set of laws P is invariant under

time reversal.

The intuition that my “third way” approach relies on is that time reversal oper-

ators in one theory can act as a constraint on the proper time reversal operator of

another theory. We can use this intuition as a constraint on what time reversal should

generally look like, but we must also rely on some minimal intuitions about what it

means to be time reversal (as opposed to, say, parity reversal) as well. Because my

account relies on such intuitions, my account does not avoid all of the problems that

the limited nature of our intuitions poses for an account of time reversal, but I believe

it minimizes them since the intuitions appealed to by my account ascribe features to

the time reversal operator that the intuitive accounts I have discussed (as well as the

theory-relative accounts, for that matter) agree upon. Likewise, the assumption that

physical symmetries ought to act the same way on the same properties if they are

to be called overarching-symmetric counterparts of one another seems well-motivated

given my arguments in the previous chapter. Thus, the assumptions of my account

are less questionable than our intuitions about the time reversal invariance of quan-

tum field theory or our intuitions about how the time reversal operator should operate

on a quark’s strangeness. What is more, my account allows the question of what the

time reversal operator looks like as well as which theories are invariant under time

reversal to both be empirical questions that are typically discovered together, which

is a result that no other account of time reversal can boast. There is something for

everyone to love (and hate) about this third way; intuitive account proponents will

like that their intuitions come into play when comparing the constraints placed on the

time reversal operator across numerous physical theories, and theory-relative account

proponents will like that we determine the time reversal operator by paying attention
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to which symmetries a particular physical theory is invariant under and using these

symmetries as constraints in our analysis.

Most importantly, my approach need not assume anything about which particular

theories are time reversal invariant, how the time reversal operator acts on each

property, what the correct ontology of a theory is, or whether or not time is handed

in order to derive its results. My hope, then, is that even though this holistic and

mathematically involved project will be difficult and time-consuming, it may be able

to deliver non-question-begging answers to the kinds of questions we’d like an account

of time reversal to answer.
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CHAPTER IV

Methodology

In the first chapter I briefly proposed a new approach to the philosophical study

of time reversal that requires one to calculate the discrete symmetries under which a

number of theories are invariant before ruling whether these theories are time reversal

invariant. Given that our best physical theories rely on differential equations, I must

provide some way of determining all of the discrete symmetries under which solutions

to a set of differential equations are invariant for my theory to be feasible.1 Luckily for

me, a contemporary mathematician has done most of the hard work already. In this

chapter I present a brief overview of the work of Hydon (1998a,b, 2000a,b) and his

methods for determining the discrete symmetries of ordinary and partial differential

equations. At the end of the chapter, I discuss a few examples that Hydon presents

in his book and discuss how my account of time reversal derives a proposal for a

time reversal operator from Hydon’s work. These examples are worked through in

detail in preparation for my analysis in chapter 5, where my work proceeds using the

same methodology but with many more examples and much more quickly. I begin,

however, with a short discussion of some minimal preliminary desiderata for a time

reversal operator.

1See the discussion of theories and differential equations in chapter 2 for more information on my
notion of “physical theory” and the role of differential equations in my account.
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4.1 A few desiderata for a time reversal operator

Though I do not agree with the general approach of intuitive accounts of time

reversal for reasons discussed in the previous chapter, the basic point that one must

start with some minimal notion of time reversal in order to answer either of our ques-

tions of interest is certainly true. In what follows I present some minimal constraints

that must be satisfied in order for a time reversal operator to be a time reversal oper-

ator (as opposed to, say, a parity reversal operator, or a spacetime reversal operator).

First of all, a time reversal operator should be a discrete point symmetry of time

reversal invariant systems, meaning that it should be function from solutions (repre-

sented as sets of points on some variable space) to solutions which, unlike continuous

symmetries like translations and rotations, shouldn’t depend on some variable param-

eter. This follows intuitively from the fact that we never talk about time reversing

some state of affairs to some extent or by some value in the way that we talk about,

say, translating some figure to the left three meters or rotating some figure by an

angle of ninety degrees. Time reversal also ought to be an involution, meaning that

two time reversals leave the system where it started. Stated formally, this constraint

requires that T (T (Ψ)) = Ψ for every solution Ψ. This is again an obvious constraint

on a time reversal operator since two applications of the time reversal operator should

leave us with the same state we started with.

But requiring that T be an involution is not enough, for there are other physical

symmetries that satisfy this condition as well. The most notable of these, parity

reversal, I will represent by the operator P . The parity reversal operator is essentially

the spatial analogue of time reversal. To distinguish the two, then, I simply impose

the following restrictions: a physical state Ψ must inhabit the same spatial location as

its time-reversed counterpart and the same “temporal location” as its parity-reversed

counterpart2. That is, following my conventions from chapter 3, T (xn) = xn and

2Clearly this constraint only applies when states Ψ are associated with particular regions in space
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P (t) = t. Any candidate operator that satisfies both conditions in a case where Ψ is

a function of time and position only will be called the “trivial” or “identity” operator

I since it maps each state to itself. What is more, any candidate for T or P that

does not satisfy either of these criteria may still be what I will call a “spacetime

reversal operator”, which I’ll represent as A, which satisfies the condition A(xn, t) =

(u1(xn, t), u2(t,xn)) for some function u1 which satisfies u1(u1(xn, t), u2(t,xn)) = x

and for some function u2 which satisfies u2(u2(t,xn), u1(xn, t)) = t (since we require

that A must still be an involution). Finally, candidate operators which do not satisfy

the conditions for P , T , I, or A will simply be called “general discrete symmetries”,

which I will represent by D. In looking for time reversal operators, then, I restrict

my attention to only those operators that satisfy the condition that T (xn) = xn.

This is not to say that parity reversal and spacetime reversal are not philosophically

interesting or deeply connected with the project of constructing a proper account

of T ; rather, it’s just that A and P are different operators from T and are thus

not the subject of this particular inquiry. I do believe that, should no candidate T

operators be forthcoming, candidate A operators may provide the closest thing to

a time reversal operator we may find, but since the condition for T fits better with

our intuitions of what separates time reversal from other involutions, we should look

for T -candidates before we go searching for A-candidates to play the role of the time

reversal operator in our theory.

This is all the analysis of what we’re looking for in a time reversal operator I

will provide. The only other constraint, consistency, will be applied only after we

have determined which of our physical theories are invariant under which discrete

symmetries, so I will turn next to how to determine which discrete symmetries our

theories are invariant under.

and time. For a theory whose physical states are not functions of space and/or time, the conditions
imposed by this paragraph on T , P , and A can be ignored; what will guide us to distinguishing time
reversal from parity reversal in such situations will be how well certain discrete symmetries line up
with parity reversal operators and time reversal operators in similar theories.
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4.2 Hydon’s method for ODEs

We now know some basics about the kind of symmetries we’re looking for when

we look for time reversal symmetries, but in order to determine whether a given

theory is time reversal invariant, we first need to know what discrete symmetries the

theory is invariant under. Hydon provides a clear and (relatively) simple method

for calculating all of the discrete symmetries of a given differential equation. In this

section I cover Hydon’s approach to calculating the discrete symmetries of ordinary

differential equations (ODEs), and in the next section I discuss how Hydon’s approach

extends to partial differential equations (PDEs).

We begin with the fact that every ODE of the form:3

x(n) = ω(t, x, x′, ..., x(n−1)) (4.1)

where x(n) is the n-th derivative of x with respect to t and n ≥ 2, has a finite-

dimensional Lie algebra L of continuous point symmetry generators. The basis for

these generators can be written in the following form:4

Xi = ξi(t, x)∂t+ ηi(t, x)∂x (4.2)

Any symmetry generator in L can be exponentiated to yield a one-parameter Lie

group of symmetries of the given differential equation that are continuously con-

nected to the identity component of the symmetry group. Hydon proves that one

3I have slightly altered these examples from Hydon’s conventions, replacing the independent
variable x with t and the dependent variable u with x to make it clear where the time coordinate
enters into these equations. It is assumed here that t is the independent variable and x is the
dependent variable.

4The actual generators may be much longer, including terms of ηi(k)∂x
(k), but I omit those

higher-order terms for the moment for the sake of simplicity.
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can derive all of the discrete point symmetries of an ODE once one has determined

the elements in the basis of L, which requires that one solve for ξi(t, x) and ηi(t, x).

That is, once we learn the basis of the generators for the symmetry groups of the

ODE continuously connected to the identity, we can determine all of the discrete

symmetries of the ODE in question. So my analysis here will proceed in two steps:

I’ll begin by quickly explaining how Hydon determines the Lie group of symmetries

of a differential equation, and then I’ll explain Hydon’s novel contribution to the lit-

erature where he explains how to extend the analysis of Lie symmetries in order to

determine all of the discrete symmetries of a differential equation.

In order to determine the functions ξi(t, x) and ηi(t, x), Hydon returns to the

original notion of a symmetry operator, which is an operator Γ such that:

Γ : (t, x, x′, ..., x(n−1))→ (t̂, x̂, x̂′, ..., x̂(n−1)) (4.3)

where the coordinates (t̂, x̂, x̂′, ..., x̂(n−1)) must satisfy the equation:

x̂(n) = ω(t̂, x̂, x̂′, ..., x̂(n−1)) (4.4)

since symmetries are maps from solutions of an ODE to solutions of the same ODE.

This equation is called the symmetry condition of the ODE, and while alone it is not

enough to derive the basis for L, it’s a start.

Consider now a symmetry that leaves every solution to the ODE infinitesimally

changed. For such a symmetry, Hydon claims, the variables (t̂, x̂, x̂′, ..., x̂(n−1)) can

be written out in terms of (t, x, x′, ..., x(n−1)) as follows:
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t̂ = t+ εξ +O(ε2) (4.5)

x̂ = x+ εη +O(ε2) (4.6)

x̂(k) = x(k) + εη(k) +O(ε2) (4.7)

where ε is close to zero and the k in η(k) is merely an index. Plugging the terms

of order ε into the symmetry condition yields the following, called the linearized

symmetry condition, which will allow us to determine a basis for the generators of the

symmetry group continuously connected to the identity component:

η(k) = ξωt + ηωx + η(1)ωx′ + ...+ η(k−1)ωx(k−1) (4.8)

Identities involving the η(k) terms may be substituted into this equation depending

on the ODE in question (examples of these sorts of conditions will be discussed later

on in this paper when I consider examples of Hydon’s method in action), and because

all of the η and ξ terms are independent of higher-order powers of x, this linearized

symmetry condition can typically be broken into a system of determining differential

equations that allows us to solve for ξ and η and thus determine a basis of L.

One quick thing to note here: once the basis has been derived, one can then

determine the commutation relations among elements of the basis. That is, one can

derive the constants ckij in the following equation:

[Xi, Xj] = ckijXk (4.9)

The ckij constants are of interest, as we’ll see shortly, because every symmetry transfor-
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mation Γ induces an automorphism of L which preserves these commutation relations;

that is, the commutation relations among the elements of the basis of L are invariant

under the symmetries of the ODE.

Up to this point my analysis, following Hydon’s, has followed the standard discus-

sion of how to derive the basis of L for a given ODE as found in textbooks like that of

Olver (1993). This basis allows us to determine all of the continuous symmetries of a

differential equation, but it does not straightforwardly tell us the discrete symmetries

of that differential equation since the discrete symmetries form a subgroup of the

symmetry group that is not continuously connected to the identity component and so

for which the linearized symmetry condition does not hold. The rest of this section

will cover Hydon’s novel contribution to the literature by outlining his method for

determining all of the discrete symmetries under which a particular ODE is invariant.

Hydon begins his novel analysis by proving a lemma that shows that the adjoint ac-

tion of any symmetry in the full symmetry group of the differential equation (which

includes both continuous and discrete symmetries) induces an automorphism on L.

The adjoint action of the symmetry S, for instance, on the elements of the basis of L,

Xi, can be written as X̂i = S−1XiS. Hydon shows that the new generators X̂i, the

result of the adjoint action of S on Xi, form a basis for L, and so the original basis

elements Xi can be written in terms of the new basis elements X̂i as follows:

Xi = bliX̂l (4.10)

For ease of calculation it is useful to take these coefficients as the elements of the

non-singular matrix B = (bli). Each element X̂i can itself be written as follows:
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X̂i = ξi(t̂, x̂)∂t̂+ ηi(t̂, x̂)∂x̂ (4.11)

Assuming that there are G basis elements, the first of the above conditions yields 2G

determining equations of the following form:

Xit̂ = bliξl(t̂, x̂) (4.12)

Xix̂ = bliηl(t̂, x̂) (4.13)

These 2G equations, along with the original symmetry condition, are enough for us

to determine all of the symmetries represented by Γ above, assuming that we already

know B. So, to quickly recap: elements of the full symmetry group (including dis-

crete symmetries) induce a transformation on the X basis, and so once we know these

elements of L, we can solve a series of determining equations that provide us with

a mapping from our original variables (t, x, ...) to the symmetry-transformed coun-

terparts of these variables (t̂, x̂, ...) for all of symmetries of the differential equation

we’re interested in.

One technical mystery of how this procedure works yet remains: how do we de-

termine the elements of the matrix B? Hydon shows that, taking the fact that

Γ : Xi → bliX̂l into account along with the fact that the commutation relations re-

main unchanged by Γ, we can obtain the following system of nonlinear equations that

determines the elements of B given the constants ckij that appear in the commutation

relations:

cnlmb
l
ib
m
j = ckijb

n
k (4.14)
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Note that, in order avoid double-counting equations, we need only consider the equa-

tions where 1 ≤ i < j ≤ G.

But our work is not quite done. Hydon’s method successfully gives us all of the

elements of the symmetry group by helping us determine those symmetries whose

adjoint action links the generators Xi and X̂i; but we are looking for just the discrete

symmetries, not all of the symmetries of these differential equations, so Hydon ends

his method by requiring that we factor out the continuous symmetries in a series of

explicit steps too involved for me to discuss here at length.5

So, in short, the following is Hydon’s method for finding all of the discrete sym-

metries of an ODE:

1. Determine Xi, the basis of L, using the linearized symmetry condition.

2. Find the commutation relations among Xi in order to determine the

constants ckij.

3. Use the constants ckij to determine the elements of the matrix B.

4. Use the elements of the matrix B, along with the symmetry condition,

to solve for (t̂, x̂).

5. Factor out the continuous symmetries, leaving only the discrete symme-

tries of the system.

Clearly I have glossed over many of the details of Hydon’s account in an attempt

to streamline it and not get too bogged down in the details; however, it is probably

already apparent just how difficult this procedure will be to execute for most ordinary

differential equations, especially for ones that are highly symmetric. In order to cut

through some of this difficulty, then, I will turn, later in this chapter, to the application

of my account of time reversal to some results Hydon has already worked through in

order to see just what verdicts my account delivers in some toy cases.

5Interested readers are referred to Hydon (1998a).
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4.3 Hydon’s method for PDEs

The five-step methodology for determining all of the discrete symmetries of ODEs

outlined in the previous section carries over, generally and for the most part, to PDEs.

As with ODEs, the first step in this procedure involves calculating the elements Xi

from a linearized symmetry condition; however, the linearized symmetry condition for

PDEs is fundamentally different from the linearized symmetry condition for ODEs.

Aside from this difference in the first step of the procedure, all of Hydon’s methods for

calculating the discrete symmetries of ODEs carry over to the calculation of discrete

symmetries of PDEs; that is, once one has succeeded in calculating the elements Xi,

it doesn’t matter whether one obtained the elements Xi from an ODE or a PDE:

Hydon’s procedure follows just the same. Thus, in this section, I will only focus on a

quick derivation of the linearized symmetry condition for PDEs.

Start out with the simplifying assumption that one is working with a PDE Q

that has one dependent variable, u, and two independent variables, x and t6. The

elements of L, the lie algebra of point symmetry generators continuously connected

to the identity element for Q, will have the following form:

Xi = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u (4.15)

Again, as with ODEs, we have a series of unknowns (ξ, τ , η) for whose solution we

must find the determining equations. Again, we rely on infinitesimal point symmetry

transformations of the form:

6The generalization of this analysis to PDEs with more dependent or independent variables
follows straightforwardly.
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x̂ = x+ εξ(x, t, u) +O(ε2) (4.16)

t̂ = t+ ετ(x, t, u) +O(ε2) (4.17)

û = u+ εη(x, t, u) +O(ε2) (4.18)

ûJ = uJ + εηJ(x, t, u) +O(ε2) (4.19)

where uJ is the partial derivative of u with respect to some combination of x and t

labeled J . I also follow my previous notation here in using ηJ to represent prolon-

gations of η, not derivatives or powers of η with respect to these variables. These

prolongations can be calculated on a case-by-case basis by applying total derivatives

of the form:

Dx = ∂x + ux∂u + uxx∂ux + uxt∂ut + ... (4.20)

Dt = ∂t + ut∂u + uxt∂ux + utt∂ut + ... (4.21)

Many of these prolongations are also calculated explicitly on page 141 of Hydon’s

textbook, and so I will not explicitly calculate any of the prolongations commonly

utilized in symmetry derivations here. The linearized symmetry condition requires

that x̂, t̂, and û satisfy Q just as well as x, t, and u do. All terms of order O(ε2) are

ignored, just as in the ODE case, and one obtains a symmetry condition from the

terms of order ε.

Consider the following example of Burgers’ equation:7 ut + uux = uxx

7This example is taken from Hydon (2000a), p. 144
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ût + ûûx = ûxx (4.22)

ut + εηt + (u+ εη)(ux + εηx) = uxx+ εηxx (4.23)

The terms of order ε can be isolated from the other terms in this equation which are

straightforwardly seen to be equivalent via Burger’s equation. Thus, the linearized

symmetry condition, found by equating terms of order ε, is simply the following:

ηt + uxη + uηx = ηxx (4.24)

These prolongations of η can be written in terms of η, τ , and ξ, providing us with a

system of generating equations that allow us to determine the elements of L. As pre-

viously stated, once the elements Xi have been determined, the discrete symmetries

can be calculated just as they were in the previous section.

4.4 Hydon’s solutions

Carrying out the procedure outlined in the previous sections is, for many differ-

ential equations (especially highly symmetric ones), tough work. In order to evaluate

the promise of the method I’ve proposed, one needs examples of the results it can

deliver in many interesting cases. Normally, it would take quite a lot of effort to

conduct such an analysis, but Hydon has done us a favor. In chapter 11 of his book,

Hydon (2000a) provides three differential equations all of whose discrete symmetries

he explicitly calculates. In this section I will discuss these three examples and, using

the criteria I proposed at the beginning of the chapter, determine which of these dis-

crete symmetries seem to be the best candidates for the time reversal operator if we
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take all three of these equations to be true or to represent the best physical theories

we have available to us. Of course, these three equations, though interesting, do not

necessarily fulfill either of these two criteria (we’re dealing with toy cases here, after

all), but at the very least these equations will reveal just how my proposal can use

the results of Hydon’s procedure to determine the best or most useful form of the

time reversal operator.8

4.4.1 Example 11.4

Hydon’s first full example in Chapter 11 is the following ODE:9

x′′′ =
x′′2

t
− x′′

x′
(4.25)

where the primed terms are derivatives with respect to time. Hydon goes through the

steps outlined in the previous section and arrives at the following discrete symmetries:

S1Ψ(x, t) = Ψ(x, t) (4.26)

S2Ψ(x, t) = Ψ(x,−t) (4.27)

4.4.2 The Chazy equation

Hydon’s next example in Chapter 11 is the Chazy equation, an ordinary differ-

ential equation primarily of interest to mathematicians because it is the simplest

example of an ordinary differential equation with solutions that have a moveable

natural boundary. It can be written as follows:

8It is worth noting that all of the examples I consider here are two-dimensional (one spatial
dimension, one temporal) for the sake of simplicity.

9For the purpose of these examples I will interpret the variables x, across all equations considered
here, as representing the position of a particular particle in space at some time t.
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x′′′ = 2xx′′ − 3x′2 + λ(6x′ − x2)2 (4.28)

Again, Hydon goes through the steps outlined in the previous section and arrives at

the following discrete symmetries:

S1Ψ(x, t) = Ψ(x, t) (4.29)

S3Ψ(x, t) = Ψ(−x,−t) (4.30)

S4Ψ(x, t) = Ψ(xt2 + 6t,−1

t
) (4.31)

S5Ψ(x, t) = Ψ(−(xt2 + 6t),
1

t
) (4.32)

4.4.3 The Harry-Dym equation

Hydon’s final example in Chapter 11 is the Harry-Dym equation, a nonlinear wave

equation primarily of interest to mathematicians and physicists for its connection to

the Korteweg-de Vries equation but not, to my knowledge, due to any independent

physical significance. The Harry-Dym equation is a partial differential equation that

can be written as follows:

ut = u3uxxx (4.33)

In this case, u represents some function of t and x, and ut represents the partial

derivative of u with respect to t while uxxx represents the third partial derivative of

u with respect to x. Again, Hydon goes through the steps outlined in the previous

section and arrives at the following discrete symmetries:
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S6Ψ(x, t, u) = Ψ(x, t, u) (4.34)

S7Ψ(x, t, u) = Ψ(−x, t,−u) (4.35)

S8Ψ(x, t, u) = Ψ(x,−t,−u) (4.36)

S9Ψ(x, t, u) = Ψ(−x,−t, u) (4.37)

S10Ψ(x, t, u) = Ψ(−1

x
, t,

u

x2
) (4.38)

S11Ψ(x, t, u) = Ψ(−1

x
,−t,− u

x2
) (4.39)

S12Ψ(x, t, u) = Ψ(
1

x
, t,− u

x2
) (4.40)

S13Ψ(x, t, u) = Ψ(
1

x
,−t, u

x2
) (4.41)

4.4.4 Time reversal in Hydon’s examples

The preceding sections show that Hydon has provided us with 13 candidates for

the time reversal operator if we think that most (if not all) of the three equations

examined are to be time reversal invariant. In order to determine which of these 13

candidates actually provides a good candidate for T , remember the following minimal

constraints I placed on a time reversal operator back in section 4.1:10

T (TΨ(x, t)) = Ψ(x, t) (4.42)

T (x) = x (4.43)

The first of these constraints requires that the time reversal operator be an involution

while the second separates time reversal from parity reversal and spacetime reflection.

However, even before applying these constraints we can reject S1 and S6 as candidates

10The second of these is not quite the same as the one discussed in section 4.1 but it is its analogue
for cases in which the states in question are functions of a single spatial parameter.
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for T because S1 and S6 are simply identity operators: they map solutions of the

differential equations considered to themselves, so these symmetries are trivial and

cannot be reasonable candidates for T .

The second of the above minimal constraints is powerful enough to eliminate a

number of the above T -candidates. For instance, S3, S7, and S9 all involve flipping

the sign of x while S4 and S5 and S10, S11, S12, and S13 involve more complicated

changes to x. As such, all of these candidates are unfit to serve as T . This leaves

only S2 and S8 as candidates for T . Both of these candidates are also involutions,

meaning that they satisfy the first criterion listed above as well.

The final constraint on T involves the fact that we are looking for a time reversal

operator that is consistent across theories. So, if the same quantities appear in mul-

tiple differential equations, then the time reversal operator, applied to the solutions

of these differential equations, should change the quantities in a consistent way. In

this particular case, where we consider the following T -candidates:

S2Ψ(x, t) = Ψ(x,−t) (4.44)

S8Ψ(x, t, u) = Ψ(x,−t,−u) (4.45)

it is easy to see that the symmetries represented by S2 and S8 clearly operate on their

common variables x and t in the same way: both take x to x and take t to −t. In the

language introduced in chapter 2, we could say that these two symmetries, though

different physical symmetries, can be treated as instances of the same overarching

symmetry. We are not always so lucky, however. Imagine that, instead of S6, we had

found that S ′6 listed below was a symmetry of one of our differential equations:
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S ′6Ψ(x, t, u) = Ψ(x, t,−u) (4.46)

We could not have ruled this symmetry out as a candidate for T previously, but my

new criterion allows us to. The symmetry S ′6 differs from S2 because t does not change

sign under S ′6, so S8 and S2 are consistent while S ′6 cannot be consistently labeled as

the same operator, meaning that one should take S8 to be the time reversal operator

given these equations and my analysis since it is consistent with S2 but contains more

information than S2. Therefore, my criterion has allowed me to pick out a unique time

reversal operator from this set of differential equations, and even though this criterion

was of little help in this specific example, it is clear how, in cases where symmetries

like S ′6 are under consideration, my criterion allows us to determine which symmetries

are good universal candidates for T and which ones are not.

The fact that my proposal for the correct way to analyze the time reversal operator

has provided a unique best candidate for T certainly tells in its favor, but note that

there is an interesting consequence to my analysis: if the three differential equations

described above are taken to be the fundamental laws of nature in our toy universe,

then these laws are not jointly time reversal invariant. This follows from the fact that

S2 and S8 are not discrete symmetries of the Chazy equation. Therefore, we have no

consistent way of making all of these fundamental laws time reversal invariant. There

is perhaps little of interest in finding that a toy universe has fundamental laws that

are not time reversal invariant, but if the fundamental laws of our own universe were

not time reversal invariant, this would certainly be an interesting result that flies in

the face of much conventional wisdom about fundamental physics.

In the face of such a problem, one may be interested in examining potential

candidates for a spacetime reversal operator A among the options considered; after
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all, perhaps, in the same way that the laws of special relativity show that there is

an objective, frame-independent notion of a spacetime interval but not of a temporal

interval, our fundamental physical theories may reveal that there is an objective notion

of spacetime reversal under which all fundamental physical theories are invariant but

no such notion of time reversal. However, in the example considered above, the

prospects for such a common A under which all three equations are invariant are

extremely poor. The equation in Hydon’s example 11.4 is invariant only under S1

and S2, and I have already shown that S1 is the identity operator I while S2 is

a simplified version of the time reversal operator S6. Thus, even if there were a

consistent spacetime reversal operator between the Chazy and Harry-Dym equations

(S9 seems like a good candidate), it would still not establish a candidate for A under

which all of these “laws” are invariant. Still, it is useful to consider such a line of

inquiry since, though it yields no fruit when applied to these three equations, it may

do so for other sets of differential equations.

Before leaving this example, however, there is one way to potentially save the

time reversibiltiy of the fundamental laws of this toy universe that I should mention:

one could argue that my original assumption that the variables x and t in the three

equations above represent the same physical property was false. Of course, this being a

toy universe, I can simply stipulate that x and t are pick out the same physical features

across the three equations I considered, but to establish such a claim with respect

to actual physical theories may be harder. Not all theories wear their interpretation

functions on their sleeves. So perhaps when one is dealing with actual examples of

physical laws, one can reject the final step of the procedure I implemented above by

arguing that the variables x and t in different laws pick out different physical features

in the world. Clearly this maneuver should not be implemented blindly, but I note it

because it is a response to my analysis that needs to be kept in mind as I move from

toy cases to real cases lest one mistake a similarity in the variables conventionally
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assigned to two physical properties for an identity between the two properties in

question.

In the next chapter, I’ll provide a comprehensive list of differential equations all

of whose discrete symmetries have been determined to date. I’ll then examine sets of

these differential equations to determine what time reversal would look like under my

account in a world governed by these differential equations. This analysis, I’ll argue.

gives us a defeasible reason to believe that the fundamental laws of physics are not

time reversal invariant on my account.
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CHAPTER V

An Application of the Third Way to a Series of

Differential Equations

The previous chapters introduced what I have called the “third way”, a new

approach to time reversal that requires one to examine the differential equations

utilized by a number of different physical theories and the discrete symmetries under

which these differential equations are invariant in order to determine both what form

the a time reversal transformation should take and what physical theories are invariant

under that transformation. My methodology utilizes work by Hydon (1998a, 1999,

2000a,b, 2001) and suggests implementing his techniques in order to determine all

of the discrete symmetries under which a given differential equation is invariant.

While implementing Hydon’s methodology may be difficult in some cases and may

not always be useful,1 Hydon and a number of others (namely Levi and Rodŕıguez

(2004), Silberberg (2005), and Hamad et al. (2011)) have produced all of the discrete

symmetries for number of differential equations. In this chapter, I will draw on

the work of these authors, as well as my own original work, to analyze the discrete

symmetries of seventeen differential equations and, more importantly, the involutions

1For instance, there may be cases where a differential equation is not invariant under any contin-
uous Lie symmetry transformation but is invariant under some discrete symmetry transformation,
and Hydon’s method would not provide us with any discrete symmetries in such a case. Such cases
are, however, quite rare, and as long as a differential equation is invariant under some continuous Lie
symmetry transformation, Hydon’s method will deliver all of the discrete symmetries under which
that differential equation is invariant.
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under which these differential equations are invariant. I will take this catalogue of

involutions and, in the third section of this chapter, discuss what my “third way”,

when applied to this catalogue of involutions, tells us about the time reversal operator

in worlds governed solely by select subsets of the equations I will analyze. Finally, I

will conclude by drawing comparisons between my analysis and the analysis suggested

by both “intuitive” and “theory-relative” time reversal theorists. Those who are

not interested in a more thorough analysis of all of the discrete symmetries of the

differential equations I discuss in this paper are invited to skip to the third section

and refer to Tables 1 and 2 as a summary of the second section’s results.

5.1 The Equations

For each of the following equations, I will use the shorthand ux to stand for ∂u
∂x

,

uxx as shorthand for ∂2u
∂x2 , and so on. In cases with one dependent variable and one

independent variable, I will call the dependent variable x and the independent variable

t, while in cases where there are one dependent and two independent variables, x and

t will refer to the independent variables while u will refer to the dependent variable.

I ignore this convention in several notable cases, such as the Gas equation, which is

unique in that it has many more variables than the other equations I analyze here,

and in several cases involving change of coordinates such as Equation Q and the

Inverse Square Law. In these cases, I try to keep my notation as close to the original

author’s as possible. My notation elsewhere is not shared by all of the authors whose

work I cite, but it makes it easier to see similarities across the discrete symmetries I

analyze.

5.1.1 Black-Scholes Equation

The Black-Scholes Equation is:

89



ut +
1

2
A2x2uxx +Bxux − Cu = 0 (5.1)

For some constants A, B, and C. It has the following non-trivial discrete symmetries,

according to Silberberg (2005):

TA1(x, t, u) = (e2Dt−log(x), t, u) (5.2)

TA2(x, t, u) = (eA
−2D−A−4Dt−1−A−2t−1log(x),−A−4t−1, A

√
|t|e−

1
2A2t

[(log(x)−Dt)2+2A2Ct2+ 2C
A

]u)

(5.3)

TA3(x, t, u) = (e−A
−2D−A−4Dt−1+A−2t−1log(x),−A−4t−1, A

√
|t|e−

1
2A2t

[(log(x)−Dt)2+2A2Ct2+ 2C
A

]u)

(5.4)

Where D = B − A2

2
6= 0. Of these, only TA1 is an involution.

5.1.2 Burgers’ Equation

Burgers’ Equation is:

uxx = ut + uux (5.5)

It has the following non-trivial discrete symmetries, according to Hydon (2000b):

TB1(x, t, u) = (−x, t,−u) (5.6)

TB2(x, t, u) = (−ix,−t, iu) (5.7)

TB3(x, t, u) = (ix, t,−iu) (5.8)

TB4(x, t, u) =

(
x

2t
,− 1

4t
, 2(tu− x)

)
(5.9)

TB5(x, t, u) =

(
− x

2t
,− 1

4t
,−2(tu− x)

)
(5.10)
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Of these, only the first is an involution.

5.1.3 Spherical Burgers’ Equation

The Spherical Burgers’ Equation is:

uxx = ut +
u

t
+ uux (5.11)

It has only the following non-trivial discrete symmetry, according to Hydon (2000b):

TC(x, t, u) = (−x, t,−u) (5.12)

TC is an involution.

5.1.4 Burgers’ Equation with Time Dependent Flux at the Origin

The following is called Burgers’ Equation with time-dependent flux at the origin by

Hamad et al. (2011):2

ut = uxx + 2uux (5.13)

It has the following non-trivial discrete symmetries:

2Note that the only difference between this equation and Burgers’ equation is a factor of −2
on the uux term. Hamad et al. (2011) do not provide details on how time-dependent flux explains
this extra factor, but I imagine this extra factor comes from applying the Hopf-Cole transformation
u→ 2

wwx, where w(x, t) is a solution to the linear heat equation wt = wxx, and applying the initial
condition wt = f(t) for some function f at the point x = 0.
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TD1(x, t, u) =

(
−
√

2

t
x,−2

t
,−
√

2

4
(x+ 2ut)

)
(5.14)

TD2(x, t, u) =

(
−−
√

2

t
x,−2

t
,−−

√
2

4
(x+ 2ut)

)
(5.15)

TD3,λ(x, t, u) = (4λ+ x, t, u) (5.16)

TD4,λ(x, t, u) = (4λ− x, t,−u) (5.17)

TD5,A(x, t, u) =

(
1

A
x,
t−
√

2A

A2
, Au

)
(5.18)

TD6,A(x, t, u) =

(
1

A
x,
t+
√

2A

A2
, Au

)
(5.19)

Where λ and A are arbitrary constants. Of these, only TD3,λ=0 and TD4,λ=0 are

involutions, and since TD3,λ=0 is the identity operator, only TD4,λ=0 is of interest to

us.

5.1.5 The Chazy Equation

The Chazy Equation is:

xttt = 2xxtt − 3y2
t + λ(6xt − x2)2 (5.20)

For some constant λ. It has the following non-trivial discrete symmetries, according

to Hydon (1998a, 2000a):

TE1(t, x) = (−t,−x) (5.21)

TE2(t, x) =

(
−1

t
, t2x+ 6t

)
(5.22)

TE3(t, x) =

(
1

t
,−(t2x+ 6t)

)
(5.23)
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All three of these symmetries are involutions.

5.1.6 Euler-Poisson-Darboux Equation

The Euler-Poisson-Darboux (EPD) Equation is:

utt − uxx =
p(p+ 1)

t2
u (5.24)

For some integer p. It has the following non-trivial discrete symmetries, according to

Hydon (1999):

TF1(x, t, u) = (−x, t, u) (5.25)

TF2(x, t, u) = (x,−t, u) (5.26)

TF3(x, t, u) = (x, t,−u) (5.27)

TF4(x, t, u) = (−x,−t, u) (5.28)

TF5(x, t, u) = (x,−t,−u) (5.29)

TF6(x, t, u) = (−x, t,−u) (5.30)

TF7(x, t, u) = (−x,−t,−u) (5.31)

TF8(x, t, u) =

(
x

t2 − x2
,

t

t2 − x2
, u

)
(5.32)

TF9(x, t, u) =

(
−x

t2 − x2
,

t

t2 − x2
, u

)
(5.33)

TF10(x, t, u) =

(
x

t2 − x2
,
−t

t2 − x2
, u

)
(5.34)

(5.35)
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TF11(x, t, u) =

(
x

t2 − x2
,

t

t2 − x2
,−u

)
(5.36)

TF12(x, t, u) =

(
−x

t2 − x2
,
−t

t2 − x2
, u

)
(5.37)

TF13(x, t, u) =

(
x

t2 − x2
,
−t

t2 − x2
,−u

)
(5.38)

TF14(x, t, u) =

(
−x

t2 − x2
,

t

t2 − x2
,−u

)
(5.39)

TF15(x, t, u) =

(
−x

t2 − x2
,
−t

t2 − x2
,−u

)
(5.40)

All of these symmetries are involutions.

5.1.7 Gas Equations

The gas equations are:

qs − vy = 0 (5.41)

vs + py = 0 (5.42)

ps +
3p

q
vy = 0 (5.43)

With dependent variables v, p, and q and independent variables s and y. They have

the following non-trivial discrete symmetries, according to Hydon (2000b):

TG1(s, y, v, p, q, φ) =

(
−1

s
, y, φ− sv,−s3p,−q

s
,−φ

s

)
(5.44)

TG2(s, y, v, p, q, φ) = (−s, y,−v, p, q, φ) (5.45)

TG3(s, y, v, p, q, φ) = (s,−y,−v, p, q,−φ) (5.46)
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Of these, only TG2 and TG3 are involutions.

5.1.8 The Harry-Dym Equation

The Harry-Dym Equation is:

ut = u3uxxx (5.47)

It has the following non-trivial discrete symmetries, according to Hydon (1999, 2000a,b):

TH1(x, t, u) = (x,−t,−u) (5.48)

TH2(x, t, u) = (−x, t,−u) (5.49)

TH3(x, t, u) = (−x,−t, u) (5.50)

TH4(x, t, u) =

(
−1

x
, t,

u

x2

)
(5.51)

TH5(x, t, u) =

(
1

x
, t,
−u
x2

)
(5.52)

TH6(x, t, u) =

(
−1

x
,−t, −u

x2

)
(5.53)

TH7(x, t, u) =

(
1

x
,−t, u

x2

)
(5.54)

All seven of these symmetries are involutions.

5.1.9 The Heat Equation

The heat equation is:

uxx = ut (5.55)

It has the following non-trivial discrete symmetries, according to Hydon (1999):
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TI1,C(x, t, u) = (−x, t, Cu) (5.56)

TI2,C(x, t, u) = (x, t, Cu) (5.57)

TI3(x, t, u) =

(
x

2t
,− 1

4t
,
√

2ite
x2

4t u

)
(5.58)

TI4(x, t, u) =

(
− x

2t
,− 1

4t
,
√

2ite
x2

4t u

)
(5.59)

where C is a complex constant. Of these, TI1,C=−1, TI1,C=1, and TI2,C=−1 are the only

non-trivial involutions.

5.1.10 Toda Equation

The Toda Equation, a discrete differential equation, is:

utt = eu+−u + eu−u− (5.60)

where u± = u(x± h, t) and h is the lattice step which separates two adjacent values

of x. It has the following non-trivial discrete symmetries, according to Levi and

Rodŕıguez (2004):

TJ1(x, t, u) = (x,−t, u) (5.61)

TJ2(x, t, u) = (−x, t,−u) (5.62)

TJ3(x, t, u) = (−x,−t,−u) (5.63)

All three of these symmetries are involutions.

5.1.11 The Free Particle

Laine-Pearson and Hydon (2003) provide an extremely useful taxonomy of discrete
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symmetries under which differential equations with a particular group of symmetry

generators are invariant. The generators provided on page 48 of Hydon (2000a) for

the following differential equation:

xtt = 0 (5.64)

thus allow us to use the work of Laine-Pearson and Hydon (2003) to determine

the discrete symmetries of the free particle governed by this equation. The discrete

symmetries of the free particle is the 24-element group S(4), so in the interests of

space, I will only list the non-trivial involutions under which the free particle is

invariant below:

TK1(t, x) = (−t, x) (5.65)

TK2(t, x) = (t,−x) (5.66)

TK3(t, x) = (−t,−x) (5.67)

TK4(t, x) = (x, t) (5.68)

TK5(t, x) = (−x,−t) (5.69)

TK6(t, x) =

(
t

x
,

1

x

)
(5.70)

TK7(t, x) =

(
− t
x
,

1

x

)
(5.71)

TK8(t, x) =

(
1

t
,
x

t

)
(5.72)

TK9(t, x) =

(
1

t
,−x

t

)
(5.73)

5.1.12 Newtonian Inverse Square Law in a Single Dimension

The equation for a Newtonian particle operating under the influence of a force pro-

portional to the inverse square of the distance between the force’s source and the
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particle in one dimension is:

xtt =
1

x2
(5.74)

I calculated the discrete symmetries of this equation myself, using the YaLie pack-

age for Mathematica, and found the following to be the sole non-trivial involutive

symmetry of the equation:3

TL1(t, x) = (−t, x) (5.75)

This may seem strange to some since there is no good parity reversal candidate (that

is, no good candidate that acts on y while leaving x invariant) under which the

inverse square law is invariant, but note that the particular form of the inverse square

law given above is not the one we are used to using within physics. If we read x

as position relative to a particular reference point, as the selection of this variable

invites us to do, we recognize the fact that x can take on both negative and positive

values. But inverse square laws are written in polar coordinates because what is

physically significant is the magnitude of the distance between the two points, not

the orientation of one object with respect to the other. So, in the one-dimensional

case, we utilize the variable substitution r =
√
x

2
= |x|. A standard parity reversal

operator which, say, takes x to x and y to −y is not a symmetry of the above equation

because such a transformation takes yxx to −yxx, reversing the sign of the left-hand

side of the equation while leaving y2 and thus the right-hand side of the equation

unchanged. If we convert our equation into the correct formulation of the inverse

square law in polar coordinates, we get the following:

rtt =
1

r2
(5.76)

3For documentation of this Mathematica package, please see Dı́az (2003).
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or

|x|tt =
1

x2
(5.77)

which is invariant under TL1 and invariant under the following involutions as well:

TL2(t, x) = (t,−x) (5.78)

TL3(t, x) = (−t,−x) (5.79)

When I discuss the involutions of the inverse square law in the remainder of this

paper, I will assume that we are dealing with the second formulation of the law I

have provided since this is the accurate formulation of the inverse square law. A law

like the first one I considered would be useful for describing the motion of particles

in a world in which objects are electrically or gravitationally attracted to objects on

their right, say, but repulsed by objects on their left. Since we don’t find ourselves

in such a world, the latter inverse square law gives us a more physically interesting

differential equation to consider.

5.1.13 Other Equations

The following equations in my analysis have not already been christened with

names, to my knowledge, so I will name them as I go:

5.1.13.1 Equation M

Equation M is:

xttt =
x2
tt

t
− xtt
xt

(5.80)
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It has the following non-trivial discrete symmetries, according to Hydon (1998a,

2000a):

TM1 = (t, x) = (−t, x) (5.81)

TM2 = (t, x) = (it,−x) (5.82)

TM3 = (t, x) = (−it,−x) (5.83)

Only the first of these symmetries is an involution.

5.1.13.2 Equation N

Equation N is:

xttt = xtt(1− xtt) (5.84)

It has the following non-trivial discrete symmetries, according to Hydon (2001):

TN1(t, x, xt) = (−t, 1

2
t2 − x, xt − t) (5.85)

TN2(t, x, xt) =

(
−xt, x− txt +

1

2
x2
t , t− xt

)
(5.86)

Only the first of these symmetries, TN1, is an involution.

5.1.13.3 Equation O

Equation O is:

xttt =
2xttt
x

(1− xt) (5.87)
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It has the following non-trivial discrete symmetries, according to Hydon (2001):

TO1(t, x) = (−t,−x) (5.88)

TO2(t, x) =

(
−1

t
,
x

t2

)
(5.89)

Both of these symmetries are involutions.

5.1.13.4 Equation P

Equation P is:

x2
tt = (

xt
t
− ex)2 (5.90)

It has the following non-trivial discrete symmetries, according to Hydon (2001):

TP1(t, x) = (−t, x) (5.91)

TP2(t, x) =

(
1

t
, x+ 4 ln |t|

)
(5.92)

Both of these symmetries are involutions.

5.1.13.5 Equation Q

Equation Q is:

xtt = tanxt (5.93)

It has the following non-trivial discrete symmetries, according to Hydon (1998a):
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TQ1,k(t, x) = (t, x+ kπt) (5.94)

TQ2,k(t, x) = (t,−x+ kπt) (5.95)

Where k is any integer. Both sets of symmetries, excluding TQ1,k=0, are non-trivial

involutions.

5.1.13.6 Equation R

Equation R is:

xtt =
xt
t

+
4x2

t3
(5.96)

It has the following non-trivial discrete symmetries, according to Hydon (1998a, 1999):

TR1(t, x) = (−t,−x) (5.97)

TR2(t, x) =

(
1

t
,
x

t2

)
(5.98)

TR3(t, x) =

(
−1

t
,− x

t2

)
(5.99)

All three of these are involutions.

The equation can also be written as:

d2r

ds2
= 4r2 + r (5.100)

With r = x
t

and s = ln |t|. In this form, the equation has the following non-trivial

discrete symmetries:
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TR4(r, s) = (r,−s) (5.101)

TR5(r, s) =

(
−r − 1

4
, is

)
(5.102)

TR6(r, s) =

(
−r − 1

4
,−is

)
(5.103)

Only the first of these symmetries is an involution. This is not particularly surprising

since TR1(r, s) = (r, s) and both TR2 and TR3 induce TR4’s transformation of r and s.

5.2 Analysis

Tables 1 and 2 summarize the results of the previous section, listing all of the non-

trivial involutive point symmetries for each of the differential equations discussed in

the previous section. Before using the information on these tables to determine what

time reversal would look like if some subset of differential equations examined above

served as the fundamental laws of our world, here’s a quick review of how to apply

my “third way” to determine what the time reversal operator is:

Step 1: Find a set of differential equations that seem the best available

candidates for the fundamental physical laws governing the world.

Step 2: Determine all of the discrete symmetries under which these

differential equations are invariant.

Step 3: Apply the intuitive criteria for a time reversal operator to rule out

those discrete symmetries that cannot be time reversal operators. This

means:
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Table 5.1: Involutive Candidate T Operators
Name Equation Coordinate Transformation

TA1 Black-Scholes TA1(x, t, u) = (e2Dt−log(x), t, u)
TB1 Burgers’ TB1(x, t, u) = (−x, t,−u)
TC Spherical Burgers’ TC(x, t, u) = (−x, t,−u)
TD4,λ=0 TD Burgers’ TD4,λ=0(x, t, u) = (−x, t,−u)
TE1 Chazy TE1(t, x) = (−t,−x)
TE2 Chazy TE2(t, x) = (−1

t
, t2x+ 6t)

TE3 Chazy TE3(t, x) = (1
t
,−(t2x+ 6t))

TF1 EPD TF1(x, t, u) = (−x, t, u)
TF2 EPD TF2(x, t, u) = (x,−t, u)
TF3 EPD TF3(x, t, u) = (x, t,−u)
TF4 EPD TF4(x, t, u) = (−x,−t, u)
TF5 EPD TF5(x, t, u) = (x,−t,−u)
TF6 EPD TF6(x, t, u) = (−x, t,−u)
TF7 EPD TF7(x, t, u) = (−x,−t,−u)
TF8 EPD TF8(x, t, u) = ( x

t2−x2 ,
t

t2−x2 , u)

TF9 EPD TF9(x, t, u) = ( −x
t2−x2 ,

t
t2−x2 , u)

TF10 EPD TF10(x, t, u) = ( x
t2−x2 ,

−t
t2−x2 , u)

TF11 EPD TF11(x, t, u) = ( x
t2−x2 ,

t
t2−x2 ,−u)

TF12 EPD TF12(x, t, u) = ( −x
t2−x2 ,

−t
t2−x2 , u)

TF13 EPD TF13(x, t, u) = ( x
t2−x2 ,

−t
t2−x2 ,−u)

TF14 EPD TF14(x, t, u) = ( −x
t2−x2 ,

t
t2−x2 ,−u)

TF15 EPD TF15(x, t, u) = ( −x
t2−x2 ,

−t
t2−x2 ,−u)

TG2 Gas TG2(s, y, v, p, q, φ) = (−s, y,−v, p, q, φ)
TG3 Gas TG3(s, y, v, p, q, φ) = (s,−y,−v, p, q,−φ)
TH1 Harry-Dym TH1(x, t, u) = (x,−t,−u)
TH2 Harry-Dym TH2(x, t, u) = (−x, t,−u)
TH3 Harry-Dym TH3(x, t, u) = (−x,−t, u)
TH4 Harry-Dym TH4(x, t, u) = (− 1

x
, t, u

x2 )

TH5 Harry-Dym TH5(x, t, u) = ( 1
x
, t, −u

x2 )

TH6 Harry-Dym TH6(x, t, u) = (− 1
x
,−t, −u

x2 )

TH7 Harry-Dym TH7(x, t, u) = ( 1
x
,−t, u

x2 )

TI1,C=−1 Heat TI1,C=−1(x, t, u) = (−x, t,−u)
TI1,C=1 Heat TI1,C=1(x, t, u) = (−x, t, u)
TI2,C=−1 Heat TI2,C=−1(x, t, u) = (x, t,−u)
TJ1 Toda TJ1(x, t, u) = (x,−t, u)
TJ2 Toda TJ2(x, t, u) = (−x, t,−u)
TJ3 Toda TJ3(x, t, u) = (−x,−t,−u)
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Table 5.2: Involutive Candidate T Operators (Continued)
Name Equation Coordinate Transformation
TK1 Free TK1(t, x) = (−t, x)
TK2 Free TK2(t, x) = (t,−x)
TK3 Free TK3(t, x) = (−t,−x)
TK4 Free TK4(t, x) = (x, t)
TK5 Free TK5(t, x) = (−x,−t)
TK6 Free TK6(t, x) = ( t

x
, 1
x
)

TK7 Free TK7(t, x) = (− t
x
, 1
x
)

TK8 Free TK8(t, x) = (1
t
, x
t
)

TK9 Free TK9(t, x) = (1
t
,−x

t
)

TL1 Inverse Square TK1(t, x) = (−t, x)
TL2 Inverse Square TK2(t, x) = (t,−x)
TL3 Inverse Square TK3(t, x) = (−t,−x)
TM1 M TM1(t, x) = (−t, x)
TN1 N TN1(t, x, xt) = (−t, 1

2
t2 − x, xt − t)

TO1 O TO1(t, x) = (−t,−x)
TO2 O TO2(t, x) = (−1

t
, x
t2

)

TP1 P TP1(t, x) = (−t, x)
TP2 P TP2(t, x) = (1

t
, x+ 4 ln |t|)

TQ1,k 6=0 Q TQ1,k(t, x) = (t, x+ kπt)
TQ2,k Q TQ2,k(t, x) = (t,−x+ kπt)
TR1 R TR1(t, x) = (−t,−x)
TR2 R TR2(t, x) = (1

t
, x
t2

)

TR3 R TR3(t, x) = (−1
t
,− x

t2
)

TR4 R TR4(r, s) = (r,−s)
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A: Rule out all non-involutions.

B: Determine which of the variables represent spatial and temporal

coordinates, and rule out all symmetries that do not leave the spatial

coordinates unchanged while changing the temporal coordinates.

C: Rule out all symmetries that do not satisfy the consistency condition

laid out in the previous chapter.

Step 4: Any remaining discrete symmetries can be properly called “time

reversal”.

So, having investigated a number of differential equations and determined all of the

involutions under which these equations are invariant, there are essentially three more

important pieces of information necessary to determine what the time reversal oper-

ator should look like: first, we need to determine which of these differential equations

provide the best available candidates for the fundamental physical laws governing the

world; secondly, we need to determine which variables appealed to by these funda-

mental equations are interpretively identical (i.e. which variables obtain their values

from exactly the same measurement processes); and finally, we need to know which

of these variables is time and which is position. Unfortunately, on the first count,

none of these differential equations are the sort of things that contemporary physicists

would call our best candidates for physical laws governing the world since none ap-

pear in the most successful current fundamental physical theories (e.g. quantum field

theory, general relativity, statistical mechanics, etc.). The Black-Scholes equation,

for instance, is principally of interest to economists as it allows one to determine the

price of an option over time. The Chazy equation is of interest because of certain

mathematical properties it has but as of yet is of no physical interest. The differential

equations listed here as equations L through Q are likewise of interest mathemati-

cally but, to my knowledge, carry no physical significance. Some of the differential
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equations above, namely the heat equation, the inverse square law, and Burgers’

equation do come from physics, but to call them the best available candidates for the

fundamental physical laws governing our world would strain credulity.

In the absence of any differential equations in my analysis that seem the best

available candidates for the fundamental physical laws governing our world, then, we

cannot, given the tools above, answer the crucial question of what time reversal in

our own world must be; however, we can answer the interesting question of what the

time reversal operator is in worlds fundamentally governed by the above differential

equations (that is, worlds in which the set or some subset of the above differential

equations provides the set of best available candidates for the fundamental physical

laws governing the world). By turning our focus from the actual world to these

other possible worlds, we have an added three degrees of flexibility that allow us

to posit the information necessary for applying my method: 1) we can stipulate

which of the above differential equations we take to be fundamental at the world in

question, 2) we can stipulate which of the independent and dependent variables in each

differential equation are interpretively identical to the independent and dependent

variables appearing in the other fundamental differential equations, and 3) we can

stipulate which of the independent variables corresponds to time and which of the

dependent or independent variables corresponds to a spatial coordinate.

I will proceed to analyze a number of these possible worlds and adopt the following

naming convention for these worlds: I will label worlds as W = 〈L; I;T ;X〉, where L

is the set of differential equations that fundamentally govern the world, I is the set

of interpretive identity statements among the variables appearing in L, and T and

X are the sets of variables appearing in L which representing temporal and spatial

coordinates respectively. I will append to each law in L a numerical subscript so that

it is clear which variables are interpretively identical to which other variables, and I

will translate A = B as “A is interpretively identical to B”.
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With these preliminaries out of the way, let’s turn to several worlds of interest.

I will limit my attention in the remainder of this section to four cases of interest:

first, a world in which time reversal works as one might intuitively expect; secondly,

a world where time reversal necessitates changes in non-temporal variables; third, a

world where time reversal may transform the time coordinate in an unusual way; and

finally, a world that may seem closest to the actual world of all of the possible worlds

here discussed.

5.2.1 An Analysis of W1

Take W1 = 〈EPD1,Toda2;x1 = x2, t1 = t2; t1, t2;x1, x2〉. This is the world fun-

damentally governed by the Euler-Poisson-Darboux equation and the Toda equation

where the x coordinates refer to spatial location and the t coordinates refer to time.

We assume that the two fields generated by these different differential equations,

u1 and u2, refer to different physical features of the world so that the two laws are

not inconsistent with one another. According to Table 1, since the two fundamental

differential equations in W1 are the EPD and Toda equations, the candidate time

reversal operators are the following transformations:

TF1(x1, t1, u1) = (−x1, t1, u1) (5.104)

TF2(x1, t1, u1) = (x1,−t1, u1) (5.105)

TF3(x1, t1, u1) = (x1, t1,−u1) (5.106)

TF4(x1, t1, u1) = (−x1,−t1, u1) (5.107)

TF5(x1, t1, u1) = (x1,−t1,−u1) (5.108)

TF6(x1, t1, u1) = (−x1, t1,−u1) (5.109)

TF7(x1, t1, u1) = (−x1,−t1,−u1) (5.110)
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TF8(x, t, u) =

(
x

t2 − x2
,

t

t2 − x2
, u

)
(5.111)

TF9(x, t, u) =

(
−x

t2 − x2
,

t

t2 − x2
, u

)
(5.112)

TF10(x, t, u) =

(
x

t2 − x2
,
−t

t2 − x2
, u

)
(5.113)

TF11(x, t, u) =

(
x

t2 − x2
,

t

t2 − x2
,−u

)
(5.114)

TF12(x, t, u) =

(
−x

t2 − x2
,
−t

t2 − x2
, u

)
(5.115)

TF13(x, t, u) =

(
x

t2 − x2
,
−t

t2 − x2
,−u

)
(5.116)

TF14(x, t, u) =

(
−x

t2 − x2
,

t

t2 − x2
,−u

)
(5.117)

TF15(x, t, u) =

(
−x

t2 − x2
,
−t

t2 − x2
,−u

)
(5.118)

TJ1(x2, t2, u2) = (x2,−t2, u2) (5.119)

TJ2(x2, t2, u2) = (−x2, t2,−u2) (5.120)

TJ3(x2, t2, u2) = (−x2,−t2,−u2) (5.121)

We can now begin to winnow down the field of time reversal operator candidates by

weeding out all of the transformations that result in changes to the spatial coordinates,

as suggested in part B of step 3 described above. This leaves us with:

TF2(x1, t1, u1) = (x1,−t1, u1) (5.122)

TF3(x1, t1, u1) = (x1, t1,−u1) (5.123)

TF5(x1, t1, u1) = (x1,−t1,−u1) (5.124)

TJ1(x2, t2, u2) = (x2,−t2, u2) (5.125)

as the candidates for time reversal operator. The only time reversal candidate under

which the Toda equation is invariant, we see, is TJ1. We can now apply part C of
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step 3 above by using the consistency constraint to rule out TF3 as a suitable time

reversal operator since it transforms the time coordinate t1 in a way that TJ1 does

not. This leaves us with three candidates for the time reversal operator:

TF2(x1, t1, u1) = (x1,−t1, u1) (5.126)

TF5(x1, t1, u1) = (x1,−t1,−u1) (5.127)

TJ1(x2, t2, u2) = (x2,−t2, u2) (5.128)

This tells us that time reversal operator in W1 works as follows on the following

coordinates:

T (x) = x (5.129)

T (t) = −t (5.130)

T (u2) = u2 (5.131)

But what about T (u1)? Sine both TF2 and TF5 are time reversal operator candidates

and since these two transformations only differ with respect to their action on u1,

the answer is underdetermined, and there is no fact of the matter (at the moment, at

least) as to how time reversal acts on u1 (though it is worth noting that it must either

leave u1 unchanged or flip its sign). This underdetermination may seem problematic

since my analysis does not provide a definitive answer to the question of how time

reversal transforms this variable, but remember that I have stipulated nothing about

the nature of the field u1 yet, so there may be some further fact about the nature

of u1 that can prove decisive, such as some as-yet-undiscovered law governing W1

whose discrete symmetries, by consistency constraints, may help us determine how

110



T transforms u1. In a way, then, this underdetermined result is of great value to the

physicist since it may suggest new avenues of research into basic physical laws that

may not have occurred to the physicist otherwise.

But setting aside all problems with u1, the analysis of time reversal in W1 is fairly

straightforward: distances of ∆x will remain unchanged by time reversal while a

duration of ∆t will change to −∆t, giving us a time reversal operator like the ones

proposed by Horwich and Albert. That is, if the inhabitants of W1 were to watch a

movie and its time-reversed counterpart, they would see one playing “backwards” at

the same speed the other was playing “forwards”. What’s more, the field u2, while

a function of t, is left unaffected by the time reversal process, as many fundamental

fields, at least according to Albert, are wont to do. So my account provides us, at

least in this case, with a relatively uninteresting time reversal operator for W1.

5.2.2 An Analysis of W2

Take W2 = 〈SphericalBurgers’1,Harry-Dym2,Heat3;x1 = x2 = x3, t1 = t2 =

t3;x1, x2, x3; t1, t2, t3〉. This is the world fundamentally governed by the Spherical

Burgers’ equation, the Harry-Dym equation, and the heat equation where the x coor-

dinates, which are all interpretively identical with one another, refer to time while the

t coordinates, which are all interpretively identical with one another, refer to spatial

position. It’s worth noting here how strange this assignment would be for those who

agree with Callender (2011) and Skow (2007) and think that the time variable must

be the variable for which the equation’s initial value problem is well-behaved, but,

for the moment, assume their view is wrong and that we have very good evidence to

believe that the x coordinates really represent time in these equations.4 Again, we

take the three fields u1, u2, and u3 to represent three different physical quantities but

make no further assertions about these fields. According to Table 1, the following are

4Similar strangeness will occur when we turn next to W3 and consider a world in which time is
a dependent rather than an independent variable in one of our laws.
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the candidates for the time reversal operator:

TC(x1, t1, u1) = (−x1, t1,−u1) (5.132)

TH1(x2, t2, u2) = (x2,−t2,−u2) (5.133)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.134)

TH3(x2, t2, u2) = (−x2,−t2, u2) (5.135)

TH4(x2, t2, u2) =

(
− 1

x2

, t2,
u2

x2
2

)
(5.136)

TH5(x2, t2, u2) =

(
1

x2

, t2,
−u2

x2
2

)
(5.137)

TH6(x2, t2, u2) =

(
− 1

x2

,−t2,
−u2

x2
2

)
(5.138)

TH7(x2, t2, u2) =

(
1

x2

,−t2,
u2

x2
2

)
(5.139)

TI1,C=−1(x3, t3, u3) = (−x3, t3,−u3) (5.140)

TI1,C=1(x3, t3, u3) = (−x3, t3, u3) (5.141)

TI2,C=−1(x3, t3, u3) = (x3, t3,−u3) (5.142)

We can now begin to winnow down the field of time reversal operator candidates by

weeding out all of the transformations that result in changes to the spatial coordinates

(which, remember, in W2 are the t-coordinates) or which don’t result in changes to the

temporal coordinates (which, remember, in W2 are the x-coordinates), as suggested

in part B of step 3 described above. This leaves us with:
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TC(x1, t1, u1) = (−x1, t1,−u1) (5.143)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.144)

TH4(x2, t2, u2) =

(
− 1

x2

, t2,
u2

x2
2

)
(5.145)

TH5(x2, t2, u2) =

(
1

x2

, t2,
−u2

x2
2

)
(5.146)

TI1,C=−1(x3, t3, u3) = (−x3, t3,−u3) (5.147)

TI1,C=1(x3, t3, u3) = (−x3, t3, u3) (5.148)

as the candidates for time reversal operator. The only time reversal candidate under

which the Spherical Burgers’ equation is invariant is TC , and it remains after this first

winnowing-down. We can now apply part C of step 3 above, using the consistency

constraint to rule out TH4 and TH5 as a suitable time reversal operators since they

transform the time coordinate x2 in a way that TC does not transform x1. This leaves

us with four candidates for the time reversal operator:

TC(x1, t1, u1) = (−x1, t1,−u1) (5.149)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.150)

TI1,C=−1(x3, t3, u3) = (−x3, t3,−u3) (5.151)

TI1,C=1(x3, t3, u3) = (−x3, t3, u3) (5.152)

This tells us that the time reversal operator in W2 works as follows on the follow-

ing coordinates (here, using x and t to refer to position and time across equations

respectively):
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T (x) = x (5.153)

T (t) = −t (5.154)

T (u1) = −u1 (5.155)

T (u2) = −u2 (5.156)

Again, we have a field whose behavior under time reversal is underdetermined (u3

in this case), but more interesting is the fact that time reversal flips the signs of

both u1 and u2; that is, the time reversal operator has a non-trivial effect on these

coordinates. The switching of u1’s sign under time reversal may not be particularly

surprising since TC was the only time reversal candidate for the spherical Burgers’

equation, but surprisingly the Harry-Dym equation, which had seven time reversal

candidates before winnowing the number down by applying my methodology, has

only one remaining discrete symmetry which can be a candidate for time reversal.

The consistency condition here shows its true power since it is this condition that

ruled out three alternatives to TH2.

What is interesting about W2 is that we know how u1 and u2 both must trans-

form under T in order for the fundamental laws of W2 to be time reversal invariant

even though we know nothing about the physical quantities that u1 and u2 repre-

sent. Intuitive time reversal theorists like Albert may take this to provide us with

the information that values of these fields (unlike u1 in W1) cannot be taken as fun-

damental properties of instantaneous states but must rather be taken as relations

among a number of instantaneous states, though I make no such claim. What does

seem relevant, however, is that we’ve found a world where fundamental time reversal

invariance might just as well be called “fundamental time and u1 and u2 reversal in-

variance” in the same way that Greaves (2010) suggests that time reversal invariance
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may just as well be called “time and charge reversal invariance”. My account thus

allows for the kind of meaningful empirical discoveries about time reversal invariance

that seem crucial to the projects of philosophers like Greaves, and so I take the results

of my method in cases like W2 to give those interested in conducting such projects

reason to take on my view of time reversal.

But again, in some respects the results in W2 are quite expected. The inhabi-

tants of W1, much like the inhabitants of W2, will see a movie and its time-reversed

counterpart as playing at the same speed but in opposite directions. Both take the

time reversal operator to flip the sign of the temporal coordinate while leaving the

spatial coordinate unchanged. In the next section, however, time reversal will seem

a bit weirder.

5.2.3 An Analysis of W3

Take W3 = 〈Chazy1,Harry-Dym2,P3,R4; t1 = x2 = t3 = t4; t1, x2, t3, t4; t2〉. This is

the world fundamentally governed by the Chazy equation, the Harry-Dym equation,

and Equations P and R where the t1, x2, t3, and t4, which are all interpretively

identical to one another, refer to time while t2 alone refers to spatial position. Again,

we take the fields x1, u2, x3, and x4 to represent three different physical quantities

but make no further assertions about these fields. According to Tables 1 and 2, the

following are the candidates for the time reversal operator:
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TE1(t1, x1) = (−t1,−x1) (5.157)

TE2(t1, x1) =

(
− 1

t1
, t21x1 + 6t1

)
(5.158)

TE3(t1, x1) =

(
1

t1
,−(t21x1 + 6t1)

)
(5.159)

TH1(x2, t2, u2) = (x2,−t2,−u2) (5.160)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.161)

TH3(x2, t2, u2) = (−x2,−t2, u2) (5.162)

TH4(x2, t2, u2) =

(
− 1

x2

, t2,
u2

x2
2

)
(5.163)

TH5(x2, t2, u2) =

(
1

x2

, t2,
−u2

x2
2

)
(5.164)

TH6(x2, t2, u2) =

(
− 1

x2

,−t2,
−u2

x2
2

)
(5.165)

TH7(x2, t2, u2) =

(
1

x2

,−t2,
u2

x2
2

)
(5.166)

TP1(t3, x3) = (−t3, x3) (5.167)

TP2(t3, x3) =

(
1

t3
, x3 + 4 ln |t3|

)
(5.168)

TR1(t4, x4) = (−t4,−x4) (5.169)

TR2(t4, x4) =

(
1

t4
,
x4

t24

)
(5.170)

TR3(t4, x4) =

(
− 1

t4
,−x4

t24

)
(5.171)

We can now begin to winnow down the field of time reversal operator candidates by

weeding out all of the transformations that result in changes to the spatial coordinates

(which, remember, in W3, is just t2) or which don’t result in changes to the temporal

coordinates (which, remember, in W3 are t1, x2, t3, and t4), as suggested in part B of

step 3 described above. This leaves us with:
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TE1(t1, x1) = (−t1,−x1) (5.172)

TE2(t1, x1) =

(
− 1

t1
, t21x1 + 6t1

)
(5.173)

TE3(t1, x1) =

(
1

t1
,−(t21x1 + 6t1)

)
(5.174)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.175)

TH4(x2, t2, u2) =

(
− 1

x2

, t2,
u2

x2
2

)
(5.176)

TH5(x2, t2, u2) =

(
1

x2

, t2,
−u2

x2
2

)
(5.177)

TP1(t3, x3) = (−t3, x3) (5.178)

TP2(t3, x3) =

(
1

t3
, x3 + 4 ln |t3|

)
(5.179)

TR1(t4, x4) = (−t4,−x4) (5.180)

TR2(t4, x4) =

(
1

t4
,
x4

t24

)
(5.181)

TR3(t4, x4) =

(
− 1

t4
,−x4

t24

)
(5.182)

as the candidates for time reversal operator. There are many more transformations

left after this step of my analysis than in the previous two cases, and we are left with

two candidate time reversal operators for equation P : TP1 and TP2. Let’s assume that

TP1 is the “true” time reversal operator. If this is so, then the consistency constraints

leave us with the following set of transformations as time reversal operator candidates:

TE1(t1, x1) = (−t1,−x1) (5.183)

TH2(x2, t2, u2) = (−x2, t2,−u2) (5.184)

TP1(t3, x3) = (−t3, x3) (5.185)

TR1(t4, x4) = (−t4,−x4) (5.186)
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If we take TP2 as the correct time reversal operator, then consistency constraints leave

us with the follow set of transformations as time reversal operator candidates:

TE3(t1, x1) =

(
1

t1
,−(t21x1 + 6t1)

)
(5.187)

TH5(x2, t2, u2) =

(
1

x2

, t2,
−u2

x2
2

)
(5.188)

TP2(t3, x3) =

(
1

t3
, x3 + 4 ln |t3|

)
(5.189)

TR2(t4, x4) =

(
1

t4
,
x4

t24

)
(5.190)

There are, then, essentially two candidates for the time reversal operator. The first,

T1, works as follows (again, taking x, without subscripts, to now refer to the position

coordinate and t to now refer to the temporal coordinate):

T1(x) = x (5.191)

T1(t) = −t (5.192)

T1(x1) = −x1 (5.193)

T1(u2) = −u2 (5.194)

T1(x3) = x3 (5.195)

T1(x4) = −x4 (5.196)

The second, T2, works as follows:
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T2(x) = x (5.197)

T2(t) =
1

t
(5.198)

T2(x1) = −(t2x1 + 6t) (5.199)

T2(u2) =
−u2

t2
(5.200)

T2(x3) = x3 + 4 ln |t| (5.201)

T2(x4) =
x4

t2
(5.202)

Several things are worth remarking on at this point. First, whether one takes T1 or T2

to be the “true” or “best” time reversal operator in W3, we are left with a time reversal

operator that determinately transforms all of the coordinates we have examined here,

including x1, u2, x3, and x4. We are also obviously left with two distinct ways the

world could be time reversal invariant. But perhaps the most interesting result about

W3 is provided by T2, a strange-looking time reversal operator which, odd though it is,

still makes a kind of sense as a time reversal operator. As with T1, displacements of ∆x

remain unchanged by T2, but T2 transforms the temporal coordinates in such a way

that the distance between two events (say, t0 and t1 with displacement ∆t = t0 − t1)

changes to − ∆t
t0t1

. So, were the inhabitants of W3 to watch a movie, its T1 counterpart,

and its T2 counterpart, they would note that, while the T1 and T2 counterparts were

running backwards relative to the initial movie, some segments of the T2 counterpart

would move more slowly than those corresponding segments in the T1 counterparts,

and others would move more quickly.

T2, while an entirely different transformation than what we’ve seen previously,

thus has some important similarities with the more intuitively plausible T1 such as

the way it inverts a sequence of events, but by adding in an additional time-dependent

scaling factor, the overall transformation looks quite different than the one provided

119



by T1. I believe this shows an additional virtue of my account of time reversal in

that it suggests interesting new ways the world could be time reversal invariant. Of

course, W3 on its own is not necessarily such a world, but when conducting further

empirical research, scientists in W3 should be on the lookout for differential equations

whose symmetries would, via consistency, establish either T1 or T2 as the time reversal

operator in W3. Intuitive time reversal theorists would likely balk at a time reversal

operator like T2, but I see no reason to do so without any further information; again,

the fundamental laws are invariant under this transformation, and it inverts sequences

of events as required, so there seems no principled reason to reject fascinating and

bizarre transformations like T2 as candidate time reversal operators out of hand.

5.2.4 An Analysis of W4

Take W4 = 〈Burgers’1,Heat2,Inverse-Square3,Free4;x1 = x2 = x3 = x4, t1 = t2 =

t3 = t4; t1, t2, t3, t4;x1, x2, x3, x4〉. W4 is closer to the actual world than many of the

possible worlds we have examined up to this point. Its fundamental equations are

the one-dimensional Burgers’ equation, which is used to model waves in acoustics and

hydrodynamics; the one-dimensional heat equation, which gives the temperature of

a material as a function of both time and position; the the one-dimensional inverse

square law equation, which allows one to determine the distance between a Newto-

nian free particle and a source of gravitational attraction as a function of time; and

the equation for the free particle, which allows one to determine the motion of a

Newtonian particle in the absence of any external forces. Clearly, these differential

equations are highly idealized and not the sort of equations most physicists would

consider to be the most fundamental differential equations that govern the behavior

of our universe, and W4 is doubtless not significantly closer to the actual world than

the other worlds considered previously; however, they are the most physically signif-

icant of the differential equations we have to work with, and so an analysis of these
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differential equations is still of some physical interest. The candidate time reversal

operators for W4 are:

TB1(x1, t1, u1) = (−x1, t1,−u1) (5.203)

TI1,C=−1(x2, t2, u2) = (−x2, t2,−u2) (5.204)

TI1,C=1(x2, t2, u2) = (−x2, t2, u2) (5.205)

TI2,C=−1(x2, t2, u2) = (x2, t2,−u2) (5.206)

TL1(t3, x3) = (−t3, x3) (5.207)

TL2(t3, x3) = (t3,−x3) (5.208)

TL3(t3, x3) = (−t3,−x3) (5.209)

TK1(t4, x4) = (−t4, x4) (5.210)

TK2(t4, x4) = (t4,−x4) (5.211)

TK3(t4, x4) = (−t4,−x4) (5.212)

TK4(t4, x4) = (x4, t4) (5.213)

TK5(t4, x4) = (−x4,−t4) (5.214)

TK6(t4, x4) =

(
t4
x4

,
1

x4

)
(5.215)

TK7(t4, x4) =

(
− t4
x4

,
1

x4

)
(5.216)

TK8(t4, x4) =

(
1

t4
,
x4

t4

)
(5.217)

TK9(t4, x4) =

(
1

t4
,−x4

t4

)
(5.218)

We can now begin to winnow down the field of time reversal operator candidates by

weeding out all of the transformations that result in changes to the spatial coordinates

or which don’t result in changes to the temporal coordinates, as suggested in part

B of step 3 described above. This leaves us with only two candidate time reversal
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operators:

TL1(t3, x3) = (−t3, x3) (5.219)

TK1(t4, x4) = (−t4, x4) (5.220)

We have eliminated, then, all of the discrete symmetries under which both the heat

equation and Burgers’ equation are invariant from contention. The only conclusion,

then, is that the fundamental laws of physics in W4 are not all invariant under time

reversal. The best remaining candidate for a time reversal operator may be T1, which

acts as follows:

T1(x) = x (5.221)

T1(t) = −t (5.222)

but even with this in place, the conclusion about the time reversal non-invariance of

the physical laws still follows. There may be space-time reversals under which the

laws are invariant, but there is no time reversal operator one could formulate that

would allow this set of laws to be time reversal invariant.

What are we to make of this result? Again, in one sense, it’s not particularly

surprising to find that two differential equations, one of which comes from fluid dy-

namics and the other of which is dissipative5, are not time reversal invariant while

there seems a decent time reversal operator in the Newtonian differential equations

that would make said equation time reversal invariant.6 But the more important

5There is no way of inferring a unique set of initial conditions for the heat equation using only
the temperature distribution in a material at a particular time. See page 44 of Earman (1986) for
more details.

6It’s especially unsurprising when one considers that T1 is exactly the sort of time reversal oper-
ator that intuitive accounts of time reversal would use when assessing the time reversal invariance
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point is that the time reversal non-invariance of W4 gives us a reason (though it is an

extremely weak and defeasible reason) to think that the dynamical laws in the actual

world may not all be time reversal invariant. This may not be an earth-shattering

revelation to those who think about time reversal invariance since the irreversibility

of laws in thermodynamics has given us reason to think that our own physical laws

may not be time reversal invariant, and even common experiences such as stirring

cream into coffee and being unable to stir it back out again support this intuition;

however, it is worth showing that my method can come to similar conclusions when

given the appropriate physical laws as resources to work from.

5.3 Conclusion

In concluding this chapter, I should take a moment to compare my analysis to the

stances towards time reversal in these four possible worlds adopted by token fictional

representatives from both the intuitive and theory-relative camps. I have pointed

out along the way already numerous places where my account diverges from intuitive

accounts like Albert’s, but it’s worth remarking on the differences once again. Albert’s

account would have us take as candidates for time reversal only transformations T

such that T (x) = x and T (t) = −t. As I’ve shown above, transformations that satisfy

this constraint are among the most common, appearing in W1 and W2 (though Albert

and others like him would doubtless want more information about how to interpret

the fundamental fields in these worlds before agreeing with my analysis of how time

reversal transforms these fields). However, my analysis of W3 suggests that there may

be another sort of time reversal (the one I call T2) which acts on t in a different way.

My account challenges intuitive accounts to justify their intuitions that rule out T2 as

a viable time reversal candidate, and, regardless of whether or not intuitive accounts

can provide a compelling defense of these intuitions, I believe forcing the intuitive

(or lack thereof) of Newtonian systems.
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theorist to engage this challenge will result in progress in better understanding time

reversal.

Theory-relative accounts are likewise challenged by my account, though the chal-

lenge they face is quite different from the one faced by intuitive accounts. Looking

back over the four examples above, it is clear how the “intuitive” criteria I lay down

in step 3 parts B and C (as described in the previous section) are essential to par-

ing down the number of candidate time reversal operators for each world, and it is

equally clear how essential this paring down of symmetry candidates is for making

progress both in determining what the time reversal operator looks like and, based

on my analysis in chapter 2, how one might best draw metaphysical conclusions from

such a result. The challenge to theory-relative accounts, then, is to explain where

the “intuitive” criteria laid down by my account go wrong, for it is these criteria that

allow my account to provide more specific details than theory-relative accounts can

about the behavior of the time reversal operator in each world. Again, I don’t think

my challenge reveals a fatal flaw in the reasoning of theory-relative accounts of time

reversal, but it is a challenge that must be met if theory-relative accounts wish to

show themselves superior to my account.

Though I have applied my method to determine the time reversal operator for

various possible worlds governed by small subsets of the differential equations I have

catalogued in this chapter, there is still much more work to be done in fleshing out my

account of time reversal. Though my analysis of W1, W2, and W3 provides interesting

examples of ways the world could be and my analysis of W4 provides an extremely

defeasible reason to think the fundamental laws of physics are not, as physicists

like Carroll (2010) claim, time reversal invariant, the real test for my account will

come when my methodology is applied to a set of differential equations that more

aptly represents what we take to be our best available fundamental physical theories.

Unfortunately, such an analysis is beyond the scope of this work, but it does provide an
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important next step to take from the analysis in this work. In the next chapter, I will

turn away from my particular account of time reversal and ask a more general question

about the significance of time reversal: even if the fundamental laws of physics are

not invariant under time reversal (as my analysis of W4 may weakly suggest), what

kind of interesting facts about the world and our experience of it follow from this

fact?
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CHAPTER VI

Do Time-Asymmetric Laws Call For

Time-Asymmetric Spacetime Structure?

Imagine that you are sitting in front of a television screen that is paused on a

particular frame of a movie. You hit a button on your remote control but are not

sure whether you have hit “fast forward” or “rewind” because the room around you is

dark. As you watch the screen, you see a spoon stir cream into a cup of coffee so that

the cream is evening distributed in the coffee by the end of the scene. You infer from

this series of events alone that you have hit the “fast forward” button. Alternatively,

if you were to see the spoon stir a cup of coffee with the cream evenly distributed in

it until all the cream was in one small region of cup, you would infer that you had hit

the “rewind” button. In both instances, your inferences are well-justified by physics:

thermodynamics and statistical mechanics tell us that we frequently see cream being

stirred into coffee but never see it stirred out of coffee, no matter how long or how

vigorously we stir.1 The situation would be quite different if we were watching a video

of, say, two billiard balls crashing into one another and then bouncing apart. After

hitting “fast-forward” on such a video, we would see the balls crash into each other

and then bounce apart, and, had we started at the end and hit “rewind”, we would

have seen the balls crash into each other and then bounce apart. In short, we can’t

1We must assume, of course, some facts about initial state of the universe in order for these
theories to give us this sort of pronouncement.
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make any useful inferences about which button we hit if we are watching a video of

billiard ball collisions.

If we ask a physicist for more detail about what’s going on when the cream is

stirred into the cup of coffee, she will tell us a story involving a set of initial conditions

and the laws of physics which, jointly, allow us to determine the future state (or the

possible future state) of our system (the cup of coffee). If we find, as with our video of

the cup of coffee, that it’s easy to determine which of two states is the initial state of a

physical system and which state is the final state, we may be able to appeal to various

temporally asymmetric features of the physical world to explain this phenomenon. For

instance, in the case of the cup of coffee, the laws of thermodynamics suggest that

the cup of coffee with all of the cream located in some small region is a very special,

unlikely state (i.e. a state of low entropy) and the laws of nature will tend to time-

evolve this state towards a less special state (i.e. a state of high entropy), namely

the state where the cream is evenly distributed throughout the cup. In the case of

the billiard balls, however, the initial and final states (with the balls far apart from

one another) are equally “special”, and so the time reversal invariant (TRI) laws of

Newtonian Mechanics tell us that both the “fast forward” and “reversed” sequences

of events are physically possible. The laws of statistical mechanics, like Newton’s

laws, are TRI, and so the temporal irreversibility of thermodynamic processes can

be attributed to an asymmetry in the initial and final conditions instead of to an

asymmetry in the laws themselves.

However, in some cases, the temporal asymmetry is attributed not to the states

related by the physical laws but rather to the laws of physics themselves; that is,

there are cases that give us reason to think that some of the fundamental laws of

physics are not TRI. It is this second case that is the focus of this paper for the

following reason: some authors, most notably Horwich (1987) and Maudlin (2007),

appeal to temporally irreversible laws to justify their claim that there is a temporal
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anisotropy in the geometric structure of spacetime itself. This is not a claim about

whether spacetime is as the substantivalist claims it is or the relationist claims it is

(though Maudlin, at least, is certainly a substantivalist) but rather a claim about

what the features of our spacetime, whether substantivalist or relationist, are. Both

Horwich and Maudlin take the fact that the laws of physics are not TRI to license our

inference to some important fact about the geometric structure of spacetime. But

Horwich’s and Maudlin’s inference from temporally irreversible laws to temporally

anisotropic spacetime structure is quick, and it is not clear what they take to justify

this inference. Take, for instance, the following claim by Maudlin (2007):

To begin with, the laws of physics as we have them...are not Time Reversal

Invariant. The discovery that physical processes are not, in any sense,

indifferent to the direction of time is important and well known: it is the

discovery of the violation of so-called CP invariance, as observed in the

decay of the neutral K meson. These decays are not invariant if one

changes a right-handed for a left-handed spatial orientation (parity) and

changes positive to negative charge (charge conjugation). According to

the CPT theorem, any plausible quantum theory will be invariant under

parity-plus-charge-conjugation-plus-time-reversal, so the violation of CP

implies a violation of T. In short, the fundamental laws of physics, as we

have them, do require a temporal orientation on the spacetime manifold.

(117, original emphasis)

In this passage, Maudlin moves from the fact that fundamental laws are not TRI,

which is supported by CP violation, to the fact that there must be some sort of

temporal anisotropy without making explicit what licenses this inference. The asym-

metry in the dynamical laws, then, is taken as evidence for (but is not equivalent to)

the kind of spacetime orientation that Maudlin argues for in the rest of this chapter.
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A similar passage can be found in Horwich (1987):

Once a genuine instance of nomological irreversibility has been identified,

it is not hard to justify the inference that time is anisotropic. Suppose

there is a physically possible process ABCD whose temporal inverse is

impossible. Let (ABCD) designate the process whose temporal orienta-

tion is unspecified–merely that B occurs between A and C, and C be-

tween B and D. Then a physically necessary condition for the occurrence

of (ABCD) is that A is earlier than B. Thus the relation earlier than

enters into explanations that are fundamental, for we have no deeper ac-

count of that necessary condition. In particular, we cannot suppose that

the possibility of (ABCD) will be found to depend on its orientation rel-

ative to certain other events for in that case the reverse of ABCD would

not be physically impossible. (53)

Like Maudlin, Horwich takes the TRI-failure of the fundamental physical laws to give

us good reason to believe that spacetime itself is temporally anisotropic. The thesis

that underwrites both Horwich’s and Maudlin’s claims is that temporally irreversible

laws license an inference to the existence of temporally asymmetric spacetime struc-

ture. But why should this be so? Maudlin does not provide us with an explicit

argument, and Price (2011) provides us with a way out of Horwich’s conclusion:

However, I think this argument overlooks the fact that there will always

be a “Machian” reading of the kind of lawlike irreversibility that Horwich

has in mind here–simply a law to the effect that all instances of the kind

(ABCD) have the same temporal orientation. The Machian law will do

the same job of explaining the orientation of any particular (ABCD): the

opposite orientation would not match all the other instances. True, it won’t
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explain why it isn’t the case that all instances have the opposite orientation.

But even if we grant for the moment that this is a distinct possibility,

rather than a notational variant....Horwich’s version of the explanation

shares an exactly analogous deficit: in his case, there is nothing to explain

why we don’t find the reverse law, with respect to the temporal anisotropy

in question (Why shouldn’t it be later rather than earlier that does the

explanatory job, as it were?). (293, original emphasis)

Horwich’s argument seems to fail, then, because the Machian alternative to a temporal

anisotropy explains the nomic temporal asymmetries as well as Horwich’s temporal

anisotropy does. If there is a reason to believe that temporally irreversible laws give

us a good reason to believe that spacetime itself is temporally anisotropic, then a

better argument for this conclusion than the one provided by Horwich is needed.

However, we may still contend that Price’s explanation here isn’t really better than

the one Horwich provided; after all, the Machian law is strangely non-local in a way

the alternative is not, and for those who favor substantivalist theories of spacetime,

we may worry that this proposal pushes us towards relationism. Price’s position

requires a lengthier defense than what has been provided in this passage. So it seems

that further arguments on both sides are required for the debate over what we should

conclude about temporal features spacetime given temporally irreversible laws to

move forward.

My central claim is that we have no good reason to infer the existence of temporal

anistropy in spacetime from only the temporally irreversible laws we have observed.

More specifically, I argue that the best arguments in favor of such an inference, one

of which draws from work by John Earman and one of which derives from a position

advocated by Harvey Brown, both fail. In the second section of the paper, I lay out a

promising argument for temporal spacetime anisotropy from temporally irreversible

physical laws. In the third section, I discuss, very briefly, the experimental results
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that give us reason to believe that there are some laws of physics that are temporally

irreversible (even if one disagrees with my analysis of the time reversal invariance

of laws in the previous chapters of this dissertation), and in the fourth section, I

appeal to an argument from Earman to argue that such nomic temporal irreversibility

should lead us to introduce some temporally asymmetric structure to our best physical

theories.

In the fifth section, however, I argue that such a temporally asymmetric structure

need not and should not be understood as a feature of the spacetime structure of our

best physical theories, at least at the moment, and is better understood as either a law

of nature or a feature of matter fields. This is true regardless of whether we ascribe

to substantivalist or relationist theories of spacetime. This conclusion gives us reason

to think that Maudlin’s and Horwich’s inference is misguided. In the sixth section, I

consider an alternative argument that relies on the work of Brown (2005). Brown’s

view of spacetime both poses a challenge to my analysis in the fifth section and

itself grounds an inference from temporally irreversible laws to temporally anistropic

spacetime structure. However, I argue that Brown’s view of spacetime is explanatorily

inferior to an alternative view proposed by Janssen (2009) and, as such, should be

rejected. Finally, I draw my conclusions in the final section of the chapter.

6.1 An Argument for Temporal Asymmetry in Spacetime

In the previous section I provided Price’s response to Horwich’s argument in fa-

vor of drawing a connection between temporally irreversible laws and a temporally

anisotropic spacetime; however, I had no such adequate response to Maudlin’s argu-

ment, except to say that his argument was far too quick. It seems that he needs a

premise along the lines of the following for his conclusion to follow from his premises:

“If the fundamental physical laws are not invariant under the time reversal symmetry

transformation, then the spacetime required by these fundamental physical laws is
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not invariant under the time reversal symmetry transformation.” As it stands this

premise seems dubious: why should we think that all dynamical asymmetries (that

is, asymmetries in the laws of nature) must be asymmetries in the structure of space-

time? To be more explicit about the work done by this premise, let’s break it into

two separate premises and explicitly recast Maudlin’s argument as follows:

The Argument for Temporal Asymmetry in Spacetime

1. Not all of our best candidates for fundamental laws of physics are

invariant under time reversal, a dynamical symmetry.

2. Any dynamical asymmetry of a physical theory gives us sufficient rea-

son to posit the existence of some similarly asymmetric physical structure.

3. Asymmetric structures posited because of a dynamical asymmetry in

the fundamental laws are best interpreted as features of spacetime.

4. The spacetime required by our best candidates for fundamental physical

laws is temporally anisotropic. (from 1-3)

Breaking the inference from a dynamical asymmetry to an asymmetry in spacetime

into two separate premises in this argument makes it clear exactly what steps must

be taken when moving from facts about the laws to facts about spacetime. In the first

place, when we discover some sort of dynamical asymmetry in the laws, we should

posit the existence of some structure to explain the breaking of this symmetry. We

may explain an asymmetry in some law, for instance, by appealing to features of other

laws from which the first law may be derived under certain approximations, or we

may find that, as pointed out in the introduction, there may be a kind of asymmetry

in the states related by the law that gives the appearance of an asymmetry in the

laws when, in fact, it is the features of the world that the law depends on that are
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asymmetric. Note that this asymmetric structure need not be a new structure. For

instance, our laws may not be invariant under the 100-dimensional group of rotations

mathematically represented by SO(100), but we need not posit some new structure

to explain this fact if our theory already appeals to physical structures like tensors

and pseudotensors that fail to be invariant under such transformations. However, if

we find that the laws fail to be invariant under some symmetry that we currently

take all of our physical structures to be invariant under, the second premise of the

argument above licenses us to posit some new structure that breaks this symmetry

or replace an existing element of the structure with a new element that breaks the

symmetry.2 I examine this premise in detail in the fourth section of this chapter.

But as these examples show, just because we have posited some asymmetric struc-

ture to explain or underwrite a particular asymmetry in the dynamical laws does not

mean that we always know how to interpret the object we’ve posited. If our laws make

ineliminable reference to a particular feature of the physical world and that feature

is rather abstract, the problem may be even harder. For instance, we may be able

to explain the failure of laws to be parity reversal invariant by following a suggestion

from Pooley (2003) that there is a field that determines the parity or “handedness”

of every physical process. The laws fail to be parity reversal invariant because they

make reference to this parity field, so we have a fine explanation for why the laws

are not parity reversal invariant but must still ask the further question of how we

should understand this parity field. If, as an analogue of the third premise of the Ar-

gument for Temporal Asymmetry in Spacetime suggests, we should understand this

structure as an element of spacetime structure, then we have a parity analogue for

the Argument for Temporal Asymmetry in Spacetime. But we may resist this move

and claim instead that we should posit another of Pooley’s candidates to break the

parity symmetry, namely a law that claims that all processes of a certain type have

2Such a structure must, of course, be connected to the temporally irreversible laws in such a way
that this structure can explain the laws’ temporal irreversibility.
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the same orientation. Such as law is not best understood as an element of spacetime

structure, and so we are faced with the question of both what object to posit to

break the symmetry and how to interpret that particular object. Clearly, then, if

the Argument for Temporal Asymmetry in Spacetime is to move forward, we need

an argument in favor of premise 3 that tells us why we should interpret the structure

posited as a result of premise 2 as an element of spacetime if we want to make the

inference from dynamical asymmetries to asymmeries of spacetime. I examine the

third premise of the Argument for Temporal Asymmetry in Spacetime in more detail

in the fifth section of this chapter. In what follows, I will delve more deeply into each

of the argument’s premises to see exactly how well justified we are in believing the

argument’s conclusion.

6.2 An Extremely Brief Detour Through CPT

The Argument for Temporal Asymmetry in Spacetime’s first premise tells us that

not all of the laws of fundamental physics are TRI, but is this really so? Maudlin’s

passage above points us in the direction of the answer. Relativistic quantum field

theories are typically taken to be invariant under the CPT symmetry, which maps

quantum states to their charge-conjugated, parity-reversed, and time-reversed coun-

terparts.3 One of the important consequences of the CPT -invariance of quantum

field theories is that these three different symmetries of charge conjugation, parity

reversal, and time reversal are intertwined so that we can infer, from the failure of

some quantum field theory to be CP -invariant, that the theory likewise fails to be T -

invariant. The CPT symmetry thus allows for indirect measurements of T -violation.

As it happens, there are at least two important cases of CP -violation, both of which

involve the weak interaction. Both K meson decay and, more recently, B meson de-

3See Streater and Wightman (1980) for a rigorous derivation of the CPT symmetry for certain
classes of relativistic quantum field theories.
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cay have been found to violate CP symmetry, though I will not discuss the details of

these experimental results here.4

What is important about CP -violating processes for our purposes, however, is

that one can reason from experimental results involving K and B mesons to the first

premise of the Argument for Temporal Asymmetry in Spacetime:

1. If the laws of a quantum field theory fail to be invariant under CP , then

they fail to be invariant under T . (CPT theorem)

2. The laws of the quantum field theory governing the weak interaction

fail to be invariant under CP . (Experimental results for the K and B

mesons)

3. If laws of a quantum field theory fail to be invariant under T , then they

aren’t TRI.

4. Quantum field theories of the weak interaction are some of our best

candidates for fundamental physical theories.

5. Not all of our best candidates for fundamental physical laws are TRI.

(from 1-4)

The argument is certainly valid, and premises 1, 2, and 4 seem well-supported by

our current experimental and theoretical results in quantum field theory (though, of

course, should we discover violations of CPT -invariance in quantum processes, then

premise 1 should be rejected or explicitly limited to some subset of quantum field

theories, perhaps not including the quantum field theory of the weak interaction,

which would make the above argument unsound). Premise 3 is worth taking a closer

look at since, as I argued in the first five chapters of this dissertation, TRI may

4See Sachs (1987), chapter 9 for a detailed discussion of K meson decay and Abe et al. (2001) for
a discussion of B meson decay.
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require something more (or maybe something less) than invariance under the operator

T commonly appealed to in quantum field theories today. However, I will set aside a

more in-depth discussion of this particular premise and simply remark that it seems a

sensible premise to accept at this point in time, especially given the defeasible results

at the end of the previous chapter. So, it seems like CP -violation in particle decays

gives us a good reason to think that not all of our fundamental physical theories are

TRI. So far, so good for the Argument for Temporal Asymmetry in Spacetime.

6.3 From Dynamical Asymmetries to Spacetime Asymme-

tries

There are many ways that one could justify the second premise of the Argument for

Temporal Asymmetry in Spacetime, but it’s worth mentioning the following principle

in particular:

(SP2) All spacetime symmetries of a theory T are dynamical symmetries

of T .

This symmetry principle is proposed and argued for by Earman (1989), and its con-

trapositive provides an important link between claims about temporally irreversible

laws and fundamental temporal spacetime asymmetries. In fact, we can use SP2 to

support premises 2 and 3 in the Argument for Temporal Asymmetry in Spacetime: if

we have a dynamical asymmetry (an asymmetry in the laws), then SP2 tells us that

we should have a spacetime asymmetry (presumably an asymmetry in an object rep-

resenting a structure of spacetime) as well. As we’ll see, however, SP2 only provides

the Argument for Temporal Asymmetry in Spacetime with half the support it needs.

Before proceeding, it is important to start from Earman’s own definitions of dy-

namical and spacetime symmetries to better understand what SP2 says and why it
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might be true. The benefits of this analysis are twofold: first, we see how SP2 sup-

ports the second premise of the Argument for Temporal Asymmetry in Spacetime, and

second, my analysis reveals a problematic move that prevents SP2 from supporting

the third premise of the Argument for Temporal Asymmetry in Spacetime. Earman

sets up the framework for his account of symmetries as follows: Let T be a theory

whose models are of the form 〈M,A1, A2, ..., P1, P2, ...〉, where M is a differentiable

manifold; Ai are the “absolute objects”, geometric-object fields that characterize the

structure of spacetime (more on these later); and Pi, the “dynamical objects”, are

the geometric-object fields that characterize the physical contents of the manifold.5

For instance, a physical theory in Aristotelian spacetime would have models with

absolute objects like a field picking out a preferred spatial origin and with dynamical

objects such as fields picking out the spatiotemporal locations of physical objects,

electromagnetic fields, etc.

Earman then defines spacetime and dynamical symmetries as follows:

Any diffeomorphism Φ : M →M such that Φ ∗ Ai = Ai for all i is a

spacetime symmetry of the model 〈M,A1, A2, ..., P1, P2, ...〉. A diffeo-

morphism Φ is a spacetime symmetry of a theory T just in case it is a

spacetime symmetry of all of T ’s models.

A diffeomorphism Φ : M →M is a dynamical symmetry of a theory T iff

Φ ∗ Ai = Ai and Φ ∗ Pi = P ′i for all i, where 〈M,A1, A2, ..., P1, P2, ...〉 and

〈M,A1, A2, ..., P
′
1, P

′
2, ...〉 are both models of a theory T .

A spacetime symmetry, then, is just some spacetime diffeomorphism that leaves the

absolute objects unaffected, and a dynamical symmetry is a spacetime symmetry that

transforms the dynamical objects in such a way that the result of the transformation

still obeys the fundamental dynamical laws. In Earman’s terms, then, the move

5More will be said about the distinction between absolute and dynamical objects in section 6.
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needed to support the second and third premises of the Argument for Temporal

Asymmetry in Spacetime goes as follows: we rely on SP2 to tell us that, if we have

a dynamical asymmetry, then we have an asymmetry in the absolute objects. This

step provides us with the support we need for the argument’s second premise. But

any asymmetry in the absolute objects is best understood as an asymmetric feature

of spacetime itself, so SP2 allows us to take the third premise for granted and skip

right to the conclusion of the Argument for Temporal Asymmetry in Spacetime.

For the time being, we’ll focus on SP2 alone and find that, while we may have a few

reservations about this symmetry principle, overall SP2 (and, what’s more, the second

premise of the Argument for Temporal Asymmetry in Spacetime) is a reasonable

symmetry principle to accept.

Earman gives two arguments in support of his claim that every spacetime sym-

metry of a theory is a dynamical symmetry of that theory, the second (and more

compelling) of which is, essentially, that should we abandon SP2, we must also ac-

cept the unintuitive consequence that the laws of nature are not universal.6 Imagine

that we take some model 〈M,A1, A2, ..., P1, P2, ...〉 and apply the following transfor-

mation: leave the manifold M and the absolute objects Ai unchanged, but apply the

time-reversal operator to the dynamical objects Pi. So, for instance, if we are dealing

with a world governed only by the law of radioactive decay, we may find ourselves

with a field on spacetime telling us how many particles of a radioactive substance we

have at a given time. This field, for simplicity’s sake, will have three values: 10 at

time t, 5 at time t+1, and 2 at time t+2. Its time-reversed counterpart is, intuitively,

a field with a value of 2 at t, 5 at t+ 1, and 10 at t+ 2.7 Now, let’s assume that the

6Earman’s first argument contends that SP2 follows from the requirement that all the laws be
generally covariant. Earman suggests that this argument for SP2 may be less than compelling since
the link established by general covariance may introduce absolute objects that rule out dynamical
symmetries of interest from theories that satisfy SP2.

7We do not need to take this transformation to give us the “real” time reversal operator since
Malament (2004) and North (2008) have given us good reasons to think that the actual time reversal
operator (if there is such a thing) does or could act on features of spacetime rather than just
dynamical features like our “time reversal” operator here does.
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laws are temporally irreversible but that time reversal is still a spacetime symmetry.

Then the region in the original model and its time-reversed counterpart differ from

one another only by a spacetime symmetry (time reversal), but we have a model

(our original model) whose time-reversed counterpart isn’t physically possible. This,

Earman claims, violates our notion of universality, which he takes to be expressed by

the following principle.8

(U ′): A putative law L is universal just in case, for all spacetimes governed

by L, if R1 and R2 are two spacetime regions related to one another by a

spacetime symmetry, then whatever L allows in R1, L allows in R2.

Thus, we have an inconsistent triad on our hands: we cannot simultaneously 1)

accept that all laws are universal in the sense given by U ′, 2) take time reversal to be

a spacetime symmetry of some theory, and 3) deny that time reversal is a dynamical

symmetry of that theory. Earman suggests that, to rid ourselves of this tension,

we reject either 2 or 3, and in doing so, we find that all spacetime symmetries are

dynamical symmetries. To argue for SP2, then, one need only justify the claim that

“all laws are universal”.

We can understand the claim “all laws are universal” in at least two senses. In the

first case, we can take this claim to be a necessary truth. I will call this position the

“strong stance” since it suggests that being universal is partially constitutive of being

a law. The “weak stance”, on the other hand, suggests not that all laws have to be

universal but only that universality is a theoretical virtue (like simplicity, perhaps).

The weak stance suggests that, all other things being equal, if we are given the choice

between two sets of laws, one of which contains only universal laws and one of which

contains non-universal laws, we have reason to accept the first set of laws over the

second set of laws. There may be non-universal laws, the weak stance admits, but

8Earman borrows this account of universality from Rynasiewicz (1986).
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these laws will tend to be inferior to universal laws and may, for instance, provide

less predictive and explanatory power than we would like our laws to provide.

Adopting the strong stance seems potentially problematic for a few reasons I’ll

list briefly.9 Consider, for instance, Aristotelian physics, where one might posit a

law like “All matter of such-and-such distance away from the earth is composed of

quintessence”. Such a statement leaves out a region of space and time (namely, the

region occupied by Earth and bodies close to it), and so it fails to be universal.

Another problematic case comes from Tooley (1977), who considers the putative law

“All the fruit in Smith’s garden are apples”, which we may take to be confirmed when

oranges brought into Smith’s garden transform into elephants and bananas brought

into the garden transform into apples. Laws like Tooley’s, though fanciful, do seem

to be metaphysically possible natural laws, and we might even accept their truth if

we observed such strange instances of transforming fruit.10

Note also that many other kinds of “laws” can do the work we require of laws

without needing to be universal. For instance, the rules of chess do a fine job of

supporting counterfactuals, encoding regularities about how the game is played, and

explaining various chess-related phenomena.; that is, the laws of chess govern the

playing of chess in a very similar way to how the laws of physics govern the unfolding of

events in our physical universe. But it would be absurd to think that, by introducing

non-universal rules to our variant of chess, these new non-universal rules would now

no longer be capable of playing the same role as the other rules of chess. If I now

allow one special square on the chessboard to be immune to conquest by any other

piece, we can posit a rule “No player may take a piece on E5”, and we can rely on this

rule to support counterfactuals like “If I moved my king to E5, your pawn would be

unable to capture him”, encode the regularity that no piece on E5 is ever captured,

9A more detailed catalogue may be found in Lange (1995).
10In Section 5, I’ll show that, if we add a preferred spatial region as part of our spacetime structure,

these particular laws may now qualify as universal in the sense of U ′. However, unless we assume
such additional structure, these laws fail to be universal.
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explain the fact that no piece on E5 is ever captured, etc. So this new, non-universal

rule seems in no way deficient when faced with the tasks one usually assigns to rules

of chess, and if we are to believe the claims of the strong stance, we need a reason to

think either that this analogy between the rules of chess and laws of nature doesn’t

hold or that there is some important function of laws that non-universal laws are

unable to carry out. Examples like the ones I’ve just given provide us with a reason

to think that U ′ may not be a constraint on lawhood as the strong stance suggests.

But even if universality is not a necessary feature of lawhood, it may still be a

desirable one. Compare the rule “No player may take a piece on E5”, which I shall

call R1, with the rule “Bishops may move diagonally for as many squares as they like

in any direction”, which I shall call R2. R1 fails to be universal in that it singles

out a particular region of the board as being special while R2 is universal in that it

applies to all bishops, regardless of where they sit on the chessboard. R1 supports

counterfactuals like “If I moved my king to E5, he would not be captured”, but it is

unable to support counterfactuals about what would happen outside of E5. R2, by

contrast, supports counterfactuals about the behavior of bishops everywhere on the

chessboard. R1 encodes regularities about what happens on E5 but not about what

happens elsewhere while R2 encodes regularities about the behavior of all bishops

everywhere on the chess board. R1 may be invoked to explain a limited range of facts

about what happens (or doesn’t) to pieces on E5 while R2 is capable of explaining

a wider range of chess-related phenomena we might observe. So while my chess

example may suggest that the non-universal rules are capable of doing the same kind

of work that universal rules can do, it seems that universal rules are generally better

at performing the tasks usually assigned to rules than non-universal rules are.

If the analogy between laws of nature and the rules of chess holds here, then,

we have a good reason to adopt the weak stance towards SP2. Universal laws may

not be the only laws available to us, but they may be the best sort of laws we can
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rely on to do the sort of work we require laws for. Adopting the weak stance does

require us to change our view of what the Argument for Temporal Asymmetry in

Spacetime establishes a bit: the reason why we should posit a temporally anisotropic

spacetime given temporally irreversible laws is that we believe physical theories that

posit temporally irreversible laws and temporally anisotropic spacetimes have at least

some theoretical virtues that physical theories that posit temporally irreversible laws

and temporally isotropic spacetimes lack. The conclusion of the argument is softened

since there may be other theoretical considerations (e.g. simplicity) that also help us

decide what to believe and may, hypothetically, lead us to reject a theory with only

universal laws in favor of a theory with some non-universal laws.

So the weak stance towards SP2 gives us a reason to believe the second premise of

the Argument for Temporal Asymmetry in Spacetime. There are, however, simpler

arguments for those who dislike SP2 but still want to argue for the argument’s second

premise. When we are faced with dynamical laws that fail to be TRI, we may want to

explain this fact, especially in a case like K meson decay where we have a temporally

irreversible law that we discover after a long string of other physical laws that are

all TRI. “What makes K meson decay special?”, we may wonder. We are left with

a few different options for how to explain a law’s failure to be TRI. One option is to

posit that that’s just the way the law is: laws, we may think, are brute facts about

our physical world, so we cannot provide a deeper explanation for their features. But

there’s an alternative: we can explain a feature of physical laws by referring to some

other structure (in our case, a temporally asymmetric structure) on which the laws

depend. Such a structure improves our theory because we now have an explanation

for a fact (the TRI-failure of some of the laws) that we didn’t have before. Theories

that explain more phenomena are better than those that explain a more limited range

of phenomena, so we may have a reason to believe the argument’s second premise even

if we don’t believe universality as defined by U ′ gives us a compelling reason to adopt
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the weak stance towards SP2.

But we must be careful with the object that we posit to break the TRI of the

laws we are concerned with. As I pointed out above, theoretical virtue considerations

typically come with a trade-off: by choosing a theory that explains the TRI-failure

of the laws instead of treating it as a brute fact, we’re positing the existence of some

new object that the “brute fact” theory didn’t posit. If we’re going to harm virtues

like parsimony in our search for explanatorily satisfactory physical theories, we should

do as little violence to these virtues as possible. What we’re looking for, then, is a

minimal structure that we can rely on to break the TRI of our fundamental laws, at

least if we want our motivation for accepting premise 2 to lead us to accept premise

3 of the Argument for Temporal Asymmetry in Spacetime as well.

Let’s set aside the details of that minimal structure for the moment, though, and

consider how far Earman’s SP2 can get us. If we have a way of showing that space-

time asymmetries, in Earman’s sense, should be interpreted as being asymmetries of

spacetime itself, then we have an argument in favor of the Argument for Temporal

Asymmetry in Spacetime’s third premise that we need and we need not consider the

issue further. Let’s proceed with some caution here: according to Earman’s defini-

tion, if we posit some object that breaks a spacetime asymmetry, then that object

must be an absolute object that isn’t left unchanged by the transformation in ques-

tion. This follows from the fact that, by definition, a spacetime asymmetry is going

to reveal that at least one absolute object isn’t going to be left unchanged by the

transformation in question, so positing dynamical objects alone won’t help us explain

this spacetime asymmetry. What we need to show, in order to establish SP2’s support

for premise 3, is that Earman’s absolute objects need to be interpreted as features of

spacetime.

This may not seem too hard a thing to prove. After all, Earman (1989) takes

absolute objects to represent the “fixed space-time structure” (45). Earman does
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not provide us with a formal definition for his absolute objects, but he endorses the

account shared by other authors such as Friedman (1983), who does provide such a

formal definition. Friedman’s definition of absolute objects is essentially as follows:

(A) A geometric object Φi is an absolute object of a theory T just in case

for any two models 〈M,Φ1, ...,Φn〉 and 〈M,Ψ1, ...,Ψn〉 of T , for every

p ∈M , there are neighborhoods A, B of p and a transformation h : A→

B, such that Ψi = hΦi on A ∩B.

What is clear from this definition is that being an absolute object is neither necessary

nor sufficient for being interpreted as a feature of spacetime itself. For instance, take

any non-vanishing vector field, such as the Newtonian gravitational field or the elec-

tromagnetic field. It follows from the vector straightening theorem and Friedman’s

definition together that any such vector field constitutes an absolute object, yet we

clearly would not want to interpret any such object as representing something about

the structure of spacetime. A similar result can be established for any constant scalar

field. Friedman also points out that, while the metric tensor is an absolute object in

special relativity, it is not so in general relativity; since the metric tensor provides us

with important information about the structure of spacetime in general relativistic

theories, it then seems clear that being an absolute object also isn’t necessary for

representing the structure of spacetime. The question of whether or not the math-

ematical object that breaks the TRI of the dynamical laws is an absolute object of

our physical theories is thus entirely separate from the question of how we should

interpret that object. SP2, then, may give us a reason to accept to accept the second

but not the third premise of the Argument for Temporal Asymmetry in Spacetime.11

11Earman could, perhaps, take an analogue of the weak stance towards premise 3; that is, one
could argue that, while not all absolute objects represent spacetime structure and not all elements
of spacetime structure are represented by absolute objects, it’s usually best to prefer theories that
require that all and only absolute objects represent spacetime structure to theories without such a
requirement. Such a stance seems especially reasonable given that the context of Earman’s positing
SP2 is a lengthy discussion of classical spacetime theories, for which the weak stance towards inter-
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6.4 An Object to Break the Symmetry

If SP2 cannot support the third premise of the Argument for Temporal Asymmetry

in Spacetime, we’ll have to look elsewhere, but first, we should return to the question

of what a reasonable temporally asymmetric structure to posit might be. One option

that should immediately occur to us is Price’s “Machian” law. As an analogue of

Pooley’s parity law, we could posit a law that says “all sequences of events have the

same temporal orientation” and add this law to our set of fundamental laws. We

then need only stipulate at some point in spacetime which direction is “past” and

which direction is “future” to fix the temporal orientation at all times. Such a law

governs features of sequences in spacetime but, like other laws like those of statistical

mechanics, should not be interpreted as a feature of spacetime, so it provides us

with sufficient grounds to reject the third premise of the Argument for Temporal

Asymmetry in Spacetime. There are those who might object to this law on the

grounds that it is non-local because a stipulated orientation in one region of spacetime

determines the temporal orientation at all points in spacetime, so, in fairness to the

proponent of the Argument for Temporal Asymmetry in Spacetime, I’ll consider a

different object.

The following structure also serves as a temporally asymmetric physical object

that we could introduce to our ontology to account for temporally irreversible laws.

Take the orientation field φ to be a map from spacetime points to light cones; essen-

tially φ allows us, at each point in spacetime, to pick out a single unique, consistent

light cone which we take to be the future light cone at p.1213. There are two different

preting absolute objects as features of spacetime is quite well-motivated. An advocate of this weak
stance will still need to account for my examples and explain why the weak relationship between
absolute objects and spacetime structure is acceptably violated in cases like general relativity, but
it should not be dismissed out of hand.

12The notion of consistency I have in mind here comes from Earman (1974). The basic idea is
that there is no point x in spacetime such that continuous transport of the light cone around a closed
loop based at x causes points previously on one side of the light cone to now fall in the other side
of the light cone.

13As the earlier quote from Price (2011) suggests, though, the field φ′ that picks out the past light
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interpretations of φ that will be important for our purposes. The first, which cor-

responds, roughly, to Horwich’s and Maudlin’s proposal, takes the object φ to be a

feature of spacetime; that is, the first interpretation takes φ to mathematically repre-

sent geometric features of spacetime itself. Depending on whether we’re relationists

or substantivalists about spacetime, we may understand φ differently, but I will lump

all such interpretations under the same heading for my purposes here. The second

interpretation, on the other hand, takes φ to be a mathematical description of a fea-

ture of matter fields, like a temporal arrow with which certain kinds of matter come

equipped, much like the electric field in classical electromagnetism. Put differently,

this second interpretation takes φ to be a map from points in spacetime to structural

features of spacetime even though φ itself is not an element of the spacetime structure.

One may draw parallels between this interpretation of φ and relationist theories of

spacetime, but I see no reason to think that only relationists can understand φ this

way. Our first interpretation takes φ to encode geometric features of spacetime while

our second interpretation takes φ to encode features of the contents of spacetime. I

will call the first interpretation “geometrical” and the second interpretation “mate-

rial”, and I will refer to the kind of object each takes φ to be by using the name of

these interpretations.

The difference between these two interpretations may be clearer if we consider the

following example: imagine that we have discovered that all particles of a certain type

rotate clockwise about an axis pointed in the same direction z. We can represent this

fact mathematically by positing a field ξ which is a map from points in spacetime to a

spatial vector in spacetime representing the direction of the particle’s rotation using

the right hand rule. We can interpret this field ξ in two ways: if ξ is a geometrical

object, then we treat this vector field as representing facts about the structure of

spacetime. There is a preferred direction in spacetime, and it’s the direction in which

cone at each point in spacetime would work just as well for our purposes.
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all of these particles are pointing. If ξ is interpreted as a material object, however,

then we treat this vector field as representing a feature of the matter fields of those

special spinning particles. We are then faced with the same problem concerning ξ

that we now face regarding φ: which of these two interpretations gives us the best

way of understanding our new mathematical object? In other words, should we think

of a temporal orientation field like the metric tensor or like an electric field?

With the background set and our options laid out, we can now consider arguments

for or against these positions which, in turn, will allow us to support or refute the

third premise of the Argument for Temporal Asymmetry in Spacetime. One first in-

tuition might be that Occam’s razor can tell us whether we should believe a particular

mathematical object to be material or geometric since, after all, we must balance the

desire for a wide explanatory scope that led us to posit φ in the first place with other

theoretical virtues like parsimony. But this intuition leads nowhere since we’re still

dealing with the same number of things whether we add a material or a geometrical

object into our ontology as a consequences of the TRI-failure of the fundamental laws.

Appeals to many other theoretical virtues like ease of Popperian falsifiability will not

help us. Treating a particular mathematical object as geometrical will not make our

physical theory any easier or harder to falsify since these two options are empirically

indistinguishable. It seems that the philosopher of science’s usual bag of tricks may

be of limited use here.

But there is one notion from the general philosophy of science, namely method-

ological conservatism, that can do some real work for us. It may not settle the issue,

but it will weigh in favor of the materialist’s position. The conservative principle best

suited to this project is the one that licenses the inference in the following passage

from Sklar (1975):

We have to choose among alternative hypotheses all of which seem equally

warranted on the basis of reasonable inference from the evidential data.
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But suppose one of the hypotheses is “more in conformity with preexisting

theory” – more “like it in structure,” say, or more “conceptually continu-

ous” with it. Then that hypothesis is preferred. (31)

In other words, methodological conservatism tells us to prefer the hypothesis that

deviates as little from our previously-held hypotheses as possible. We can apply this

principle to the geometrical/material debate as follows: though we may not have

a clear account of how to determine which objects are geometrical and which are

material, most authors agree about many of the features that we should interpret

as geometrical according to particular physical theories. The metric tensor and the

properties we can determine from it such as spacetime curvature, the connection, light

cone structures, and the spacetime separation are always taken to be geometrical, not

dynamic, objects, at least in our best currently available theories of space and time.

Thus, the methodologically conservative among us will want our new geometrical

objects to stick as close to these original geometrical objects as possible. Let us then

provisionally state that we should take the geometrical objects to be the ones that

we can derive from the metric tensor alone. We may posit new sorts of geometrical

objects if empirical data or other theoretical virtues drive us to do so, but, all other

things being equal, it’s better to stick with theories that take as geometrical only the

sorts of objects we’re used to taking as geometrical.14

But why should we be so resistant to changes in geometrical objects? Our best

theories of spacetime physics are our best theories for a reason, namely because they

are empirically successful and have been for a while. Those of us who are scientific

realists typically take the empirical success of a scientific theory to provide a (po-

14One virtue of this conservative principle that’s worth remarking on is that it lines up quite
nicely with traditional philosophical accounts like Quinean webs of belief and Lakatosian research
programmes. Both of these philosophical accounts appeal to a network of relations among the
commitments of our theories, and we clearly take some of these commitments to be more central
or important than others. When our theories confront empirical evidence and something must be
rejected, we should begin by rejecting the less central claims before we reject any truths more central
to our theory. And this is precisely what my conservative principle recommends we do.
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tentially defeasible) reason to believe that the scientific theory has gotten certain

features of the world right. We may no longer believe that Newtonian mechanics is

literally true, but we do believe that it got a number of important things right about

the relationship among, for instance, the mass, velocity, acceleration, and position of

medium-sized physical objects. Likewise, we may think that our current set of geo-

metrical objects posited by our best available physical theories is incomplete because,

like all physical theories, it will likely be modified or discarded in the future; however,

since we are not in a position to know what it is that our current set of geometrical

objects gets right, the best policy would be to stick to this set as closely as possible

while still allowing these objects to play the role in our physical theories that they

currently play.

Having identified the metric and what follows from it as our litmus test for iden-

tifying geometrical objects, we can now apply our principle of methodological conser-

vatism to help us determine when we should identify a particular object as geometrical

or material. The metric tensor is a function defined on a spacetime manifold that

maps a pair of vectors tangent to that manifold to a scalar representing the spacetime

separation between these vectors. The metric tensor is symmetric in both space and

time; that is, for any metric tensor gab, it follows that gab(v,w) = gab(w,v) for any

vectors v,w in the tangent space. So the metric alone does not tell us whether, for

instance, a point p which is time-like separated from a point q is in q’s future or q’s

past any more than it could tell us whether the point r which is space-like separated

from a point q is to the left or right of q. If the metric alone does not give us this sort

of information, we need to rely on some sort of supplemental structure to give it to

us. We have two options: we can treat this asymmetrical structure as a geometrical

or material object. If we treat it as a geometrical object, however, we risk violating

my conservative principle. After all, relativistic metric tensors do not provide us with

any information about preferred directions in space or time; why should we expect
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the metric tensor found in our new theory to play such a different role?

So methodological conservatism may give us reason to think that any orientation

field like the one I’ve proposed is best treated as a material rather than a geometrical

object because it performs a task separate from the kinds of tasks performed by

the metric tensor in the recent past. However, this reason is not decisive. Other

considerations may lead us to believe, for methodologically conservative reasons, that

interpreting φ materially is incorrect since it has many features (not carry energy,

providing only a direction but not a magnitude, etc.) that many other material

fields have. When weighing such cases against one another, it still seems clear to

me that interpreting φ materially is the more methodologically conservative of these

two options, but, to keep the discussion from digressing into table-thumping about

intuitions, we may have to accept the fact that methodological conservatism alone

may not be sufficient to resolve this issue. But this result is perhaps unsurprising;

had we followed methodological conservatism alone, we would have refrained from

discarding Newtonian physics in favor of special relativity. The suggestion that every

new mathematical object should be treated as material instead of geometrical seems

absurd, and one might worry that my methodology could saddle us with the view

that the compensatory Lorentz theory is preferable to special relativity, which is a

disagreeable consequence to say the least. What is needed, then, is some way to

distinguish the cases where we do want to posit new geometrical objects like special

relativity from cases where the new symmetry-breaking objects seem best interpreted

as material. This reason, hopefully, will give us a way out of the methodologically

conservative gridlock.

In this situation, we’re forced to take a stance on just what it is we want spacetime

to do for us in our physical and metaphysical theories. Consider the case of special

relativity. What was it that motivated physicists to posit the existence of spacetime

as opposed to simply remarking on the fact that all of the laws seemed to be Lorentz-
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invariant? The value of spacetime is that it provides a unifying explanation for a

diverse range of phenomena that we may think cry out for explanation. Spacetime

here serves as a kind of meta-law, explaining and justifying the Lorentz-invariance

of the physical laws instead of requiring that we take the Lorentz-invariance of these

laws as a brute fact. So, if all the laws seem to be Lorentz-invariant, then we have a

fact about these laws to explain, and geometrical objects may be posited to explain

this fact.

But imagine that we are given a case like Tooley’s garden where we find that one

particular region of spacetime is “special” in some sense. Perhaps, for instance, we

have a physical theory that fails to be spatial translation invariant (STI) because the

laws allow some things in a region X to be possible that are not possible outside of X.

Should we posit that the region privileged by this strange law is somehow privileged

by the spacetime structure of our world? Well, it depends on what facts we need

to explain. If all of our other physical theories are STI, then it seems the only fact

we have to explain is the failure of one particular natural law to be invariant under

STI. We may explain this by tracing the STI-failure back to initial conditions that

fail to be STI despite STI micro-laws, or we may posit some object that fails to be

STI that the laws couple to. But to posit that this preferred region X is a special

geometrical object is to leave more unexplained than it ever explained in the first

place. If spacetime itself fails to be STI, then why are so many of our other laws

STI? If we were to investigate and find that, in every case, STI-failing laws were more

empirically adequate than their STI alternatives, then we wouldn’t be faced with this

explanatory embarrassment by positing some spacetime structure that failed to be

STI.15 So it seems like the explanatory gains outweigh the costs when we posit an

asymmetry in spacetime that every dynamical law seems to exhibit; however, if most

of the laws are invariant under some symmetry and we have only one or two laws

15Note that, by incorporating a special position as an element of spacetime structure, we have
now made the law in the Tooley’s garden example universal in the sense of U ′.
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that are not, then positing an asymmetric feature of spacetime to explain these few

asymmetries comes at a great explanatory cost, and the benefits just aren’t worth it.

Put differently, I’m suggesting that we adopt the following rule, which is just a

variant of inference to the best explanation: we have more reason to assign inter-

pretation I to mathematical object o than we have reason to assign interpretation

I ′ to o only if I provides us with a better explanation for the physical phenomena

that motivated our positing o in the first place than I ′ provides. There may be diffi-

cult cases where reasonable individuals disagree over which theory or interpretation

is truly more explanatory, but in many situations, our paradigm cases of excellent

explanations (e.g. those that are more unifying, those that are less ad hoc, etc.) will

provide us with an acceptable metric by which to judge which theory or interpreta-

tion is more explanatory and will frequently lead to general agreement. My rule does

not tell us that the more explanatory theory or interpretation is true, nor does it

suggest that we not continue investigating theories or interpretations that we do not

believe at this time. It does suggest, however, that the currently available evidence

should lead us to believe the theory or interpretation that provides us with better

explanations and fewer unexplained phenomena than its rivals.

For our case, that means that we should only interpret φ as geometrical if all or

most of the laws fail to be TRI. If most of the laws are TRI, then a geometrical φ

would need to couple to some laws but not others, and we would need some sort of

explanation for this feature of spacetime that, unlike every other feature of spacetime

we’ve posited to date, only affects certain laws but not others. A material φ, on the

other hand, would not have so difficult a burden as it could be interpreted as merely

describing geometric features of the matter governed by the temporally irreversible

laws. As I discussed previously, the CP -violations that lead us to believe that the

fundamental laws of physics are not all TRI have only been observed in two different

types of mesons. We have no reason, at present, to believe that the symmetry-
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breaking is more widespread than that since CP -violations have not been observed in

experiments involving numerous other particle collisions. Even if we take the standard

model alone as our best available physical theory, the vast majority of the terms in

the Lagrangian we would write down to describe all of the particles in the universe

would be TRI. If we posit, then, that there is a particular field, φ, that some mesons

couple to and that the rest of the particles don’t, we have an explanation (or at least

the beginning of an explanation) for the TRI-failure we observe. If we posit that

spacetime itself fails to be TRI, however, we must explain why the Lorentz-invariance

of spacetime makes every term in the Lagrangian Lorentz-invariant while the TRI-

failure of spacetime doesn’t actually imply that most of the terms in the Lagrangian

for the universe fail to be TRI.

For those who remain unconvinced, let’s consider an analogy with the electric field.

When faced with phenomena suggesting the presence of an electric field, physicists

could have chosen to interpret this field geometrically or materially, but in the end

they chose to interpret it materially. What could their reasoning have been? At least

part of it, I would think, is the fact that not all material objects interact with the

electric field in interesting ways. Uncharged particles would not have their motion

directly affected by such a field, and so it doesn’t seem suitably universal to be

interpreted geometrically. This example may lead to a new interpretive principle that

even those wary of my explanatory principle would be willing to adopt: geometrical

objects have a wider (or more universal) scope than material objects, so an object

should only be interpreted geometrically if its scope is sufficiently wide. Considering

the salient universality standards used to apply this principle to the case of the electric

field, we find that the electric field should be interpreted materially, and it seems hard

to see how such standards ruling the electric field a material object could consistently

support interpreting φ as a geometric object. Thus, considerations of other materially-

interpreted fields suggest that, due to considerations of scope, it’s better to interpret
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φ materially than geometrically.16

Treating φ as a material object leaves us with less to explain than treating it as a

geometrical object does and better aligns with our treatment of fields like the electric

field in the past, so we have a good reason to think that φ is a material rather than

geometrical object; however, should we find that other physical theories are improved

by setting them in spacetimes containing a geometrical object like φ, then we may

need to revise this opinion. Without many such physical theories to appeal to, we

seem to have a good reason to reject the third premise of the Argument for Temporal

Asymmetry in Spacetime by taking φ to be material, and so we have a good reason

to reject the conclusion of the Argument for Temporal Asymmetry in Spacetime.

6.5 What is Spacetime and How Should We Treat it?

At this point, it’s worth considering an objection to my diagnosis of when we

should treat a mathematical object as geometrical that arises from my characteriza-

tion of spacetime. There is a fairly intuitive view that I have endorsed here which

can be found in works by Balashov and Janssen (2003) and Janssen (2009) as well,

namely that the spacetime of a physical theory is more fundamental than the dynam-

ical laws and provides the spatiotemporal relations that the laws rely on to help us

predict and explain physical phenomena. Consider, for instance, any inverse square

law such as Coulomb’s law or Newton’s law of universal gravitation. These laws allow

us to determine the motion of particles under the influence of certain kinds of forces,

and the influence of the force is proportional to the inverse square of the distance

between the particle and the origin of the force. It is the fundamental spacetime

relations that tell us the distance between the particle and the force’s origin. The

dynamical laws rely (both explanatorily and ontologically) on spacetime in that facts

16I believe that arguments similar to mine would support a material rather than geometrical
interpretation of φ’s spatial counterpart posited to explain failures of parity reversal invariance, but
the implications of my approach to the topic of parity are a topic for another work.
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about distances, for instance, will determine the form certain laws take. The ba-

sic picture is of an underlying, unifying spacetime that fundamentally grounds facts

about the dynamical laws and allows us to explain the behavior and symmetries of

various laws by appealing to the spacetime of the theory from which these laws come.

There is, however, an alternative picture available, one which denies the move

I make in my diagnosis and provides independent support for the second and third

premises of the Argument for Temporal Asymmetry in Spacetime. Brown (2005) and

Brown and Pooley (2006) suggest that Janssen has “put the cart before the horse”

(Brown (2005), 132) in this case and that it is the laws of physics that ground,

justify, and explain our claims about spacetime.17 For instance, it is not the case

that the laws of physics are Lorentz invariant because spacetime itself is Lorentz

invariant; rather, we claim that spacetime is Lorentz invariant as a way of capturing an

important fact about our dynamical laws, namely their Lorentz-invariance. Spacetime

is, according to Brown and Pooley, a “glorious non-entity”, completely incapable of

explaining facts about the dynamical laws in the way that Janssen suggests. It

seems fitting to think of Brown’s account as taking a similar view towards spacetime

as the advocate of Humean supervenience takes towards natural laws: just as the

Humean claims that natural laws are no more than generalized regularities that satisfy

some important cognitive criteria, Brown claims that spacetime is no more than a

mathematical representation of certain features many of the laws seem to share.18

It is the laws that explain and justify facts about this spacetime structure, not the

other way around. For instance, Brown (2005) claims “...the Minkowskian metric

is no more than a codification of the behaviour of rods and clocks, or equivalently,

it is no more than the Kleinian geometry associated with the symmetry group of

the quantum physics of the non-gravitational interactions in the theory of matter”

17The fact that Brown makes claims about ontological as well as explanatory priority here is noted
by Norton (2008).

18A discussion of Brown’s account on page 128 of Frisch (2011) makes these similarities quite
striking.
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(9). Relying on a causal account of explanation, Brown suggests that Minkowski

spacetime does no real explanatory work: it can’t cause matter to move in certain

ways, so how can we take it to explain why matter moves as it does? Given the

explanatory deficiencies of spacetime, Brown suggests we do the parsimonious thing

and cut down on our metaphysical commitments by removing spacetime, insofar as

it represents something separate and apart from a codification of facts about the

physical laws, from our ontology.19

If Brown is correct, then not only is there no real, meaningful geometrical/material

distinction here, but there is also a fairly straightforward argument for asymmetries in

spacetime from dynamical asymmetries; after all, if there is nothing more to spacetime

than what’s already encoded in the facts about the dynamical laws, then finding out

that the dynamical laws are temporally asymmetric should lead us to believe that the

spacetime we posit on their account is likewise temporally asymmetric. If Janssen

is correct, however, the connection between spacetime and dynamical asymmetries

should be something subtler, perhaps along the lines of what I’ve suggested in the

previous sections. In order to head off objections to the view I’ve laid out in the

previous sections, then, I must provide compelling reasons to reject Brown’s account

in favor of Janssen’s. Our first attempts to determine which of these two views is

correct may rely on intuitions about physical possibilities. For instance, we may

ask ourselves whether it seems physically possible for there to be some spacetime

with more (or less) structure than required by the dynamical laws. An example: we

could consider Lorentz-invariant dynamical laws in spacetimes that are not Lorentz-

invariant. Are models such as these metaphysically possible? I see no reason to

think they are not, but these intuition-pumping cases don’t provide much in the way

of argument for Janssen’s position over Brown’s or vice-versa if intuitions diverge

19To my knowledge, the first Brown-like view on the nature of spacetime was discussed in III.F of
Sklar (1977).
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widely in these cases.20 More sophisticated arguments are clearly required here.

We turn, then, to issues of explanation, which is where Brown and Janssen them-

selves seem to take the best arguments in favor of their respective positions to lie.

Brown argues that there is a kind of gap in explanations that rely on spacetime to

explain, for instance, why moving rods contract, or, in the case of general relativity,

why light rays follow geodesics. As he puts it, “The real issue is not whether phys-

ical geometry is easy to get your hands on, but rather whether, when it is absolute

and immune to perturbation as in Newtonian and Minkowski space-time, it offers

a causal explanation of anything” (Brown (2005), 26). The problem, according to

Brown, is that spacetime cannot provide causal explanations of material phenomena,

so it cannot explain them at all. If we want to explain why a law is Lorentz-invariant,

for instance, Brown suggests that an adequate explanation would be to show how to

derive this law from a more fundamental Lorentz-invariant law. If the law in ques-

tion is fundamental, however, then Brown does not provide us with any resources to

explain this fact. Regardless of the law’s status, it would be unacceptable, Brown

claims, to try to explain the Lorentz-invariance of a law by appealing to the structure

of spacetime as an entity in its own right.

Janssen, for his part, agrees with Brown that, if spacetime is explanatorily inert,

it would be better to treat spacetime as Brown’s “glorious non-entity”. However, he

draws on work from Lange (2007) to argue that, without spacetime, there’s a particu-

larly odd fact that Brown and members of his camp need to account for. In particular,

special relativity is a Lorentz-invariant theory, and this feature, Lorentz-invariance,

is assumed to be true from the start in other theories such as the electroweak theory

20Earman’s symmetry principle SP1, which takes every dynamical symmetry to be a spacetime
symmetry, is supported by the claim that spacetimes with more structure than is required by the
dynamical laws violate Ockham’s razor and could be of use to the advocate of Brown’s position
here. But note that Earman’s symmetry principle and his argument supporting it only establish
that theory-interpretation pairs that don’t violate Ockham’s razor are better than those that do.
Brown needs to establish something a bit stronger to respond to me here, namely that spacetimes
that violate SP1 are, in some sense, conceptually incoherent or impossible.
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and quantum chromodynamics. The laws of our best available physical theories all

seem to invariant under the same set of symmetries, which, on the face of it, seems

quite odd; in fact, Janssen takes this feature of laws that all of our best available

physical laws of nature seem to share to call out for an explanation. Without some

unifying explanation, it seems quite the coincidence that all of our best available laws

just so happen to share this feature in common.21

There is a possible response available to Brown here: he can appeal to an under-

lying physical theory invariant under the symmetries that require explanation. For

instance, Brown could argue that many of the laws we use to are Lorentz-invariant be-

cause the fundamental physical theory that underlies them is also Lorentz-invariant.

This line of response is promising, but it still seems problematic for several reasons.

First, what if there isn’t a single dynamical physical theory that underwrites all of the

laws in question? If this isn’t so, we can then reformulate Janssen’s worry by asking

what explains the invariance of these more fundamental laws under the symmetries

they’re invariant under. Brown’s possible line of response is better off if there is only

a single physical theory that explains the symmetries of all of these disparate physical

theories like the “grand unified theory of everything” (GUTE) discussed in chapter 2.

If such a theory exists, brute facts about that theory seem no worse off explanatorily

than brute facts about spacetime. The worry for this line of response, though, is that

pluralism in physics may win the day and no empirically adequate GUTE may ever

be found. Because the line of response considered here relies on the existence of a

physical theory that’s not currently available to us, I think it is reasonable to discount

this response to Janssen until such a theory is discovered.22 So, absent a GUTE, the

21This point is made on page 182 of Frisch (2011) as well.
22Some may worry about a tension here between my agnosticism towards the existence of a GUTE

and my discussion of GUTEs in chapter 2. Note that, in chapter 2, my purpose was to show how a
particular account of symmetries would be useful to physicists and philosophers in their respective
projects. Searching for a GUTE is a major project of interest to physicists and philosophers alike,
so the fact that my account of symmetries will be useful for those working on GUTEs is still a sign
of its pragmatic value even if, ultimately, we can formulate no empirically adequate GUTE.
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best line of argument available to Brown in response to Janssen is to argue that it’s

acceptable to take some facts about laws as brute.

Both camps can dig in their heels here: Brown can claim that the fact that all of

the best fundamental laws seem to be Lorentz-invariant is not the sort of fact that

calls out for explanation (or may even be the sort of fact that can never be explained)

while Janssen can claim that the fact that moving rods contract is explained (insofar

as it can be explained) by the nature of spacetime but that not all explanations need

be causal explanations. The current state of the debate between these two views on

spacetime seems to rest on the reasonableness of these two explanatory claims, and

one may again worry that we’ve reached a point where intuitions about explanation

are all we can rely on to settle the matter.

But this is not the case. Brown claims that all genuine explanations are causal, yet

there seem to be good reasons to think that causal accounts of explanation provide us

with too narrow a picture of what it takes for an explanation to be genuine. Causal

accounts of explanation tell us that “A explains B” is true just in case there is a causal

relationship between A and B such that A (or a substructure of A) causes B (or a

substructure of B), but there are numerous counterexamples that seem to suggest

otherwise. For instance, we may explain a drop in the pressure of an ideal gas by

appealing to the gas’s increasing volume, and we may explain an increase in an ideal

gas’s volume by appealing to a drop in the gas’s pressure. Yet causal relationships are

asymmetric since causes temporally precede their effects. So no matter what causal

story we decide to tell about the ideal gas, one of our explanatory claims will be

unaccounted for.23 Causal accounts of explanation are similarly poor at accounting

for explanations of laws that appeal only to other laws or meta-laws. Unless we’re

willing to accept the claim that features of one law can cause features of another

law, Brown may have a hard time explaining why he takes it to be the case that the

23See Price (1997) for an account of backwards causation which one could use to dispute claims
about temporally asymmetries in causation.
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Lorentz-invariance of law L can be explained by the Lorentz-invariance of the more

fundamental law L′ from which L can be derived. The relationship here does seem to

be explanatory, but, at least on most common accounts of causation, it doesn’t seem

to be distinctly causal. We have good reason, then, to believe that causation is not a

necessary condition for explanation.

I bring these problems with the causal account to the fore because there’s a better

account of explanation available, namely one that relies not on the notion of causation

but on the more general notion of dependence. Jansson (2011) (not to be confused

with Janssen) has recently advocated an account of explanation that runs essentially

as follows: we can truthfully say “A explains B” just in case both A and B occur and,

when A occurs, B also occurs in virtue of A, and when A does not occur, B fails to

occur in virtue of A’s failure to occur. These dependency relationships that Jansson

relies on are more general than causal relationships, so they seem better suited to deal

with my previous counterexamples that showed that causation was not necessary for

explanation. On Jansson’s account, the ideal gas law encodes a nomic dependency

relation between the volume and pressure of an ideal gas, so the pressure of the gas

can explain its volume and vice-versa, even if there is no causal relation we can posit

to justify both explanations. And features of the laws are certainly dependent on

(if not caused by) features of more fundamental laws. We thus have good reason to

prefer the dependency account of explanation to the causal account.

Armed with the dependency account of explanation, we may attempt to break

the explanatory stalemate in the Brown/Janssen debate by seeing how well each

account’s claims about explanation fare when we take dependencies, not just causes,

to underwrite genuine explanations. We now seem to have good reason to think that

spacetime provides us with a genuine explanation for phenomena like contracting

rods. These phenomena depend on the structure of spacetime since moving rods

contract in virtue of the Lorentz-invariance of spacetime and a relation between the

160



contents of spacetime and spacetime relations that connect them to one another.

If the structure of spacetime changes, we can expect this phenomenon to likewise

change, so the sort of dependency relation Janssen might posit in defense of his

view of spacetime seems to fit the explanatory criteria laid down by the dependency

account of explanation. Brown may object that Janssen needs to say a bit more

about the relations that obtain between spacetime and material objects, and this

may be desirable for a more satisfying explanation of special relativistic phenomena,

but such details aren’t necessary for showing that spacetime explains phenomena in

special relativity. Likewise, spacetime can explain the fact that laws in theories like

quantum chromodynamics and the electroweak theory are Lorentz-invariant. The

relation between spacetime and these theories is such that we can determine the

Lorentz-invariance of these theories given only a Lorentz-invariant spacetime and the

relation between spacetime and the dynamical laws. If the structure of spacetime

changes so that it is no longer Lorentz-invariant, the relation between spacetime and

the laws requires a change in the Lorentz-invariance of these laws as well. Again, we

have a genuine explanation of a phenomenon that requires us to appeal to spacetime.

So where does this leave us? Brown has argued that his account of spacetime is

preferable because it provides an explanation for facts that Janssen’s account can’t

explain, namely facts about moving rods and clocks in special relativity. Janssen

agrees that, were this true, it would indeed give us a reason to prefer Brown’s ac-

count, but Brown’s claim about the explanatory inadequacy of spacetime is false.

As I have shown, Janssen’s spacetime, when coupled with a dependency account of

explanation, is capable of explaining not only the phenomena Brown mentioned but

also a phenomenon that Brown’s account must take as brute: the fact that all of the

best physical laws seem to be Lorentz-invariant. Thus, since Janssen’s spacetime is

capable of doing all the explanatory work Brown claimed it could not while also ex-

plaining phenomena that Brown’s account is unable to explain, we have a compelling
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reason to favor Janssen’s view of spacetime and a response to objectors who would

rely on Brown’s account to deny my geometrical/material distinction and justify the

second and third premises of the Argument for Temporal Asymmetry in Spacetime.

At the very least, my response has shown the work cut out for those who would sup-

port the Argument for Temporal Asymmetry in Spacetime by appealing to Brown’s

account: they must show why the causal account of explanation is superior to the

more general dependency account of explanation, which seems a difficult task indeed.

6.6 Conclusion

To quickly recap, I have argued that, though several philosophers have proposed

accounts that seem capable of licensing an inference from temporally irreversible laws

to a temporal spacetime asymmetry, none of these accounts or arguments are up to

the task. The Argument for Temporal Asymmetry in Spacetime seems promising,

and we can support its premises by appealing Earman’s symmetry principle SP2 or

by appealing to explanatory considerations. While the argument’s first premise is

reasonable, the best support we can find for the second premise involves taking a

weak stance towards SP2 and likewise weakening the argument’s conclusion. More

importantly, however, Earman’s SP2 doesn’t establish the existence of a symmetry-

breaking object that is best interpreted as geometrical. I have argued that we have

two ways of breaking the symmetry: we can posit a “Machian” dynamical law, which

leads us to reject the third premise, or we can posit an object φ which, except in

cases where most or all of the laws fail to be TRI, we have a good reason to think

must be material instead of a geometrical regardless of our substantivalist/relationist

sympathies. So, even if one accepts the second premise of the argument, the third

premise is false, and the Argument for Temporal Asymmetry in Spacetime fails. What

is more, while Brown’s account of spacetime would indeed provide the Argument for

Temporal Asymmetry in Spacetime with the support it requires and pose a difficult
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objection to my geometrical/material distinction, the view of spacetime suggested by

Janssen, which is incompatible with Brown’s account, provides us with more satisfying

explanations for why the laws behave as they do while still providing explanations

for the phenomena Brown charges it can’t explain. Thus, we should reject Brown’s

account, and once again we find that the Argument for Temporal Asymmetry in

Spacetime fails.

The failure of the Argument for Temporal Asymmetry in Spacetime may provide

us with an important moral. Most obviously, the fact that the fundamental laws

of physics are temporally irreversible may not give us any reason to believe that

spacetime is temporally anisotropic, and even if it does, the relationship between

dynamical laws and spacetime structure may be significantly more complicated than

authors like Maudlin and Horwich seem to acknowledge. If the connection between

dynamical asymmetries and spacetime structures is to be defended, its defenders

must explain what virtues of theory-interpretation pairs that follow the geometrical

interpretation of φ have that theory-interpretation pairs that follow the material

interpretation of φ lack and why we should believe that theory-interpretation pairs

that exemplify these particular virtues are the ones that most aptly describe the

world. I believe my analysis of the Argument for Temporal Asymmetry in Spacetime

suggests this will be an uphill battle, but that does not mean it will be an ultimately

futile one.
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