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CHAPTER I

Introduction

1.1 Introduction

The mathematical study of water waves is motivated in part by the need for bet-

ter predictions of the behavior of the surface of the ocean for shipping and military

applications. For example, there are many recorded instances of large waves in the

absence of geological explanations- waves the size of tsunamis without an earthquake.

These rogue waves, while uncommon, are very destructive and very unpredictable.

Since as early as the 1970s ([17]), mathematicians have been attempting to identify

the causes of these large waves. The question is fundamentally about the existence

of solutions to a partial differential equation and, more specifically, about the per-

sistence and size of these solutions.

The research we present here combines elements of fluid mechanics, dispersive

differential equations, and harmonic analysis. We use tools from all of these areas

to analyze behavior of solutions to the water wave problem in terms of the initial

data. The motivation for this research is Sijue Wu’s paper [20] on almost global well

posedness for the full water wave problem in 2D. Wu’s result roughly says that a

2D water wave with small initial height, energy, and slope in Sobolev space remains

small and smooth almost globally in time. Intuitively, we expect that, for long time

1
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existence, we only need the slope of the initial wave to be small, not the height and

energy.

A close examination of the techniques in [20] motivates the work. One of the

main ingredients of her proof is a decay estimate on the L∞ norm of a function

in terms of the L2 norms of specific space-time derivatives with a decay rate 1/t
1
2 .

However, in practice, her estimate only provides bounds on the derivatives of certain

quantities associated to our problem. The proof of this estimate [20, Proposition 3.1]

uses ideas similar to those found in Klainerman’s proof of the Klainerman-Sobolev

type estimates for the wave equation. We will explore using different methods to

control the L∞ norms of these quantities, without the need for derivatives. The

results contained in the following chapters suggest that while the data used in [20]

removes some bad behavior, a broader class of data will produce the same results.

Our goal, with this research as a starting point, is to characterize completely the

class of initial data which yields long time existence in the full water wave problem

in two dimensions. The work so far focuses on the linear problem as the restrictions

on data in the linear case will carry over to the nonlinear problem. In particular,

our results identify a trajectory along which we see growth in solutions to the linear

problem. In our efforts to identify the source of this surprising growing factor, we

connect the size of the singularity at the origin in frequency to the spatial decay of

the solution.

1.2 Outline

In Chapter II, we lay out a variety of known results, including the derivation of the

water wave problem and the subsequent analysis which leads to a one dimensional

dispersive equation. We also discuss results for the wave equation, specifically the
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work of Keel, Smith, and Sogge [5, 6, 7] which served as the inspiration for our

approach.

In Chapter III, we give some preliminary results from harmonic analysis which

are necessary for the proofs in the subsequent chapters. The chapter also includes a

short collection of useful definitions from harmonic analysis.

In Chapter IV, we present results for a general class of one dimensional dispersive

equations, including a discussion of the sharpness of the estimates. The key results

of this chapter are Lemma IV.2, a new Sobolev-type decay bound, Theorem IV.3,

which implies growth in the solution along certain trajectories, and Theorem IV.5,

which shows that this growth factor is sharp. These theorems follow primarily from

the careful analysis of several oscillatory integrals. In the case of half the water

wave problem, we also include a simpler argument taking advantage of the quadratic

phase.

Chapter V focuses on further analysis of the initial data of the linearized water

wave problem and its effects on the regularity and decay of the solution. While

Theorem IV.3 can be used to give a slow decay bound (see Corollary IV.6), by

decomposing the initial data of the linearized water wave problem in frequency, we

find an improved decay estimate, Theorem V.11. This proof uses an additional

bound similar to those used by Klainerman for the wave equation. In the course

of this proof, we identify the main impediment to our desired decay, and further

analysis leads us to Theorem V.13, relating the size of the singularity at the origin

in frequency to the rate of spatial decay. Finally, in Chapter VI, we make a few

concluding remarks and discuss the work which will follow these results.

We also include in the form of an Appendix some results of independent interest

for the two dimensional wave equation, which we derived in the course of our study
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of the techniques of Klainerman and Keel, Smith, and Sogge.



CHAPTER II

Motivation

2.1 Basic Framework

In order to model the behavior of waves in the deep ocean away from the effects

of coastline, we considera fluid domain of infinite depth, modelled on the entirety of

Euclidean space. We will consider only the case of the two dimensional water wave,

that is the fluid domain is a subset of the plane. We can assume the density in the

water region is constant and equal to 1, while letting the density on the air region

equal zero. Let Ω(t) ⊆ R
2 denote the fluid domain and Σ(t) denote the interface

between the water and the air. The equations governing the velocity field v in the

fluid domain are

(2.1)





∂tv+ v · ∇v = g−∇P in Ω(t)

∇ · v = 0 ∇× v = 0 in Ω(t)

P = 0 on Σ(t).

The first equation encodes that fluid particles will move with the velocity field with

respect to the forces of gravity g and pressure P . The second set of equations enforces

incompressibility and irrotationality of the vector field.

5
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2.1.1 Rewriting the equation

The first reduction of the equation is to the interface. First, we change to La-

grangian coordinates following individual fluid packets in time. Let α denote the

Lagrangian variable and z(t, α) = x(t, α) + iy(t, α) denote the equation for the in-

terface in this variable. By construction, if we consider the complex function z as a

vector (x, y), zt(t, α) = v(t, z(t, α)) and ztt(t, α) = ∂tv + v · ∇v along the interface.

If we consider R
2 as the complex plane, i.e. (x, y) 7→ x + iy, the vector g becomes

−i and the incompressibility and irrotationality conditions for v = u + iv can be

rewritten as

(2.2)
ux = vy

uy = −vx.

In this framework, these equations imply that v satisfies the Cauchy-Riemann equa-

tions in Ω(t). Define

hf(t, α) =
1

πi
p.v.

∫
f(t, β)zβ(t, β)

z(t, α)− z(t, β)
dβ,

the Hilbert transform along the interface z(t, α). Since the Hilbert transform takes

the boundary values of holomorphic functions to themselves, the equation (2.2) is

equivalent to hzt = zt. Our assumption that P = 0 along Σ(t) implies that ∇P is

purely in the normal direction to the interface. Denote the outward pointing unit

normal vector as n. The equation for the interface z(t, α) implies n = izα
|zα| , as seen

in figure 2.1 . If we let a = −∂P
∂n

1
|zα| , we have ∇P = −iazα . Along the interface we

now have the following equations, which are equivalent to (2.1):

(2.3)
ztt + i = iazα

hzt = zt.
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fluid domain Ω(t)

n

zα

interface - z(t, α)

Figure 2.1: Fluid domain and a

The system (2.3) is fully nonlinear because of the quantity a and the Hilbert trans-

form h. However, we can make this equation quasilinear simply by taking a t-

derivative of the first equality:

(2.4)
zttt − iaztα = iatzα

hzt = zt.

The first equation (2.4) displays dispersive effects in the following way: if we think

of zt = u, we can linearize around the free solution (which is identically 0 in this

case) to the free equation

(2.5) ∂ttu+ |Dα|u = 0.

Remark II.1. We can rewrite (2.4) as ∂ttu + |Dα|u = F (z, u, ut, utt, uα). From now

on, we will consider the linear part rather than the full equation to understand the

dispersive effects.

Given initial data for u and ut, we can solve the linear equation explicitly:

(2.6) u(t, x) =
1

2

∫
eixξ

(
eit|ξ|

1
2
(
û0 − i|ξ|−

1
2 û1

)
+ e−it|ξ|

1
2
(
û0 + i|ξ|−

1
2 û1

))
dξ.

This equation shows that we have dispersive effects as different Fourier frequencies

will propagate at different speeds.

The equation (2.6) is a linear combination of oscillatory inetgrals with phase

φ(x, t, ξ) = xξ ± t|ξ|
1
2 . By applying the method of stationary phase, a natural



8

control of the L∞ bound of the solution in terms of the L1 norm of the solutions and

derivatives appears. We state this decay as the following proposition:

Proposition II.2. If u(t, x) ∈ C∞(R1+1) solves equation (2.5) with

(u(0, x), ut(0, x)) = (u0(x), u1(x))

and ûi compactly supported for i = 0, 1, then for t > 0,

(2.7) sup
x

|u(t, x)| ≤ 1

(1 + t)
1
2

1∑

i=0

∑

|k|≤2

∫
|∂kxui(x)|dx.

Remark II.3. There are several proofs for this type of bound in the literature. For

example, if we apply Theorem 2.2 in [8] to each term of (2.6) we get the desired

result.

This decay rate in Proposition II.2 is not ideal for our purposes for a couple

of reasons. Firstly, the nonlinearities in equation (2.4) are quadratic, so a decay

rate of t−
1
2 is not quite fast enough to give long time existence for solutions. In

addition, we would prefer to control the L∞ norm of the solution in terms of L2

norms of the initial data, because these types of estimates are more compatible with

energy methods. In [20], Wu constructed a change of variables with an accompanying

change of unknowns which caused the quadratic nonlinearities to cancel leaving only

cubic and higher order nonlinearities, solving the first problem. A Sobolev-type

bound adapted from techniques of Klainerman for nonlinear wave equations solves

the second.

2.1.2 Change of Coordinates and Unknowns

The change of variables is given as follows: let Φ(t, ·) : Ω(t) → P− be a Rie-

mann mapping from the fluid domain Ω(t) to the lower half plane P− such that

limz→∞Φ(t, z) = 1 and Φ(t, z(t, 0)) = 2x(t, 0), where x is the real (or horizontal)
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part of the interface equation z(t, α). Let h(t, α) = Φ(t, z(t, α)). The change of

variables used in [20] is precisely

k(t, α) = 2x(t, α)− h(t, α).

This change of coordinates allows the problem to be recast in terms of new quantities

χ, v, and λ. Let U−1
k f := f ◦ k−1. Then these new quantities are given by

χ = U−1
k (I − h)(z − z)

v = U−1
k ∂t((I − h)(z − z))

λ = U−1
k (I − h)ψ

where ψ(t, α) = φ(t, z(t, α)) and φ is the velocity potential. These quantities satisfy

equations of the form

∂2tΘ− i∂αΘ = G

for G cubic and higher order. Using invariant vector fields of the differential operator

∂2t − i∂α, Wu controls the L∞ norm of a rapidly decaying function by a Sobolev-type

bound.

2.1.3 Sobolev-type bounds

Observe that ∂t, ∂α, L = t
2
∂t+α∂α and Ω0 = x∂t+

it
2
are invariant under ∂2t − i∂α,

i.e. [∂t, ∂
2
t − i∂α] = [∂α, ∂

2
t − i∂α] = [Ω0, ∂

2
t − i∂α] = 0 and [L, ∂2t − i∂α] = −L. Wu

derives the following L2 − L∞ type decay estimate with decay rate 1/t
1
2 :

Proposition II.4. [20, Proposition 3.1] Let u(t, x) be any function with sufficient

decay at ∞ and let Γ = {∂t, ∂x, L} where L = t
2
∂t + x∂x. Let Ω0 = x∂t +

it
2
. Then,

for a multiindex k = {k1, k2, k3} and Γk = ∂k1t ∂
k2
x L

k3, we have

(2.8) |u(t, x)| ≤ 1

t
1
2


 ∑

1≤|k|≤2

‖Γku‖L2 +
∑

|k|≤1

‖ΓkΩ0u‖L2


 .
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While ∂t, ∂α, and L are vector fields, Ω0 is not. In fact, it is the appearance of Ω0

in the estimates which makes Wu’s decay estimates applicable only to the derivatives

of the quantities associated to her problem, forcing assumptions on the initial energy

and the initial height. For a careful examination of this problem in the case of the

linearized water wave problem, see §5.1.2.

The focus of our work is on improving these Sobolev-type bounds, as the bounds in

[20] are sufficient for proving long time existence, but they could be sharper. Since the

existing proofs are complicated by the presence of Ω0, removing all the dependence

on Ω0 is a logical way to improve the results. In the work of Keel, Smith, and Sogge

[5, 6, 7], they reduce the set of vector fields used in Klainerman-type Sobolev bounds,

dropping the vector fields which are inconvenient for their arguments. Their work

inspired the results we present in Chapters III and IV. In the following section, we

discuss Klainerman’s ideas and identify some of the key points of the Keel, Smith,

and Sogge papers.

2.2 Method of Invariant Vector Fields

While considering the problem of long-term existence for the nonlinear wave equa-

tion

(∂2t −∆)v = F (t, v, . . .)

(v(0, x), vt(0, x)) = (v0(x), v1(x))

in various spatial dimensions, Klainerman developed what has become known as

the method of invariant vector fields (cf. [9, 10, 11]). The details of these proofs

easily fill a textbook (e.g. [18]), so we present a sketch of the ideas. The work

of Klainerman is distinctive because he introduces a new class of decay estimates.

Instead of using the standard Sobolev norms, which only allow spatial derivatives,

Klainerman derives estimates which include a whole class of vector fields, specifically
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those that have favorable commutation properties with the d’Alembertian ∂2t − ∆,

for example the vector fields for angular momentum and radiation derivatives. These

new estimates produce long time existence results for a large class of nonlinear wave

equations with small data in spatial dimensions greater than or equal to 2. The key

to these results is the adapted Sobolev bounds.

These types of results have been generalized to other differential equations, such

as the Schrödinger equation ([1]) using the appropriate class of invariant vector fields.

All of these generalizations, including Proposition II.4, follow from reasoning similar

to Klainerman’s for the wave equation.

Other results adapted Klainerman’s bounds to specialized cases of the wave equa-

tion. We are interested in the variation developed in order to handle the wave

equation in three spatial dimensions with an obstacle.

2.2.1 Keel, Smith, and Sogge Bounds for the Wave equation

When trying to solve the wave equation in a domain with an obstacle, the tech-

niques pioneered by Klainerman do not produce good results because they include

the Lorentz boosts t∂xi
+ xi∂t, which grow in time in the normal direction. In their

series of papers ([5, 6, 7]), Keel, Smith, and Sogge derive inequalities which use only

a partial collection of vector fields for the wave equation in three space dimensions.

They avoid these growing directions and get long-time existence in both the obstacle

and standard Minkowski case using new inequalities. Hidano and Yokoyama showed

that the key inequalities in these papers in fact hold for all space dimensions [2].

Jason Metcalfe and others increased the dimension in the obstacle case to 4 and

higher ([12, 14, 15, 16]).

Remark II.5. In the course of our study of these bounds for the wave equation, we

extended the results of Keel, Smith, and Sogge to the two dimensional Minkowski
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space. As these results are of independent interest, we include them in the appendix.

Our focus here, however, is how Keel, Smith, and Sogge’s techniques can inform our

analysis of the linearized water wave problem.

Our primary inspiration is the following theorem from [6]:

Theorem. [6, Theorem 2.3] Let v be solution to the homogeneous wave equation

�v = 0 in R+ × R
3, let v′ = (∂tv,∇v), and let Z = {∂t, ∂x,Ω} where {Ωij = xi∂j −

xj∂i, 1 ≤ i < j ≤ 3} are the rotational vector fields. Then for any N = 0, 1, 2, . . .,

∑

|β|≤N

(
‖Zβv′‖L2 + (ln(t+ 2))−

1
2‖(1 + |x|)−

1
2Zβv′‖L2((s,x):0≤s≤t)

)

≤ C
∑

|β|≤N

‖(Zβv)′(0, ·)‖L2.

A key ingredient in the proof of this theorem is a rotational Sobolev bound

Lemma II.6. [6, Lemma 2.4] Suppose that h ∈ C∞(R3). Then for R > 1,

‖h‖L∞(R/2≤|x|≤R) ≤ CR−1
∑

|β|≤2

‖Zβh‖L2(R/4≤|x|≤2R).

The theorem above controls weighted norms of derivatives of the time-space gra-

dient in terms of the initial data. Notice that on both sides, the sums are for

multi-indices up to N , so any estimates can be closed.

Rather than removing the Lorentz boosts in the case of the wave equation, we

want to remove Ω0. The aim is control of the L∞ norm of solutions in space. We use

an analogue to Lemma II.6 to inform our derivation of the appropriate L2 bounds

and find control in terms of homogeneous and inhomogeneous Sobolev spaces. In

the next chapter, we will discuss some useful results from harmonic analysis before

presenting the new decay bounds in Chapter IV.



CHAPTER III

Tools from Harmonic Analysis

In this chapter, we will outline some useful background information from harmonic

analysis. There are two main results that will be used in the rest of this document.

First, we will discuss the more complex one.

3.1 Basic Ideas of Harmonic Analysis

It is standard practice in harmonic analysis to define operators T on S(Rn) in the

following way:

(3.1) Tf(x) :=

∫
K(x, y)f(y)ds.

In order for this to make sense generally, we treat K as a distrubtion and call K

the kernel of the operator. One of the goals of harmonic analysis is to determine

the boundedness of these types of operators based on properties of the kernel. If the

kernel K(x, y) is in L∞(Rn × R
n), for instance, the operator T is clearly bounded

from L1 to L∞. The discussion of these operators becomes more nuanced for kernels

with singularities.

The prototypical example of this type of operator is the Hilbert transform in one

dimension, defined by kernel K(t, s) = p.v. c
t−s

for a fixed constant c depending on

the chose of Fourier transform. This kernel is singular along the diagonal, which

13
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would seem to be an impediment to analysis. However, the Hilbert transform is

well-known to be bounded from Lp to itself for 1 < p < ∞. Working with the

Hilbert transform is straightforward because the kernel function is a convolution and

has nice properties on the Fourier side. If the kernel defining a given operator is

actually a convolution, that is K(t, s) = K(t − s), looking at the Fourier transform

is a standard technique.

3.1.1 Hardy-Littlewood-Sobolev Lemma

For example, fractional integration has a convolution type kernel. These types of

kernels appear in the proofs in Chapters IV and V, and we will use the following

lemma.

Lemma III.1 (Hardy-Littlewood-Sobolev Lemma). For n ≥ 1, 1 < p < q < ∞,

0 < β < n, and

(3.2) Iβg(x) =

∫

Rn

g(z)

|x− z|β dz,

‖Iβg‖Lq(Rn) ≤ C(p, q)‖g‖Lp(Rn) when
1

q
=

1

p
− n− β

n
.

For a proof of this lemma, see [19].

Unfortunately, several operators which are not straightforward convolutions ap-

pear in our work. Instead of looking on the Fourier side, a more useful technique for

our work is careful analysis of the size of the singularity and the speed of the decay of

the kernel away from the singularities. There are several very powerful results along

these lines, but we will use the one that fits best in the context of our problem, the

T1 theorem. In order to state the theorem, we need some new definitions.
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3.2 The T1 Theorem

3.2.1 Definitions

Following the work of David and Journé [4], we need to characterize precisely

what sorts of kernels are allowed.

Definition III.2. Let K(x, y) be a continuous function on R
n × R

n\∆ where ∆ =

{(x, y) ∈ R
n ×R

n : x = y}, and two constants δ ∈ (0, 1] and Ck > 0. We say K(t, s)

is a standard kernel when all of the following are true:

1. |K(x, y)| ≤ Ck|x− y|−n

2. For |x− x′| < 1
2
|x− y|,

(3.3) |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ Ck|x− x′|δ
|x− y|n+δ

3. For all functions f, g ∈ C∞
0 (Rn) with disjoint supports,

〈Tf, g〉 =
∫∫

K(x, y)f(y)dy g(x)dx.

Observe that the Hilbert transform mentioned in the previous section has a stan-

dard kernel. The definition above is the most general definition of a standard kernel,

but observe that

(3.4) |∇xK(x, y)|+ |∇yK(x, y)| ≤ C

|x− y|n+1

implies (3.3) above. The equation (3.4) is an easier criterion check in our case, so we

will take advantage of this alternate formulation.

Before we can state the T1 theorem, we also need to define the function space

BMO, the space of functions of bounded mean oscillation:
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Definition III.3. Let fQ := 1
|Q|
∫
Q
f(x)dx for a cube Q. We say f ∈ BMO(Rn)

when

(3.5) ‖f‖BMO := sup
Q

1

|Q|

∫

Q

|f(x)− fQ| dx <∞

It is worth noting that any function in L∞ is also in BMO and that BMO is

strictly larger. For example, ln |x| ∈ BMO but not in L∞. For more information on

BMO and its various properties, see [19].

The last new definition needed is that of the weak boundedness property.

Definition III.4. An operator T is said to have the weak boundedness property if

there exists an N ≥ 1 and Ck > 0 such that for all φ, ψ ∈ C∞
0 (Rn) with support in

B1(0) and
∫
ψdx = 0,

|〈Tψy
r , φ

x
r〉|+ |〈Tφy

r , ψ
x
r 〉| ≤

Ck

rn


∑

|α|≤N

‖∂αφ‖L∞




∑

|α|≤N

‖∂αψ‖L∞




where φy
r(z) =

1
rn
φ( (z−y)

r
.

Notice that any operator bounded from L2 to itself satisfies the weak boundedness

property.

3.2.2 Statement of the T 1 theorem

We can now state the T1 theorem:

Theorem III.5. [4, Theorem 1] Let T be a continuous operator from S(Rn) to S
′(Rn)

associated with a standard kernel. Then, T can be extended to a bounded operator

from L2(Rn) to itself if and only if the three following conditions are satisfied:

1. T1 ∈ BMO,

2. T ∗1 ∈ BMO,
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3. T has the weak boundedness property.

We will not prove this theorem here. See [4] for the complete proof. The key

observation for our purposes is that the bounds on the operator T are a linear

combination of ‖T1‖BMO and rn|〈Tψx
r , ϕ

y
r〉|.

3.3 Useful Corollaries

In Chapter IV, we need two specific corollaries to the T1 theorem of David and

Journé in one dimension. The proofs are very similar to that of the T1 theorem. We

require precise constants, and so we will carefully prove Proposition III.7. Since the

proof of Proposition III.6 follows from exactly the same argument, we will omit the

details. We will show that our operator T in Proposition III.7 satisfies the hypotheses

of the T1 theorem with certain constants, and those constants will lead directly to

the desired bound.

Proposition III.6. Let a(t, s; ξ) be smooth function in t and s supported in ball of

radius ρ in Rt × Rs such that a(t, s; ξ) = a(s, t; ξ) and both a(t, s; ξ) and ∂ta(t, s; ξ)

are uniformly bounded in t, s and ξ by constants C1 and C2, respectively. Define the

kernel k(t, s; ξ) = a(t, s; ξ)(t − s)−1. Then k(t, s; ξ) is a standard kernel uniformly

bounded in ξ and the operator T associated to k(t, s; ξ) is bounded from L2 to itself

independent of ξ with norm C1 + ρC2.

We will also have operators whose kernels are controlled by positive L1 functions,

so we will need the following proposition:

Proposition III.7. Let A(t, s; ξ) be smooth function in t and s supported in ball of

radius ρ in Rt ×Rs and k(ξ) ∈ L1(R) with k > 0. Assume that A(t, s; ξ) = A(s, t; ξ)

and |A(t, s; ξ)| ≤ C1k(ξ) and |∂tA(t, s; ξ)| ≤ C2k(ξ). Define the kernel K(t, s; ξ) =
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A(t, s; ξ)(t−s)−1. Then K(t, s; ξ) is a standard kernel and the operator T associated

to K(t, s; ξ) is bounded from L2 to itself with ‖T‖2,2 ≤ Ck(ξ).

Proof. We need to show first that K(t, s; ξ) is a standard kernel. Then, the bounds

on the operator T follow by the T1 theorem.

Now, it is obvious that

|K(t, s; ξ)| ≤ C1k(ξ)

|t− s| .

It remains to show we have control of |∂tK(t, s; ξ)| + |∂sK(t, s; ξ)|. Because of the

symmetry of the function A(t, s; ξ), it suffices to show that |∂tK(t, s; ξ)| ≤ Ck(ξ)|t−

s|−2. This clearly follows from our assumptions on A(t, s; ξ) with C = C1 + C2ρ.

In the proof of the T1 theorem, the operator bounds of T are less than or equal

to a linear combination of the bounds on r|〈Tψx
r , φ

y
r〉| and ‖T1‖BMO. Therefore, if

we show that r|〈Tψx
r , φ

y
r〉| ≤ Ck(ξ) and ‖T1‖BMO ≤ C ′k(ξ), we can conclude that

‖T‖2,2 ≤ Ck(ξ). First, we will show weak boundedness.

Take φ(t) and ψ(t) as in the proof of Proposition III.6. If |x− y| < 3r,

∫ ∫
K(t, s; ξ)ψy

r (s)dsφ
x
r (t)dt =

1

2

∫ ∫
(K(t, s; ξ)−K(s, t; ξ))ψy

r (s)dsφ
x
r(t)dt

=
1

2

∫ ∫
K(t, s; ξ) (φx

r (s)ψ
y
r (t)− φx

r(t)ψ
y
r (s)) ds/, dt

Notice that |φx
r (s)ψ

y
r (t)− φx

r (t)ψ
y
r (s)| ≤ Cr−3|t− s| and |k(t, s; ξ)| ≤ C1k(ξ)|t− s|−1.

In addition, |t− y| < r and |s− x| < r, so

|
∫ ∫

K(t, s; ξ)φx
r(s)dsψ

x
r (t)dt| ≤

1

2

∫ ∫
|K(t, s; ξ)| |φx

r(s)ψ
y
r (t)− φx

r (t)ψ
y
r (s)| ds/, dt

≤ 1

2

∫

|t−y|<r

∫

|s−x|<r

C1k(ξ)|t− s|−1Cr−3|t− s|ds/, dt

≤ CC1k(ξ)

2r3
(2r)2 ≤ Ck(ξ)r−1.
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When |x− y| > 3r, we take advantage of the mean zero assumption on ψ to get

∣∣∣∣
∫ ∫

K(t, s; ξ)ψy
r (s)dsφ

x
r(t)dt

∣∣∣∣ =
∣∣∣∣
∫ ∫

(K(t, s; ξ)−K(t, y; ξ))ψy
r (s)dsφ

x
r (t)dt

∣∣∣∣

≤
∫ ∫

|K(t, s; ξ)−K(t, y; ξ)| |ψy
r (s)||φx

r(t)|ds/, dt

since |y − s| < r, ≤
∫ ∫

|∂sK(t, s; ξ)||s− y||ψy
r (s)||φx

r(t)|ds/, dt

≤
∫ ∫

Ck(ξ)|s− y|
|t− s|2 |ψy

r (s)||φx
r(t)|ds/, dt.

Now, 3|t−s| > |x−y| because |x−y| < |x−t|+ |t−s|+ |s−y| < (2/3)|x−y|+ |t−s|,

so

∣∣∣∣
∫ ∫

K(t, s; ξ)ψy
r (s)dsφ

x
r(t)dt

∣∣∣∣ ≤
9Ck(ξ)r

|x− y|2
∫

|ψy
r (s)|ds

∫
|φx

r (t)|dt

≤ Ck(ξ)r−1.

Therefore, we have precisely that r|〈Tψx
r , φ

y
r〉| ≤ Ck(ξ) It remains to show that

T1 = −T ∗1 is in BMO with BMO norm controlled by k(ξ). In fact, we can show

that T1 ∈ L∞:

p.v.

∫
A(t, s; ξ)

(t− s)
ds = lim

δ→0

(∫ ∞

t+δ

A(t, s; ξ)

(t− s)
ds+

∫ t−δ

−∞

A(t, s; ξ)

(t− s)
ds

)

= lim
δ→0

(∫ ∞

δ

A(t, t+ S; ξ)

−S dS +

∫ ∞

δ

A(t, t− S; ξ)

S
dS

)

= lim
δ→0

∫ ∞

δ

A(t, t− S; ξ)−A(t, t + S; ξ)

S
dS.

Notice that the difference in the last line is close to a derivative for small S. Therefore,

we consider (δ, ǫ) and (ǫ,∞) separately:

sup
t

lim
δ→0

∣∣∣∣
∫ ǫ

δ

A(t, t− S; ξ)− A(t, t+ S; ξ)

S
dS

∣∣∣∣ ≤ lim
δ→0

|∂sA(t, s; ξ)|∞
∫ ǫ

δ

|2S|dS
S

≤ lim
δ→0

C2k(ξ)(ǫ− δ) = C2k(ξ)ǫ.
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For the (ǫ,∞) case, we take a simpler bound:

∣∣∣∣
∫ ∞

ǫ

A(t, t− S; ξ)− A(t, t+ S; ξ)

S
dS

∣∣∣∣ ≤
1

ǫ

∫ ∞

ǫ

|A(t, t+ S; ξ)|+ |A(t, t− S; ξ)|dS

since |t− (t± S)| < Cρ, ≤ 4CC1ρk(ξ)

ǫ

By choosing ǫ ≤ 1, we see that |T1|∞ ≤ Ck(ξ), so ‖T1‖BMO ≤ 2|T1|∞ ≤ C ′k(ξ).

Therefore the operator associated to K(t, s; ξ) is bounded from L2 to itself by the

T1 theorem and ‖T‖2,2 ≤ C ′k(ξ).



CHAPTER IV

First Set of Dispersive Estimates and their Optimality

This chapter collects the new bounds for a general class dispersive equations

described below. The results of primary interest for our later discussion of the

linearized water wave problem are Theorem IV.3 and its related sharpness result

Theorem IV.5. The precise bounds from this theorem in the case of a = 1/2 (found

in section 4.5.2) imply that the growth factor in Theorem IV.3 exists only because

of high frequency contributions in the initial data. All of the proofs rely on a careful

analysis of several oscillatory integrals.

4.1 General Class of Dispersive Equations

The results in this chapter apply to a general class of one dimensional dispersive

equations, for which the linearized water wave problem is a special case. We state

and prove these results in their full generality, before focusing on the water wave

case in Chapter V. Consider the following general class of 1D dispersive differential

equations. For 0 < a, a 6= 1, let u(t, x) be a solution to the initial value problem

(4.1)





∂2t u+ |D|2au = 0

u(0, x) = u0(x)

ut(0, x) = u1(x).

21
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We define |D| by the following Fourier transform:

|D|f :=

∫
e−ixξ|ξ|f̂dξ.

Let Γ = {∂t, ∂x, L = t∂t + (x/a)∂x} and Ωa = x∂t + at∂x|D|2a−2. In the case of

a = 1/2, equation (4.1) is the linearized water wave problem. Observe that the

equation above is really (∂t − i|D|a)(∂t + i|D|a)u = 0. It is sufficient to consider just

half of the equation:

(4.2)





∂tu− i|D|au = 0

u(0, x) = u0(x).

Remark IV.1. This decomposition is convenient for the results in the following chap-

ters, but it is by no means the only one with merit. In the case of the linearized

water wave problem, Geri Izbicki-Jennings in her thesis [3] has detailed numerical

results for the so-called one way water wave operator, ∂t − i|D|1/2H, where H is the

Hilbert transform. The results discussed in future chapters are also applicable (after

some modification) to the one-way water wave equation. We do not use the one way

water wave equation simply because the equation (4.2) has some useful symmetry in

our calculations.

We have the following variant on the standard Sobolev bounds, using only the

vector field L = t∂t + (x/a)∂x

Lemma IV.2. For any C1(R+,R) function v(t, x) such that v decays to zero as

|x| → ∞ and any paramter y ∈ R, we have

(4.3) sup
T≤t≤2T

|v(t, yt1/a)| ≤ C

T 1/2

1∑

k=0

(∫ 2T

T

∣∣Lkv(t, yt1/a)
∣∣2 dt

) 1
2

Proof. The integral curves of the vector field L are of the form x(t) = yt1/a, where y is

any real number. First, we want to consider the quantity |v(t, yt1/a)|, the restriction
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Figure 4.1: Integral curves for a = 1/2

of the C1 function v(t, x) to the integral curve. First, observe that:

∂t(v(t, yt
1/a)) =∂1v(t, yt

1/a) +
yt1/a−1

a
∂2v(t, yt

1/a)

=
1

t

(
t∂1v(t, yt

1/a) +
yt1/a

a
∂2v(t, yt

1/a)

)

=
1

t
Lv|(t,yt1/a)

Using a variation on the fundamental theorem of calculus and the identity above, we

find:

|v(T, yT 1/a)| ≤
∫ 2T

T

|∂t(v(t, yt1/a))|dt+
1

T

∫ 2T

T

|v(t, yt1/a)|dt

≤
∫ 2T

T

1

t
|Lv(t, yt1/a)|dt+ 1

T

∫ 2T

T

|v(t, yt1/a)|dt

≤ 1

T

∫ 2T

T

∑

|k|≤1

∣∣Lkv(t, yt1/a)
∣∣ dt.

After an application of Cauchy-Schwarz we have the following L2 bound:

|v(T, yT 1/a)| ≤ C

T 1/2

∑

|k|≤1

(∫ 2T

T

∣∣Lkv(t, yt1/a)
∣∣2 dt

) 1
2

We can now state the new decay estimates.
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4.2 Statement of Theorems

For 0 < a, a 6= 1, recall that u(t, x) is a solution to the initial value problem (4.2):

(4.2)





∂tu− i|D|au = 0

u(0, x) = u0(x).

Let L = x
a
∂x + t∂t. Recall Lu0 = Lu(0, x).

4.2.1 New L∞ bounds

Theorem IV.3. Let u(t, x) = eit|D|
1
2 u0(x) with L

iu0 ∈ Ḣ
1−a
2 for i = 0, 1. Then, for

any time t > 0

(4.4) |u(t, yt1/a)| ≤ C(1 + |y|
−a

4(1−a) )t−
1
2

(
‖u0‖

Ḣ
1−a
2

+ ‖Lu0‖
Ḣ

1−a
2

)
.

This theorem is a special case of the following proposition combined with Lemma

IV.2:

Proposition IV.4. Let u(t, x) = eit|D|
1
2 u0(x) with Liu0 ∈ Ḣ

1−a
2 for i = 0, 1. Then

we have the following restricted L2 bounds:

1. For 0 < a and a 6= 1 with

σ ∈





(
0, 1−a

2

]
for 0 < a < 1

[
1−a
2
, 0
)

for 1 < a,

(4.5)

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C|y| 1−a−2σ
a−1 T

a−1+2σ
a

(
1 + y

a
2(a−1)

)
‖u0‖2Ḣσ .

2. For 0 < a < 1 and 1−a
2

≤ σ < 1/2,

(4.6)

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C|y| 1−a−2σ
a−1 T

a−1+2σ
a

(
1 + y

a
2(a−1)

)
‖u0‖2Hσ .
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In the results above, there is a growth factor in y. From the following optimality

result, it is not possible to remove the growth factor without slowing down the rate

of decay.

Theorem IV.5. Choose initial data u0 such that û0(ξ) = |ξ|a−1ĝϕ(yξ + |ξ|a) with

‖g‖L2 = 1 and ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ and ϕ2(t) ≤ χ[T,2T ](t). Then,

(∫ 2T

T

|u(t, yt)|2dt
)1/2

≥ C ′(a)|y|a/4(a−1)C(g)‖u0‖Ḣ(1−a)/2

where the constant C(g) is explicitly

C(g)2 =





∫ (a−1)|y/a|a/(a−1)

0

|ζ |−1/2|ĝϕ(ζ − (a− 1)|y/a|a/(a−1))|2dζ 1 < a

∫ 0

(a−1)|y/a|a/(a−1)

|ζ |−1/2|ĝϕ(ζ + (1− a)|y/a|a/(a−1))|2dζ 0 < a < 1

.

We can remove the factor of y in the Theorem IV.3 above but at the cost of a

slower decay rate. One such result is the following:

Proposition IV.6. 1. When 0 < a < 1, u(t, x) = eit|D| 12 u0(x) with Liu0 ∈ Hr

with r = max 1−a
2
, 2−a

4
for i = 0, 1 satisfies the following L∞ bound:

sup
y

|u(t, yt1/a)| ≤ C(t−1/4 + t−1/2)
∑

|k|≤1

(
‖Lku0‖

H
1−a
2

+ ‖Lku0‖
H

2−a
4

)
.

2. When 2 ≤ a, u(t, x) = eit|D|
1
2 u0(x) with L

iu0 ∈ Ḣr with r = max{1−a
2
, 2−a

4
} for

i = 0, 1 satisfies the following L∞ bound:

sup
y

|u(t, yt1/a)| ≤ C(t−1/4 + t−1/2)
∑

|k|≤1

(
‖Lku0‖

Ḣ
1−a
2

+ ‖Lku0‖
Ḣ

2−a
4

)
.

This proposition follows from an invariant vector field Sobolev bound (Lemma

IV.2) and Proposition IV.4 for appropriate choices of σ.

The proofs of Theorem IV.3 and Proposition IV.6 are straightforward applications

of Lemma IV.2 and Proposition IV.4. Most of the detailed work is in the proof of
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Proposition IV.4 which has several steps. It begins by rewriting u(t, yt1/a) as an

operator on the initial data using Fourier transforms. Define the operator Sy
a as

Sy
av(t) =

∫
ei(yt

1/aξ+t|ξ|a)v̂(ξ)dξ.

Therefore, u(t, yt1/a) = Sy
au0. In practice, we will suppress the sub and superscript.

We can rewrite the L2 norm with respect to this new operator:

(∫ 2T

T

|u(t, yt1/a)|2dt
) 1

2

≤ sup
g∈L2,‖g‖=1

|〈Su0(t)ϕT (t), g(t)〉|

= sup
g∈L2,‖g‖=1

|〈û0(ξ), Ŝ∗(ϕTg)(ξ)〉|

where ϕ(t) ∈ C∞
0 (R) with ϕ = 1 for t ∈ (1, 2) and ϕ = 0 for t ∈ (1/2, 5/2)C and

ϕT (t) = ϕ(t/T ). For simplicity, we will let T = Ŝ∗, so

T h(ξ) =
∫
e−i(yt1/aξ+t|ξ|a)h(t)dt.

The proof of Proposition IV.4 relies on a careful bound for the operator T , found in

Lemma IV.7.

First, we present the proofs of Theorem IV.3 and Proposition IV.6, followed by

the longer proof of Proposition IV.4.

4.2.2 Proof of Theorem IV.3 and Proposition IV.6

For these two short proofs, we will assume Proposition IV.4.
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Proof of Theorem IV.3. Let S and T be the operators described above. Then,

(∫ 2T

T

∣∣u(t, yt1/a)
∣∣2 dt

) 1
2 ≤

(∫ 2T

T

|Su0(t)ϕT (t)|2 dt
) 1

2

= sup
‖g‖L2=1

|〈Su0ϕT , g〉|

= sup
‖g‖L2=1

|〈û0, T (gϕT )〉|

≤ ‖u0‖
Ḣ

1−a
2

sup
‖g‖L2=1

(∫
|T (gϕT (t)) (ξ)|2dξ

)1
2

= ‖u0‖
Ḣ

1−a
2

sup
‖g‖L2=1

(∫ ∣∣∣∣
∫
e−iyτ1/aξ−iτ |ξ|ag(τ)ϕT (t)dτ

∣∣∣∣
2

|ξ|a−1dξ

) 1
2

.(4.7)

Then by Lemma IV.7,

sup
‖g‖L2=1

(∫ ∣∣∣∣
∫
e−iyτ1/aξ−iτ |ξ|ag(τ)ϕT (t)dτ

∣∣∣∣
2

|ξ|a−1dξ

) 1
2

≤ sup
‖g‖L2=1

(
1 + y

a
2(a−1)

) 1
2‖g‖L2

≤ C(a)
(
1 + y

a
2(a−1)

) 1
2

.

Thus, (∫ 2T

T

∣∣u(t, yt1/a)
∣∣2 dt

) 1
2

≤ C(a)
(
1 + y

a
2(a−1)

) 1
2‖u0‖

Ḣ
1−a
2
.

In order to get the slower decay rate, we use a similar argument, but we use a

linear combination of results from Proposition IV.4 with σ = 1−a
2
, 2−a

4
.

Proof of Proposition IV.6. Recall from Proposition IV.4, for 0 < a < 1 and 1−a
2

≤

σ < 1/2,

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C
(
|y| 1−a−2σ

a−1 T
a−1+2σ

a + |y|
2−a−4σ
2(a−1) T

a−1+2σ
a

)
‖u0‖2Hσ .

We want to choose discrete σ so that we can control the right hand side independent

of y. Notice that

|y| 1
a−1T−1/a < 1 ⇒ |y| 1

a−1 < T 1/a ⇒ |y|
a

2(a−1) < T 1/2.
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So when |y| 1
a−1T−1/a < 1, if we take σ = 1−a

2
, we have:

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C
(
1 + T 1/2

)
‖u0‖2

H
1−a
2
.

On the other hand, if

|y| 1
a−1T−1/a > 1 ⇒ |y|−

a
2(a−1)T 1/2 < 1.

If we take σ = 2−a
4
, then |y| 1−a−2σ

a−1 T
a−1+2σ

a = |y|−
a

2(a−1)T 1/2 and we get

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C
(
1 + T 1/2

)
‖u0‖2

H
2−a
4
.

Therefore, we can conclude that

∫ 2T

T

|u(t, yt1/a)|2dt ≤ C
(
1 + T 1/2

) (
‖u0‖2

H
1−a
2

+ ‖u0‖2
H

2−a
4

)
.

By combining this estimate and the Sobolev estimate from Lemma IV.2, we get the

desired L∞ bound.

4.3 Proof of Proposition IV.4

The proofs of Theorem IV.3 and Proposition IV.6 rely on Proposition IV.4, which

in turn follows from a proposition on the Fourier transform of the dual operator S∗.

4.3.1 Reduction to Lemma IV.7

Recall the operator S:

Sv(t) =
∫
ei(yt

1/aξ+t|ξ|a)v̂(ξ)dξ.

Then,

∫ 2T

T

|u(t, yt1/a)|2dt ≤ sup
g∈L2,‖g‖=1

|〈Su0(t)ϕT (t), g(t)〉|

= sup
g∈L2,‖g‖=1

|〈û0(ξ), T (ϕTg)(ξ)〉|(4.8)

= sup
g∈L2,‖g‖=1

(∫
1

ω(ξ)
|û0(ξ)|2 dξ

)1
2
(∫

ω(ξ)|T (ϕTg)(ξ)|2dξ
)1

2
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where ω(ξ) is any weight.

Thus, we have reduced the proof of Proposition IV.4 to showing the weighted

estimate contained in the following lemma.

Lemma IV.7. Let g ∈ L2(R) and T and ϕT be as above.

1. For 0 < a and a 6= 1 with

σ ∈





(
0, 1−a

2

]
for 0 < a < 1

[
1−a
2
, 0
)

for 1 < a,

(4.9)

∫
|ξ|−2σ|T (gϕT )(ξ)|2dξ ≤ C|y| 1−a−2σ

a−1 T
a−1+2σ

a

(
1 + y

a
2(a−1)

)
‖g‖2L2.

2. For 0 < a < 1 and 1−a
2

≤ σ < 1/2,

(4.10)

∫
(1 + ξ2)−σ|T (gϕT )(ξ)|2dξ ≤ C|y| 1−a−2σ

a−1 T
a−1+2σ

a

(
1 + y

a
2(a−1)

)
‖g‖2L2.

Remark IV.8. To prove Proposition IV.4, we simply apply Lemma IV.7 to the last

line of (4.8).

4.3.2 Proof of Lemma IV.7

Proof of Lemma IV.7. Assume without loss of generality that y > 0. The two cases

in a are proved using the same techniques, but the details are subtly different. We

will present the full details for the 0 < a < 1 for (4.10) and a sketch of the ideas for

(4.9). The arguments are identical for the 1 < a case.

The main idea of this proof is rewriting the weighted L2 norm as an operator

and analyzing the kernel of this operator. We will show that the kernel is a linear

combination of standard kernels and fractional integrals. Since the kernel is an

oscillatory integral, we will use a careful decomposition combined with integration

by parts and the method of stationary phase to control it.
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We begin by rewriting the square on the left hand side of the inequality as a

product and changing the order of integration. In the proofs of (4.9) and (4.10), the

only differences lie in the kernel analysis. For now, let ω(ξ) denote a general weight

function. Then,

∫
ω(ξ)|T (gϕT )(ξ)|2dξ =

∫∫
gϕT (t)gϕT (s)

∫
e−iΨ(ξ)ω(ξ)dξdtds,

where Ψ(ξ) = y(t1/a−s1/a)ξ+(t−s)|ξ|a and let ξ0 = −
(

yf(t,s)
a

) 1
a−1

denote the critical

point of this phase function Ψ(ξ) with f(t, s) := (t1/a − s1/a)/(t − s). Our goal is

to show kernel estimates on the ξ integral so that we can apply Hölder and produce

L2 bounds. For clarity, let K(t, s) =
∫
e−iΨ(ξ)ω(ξ)dξ. To get reasonable bounds on

K(t, s), we need to consider the integral near the critical point and away from the

critical point. With different weight functions, these estimates proceed somewhat

differently. First consider ω(ξ) = (1 + |ξ|2)−σ.

Case IV.8.1. ω(ξ) = (1 + |ξ|2)−σ for (4.10)

Let ǫ ≤ |ξ0|/2; then:

K(t, s) =

∫

|ξ−ξ0|<ǫ

e−iΨ(ξ)(1 + ξ2)−σdξ +

∫

|ξ−ξ0|>ǫ

e−iΨ(ξ)(1 + ξ2)−σdξ

= I + II.

Now, |I| ≤ 2Cǫ(1 + ξ20)
−σ, and we will use integration by parts to bound the second

term:

II =

∫

|ξ−ξ0|>ǫ

∂ξ
(
e−iΨ(ξ)

) 1

−i(1 + ξ2)σΨ′(ξ)
dξ

=
e−iΨ(ξ)

−iΨ′(ξ)(1 + ξ2)σ

∣∣∣∣
|ξ−ξ0|>ǫ

−
∫

|ξ−ξ0|>ǫ

e−iΨ(ξ)∂ξ

(
1

−i(1 + ξ2)σΨ′(ξ)

)
dξ

Here the requirements for σ come into play. In order to have these terms be finite

at zero and decay at ∞, 0 < σ. We will show the bounds for the boundary term
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in detail, and the bounds on the remaining term are similar. When we evaluate the

boundary term, the only contributions come from ξ0 − ǫ and ξ0 + ǫ, so we have

BT =
e−iΨ(ξ0−ǫ)

−iΨ′(ξ0 − ǫ)(1 + (ξ0 − ǫ)2)σ
− e−iΨ(ξ0+ǫ)

−iΨ′(ξ0 + ǫ)(1 + (ξ0 + ǫ)2)σ
.

First, notice that Ψ′(ξ0 ± ǫ) = ±a(1 − a)ǫ(t − s)|ξ0|a−2. We can neglect the higher

order terms in ǫ and rewrite the boundary terms:

|BT | ≤ |ξ0|2−a

a(1− a)ǫ|t− s|

∣∣∣∣
e−iΨ(ξ0−ǫ)

(1 + (ξ0 − ǫ)2)σ
+

e−iΨ(ξ0+ǫ)

(1 + (ξ0 + ǫ)2)σ

∣∣∣∣

≤ C|ξ0|2−a

a(1− a)ǫ|t− s|(1 + ξ20)
σ
.

Now, we optimize our choice of ǫ by setting the two terms equal to each other:

2Cǫ(1 + ξ20)
−σ =

C|ξ0|2−a

a(1 − a)ǫ|t− s|(1 + ξ20)
σ

ǫ2 =
C|ξ0|2−a

a(1 − a)|t− s|

ǫ =
C ′|ξ0|1−a/2

|t− s|1/2

Case IV.8.2. ω(ξ) = |ξ|−2σ for (4.9) For now, let ǫ ≤ |ξ0|/2; then:

K(t, s) =

∫

|ξ−ξ0|<ǫ

e−iΨ(ξ)|ξ|−2σdξ +

∫

|ξ−ξ0|>ǫ

e−iΨ(ξ)|ξ|−2σdξ

= I + II.

Now, |I| ≤ 2Cǫ|ξ0|−2σ, and we will use integration by parts to bound the second

term:

II =

∫

|ξ−ξ0|>ǫ

∂ξ
(
e−iΨ(ξ)

) 1

−i|ξ|2σΨ′(ξ)
dξ

=
e−iΨ(ξ)

−iΨ′(ξ)|ξ|2σ
∣∣∣∣
|ξ−ξ0|>ǫ

−
∫

|ξ−ξ0|>ǫ

e−iΨ(ξ)∂ξ

(
1

−i|ξ|2σΨ′(ξ)

)
dξ

Here the requirements for σ come into play. In order to have these terms be finite

at zero and decay at ∞, 0 < σ. We will show the bounds for the boundary term
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in detail, and the bounds on the remaining term are similar. When we evaluate the

boundary term for 0 < σ < (1 − a)/2, the only contributions come from ξ0 − ǫ and

ξ0 + ǫ, so we have

BT =
e−iΨ(ξ0−ǫ)

−iΨ′(ξ0 − ǫ)(ξ0 − ǫ)2σ
− e−iΨ(ξ0+ǫ)

−iΨ′(ξ0 + ǫ)(ξ0 + ǫ)2σ
.

First, notice that Ψ′(ξ0 ± ǫ) = ±a(1 − a)ǫ(t − s)|ξ0|a−2. We can neglect the higher

order terms in ǫ and rewrite the boundary terms:

|BT | ≤ |ξ0|2−a

a(1− a)ǫ|t− s|

∣∣∣∣
e−iΨ(ξ0−ǫ)

|ξ0 − ǫ|2σ +
e−iΨ(ξ0+ǫ)

|ξ0 + ǫ|2σ
∣∣∣∣

≤ C|ξ0|2−a

a(1− a)ǫ|t− s||ξ0|2σ
.

Now, we optimize our choice of ǫ by setting the two terms equal to each other:

2Cǫ|ξ0|−2σ =
C|ξ0|2−a

a(1 − a)ǫ|t− s||ξ0|2σ

ǫ2 =
C|ξ0|2−a

a(1 − a)|t− s|

ǫ =
C ′|ξ0|1−a/2

|t− s|1/2

When σ = (1− a)/2, the boundary term has an additional contribution from 0:

e−iΨ(ξ)

−iΨ′(ξ)|ξ|1−a

∣∣∣∣
|ξ−ξ0|>ǫ

=
e−iΨ(ξ0−ǫ)

−iΨ′(ξ0 − ǫ)(ξ0 − ǫ)1−a
− e−iΨ(ξ0+ǫ)

−iΨ′(ξ0 + ǫ)(ξ0 + ǫ)1−a

− 2

ia(t− s)

|BT | ≤ 2|ξ0|2−a

a(1− a)|t− s|

∣∣∣∣
e−iΨ(ξ0−ǫ)

(ξ0 − ǫ)1−a
− e−iΨ(ξ0+ǫ)

−iΨ′(ξ0 + ǫ)(ξ0 + ǫ)1−a

∣∣∣∣

− 2|ξ0|
aǫ|t− s|

≤ C(a)|ξ0|
ǫ|t− s| .

Then, we have the same optimal choice of ǫ for 0 < σ ≤ 1−a
2
.
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Notice that both cases give the same choice of ǫ. However, this optimal C′|ξ0|1−a/2

|t−s|1/2

is not always less than |ξ0|/2. Let

ǫ = min

{
C ′|ξ0|1−a/2

|t− s|1/2 , |ξ0|/2
}
.

We will do the rest of the calculations with ω(ξ) = (1 + ξ2)−σ. The homogeneous

case follows by similar and slightly easier arguments.

Observe that

(4.11) |ξ0|/2 <
C ′|ξ0|1−a/2

|t− s|1/2 ⇔ y
a

2(1−a) >
C|t− s|1/2

f(t, s)
a

2(1−a)

.

Assume y
a

2(1−a) > C|t−s|1/2

f(t,s)
a

2(1−a)
, and therefore ǫ = |ξ0|/2. Let γ(a) = a

1
a−1 . For 0 <

a < 1, γ(a) > 2. More importantly, Ψ(γ(a)ξ0) = 0. We adjust the decomposition of

K(t, s) so that one endpoint lies on this very convenient number:

K(t, s) =

∫ ξ0/2

γ(a)ξ0

e−iΨ(ξ)(1 + ξ2)−σdξ +

∫

(γ(a)ξ0 ,ξ0/2)C
e−iΨ(ξ)(1 + ξ2)−σdξ

K(t, s) = K1(t, s) +K2(t, s).

The easier term is K1, so we will bound it first. Clearly,

|K1(t, s)| < C(γ(a)− 1/2)|ξ0|(1 + ξ20)
−σ.

By our assumption on y, |ξ0| < C′|ξ0|1−a/2

|t−s|1/2 , so we can apply the Hardy-Littlewood-

Sobolev lemma, Lemma III.1, for fractional integration:

∣∣∣∣
∫
gϕT (t)

∫
K1(t, s)gϕT (s)ds dt

∣∣∣∣ ≤
∫

|gϕT (t)|
∫
C ′(γ(a)− 1/2)|ξ0|1−

a
2 |gϕT (s)|

(1 + ξ20)
σ|t− s|1/2 ds dt

≤ C ′(γ(a)− 1/2)a(2−a)/2(1−a)y
2−a

2(a−1)T
a−2
2a

(1 + Ca
2

1−a y
2

1−aT−2/a)σ
‖gϕT‖2L4/3

≤ C ′′(γ(a)− 1/2)a
2−a−4σ
2(1−a) y

2−a−4σ
2(a−1) T

a−2+4σ
2a T 1/2‖g‖2L2

≤ C1(a)y
2−a−4σ
2(a−1) T

a−1+2σ
a ‖g‖2L2.
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Now we turn to K2(t, s). Recall

K2(t, s) =

∫ γ(a)ξ0

−∞
e−iΨ(ξ)(1 + ξ2)−σdξ +

∫ ∞

ξ0/2

e−iΨ(ξ)(1 + ξ2)−σdξ.

Let’s begin with the first term. By integration by parts,

∫ γ(a)ξ0

−∞

e−iΨ(ξ)

(1 + ξ2)σ
dξ =

e−iΨ(ξ)

−iΨ′(ξ)(1 + ξ2)σ

∣∣∣∣
γ(a)ξ0

−∞

−
∫ γ(a)ξ0

−∞
e−iΨ(ξ)∂ξ

(
1

−iΨ′(ξ)(1 + ξ2)σ

)
dξ

=
|ξ0|1−a

−ia(1 − a)(t− s)(1 + a
2

a−1 ξ20)
σ

−
∫ γ(a)ξ0

−∞
e−iΨ(ξ)∂ξ

(
1

−iΨ′(ξ)(1 + ξ2)σ

)
dξ

= K ′
2(t, s) +K ′′

2 (t, s).

The kernel K ′
2(t, s) satisfies all the conditions of Proposition III.6 in Chapter III with

C1 =
y−1T 1−1/a

(1−a)(1+y2/(a−1)T−2/a)σ
, C2 =

2y−1T−1/a

(1−a)(1+y2/(a−1)T−2/a)σ
and ρ = T . Therefore,

|
∫
gϕT (t)

∫
K ′

2(t, s)gϕT (s)ds| ≤ ‖g‖L2

Cy−1T 1−1/a

(1− a)(1 + y2/(a−1)T−2/a)σ
‖g‖L2

≤ C

1− a
y

1−a−2σ
a−1 T

2σ−1+a
a ‖g‖2L2

For the kernel K ′′
2 (t, s), we want to change the order of integration, so that we

may integrate in t and s before integrating in ξ. Showing K ′′
2 is a nice kernel is

complicated by the presence of the exponential; if we change the order of integration,

the exponential splits into a function of norm 1 in t and s, leaving only the derivative

for the kernel. In fact, ∂ξ

(
1

−iΨ′(ξ)(1+ξ2)σ

)
satisfies the kernel conditions of Proposition

III.7. It will be convenient for notation to let ξ2 = −(y
a
(2T )(1−a)/a)

1
a−1 ) and ξ1 =

−(y
a
T (1−a)/a)

1
a−1 ) Since γ(a)ξ0 < ξ2, when we change the order of integration, we
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have

∫ ∫
gϕT (t)gϕT (s)

∫ γ(a)ξ0

−∞
e−iΨ(ξ)∂ξ

(
1

−iΨ′(ξ)(1 + ξ2)σ

)
dξ

=

∫ ξ2

−∞

∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)ds dt dξ

where

A(t, s; ξ) = ϕT (t)ϕT (s)∂ξ
(
−i(yf(t, s) + a|ξ|a−1sgnξ)(1 + ξ2)σ

)−1
,

and Ω(t, s)(ξ) is the region in R
2 from Fubini theorem. When ξ < ξ1, we can

apply Proposition III.7 for (t, s) ∈ [T, 2T ]2, so the exact description of Ω(t, s) is not

important, since its intersection with the square is clearly contained in the square.

So we can decompose again:

∫ ξ2

−∞

∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)dsdtdξ

=

∫ ξ1

−∞

∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)dsdtdξ

+

∫ ξ2

ξ1

∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)dsdtdξ

= i+ ii

We will use the following claim, combined with Proposition III.7 to bound term i:

Claim IV.9. Let

k(ξ) =
1

(1 + ξ2)σ(yT 1/a−1/a− a|ξ|a−1)
.

Then, for A(t, s; ξ) defined above and ξ ∈ (−∞, ξ1), we have

|A(t, s; ξ)| ≤ 2a

1− a

(
1 +

a(2(1−a)/a − 1)

1− a

)
k′(ξ)

and

|∂tA(t, s; ξ)| = |∂sA(t, s; ξ)| ≤
4a

T (1− a)2

(
1 +

a(2(1−a)/a − 1)

1− a

)
k′(ξ).
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The proof of this claim is straightforward, since by definition

yf(t, s)− a|ξ|a−1 > ((1− a)/a)yT
1−a
a . Therefore,

|i| ≤
∫ ξ1

−∞

∣∣∣∣
∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)dsdt

∣∣∣∣ dξ

≤ ‖g‖L2

∫ ξ1

−∞
C(a)k′(ξ)dξ‖g‖L2

≤ aC(a)

(1 + y2/(a−1)T−2/a)
σ
(1− a)yT (1−a)/a

‖g‖2L2

≤ aC(a)y
1−a−2σ

a−1 T (2σ+a−1)/a‖g‖2L2

where C(a) = 2a
1−a

(
1 + a(2(1−a)/a−1)

1−a

) (
1 + 2

1−a

)
.

Now we consider term ii. Since we are integrating in ξ over a bounded interval,

we do not need to use Proposition III.7. It suffices to show that A(t, s; ξ) is bounded.

With ξ ∈ (ξ1, ξ2), we cannot neglect the region Ω(t, s) in favor of [T, 2T ]2. Observe

that Ω(t, s) = {|ξ|a−1 < yf(t, s) < y
a
T (1−a)/a}. Therefore, yf(t, s) + a|ξ|a−1sgnξ >

(1− a)|ξ|a−1. Using this bound and the range of ξ, we have the following claim:

Claim IV.10. Let A(t, s; ξ) be as above with t, s ∈ Ω(t, s) and ξ ∈ (ξ1, ξ2). Then,

|A| ≤ C(2σ + a(1− a))y(−a−2σ)/(a−1)T (a+2σ)/a

and

|∂tA| = |∂sA| ≤
4C(2σ + 2a)

T (1− a)2
y(−a−2σ)/(a−1)T (a+2σ)/a.

Now, we use Proposition III.6:

|ii| ≤
∫ ξ2

ξ1

∣∣∣∣
∫∫

Ω(t,s)(ξ)

g(t)e−i(yt1/aξ+t|ξ|a)ϕT (t)ϕT (s)A(t, s; ξ)

i(t− s)
g(s)ei(ys

1/aξ+s|ξ|a)dsdt

∣∣∣∣ dξ

≤ ‖g‖L2

∫ ξ2

ξ1

(
C(2σ + a(1− a)) +

4C(2σ + 2a)

(1− a)2

)
y(−a−2σ)/(a−1)T (a+2σ)/a‖g‖L2dξ

≤ C ′
(
(2σ + a(1− a)) +

4(2σ + 2a)

(1− a)2

)
y

1−a−2σ
a−1 T (2σ+a−1)/a‖g‖2L2
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Finally, we address the term on (ξ0/2,∞). The integral from ξ0/2 to 0 is somewhat

simpler. Since 0 < σ < 1/2, we can integrate |ξ|−2σ explicitly:

∣∣∣∣
∫ 0

ξ0/2

e−iΨ(ξ)(1 + ξ2)−σdξ

∣∣∣∣ ≤ C|ξ0|1−2σ ≤ C ′|ξ0|1−a/2−2σ

|t− s|1/2 .

Therefore,

∣∣∣∣
∫∫

gϕT (t)gϕT (s)

∫ 0

ξ0/2

e−iΨ(ξ)(1 + ξ2)−σdξds dt

∣∣∣∣ ≤ C ′y
2−a−4σ

a−1 T
2σ+a−1

a ‖g‖2L2.

When we integrate the kernel from (0,∞), we use integration by parts as be-

fore, and the boundary terms contribute nothing. For the derivative term, we need

to be more precise as ∂ξ ((1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1) changes sign. We do an

additional decomposition to preserve monotonicity. Let ξ̃ be the critical point of

∂ξ ((1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1). Then,

∫∫
gϕT (t)gϕT (s)

i(t− s)

∫ ∞

0

e−iΨ(ξ)∂ξ
(
(1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1

)
ds dt dξ

=

∫∫
gϕT (t)gϕT (s)

i(t− s)

∫ ξ̃

0

e−iΨ(ξ)∂ξ
(
(1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1

)
ds dt dξ

+

∫∫
gϕT (t)gϕT (s)

i(t− s)

∫ ∞

ξ̃

e−iΨ(ξ)∂ξ
(
(1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1

)
ds dt dξ

=

∫∫
gϕT (t)gϕT (s)K3(t, s)dtds+

∫∫
gϕT (t)gϕT (s)K4(t, s)dtds

We will present the argument for K3; the analysis for K4 follows the same argu-

ments but with slightly different constants (independent of y and T ). For K3, we

apply Proposition III.7 with k′(ξ) =
∣∣∂ξ
(
(1 + ξ2)−σ(CyT (1−a)/a + a|ξ|a−1)−1

)∣∣. Let
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ξ3 denote the zero of k′(ξ). Then,

∣∣∣∣
∫∫

gϕT (t)gϕT (s)K3(t, s)dtds

∣∣∣∣

≤
∫ ∞

0

∣∣∣∣
∫∫

gϕT (t)e
−iΨ(ξ)gϕT (s)

i(t− s)
∂ξ
(
(1 + ξ2)−σ(yf(t, s) + a|ξ|a−1)−1

)
ds dt

∣∣∣∣ dξ

≤ ‖g‖2L2

∫ ∞

0

∣∣∣∣∣∂ξ
(

(1 + ξ2)−σ

CyT
1−a
a + a|ξ|a−1

)∣∣∣∣∣ dξ

≤ 2‖g‖2L2

(1 + ξ̃2)σ(CyT
1−a
a + a|ξ3|a−1)

In order for ξ̃ to be a zero of k′(ξ), it must satisfy

a(1− a)(1 + ξ23) = 2σ|ξ3|3−a(yT (1−a)/a + a|ξ3|a−1).

Therefore,

∣∣∣∣∣

∫∫
gϕT (t)gϕT (s)

i(t− s)

∫ ξ̃

0

e−iΨ(ξ)∂ξ

(
(1 + ξ2)−σ

yf(t, s) + a|ξ|a−1

)
dξds dt

∣∣∣∣∣ ≤ C‖g‖2L2|ξ3|−2σ−a+1.

Observe that ξ3 > C|yT (1−a)/a| 1
a−1 for a constant depending only on a and σ. When

2σ ≥ 1 − a, that means this ξ̃ term is bounded by y(−2σ−a+1)/(a−1)T (2σ+a−1)/a and

can be combined with other terms.

Now, we collect all the terms above:

Lemma IV.11. When y
a

2(1−a) > C|t−s|1/2

f(t,s)
a

2(1−a)
and 1− a ≤ 2σ < 1,

(4.12)

∫
(1 + ξ2)−σ|T (gϕT )(ξ)|2dξ ≤

(
C1(a)y

a
2(a−1) + C2(a))

)
y

1−a−2σ
a−1 T

a−1+2σ
a ‖g‖2L2.

where C2(a) =
(
C ′
(
(2σ + a(1− a)) + 4(2σ+2a)

(1−a)2

)
+ aC(a)

)
and C1(a) = C ′′(γ(a) −

1/2)a
2−a−4σ
2(1−a)

It remains to show the bound for y
a

2(1−a) < C C|t−s|1/2

f(t,s)
a

2(1−a)
. Let F (t, s) = C|t−s|1/2

f(t,s)
a

2(1−a)
.
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In this case, we only need to take the optimal ǫ:

∣∣∣∣
∫∫

y
a

2(1−a)<F (t,s)

gϕT (t)gϕT (s)

∫
e−iΨ(ξ)(1 + ξ2)−σdξdtds

∣∣∣∣

≤
∫∫

y
a

2(1−a) <F (t,s)

|gϕT (t)||gϕT (s)|
|ξ0|1−a/2

(1 + ξ20)
σ|t− s|1/2dsdt

≤ C(yT 1/a−1)(2−a)/2(a−1)

(1 + y2/a−1T−2/a)σ
‖gϕT‖2L4/3

≤ Cy(2−a)/2(a−1)T−(2−a)/2aT 1/2

(1 + y2/a−1T−2/a)σ
‖gϕT‖2L2

≤ Cy
2−a−4σ
2(a−1) T

a−1+2σ
a ‖g‖2L2.

We combine all of these terms to see that for 1− a ≤ 2σ < 1:

∫
(1 + ξ2)−σ|T (gϕT )(ξ)|2dξ ≤ Cy

1−a−2σ
a−1 T

a−1+2σ
a

(
1 + y

a
2(a−1)

)
‖g‖2L2.

4.3.3 Remarks on the proofs of §4.2.2 and §4.3.1

The proof of Lemma IV.7 for the case a > 1 differs in a couple key ways, but

otherwise follows the same general argument. First of all, the weight in the kernel

is replaced by |ξ|2σ. We need the homogeneous weight here because 1/Ψ′(ξ) at 0 is

not equal to zero, and therefore we accumulate additional powers of y and T either

by evaluating the derivative at 0, or from the kernel with the exponential that we

worked so hard to avoid in the case 0 < a < 1. Unfortunately, the acceptable range

of σ means we cannot prove Proposition IV.6 when 1 < a < 2.

That said, the proof above for Proposition IV.6 is also correct when 2 ≤ a. The

steps in proof of Proposition IV.7 are the same, except the various bounds on the

kernels are subtly different.
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4.4 Alternate Proof in the case a = 1
2

In the case a = 1/2, the phase function in Lemma IV.7 is quadratic in ξ , so we

can compute those bounds precisely.

Let u(t, x) = eit|D|
1
2 u0(x), a solution of the following differential equation:

(4.13)





∂tu− i|D|
1
2u = 0

u(0, x) = u0(x).

We want to control the quantity:

(∫ 2T

T

|u(t, yt2)|2dt
) 1

2

= ‖Su0ϕ‖L2

where Sf(t) =
∫
ei(yt

2ξ+t|ξ|
1
2 )f̂(ξ)dξ. Observe that

(∫ 2T

T

|u(t, yt2|)2dt
) 1

2

= sup
g∈L2

|〈Su0(t)ϕ(t), g(t)〉|

= sup
g∈L2

|〈û0(ξ), T (gϕ)(ξ)〉|

≤ ‖u0‖Ḣ1/4

(∫
|ξ|−

1
2 |T gϕ(ξ)|2dξ

)1
2

where T = Ŝ∗, that is T f(ξ) =
∫
e−i(yt2ξ+t|ξ|

1
2 )f(t)dt. Let us analyze the norm on

T gϕ. If we rewrite the absolute value squared as a product, we can rearrange terms

as

∫
|ξ|−

1
2 |T gϕ(ξ)|2dξ =

∫∫
gϕ(t)gϕ(s)

∫
|ξ|−

1
2 e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )dξds dt.

We will treat the ξ integral as a kernel t and s. Without loss of generality, assume

that y > 0. The phase function Ψ(ξ) = y(t2 − s2)ξ + (t− s)|ξ|
1
2 has strictly positive

derivative, and so we can use the method of nonstationary phase to approximate the
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value of the integral:

K1(t, s) =

∫ ∞

0

|ξ|−
1
2 e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )dξ

=

∫ ∞

0

2|ξ|−
1
2

−iy(t2 − s2) + (t− s)|ξ|−
1
2

∂ξ

(
e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )
)
dξ

Straightforward calculation shows that ϕ(t)K1(t, s)ϕ(s) is a standard kernel. Then,

by a modified version of the T1 theorem we can conclude that

∣∣∣∣
∫∫

K1(t, s)g(s)dsg(t)dt

∣∣∣∣ ≤ C‖g‖2L2

where the constant C is independent of y and T .

Now we consider the integral from (−∞, 0). First, notice that we can rewrite

Ψ(ξ) as a quadratic polynomial in |ξ|
1
2 :

Ψ(ξ) = −y(t2 − s2)

(
|ξ|

1
2 − 1

2y(t+ s)

)2

+
(t− s)

4y(t+ s)
.

This suggests a change of variables ζ = |ξ|
1
2 − 1

2y(t+s)
, so

∫ 0

−∞
e−iΨ(ξ)|ξ|−

1
2dξ = e

−i(t−s)
4y(t+s)

∫ ∞

−1
2y(t+s)

eiy(t
2−s2)ζ2dζ

= e
−i(t−s)
4y(t+s)

(∫ 0

−1
2y(t+s)

eiy(t
2−s2)ζ2dζ +

∫ ∞

0

eiy(t
2−s2)ζ2dζ

)

In both of these terms, we want to change variables in order to remove the factor in

front of ζ2. Let ξ = (y(t2 − s2))
1
2 ζ and change variables:

e
−i(t−s)
4y(t+s)

(∫ ∞

−1
2y(t+s)

eiy(t
2−s2)ζ2dζ

)
=
(
y(t2 − s2)

)− 1
2 e

−i(t−s)
4y(t+s)

(∫ 0

b

eiξ
2

dξ +

∫ ∞

0

eiξ
2

dξ

)

where b = −(t−s)
1
2

2y
1
2 (t+s)

1
2
. The second term above is bounded by a multiple of

√
π, which

leaves only the first term, which is a Fresnel integral. Classical results imply that

the Fresnel integral is also bounded independent of the quantity b, therefore,

|K2(t, s)| ≤ C|y(t2 − s2)|−
1
2 .
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Thus,

∣∣∣∣
∫∫

K1(t, s)g(s)dsg(t)dt

∣∣∣∣ ≤ y−
1
2

∫∫
|t2 − s2|−

1
2 |gϕ(s)|ds|gϕ(t)|ds dt

≤ C(yT )−
1
2‖gϕ‖2L4/3

≤ Cy−
1
2‖g‖2L2

4.5 Optimality and Counterexamples

In Proposition IV.6, the factor of |y| acts as a barrier to our optimal time decay

rate. In the following results, we explore the precise nature of this impediment.

There are several different ways to consider the singularity that appears. Firstly,

we will look along slightly different trajectories and find a lower bound (enforcing

the optimality of our results), however this results imposes strong conditions on the

initial data.

4.5.1 Lower bounds

Instead of considering u(t, yt1/a), we will look at u(t, yt) which will simplify our

calculations considerably. Since

(∫ 2T

T

|u(t, zt)|2dt
) 1

2

≤ sup
[T,2T ]

|u(t, zt)|

without the need for our Sobolev lemma, this choice makes sense. Let

S ′f(t) =

∫
ei(ytξ+t|ξ|a)f̂(ξ)dξ

and

T ′g(ξ) =

∫
e−i(ytξ+t|ξ|a)g(t)ϕ(t)dt

where ϕ is a positive function with compact support such that ϕ2 ≤ χ[T,2T ]. We will

show precisely the following
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Theorem IV.5. Choose initial data u0 such that û0(ξ) = |ξ|a−1ĝϕ(yξ + |ξ|a) with

‖g‖L2 = 1 and ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ ≤ χ[T,2T ](t). Then,

(∫ 2T

T

|u(t, yt)|2dt
)1/2

≥ C ′(a)|y|a/4(a−1)C(g)‖u0‖Ḣ(1−a)/2

where the constant C(g) is explicitly

C(g)2 =





∫ (a−1)|y/a|a/(a−1)

0

|ζ |−1/2|ĝϕ(ζ − (a− 1)|y/a|a/(a−1))|2dζ 1 < a

∫ 0

(a−1)|y/a|a/(a−1)

|ζ |−1/2|ĝϕ(ζ + (1− a)|y/a|a/(a−1))|2dζ 0 < a < 1

This proof relies heavily on the fact that T ′ above is the Fourier transform up to

a constant. Since this operator has this nice property, we will show a lower bound

for
∫
|ξ|a−1|T ′g(ξ)|2dξ in the following proposition

Lemma IV.12. Without loss of generality, assume that y > 0. Let ξ1 = − (y/a)1/(a−1)

and Ξ1 = (a − 1)|ξ1|a. For g ∈ L2
⋂
H(a−1)/2 and ϕ ∈ C∞

0 with 0 ≤ ϕ ≤ χ[T,2T ], we

have the following inequalities:

1. When 1 < a,

∫
|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ ≥ 1

a

∫ ∞

0

Ψ(ζ)|ĝ(ζ)|2dζ

(4.14)

+ C(a)|y|
a

2(a−1)

∫ Ξ1

0

|ζ |−
1
2 |ĝϕ(ζ − Ξ1)|2dζ

where Ψ(ζ) is bounded by 1
a−1

at 0 and tends to 2/a as ζ goes to infinity.

2. When 0 < a < 1,

∫
|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ ≥

∫
Φ(ζ)|ĝϕ(ζ)|2dζ

(4.15)

+ C(a)|y|
a

2(a−1)

∫ 0

Ξ1

|ζ |−
1
2 |ĝϕ(ζ − Ξ1)|2dζ

where Φ(ζ) is bounded at 0 by max{1/a, 1/(1− a)} and decays like y−a|ζ |a−1.
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Proof. To complete the proof of Proposition IV.5, we combine the results of Lemma

IV.12 with an inner product. Let ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ ≤ χ[T,2T ](t). Therefore,

(∫ 2T

T

|u(t, yt)|2dt
) 1

2

≥
(∫

|S ′u0(t)ϕ(t)|2dt
) 1

2

= sup
‖h‖L2=1

|〈S ′u0(t)ϕ(t), h(t)〉|

= sup
‖h‖L2=1

∣∣∣∣
∫
û0(ξ)ĥϕ(yξ + |ξ|a)dξ

∣∣∣∣

≥
∫

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

≥
(∫

|ξ|1−a|û0(ξ)|2dξ
) 1

2
(
C(a)y

a
2(a−1)

∫ Ξ1

0

|ζ |−1/2|ĝϕ(ζ − Ξ1)|2dζ
) 1

2

=C ′(a)ya/4(a−1)‖u0‖Ḣ(1−a)/2

(∫ Ξ1

0

|ζ |−1/2|ĝϕ(ζ − Ξ1)|2dζ
) 1

2

.

The constant in gϕ is controlled (loosely) by ‖g‖L4/3.

Lemma IV.12. We will treat the cases a > 1 and 0 < a < 1 separately.

Case IV.12.1 ( a > 1). Notice that |ξ|a−1 =
sgnξ

a

(
d

dξ
(yξ + |ξ|a)− y

)
, so we can

change variables:

∫
|ξ|a−1|ĝϕ(yξ + |ξ|)a|2dξ =

∫
sgnξ

a

(
d

dξ
(yξ + |ξ|a)− y

)
|ĝϕ(yξ + |ξ|)a|2dξ

=

∫ ∞

0

ψ′(ξ)

a
|ĝϕ(ψ(ξ))|2dξ −

∫ 0

−∞

ψ′(ξ)

a
|ĝϕ(ψ(ξ))|2dξ

− y

a

∫
sgnξ|ĝϕ(yξ + |ξ|a)|2dξ

=
2

a

∫ ∞

0

|ĝϕ(ζ)|2dζ − y

a

∫
sgnξ|ĝϕ(yξ + |ξ|a)|2dξ.

On the intervals (0,∞) and (−∞,−y 1
a−1 ), y + a|ξ|a−1sgnξ 6= 0, so we can change

variables again as long as we keep track of the derivative factor:

−y
a

∫ ∞

0

|ĝϕ(yξ + |ξ|a)|2y + a|ξ|a−1sgnξ

y + a|ξ|a−1sgnξ
dξ = −

∫ ∞

0

y

a
Φ+(ζ)|ĝϕ(ζ)|2dζ.
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Observe that y
a
Φ+(ζ) is bounded at 0 by 1/a and decays like |ζ |−(a−1)/a at ∞ since

ζ |ξ|a for large ξ. Similarly, on (−∞,−y 1
a−1 ), we have:

y

a

∫ −y
1

a−1

−∞
|ĝϕ(yξ + |ξ|a)|2y + a|ξ|a−1sgnξ

y + a|ξ|a−1sgnξ
dξ =

∫ ∞

0

y

a
Φ−(ζ)|ĝϕ(ζ)|2dζ

where y
a
Φ−(ζ) is bounded as ζ → 0+ by 1/(a(a − 1)) and decays like |ζ |−(a−1)/a at

positive infinity. Combining all the inequalities so far we find:

∫
|ξ|a−1|ĝϕ(yξ + |ξ|)a|2dξ =

∫ ∞

0

(
2

a
− y

a
Φ+(ζ) +

y

a
Φ−(ζ)

)
|ĝϕ(ζ)|2dζ(4.16)

+
y

a

∫ 0

−y
1

a−1

|ĝϕ(yξ + |ξ|a)|2dξ.

The first two terms on the right hand side are precisely the lower bounds given in

the Proposition where Ψ = 2
a
− y

a
Φ+(ζ)+

y
a
Φ−(ζ). The growth factor in y arises from

the remaining term.

In the interval (−y 1
a−1 , 0), the function yξ+ |ξ|a is nearly parabolic, so the natural

change of variables is yξ + |ξ|a + (a − 1)|ξ1|a = (η − ξ1)
2. In particular, we will

take η = η(ξ) = ξ1 + sgn(ξ − ξ1)
√
yξ + |ξ|a + Ξ1 so that

y − a|ξ|a−1

2(η − ξ1)
≥ 0. Let

J(ξ) =
2(η(ξ)− ξ1)

y − a|ξ|a−1
. Then if we let introduce η(ξ), we have:

y

a

∫ 0

−y
1

a−1

|ĝϕ(yξ + |ξ|a)|2dξ = y

a

∫ 0

−y
1

a−1

J(ξ)|ĝϕ((η(ξ)− ξ1)
2 − Ξ1)|2

dξ

J(ξ)
.

We will show that J(ξ) is bounded below precisely by C(a)y−1|ξ1|a/2 in Proposition
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IV.13. Now, we use this bound and then change variables:

y

a

∫ 0

−y
1

a−1

|ĝϕ(yξ + |ξ|a)|2dξ ≥C(a)y
a

2(a−1)

∫ 0

−y
1

a−1

|ĝϕ((η(ξ)− ξ1)
2 − Ξ1)|2

dξ

J(ξ)

=C(a)y
a

2(a−1)

∫ ξ1+
√
...

ξ1−√
...

|ĝϕ((η − ξ1)
2 − Ξ1)|2dη

=C(a)y
a

2(a−1)

∫ +
√
Ξ1

−
√
Ξ1

|ĝϕ(η2 − Ξ1)|2dη

=2C(a)y
a

2(a−1)

∫ +
√
Ξ1

0

1

2η
|ĝϕ(η2 + Ξ1)|22ηdη

=C(a)y
a

2(a−1)

∫ Ξ1

0

ζ−1/2|ĝϕ(ζ + Ξ1)|2dζ

where the final step is the substitution ζ = η2. Therefore, we have our lower bound

in the case a > 1.

Case IV.12.2 (1 > a > 0). The argument in this case follows the previous case, but

we omit the initial change of variable.

∫
|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ =

∫ ∞

0

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

+

∫ −y
1

a−1

−∞
|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

+

∫ 0

−y
1

a−1

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

=

∫ ∞

0

(y + a|ξ|a−1)

y|ξ|1−a + a
|ĝϕ(yξ + |ξ|a)|2dξ

+

∫ −y
1

a−1

−∞

(y − a|ξ|a−1)

y|ξ|1−a − a
|ĝϕ(yξ + |ξ|a)|2dξ

+

∫ 0

−y
1

a−1

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

=

∫
Φ(ζ)|ĝϕ(ζ)|2dη +

∫ 0

−y
1

a−1

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ

where Φ(ζ) tends to 1/a as ζ → 0+, 1/(1− a) for ζ → 0− and decays like y−a|ζ |a−1

as |ζ | → ∞. In fact, the first term is bounded below by the H(a−1)/2 norm (notice
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this is the inhomogeneous Sobolev space) and above by max{1/a, 1/(1 − a)} times

the the L2 norm of g.

In the interval (−y 1
a−1 , 0), the function yξ+ |ξ|a is nearly parabolic, so the natural

change of variables is yξ+|ξ|a+Ξ1 = −(η−ξ1)2. In particular, we will take η = η(ξ) =

ξ1 − sgn(ξ − ξ1)
√

|Ξ1| − yξ + |ξ|a so that
y − a|ξ|a−1

2(η − ξ1)
≥ 0. Let J (ξ) =

2(η(ξ)− ξ1)

y|ξ|1−a − a
.

Then we have:

∫ 0

−y
1

a−1

|ξ|a−1|ĝϕ(yξ + |ξ|a)|2dξ =
∫ 0

−y
1

a−1

J (ξ)|ĝϕ(−(η(ξ)− ξ1)
2 + |Ξ1|)|2

dξ

J (ξ)
.

We will show that J ≥ C(a)y
a

2(a−1) in proposition IV.13. If we change variables in

the remaining term:

y

a

∫ 0

−y
1

a−1

|ĝϕ(yξ + |ξ|a)|2dξ

≥C(a)y
a

2(a−1)

∫ 0

−y
1

a−1

|ĝϕ(−(η(ξ)− ξ1)
2 + |Ξ1|)|2

(y − a|ξ|a−1)dξ

2(φ(ξ)− ξ1)

=C(a)y
a

2(a−1)

∫ ξ1+
√
...

ξ1−√
...

|ĝϕ(−(η − ξ1)
2 + |Ξ1|)|2dη

=C(a)y
a

2(a−1)

∫ +
√

|Ξ1|

−
√

|Ξ1|
|ĝϕ(−η2 + |Ξ1|a)|2dη

=2C(a)y
a

2(a−1)

∫ √
|Ξ1|

0

1

−2η
|ĝϕ(−η2 + |Ξ1|)|2(−2η)dη

=2C(a)y
a

2(a−1)

∫ 0

Ξ1

1

2|ζ |1/2 |ĝϕ(ζ − Ξ1)|2dζ

where the final step is the substiution ζ = −η2. Therefore, for the case 0 < a < 1,

we have proved our lower bounds.

4.5.2 Precise bounds for a = 2 and a = 1/2

It is worth noting that in the case a = 2 and a = 1/2, we can get precisely equality,

rather than inequality. The Jacobian bounds that we proved in the previous section
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are not necessary in these two cases, as J(ξ) and J (ξ) are constant in the case a = 2

an a = 1/2, respectively. In the case a = 2 and a = 1/2, respectively, we have:

∫
|ξ||ĝϕ(yξ + ξ2)|2dξ =

∫ ∞

0

|ĝϕ(ζ)|2dζ + y

2

∫ y2/4

0

|ζ |−1/2|ĝϕ(ζ − y2/4)|2dζ

and

∫
|ξ|−1/2|ĝϕ(yξ+ |ξ|1/2)|2dξ =

∫ |ĝϕ(ζ)|2dζ
(1/4 + y|ζ |)

1
2

+y−1/2

∫ 0

−(4y)−1

|ĝϕ(ζ+(4y)−1)|2 dζ
|ζ |

1
2

.

In order to understand where precisely this undesirable decay in Theorem IV.3 is

coming from in the case of the linearized water wave, we bound u(t, zt) below by

1

T
1
2

(∫ 2T

T

|u(t, zt)|2dt
) 1

2

≤ sup
[T,2T ]

|u(t, zt)|.

By understanding the left hand side of this inequality, we can see the precise nature

of the growth factor in Proposition IV.4. From the explicit bound on the analogue

to operator T , we get

(4.17)

∫ ∞

−∞
|ξ|−

1
2 |ĝϕ(zξ + |ξ|

1
2 )|2dξ =

∫ ∞

−∞

|ĝϕ(ζ)|2
(
1
4
+ |z|ζ

) 1
2

dζ + 2

∫ 1
4|z|

0

|ĝϕ(ζ)|2
∣∣1
4
− |z|ζ

∣∣ 12
dζ

The singularity appears only in the second term at 1/4|z|, suggesting that as |z| (or

|y|) gets small, the problem with the decay exists only at high frequencies.

We finish the chapter with the technical but not very deep results necessary to

complete the proof of Theorem IV.5.

Precise Jacobian bounds

Recall Proposition IV.12 relied on the lower bounds of certain Jacobian bounds.

The Lemma below collects these bounds.

Lemma IV.13. 1. If J(ξ) =
2sgn(ξ − ξ1)

√
yξ + |ξ|a + (a− 1)|ξ1|a)
y − a|ξ|a−1

with a > 1,
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then

J(ξ) ≥





J(0) =
2
√
(a− 1)|ξ1|a

y
= 2(a− 1)

1
2a

−a
2(a−1) y

a
2(a−1)

−1 a > 2

J(−y 1
a−1 ) =

2
√
(a− 1)|ξ1|a
(a− 1)y

= 2

(a−1)
1
2
a

−a
2(a−1) y

a
2(a−1)

−1 2 > a > 1

2. Let J (ξ) =
−2sgn(ξ − ξ1)

√
(1− a)|ξ1|a − yξ + |ξ|a

y|ξ|1−a − a
with 0 < a < 1; then,

J (ξ) ≥





J (0) =
−2
√

(1− a)|ξ1|a
−a = 2(1− a)

1
2a

a−2
2(a−1)y

a
2(a−1) 1 > a > 1/2

J (−y 1
a−1 ) =

2
√
(1− a)|ξ1|a
1− a

= 2

(1−a)
1
2
a

−a
2(a−1) y

a
2(a−1) 1/2 > a > 0

Proof. First, observe that J(ξ) is continuous. The only possible point of discontinuity

is at ξ1, but by l’Hopital’s rule,

lim
ξ→ξ1

J(ξ) = lim
ξ→ξ1

2sgn(ξ − ξ1)
√
yξ + |ξ|a + (a− 1)|ξ1|a
y − a|ξ|a−1

= lim
ξ→ξ1

sgn(ξ − ξ1) (yξ + |ξ|a + (a− 1)|ξ1|a)−1/2 (y − a|ξ|a−1)

a(a− 1)|ξ|a−2

=
2

a(a− 1)|ξ1|a−2
lim
ξ→ξ1

1

J(ξ)

⇒ lim
ξ→ξ1

J(ξ) =
√
2(a(a− 1)|ξ1|a−2)−1/2.

Since J(ξ) is continuous, the natural way to find a lower bound is to consider the

derivative of J(ξ) and check for critical points. We will show that there are no

critical points of J(ξ) in the chosen interval, and therefore the lower bound is at one

of the endpoints (which endpoint depends on the value of a). When a = 2, all these

machinations are unnecessary as J(ξ) = C. From this point forward, we will assume

that a 6= 2. First, observe that the derivative of J(ξ) is

J ′(ξ) =
sgn(ξ − ξ1) [−2a(a− 1)|ξ|a−2(yξ + |ξ|a + (a− 1)|ξ1|a) + (y − a|ξ|a−1)2]

(y − a|ξ|a−1)2(yξ + |ξ|a + (a− 1)|ξ1|a)1/2
.
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Clearly, the numerator is 0 at ξ1. Since ξ1 is also a zero of the denominator and it

is easy to check using Taylor expansions that J ′(ξ1) 6= 0 and is, in fact, positive and

finite (implying that J ′(ξ) is continuous), it suffices to check if the numerator N(ξ)

has any additional zeroes. Since

N(ξ) = sgn(ξ − ξ1)
[
−2a(a− 1)|ξ|a−2(yξ + |ξ|a + (a− 1)|ξ1|a) + (y − a|ξ|a−1)2

]

has a zero at ξ1, the only way for N to have additional zeroes is if N ′(ξ) is zero at a

point besides ξ1. Now,

N ′(ξ) = sgn(ξ − ξ1)2a(a− 1)(a− 2)|ξ|a−3(yξ + |ξ|a + (a− 1)|ξ1|a).

By construction, yξ + |ξ|a + (a − 1)|ξ1|a ≥ 0 and equal to zero only at ξ1, so the

only additional possible zero is 0 and then only when a > 3. Therefore, N(ξ) has no

additional zeroes in the open interval (−y 1
a−1 , 0), and J(ξ) is monotone increasing

when a > 2 and monotone decreasing when 1 < a < 2 (since N(ξ) ≥ 0 for a > 2 and

N(ξ) ≤ 0 for 1 < a < 2). Therefore, we have

J(ξ) ≥





J(0) =
2
√
(a− 1)|ξ1|a

y
= 2(a− 1)

1
2a

−a
2(a−1) y

a
2(a−1)y−1 a > 2

J(−y 1
a−1 ) =

2
√
(a− 1)|ξ1|a
(a− 1)y

= 2(a− 1)−
1
2a

−a
2(a−1) y

a
2(a−1)y−1 2 > a > 1

which completes the proof of part 1.

Now, observe that J (ξ) is also continuous. The only possible point of discontinuity
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is at ξ1, but by l’Hopital’s rule,

lim
ξ→ξ1

J (ξ) = lim
ξ→ξ1

−2sgn(ξ − ξ1)
√

(1− a)|ξ1|a − yξ − |ξ|a
y|ξ|1−a − a

= lim
ξ→ξ1

−sgn(ξ − ξ1) ((1− a)|ξ1|a − yξ − |ξ|a)−1/2 (−y + a|ξ|a−1)

−y(1− a)|ξ|−a

=
1

y(1− a)
lim
ξ→ξ1

|ξ|a(y − a|ξ|a−1)

−sgn(ξ − ξ1) ((1− a)|ξ1|a − yξ − |ξ|a)1/2

=
2|ξ1|2a−1

a(1− a)|ξ1|a−1
lim
ξ→ξ1

1

J(ξ)

⇒ lim
ξ→ξ1

J(ξ) =
√
2|ξ1|a(a(a− 1))−1/2.

Since J (ξ) is continuous, the natural way to find a lower bound is to consider the

derivative of J (ξ), and (if it is continuous as well) check for critical points. We will

show that J ′(ξ) is strictly postive when 0 < a < 1/2 and strictly negative when

1/2 < a < 1. When a = 1/2, J (ξ) = C, so we will assume a 6= 1/2. First, observe

that the derivative of J (ξ) is

J ′(ξ) =
sgn(ξ − ξ1) [−2(1 − a)y|ξ|1−a((1− a)|ξ1|a − yξ − |ξ|a) + |ξ|a|(y|ξ|1−a − a)2]

|ξ|(y − a|ξ|a−1)2(yξ + |ξ|a + (a− 1)|ξ1|a)1/2
.

Clearly, the numerator is 0 at ξ1. Since ξ1 is also a zero of the denominator and it

is easy to check using Taylor expansions that J ′(ξ1) 6= 0 and is precisely C(a)(1 −

2a)|ξ1|5a/2−3, where C(a) > 0. The numerator also has a zero at 0, but the |ξ| will

force J ′(ξ) to go to positive or negative infinity as ξ ր 0. In order to find critical

points that could be extrema of J (ξ), it suffices to check if the numerator N(ξ)

has any additional zeroes. As in the case a > 1, we will analyze the numerator

with its derivative to check for zeroes. The numerator is slightly more complicated

in this case, and it must have a critical point between ξ1 and 0 by Rolle’s theorem.

However, the derivative has other properties which will allow us to draw the necessary

conclusions.
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Claim IV.14. The only zeroes of N(ξ) are at ξ = ξ1, 0. Moreover, for 0 < a < 1/2,

N(ξ) ≤ 0 for ξ ∈ (−y1/(a−1), ξ1) and N(ξ) ≥ 0 for ξ ∈ (ξ1, 0). For 1/2 < a < 1,

N(ξ) ≥ 0 for ξ ∈ (−y1/(a−1), ξ1) and N(ξ) ≤ 0 for ξ ∈ (ξ1, 0)

Proof. Rather than draw conclusions about arbitrary a, we will discuss 0 < a < 1/2,

but exactly the same arguments will yield similar conclusions for 1/2 < a < 1,

just with opposite signs. Since N(ξ) = −2(1 − a)y|ξ|1−a((1 − a)|ξ1|a − yξ − |ξ|a) +

|ξ|a(y|ξ|1−a − a)2, we can show that

(4.18) |ξ|N ′(ξ) + (1− a)N(ξ) = (1− 2a)|ξ|a(y|ξ|1−a − a)2.

The right hand side is always the same sign except at its zeroes, ξ1 and 0. From this

equation, we can conclude that N ′(ξ1) = N ′′(ξ1) = 0, but N ′′′(ξ1) = 2a2(1− a)2(1−

2a)|ξ1|a−3, so near ξ1, the function N(ξ) is a positive cubic. The equation (4.18) also

implies that at any point x ∈ (−y−1/(a−1), 0) not equal to ξ1 or 0 such that N(x) = 0

must satisfy N ′(x) > 0. This fact means that in the subinterval (ξ1, 0), there can

be no additional zeroes of N(ξ). Since N(−y 1
a−1 ) < 0 and N(ξ) approaches zero

from below as ξ ր ξ1, there can only be an even number of zeroes in the subinterval

(−y 1
a−1 , ξ1). At one of the zeroes, N(ξ) must be decreasing, but that would contradict

equation (4.18). Therefore there are no zeroes of N(ξ) in the subinterval (−y 1
a−1 , 0).

Combining these two subintervals, we conclude that or 0 < a < 1/2, N(ξ) ≤ 0 for

ξ ∈ (−y1/(a−1), ξ1) and N(ξ) ≥ 0 for ξ ∈ (ξ1, 0). Thus the claim is proved.

If we return to J ′(ξ) and apply this claim, we find that when 0 < a < 1/2,

J ′(ξ) > 0 for ξ ∈ (−y 1
a−1 , 0) and when 1/2 < a < 1, J ′(ξ) < 0 for ξ ∈ (−y 1

a−1 , 0).
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Thus,

J (ξ) ≥





J (0) =
−2
√

(1− a)|ξ1|a
−a = 2(1− a)

1
2a

a−2
2(a−1) y

a
2(a−1) 1 > a > 1/2

J (−y 1
a−1 ) =

2
√
(1− a)|ξ1|a
1− a

= 2(1− a)−
1
2a

−a
2(a−1)y

a
2(a−1) 1/2 > a > 0



CHAPTER V

Further Study of the Linearized Water Wave Problem

5.1 The Linearized Water Wave Problem

The results from Chapter IV suggest that the problematic regions for Theorem

IV.3 are for initial data away from the origin in frequency. On the other hand,

previously mentioned existing results such as [20, Proposition 3.1]) are, in some

sense, only problematic for initial data with a contribution from low frequencies. We

combine these results and show an improved decay rate for solutions of the linearized

water wave problem by imposing further bounds on the initial data.

Recall that we have reduced the problem to the interface, and the linearized form

of the initital value problems is

(5.1)





∂2t u+ |D|u = 0

u(0, x) = u0(x)

ut(0, x) = u1(x).

First, consider a decay bound for the linearized water wave problem inspired by the

work of Klainerman for the wave equation.

5.1.1 Analogue to [20, Proposition 3.1]

Where previous work was concerned with the removal of the troublesome quantity

Ω0, it is advantageous to reintroduce it here. Let Γ = {∂t, ∂x, L = t
2
∂t + x∂x} and

54
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Ω = x∂t +
t
2
∂x|D|−1. The following proposition is analogous to [20, Proposition 3.1]

and is proved using techniques similar to those used by Klainerman for the wave

equation. While Γ and Ω here are specific to the case of the linearized water wave

problem, a similar collection of vector fields exists for (4.1) and the proposition can

be generalized to this class of equations. We focus on the linearized water wave

problem for the time being.

Lemma V.1. Let u(t, x) be any real-valued function which decays at infinity. Then,

for a multiindex k = {k1, k2, k3} and Γk = ∂k1t ∂
k2
x L

k3, we have:

(5.2) |u(t, x)| ≤ C

t
1
2


 ∑

1≤|k|≤2

‖Γku(t)‖L2(Rx) +
∑

|k|≤1

‖ΓkΩu(t)‖L2(Rx)


 .

Remark V.2. The details of this proof are due to unpublished work of Sijue Wu. We

duplicate the proof here for completeness.

Proof. Observe that

xL− t

2
Ω = x2∂x −

t2

4
∂x|D|−1.

In some sense, ∂x|D|−1 is the Hilbert transform, so we will treat v = u + iv, where

v = ∂x|D|−1u, or equivalently u = −∂x|D|−1v. Then, we have

x2∂xv+
it2

4
v = xLv− t

2
Ωv.

Since ∂xe
−it2

4x = it2

4x2 e
−it2

4x , we can rewrite the above as

x2∂x

(
e

−it2

4x v

)
= e

−it2

4x

(
it2

4
v + x2∂xv

)
= e

−it2

4x

(
xLv− t

2
Ωv

)
.

Finally, we conclude that

∣∣∣∂x
(
e

−it2

4x v
)∣∣∣ ≤ 1

|x| |Lv|+
|t|
2x2

|Ωv|
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Using a variation on the fundamental theorem of calculus, we have

|v(x)| ≤
∫ ∞

|x|

∣∣∣∂z
(
e

−it2

4z v
)∣∣∣ dz

≤
∫ ∞

|x|

1

|z| |Lv|+
|t|
2z2

|Ωv| dz

≤
(∫ ∞

|x|

1

|z|2dz
) 1

2

‖Lv‖L2 +

(∫ ∞

|x|

t2

4|z|4dz
) 1

2

‖Ωv‖L2

Thus we can conclude that

(5.3) |(u+ iv)(x)| ≤ 1

|x|
1
2

‖L(u+ iv)‖L2 +
t

|x| 32
‖Ω(u+ iv)‖L2

Case V.2.1 (|x| ≥ t). By (5.3), we have

|(u+ iv)(x)| ≤ 1

t
1
2

‖L(u+ iv)‖L2 +
1

t
1
2

‖Ω(u+ iv)‖L2,

which completes the proof of this case. Since |v(t, x)| ≤ |(u + iv)(x)| and the com-

mutator of L and Ω with the operator ∂x|D|−1 are [L, ∂x|D|−1] = 2∂x|D|−1 and

[Ω, ∂x|D|−1] = 0, we can bound L∂x|D|−1u by Lu and u in L2 and similarly for

Ω∂x|D|−1u. We conclude

|u(t, x)| ≤ C

t
1
2

‖Lu‖L2(Rx) +
C

t
1
2

‖Ωu‖L2(Rx).

Case V.2.2 (|x| ≤ t). In order to show the bounds, we will need to use a different

bound on u. First observe that

t2

4
u = xLv − t

2
Ωv − x2∂xv.

Then, in absolute value we can control the first two terms using standard Sobolev
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norms and the last term using (5.3):

t2

4
|u(x)| ≤ x|Lv|+ t

2
|Ωv|+ x2|∂xv|

≤ x (‖Lv‖L2 + ‖∂xLv‖L2) +
t

2
(‖Ωv‖L2 + ‖∂xΩv‖L2)

+ x2

(
1

|x|
1
2

‖L∂x(u+ iv)‖L2 +
t

|x| 32
‖Ω∂x(u+ iv)‖L2

)

|u(t, x)| ≤ 4x

t2
(‖Lv‖L2 + ‖∂xLv‖L2) +

2

t
(‖Ωv‖L2 + ‖∂xΩv‖L2)

+
4x2

t2

(
1

|x|
1
2

‖L∂x(u+ iv)‖L2 +
t

|x| 32
‖Ω∂x(u+ iv)‖L2

)

≤ 4

t
(‖Lv‖L2 + ‖∂xLv‖L2) +

2

t
(‖Ωv‖L2 + ‖∂xΩv‖L2)

+

(
4|x| 32
t2

‖L∂x(u+ iv)‖L2 +
4|x|

1
2

t
‖Ω∂x(u+ iv)‖L2

)

Finally, we have

|u(t, x)| ≤ C

t
(‖Lv‖L2 + ‖∂xLv‖L2 + ‖Ωv‖L2 + ‖∂xΩv‖L2)

+
C

t
1
2

(‖L∂x(u+ iv)‖L2 + ‖Ω∂x(u+ iv)‖L2)(5.4)

5.1.2 Energy bounds

In order to turn the Klainerman-type estimates into L∞ bounds on the solution

in terms of the initial data, we use the energy estimates for (5.1).

Lemma V.3. Let u(t, x) be a solution of (5.1) with (u(0, x), ut(0, x)) = (u0(x), u1(x))

and ui ∈ S(R) for i = 0, 1. In addition, let Γ = {∂t, ∂x, L = t
2
∂t + x∂x} and

Γ1 = Γ ∪ {Ω = x∂t +
t
2
∂x|D|−1} and let k be a multiindex. Define the energy func-

tional as

E[v](t) =

∫
|∂tv(t, x)|2 + ||D|

1
2v(t, x)|2dx.
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Then, E[u](t) = E[u](0) and

‖Γk
1u(t)‖L2 ≤ ‖∂t|D|−

1
2Γk

1u(0)‖L2 + ‖Γk
1u(0)‖L2.

Remark V.4. This equality holds for a variety of classes of initial data. However,

considering the data in Schwartz class allows us to use density arguments when the

natural space for the data appears in our analysis.

Proof. Since ∂t, ∂x, and Ω are invariant under the operator ∂2t +|D| and [∂2t +|D|, L] =

∂2t + |D|, we can bound ‖Γαu‖L2 using the energy:

‖Γαu(t)‖L2 ≤ E[|D|−
1
2Γαu](t)

1
2

= E[|D|−
1
2Γku](0)

1
2 ≤

(∫
|∂t|D|−

1
2Γαu(0, x)|2 + |Γαu(0, x)|2dx

) 1
2

.

A similar calculation holds for ΩΓα.

Remark V.5. It is worth noting that the bound on Ωu(t, x) is not ideal:

‖Ωu(t)‖L2 ≤ ‖∂t|D|−1/2Ωu(0)‖L2 + ‖Ωu(0)‖L2

≤ ‖|D|−
1
2x|D|u0‖L2 + ‖∂x|D|−1u0‖L2 + ‖xu1‖L2.

We expect that |D|−1/2u1 has roughly the same regularity as u0. However, the

term involving |D|−
1
2u0 requires regularity on the antiderivative of u0. This issue is

precisely what caused the dependence of the data in [20] on initial height and energy

as well as initial slope. However, if û0 was supported outside a ball centered at zero,

we could control the bad term by the L2 norm of the data.

5.1.3 L∞ decay for the Linearized Water Wave problem

The combination of Lemma V.3 and Lemma V.1 yields the following L∞ bound.
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Proposition V.6. Let u(t, x) be a solution of (5.1) with

(u(0, x), ut(0, x)) = (u0(x), u1(x)) ∈ S(R)× S(Rn).

Then,

|u(t, x)| ≤ C

t
1
2


 ∑

1≤|k|≤2

(‖∂t|D|−
1
2Γku(0)‖L2 + ‖Γku(0)‖L2)


(5.5)

+
1

t
1
2


∑

|k|≤1

(‖∂t|D|−
1
2ΓkΩu(0)‖L2 + ‖ΓkΩu(0)‖L2)


 .

Remark V.7. The inequality (5.5) has concise notation but it obscures the precise

bounds on the right hand side. Using commutators, we can write each of these sums

explicitly. The first two terms contain L2 bounds of derivatives up to first order and

homogeneous operators (such as x∂x) of the initial data. More interesting are the

bounds on the second two terms:

∑
‖ΓkΩu(0)‖L2 . ‖xu1‖L2 + ‖(x∂x)(xu1)‖L2 + ‖∂x|D|−1u0‖L2(5.6)

+ ‖x|D|u0‖L2 + ‖x∂xu1‖L2 + ‖u1‖L2

∑
‖∂t|D|−

1
2ΓkΩu(0)‖L2 . ‖x|D||D|−

1
2u0‖L2 + ‖∂x|D|−1|D|−

1
2u0‖L2(5.7)

+ ‖(x∂x)(∂x|D|−1)|D|−
1
2u0‖L2 + ‖(x∂x)(x|D|)|D|−

1
2u0‖L2

+ ‖∂x|D|−1u1‖L2 + ‖|D|
1
2u0‖L2 + ‖|D|u0‖L2

+ ‖∂x|D|−1u0‖L2 + ‖x∂x∂x|D|−1u0‖L2

+ ‖x|D||D|−
1
2u1‖L2 + ‖∂x|D|−1|D|−

1
2u1‖L2.

These terms contain the troublesome terms involving |D|−
1
2u0, as mentioned in Re-

mark V.5.

These results give a decay of t−
1
2 for certain classes of data. The inequality in

Proposition V.6 along with the observation about Ωu(t) in Remark V.5 suggests
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that for data bounded away from the origin in frequency, Proposition V.6 gives the

desired t−
1
2 decay. On the other hand, Theorem IV.3 for a = 1

2
gives the desired

decay in the low frequency regime. Theorem IV.3 implies t−
1
2 decay whenever |y| ≥ 1

or other constant, and thus only when |y| < 1 do we have an undesirable decay rate.

Previous sharpness results for that theorem also suggest that singularity comes from

a singularity in norm around 1/y in frequency. Combining these two observations

suggests that Theorem IV.3 is the right choice for initial data concentrated in low

frequency.

5.2 Analysis of Initial Data

The argument above suggests that we should examine data supported away from

the origin in frequency and data supported near the origin in frequency indepen-

dently. We begin with the first of these cases.

5.2.1 Data Supported away from a Ball of fixed radius in Frequency

If instead we consider data supported in |ξ| > R, we can conclude the following

corollary to Proposition V.6 :

Corollary V.8. For w(t, x) a solution of (5.1) with (ŵ0(ξ), ŵ1(ξ)) each supported

in |ξ| ≥ R, we have

(5.8) sup
y

|w(t, yt2)| ≤ 1 +R−1/2

t
1
2


∑

|k|≤2

(‖|D|−
1
2Γkw1‖L2 + ‖Γkw0‖L2)


 .

Proof. The inequality above follows directly from the pointwise Klainerman bound,
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Proposition V.6:

sup |w(t, yt2)| ≤ 1

t
1
2


 ∑

1≤|k|≤2

(‖|D|−
1
2Γkw1‖L2 + ‖Γkw0‖L2)

+
∑

|k|≤1

(‖|D|−
1
2ΓkΩw1‖L2 + ‖ΓkΩw0‖L2)


 .

Since ŵ0 is supported in |ξ| > R, we can bound ‖Ωw0‖ by

‖Ωw0‖L2 ≤
∑

|k|=1

‖Γkw0‖L2 +R−1/2‖w0‖L2.

Then, the full bound on the first term is the equation in the statement of the propo-

sition.

5.2.2 Data Supported in a Ball centered at the origin in Frequency

On the other hand, we can use results from Chapter IV to control a solution with

data concentrated at low frequency, as in the following proposition:

Proposition V.9. Let u(t, x) be a solution to the differential equation (5.1) with

initial data ui(x) ∈ S(R) such that supp ûi(ξ) ⊂ BR(0). Then,when |y| ≤ (8R1/2T )−1

sup
|y|≤(8R1/2T )−1

|u(t, yt2)| ≤ 1

T
1
2

∑

|k|≤1

(
‖Lku0‖Ḣ1/4 + ‖Lku1‖Ḣ−1/4

)
.

This proposition follows from Lemma IV.2 and this proposition on the L2 norm:

Proposition V.10. Let v̂ ∈ C∞
0 (R) with supp v̂ ⊆ BR(0). Let 1/4 ≤ σ ≤ 1/2.

Then, for y < Y = (8R1/2T )−1,

‖Sv‖L2(T,2T ) ≤ C‖v‖Ḣσ .

Proof. Let ϕ(t) ∈ C∞
0 (R) with ϕ = 1 for t ∈ (1, 2) and ϕ = 0 for t ∈ (1/2, 5/2)C and
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ϕT (t) = ϕ(t/T ), and let χ(ξ) be identically 1 on BR(0) and 0 on B2R(0)
C . Now,

‖Sv‖L2(T,2T ) = sup
g∈L2,‖g‖=1

|〈Sv(t)ϕT (t), g(t)〉|

= sup
g∈L2,‖g‖=1

|〈v̂(ξ), T (gϕT )(ξ)〉|

≤ ‖v‖Ḣσ

(∫
(1 + |ξ|2)−σ|χ(ξ)T (gϕT )(ξ)|2dξ

) 1
2

.

As before, we rewrite the operator squared as a product and reorder the integral:

∫
|χ(ξ)T (gϕT )(ξ)|2dξ =

∫
gϕT (t)gϕT (s)

∫
e−i(y(t2−s2)ξ+(t−s)|ξ|1/2) |χ(ξ)|2

(1 + |ξ|2)σ dξ

The stationary point of the oscillatory integral is at −1/(4y2(t + s)2), so if 2R <

1/(4y2(t + s)2), we can simply integrate by parts. Then, y < Y implies that ξ0 ∈

B2R(0)
C , and we can control the integral in ξ by integration by parts:

∫
e−i(y(t2−s2)ξ+(t−s)|ξ|1/2)|χ(ξ)|2|ξ|−

1
2dξ =

∫ 2R

−2R

−|ξ|−
1
2∂ξ

(
e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )
)
dξ

i(y(t2 − s2) + (1/2)(t− s)|ξ|−
1
2 sgnξ)

=
e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )|χ(ξ)|2

−i(y(t2 − s2)|ξ|1/2 + (1/2)(t− s)sgnξ)

∣∣∣∣∣

∞

−∞

−
∫
e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )∂ξ

(
|χ(ξ)|2

−i(y(t2 − s2)|ξ|
1
2 + (1/2)(t− s)sgnξ)

)
dξ

=
4i

t− s
−
∫
e−i(y(t2−s2)ξ+(t−s)|ξ|

1
2 )∂ξ

(
χ(|ξ)|2

−i(y(t2 − s2)|ξ|
1
2 + (1/2)(t− s)sgnξ)

)
dξ

The remaining term is also bounded by |t − s|−1. In fact, following the same ar-

guments as an earlier proof we can show the second term is a standard kernel with

constant independent of y and we can use the T1 theorem to show it is the kernel of

a bounded operator. In fact, all the necessary bounds on the kernels are independent

of the size of the support of v̂. Therefore, we have:

(∫
|χ(ξ)T (gϕT )(ξ)|2dξ

)1/2

≤ C‖gϕT‖L2

with C independent of y, T , and R.
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5.2.3 A First Attempt at Optimality

Since the results from the invariant vector field-type bounds and those from the

Klainerman type bounds have difficulty controlling the solution in different areas, we

combine the two results in order to improve the decay rate. We combine Theorem

IV.3 in the case a = 1/2 with Proposition V.6 to get the following theorem:

Theorem V.11. Let u(t, x) be a solution of ∂2t u+ |D|u = 0 with (u(0, x), ut(0, x)) =

(u0, u1) ∈ S(R)× S(R). Then,

(5.9) sup
y∈R

|u(t, yt2)| ≤ 1

t5/14

∑

|k|≤2

(
‖Γku0‖L2 + ‖Γk|D|−

1
2u1‖L2

)

Proof. Fix t > 1. Let χ(ξ) denote the indicator function for the ball of radius tp

centered at 0. Then, let v(t, x) be the solution to

(∂2t + |D|)v = 0 with (v̂(0, ξ), ∂tv̂(0, ξ)) = (û0χ, û1χ)

and w(t, x) be the solution to

(∂2t + |D|)w = 0 with (ŵ(0, ξ), ∂tŵ(0, ξ)) = (û0(1− χ), û1(1− χ)).

Notice that since all of these differential equations are linear, u(t, x) = w(t, x) +

v(t, x). Therefore,

(5.10) |u(t, yt2)| ≤ |w(t, yt2)|+ |v(t, yt2)|

Since the initial data for the first term is bounded away from 0 in frequency, we will

use the pointwise bound:

|w(t, yt2)| ≤ 1

t
1
2


 ∑

1≤|k|≤2

(‖|D|−
1
2Γkw1‖L2 + ‖Γkw0‖L2)




+
1

t
1
2


∑

|k|≤1

(‖|D|−
1
2ΓkΩw1‖L2 + ‖ΓkΩw0‖L2)
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Since ŵ0 is supported in |ξ| > tp, we can bound ‖Ωw0‖ by

‖Ωw0‖L2 ≤
∑

|k|=1

‖Γkw0‖L2 + t−p/2‖w0‖L2 .

Then, the full bound on the first term is

(5.11) |w(t, yt2)| ≤ 1 + t−p/2

t
1
2


∑

|k|≤2

(‖|D|−
1
2Γkw1‖L2 + ‖Γkw0‖L2)


 .

For the function v(t, x), first observe that if |y| > 1, the decay is t−
1
2 . The choice

of 1 here is slightly arbitary; what will matter more is a lower bound on |y| from the

analysis of the critical point. Since v(t, x) has initial compactly supported on the

Fourier transform side, for sufficiently small values of |y|, we also have t−
1
2 decay.

Precisely, if |y| ≤ (8T p/2+1)−1

|v(t, yt2)| ≤ 1

t
1
2

∑

|k|≤1

(
‖Lkv0‖H 1

4
+ ‖Lkv1‖

H
−1
4

)
.

Notice that because we have compact support in the Fourier transform, we can

rewrite the right hand side here as

|v(t, yt2)| ≤ tp/4

t
1
2

∑

|k|≤1

(
‖Lkv0‖L2 + ‖|D|−

1
2Lkv1‖L2

)
.

If (8tp/2+1)−1 < |y| < 1, we use Theorem IV.3 and have

(5.12) |v(t, yt2)| ≤ (1 + t
p+2
8 )tp/4

t
1
2

∑

|k|≤1

(
‖Lkv0‖L2 + ‖|D|−

1
2Lkv1‖L2

)
.

Different values of p will cause different terms to dominate. When p > 0, the

contribution from (5.11) will be t−
1
2 , but (5.12) decays like t

3p
8 t

1
4 t−

1
2 . These cannot

be equal for any positive value of p. On the other hand, if −2 < p < 0, we have

t−
p+1
2 from (5.11) and t

3p
8 t

1
4 t−

1
2 from (5.12), which are equal for p = −2/7.

Notice that choosing p = −2/7 improves the decay in the case |y| > 1 to T−4/7

times L2 norms. By taking p = −2/7, we can conclude that

sup
y∈R

|u(t, yt2)| ≤ 1

t5/14

∑

|k|≤2

(
‖Γku0‖L2 + ‖Γk|D|−

1
2u1‖L2

)
.
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Remark V.12. Observe that in almost every term we can get the desired decay.

In the case of |ξ| > T p, whenever p > 0, we get better than T− 1
2 decay, but at

the cost of severely worse decay in the |ξ| < T p part. We might as well decompose

around |ξ| ∼ 1, which gives the desired decay from the Klainerman type bounds with

the smallest penalty on the remainder. In that remainder, only certain values of |y|

contribute to the growth, namely (8T )−1 < |y| < 1. It is worth noting that this range

is barely larger than the region described by the optimal choice p = −2/7, where we

have (8T )−6/7 < |y| < 1, but the miniscule reduction in the range of y introduces

T 1/7 of growth on the Klainerman term. Clearly there is more to understand with

data compactly supported in frequency.

5.3 Data Compactly Supported in Frequency, a Second Attempt

What truly matters in this regime is whether or not the initial data has a singular-

ity at the origin and how rapidly that singularity grows as the frequency approaches

0.

Theorem V.13. Let u(t, x) be a solution of

(5.13)





∂tu− i|D|
1
2u = 0

u(0, x) = u0(x)

with u0(x) ∈ Ḣ
1
4 and supp û0(ξ) ⊆ (−1, 1). In addition, let C

t
≤ |y| ≤ 1. Then

(5.14) u(t, x) ∈ Lq(Rx) where





q ∈
(

2
1−2|γ| ,∞

)
when γ < 0

q ∈ (2,∞) when γ > 0.

.

Remark V.14. Heuristically, we expect u(t, x) ∈ Lq(R) to decay like |x|− 1
q . In the

case of −1/4 < γ < 0, the reduced range of q gives |u(t, x)| would decay no faster
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than |x|− 1
2
+|γ|, which would prevent u(t, x) from being in L2. In fact, if we consider

|u(t, yt2)| and γ = −1/4, we would get that |u(t, yt2)| ≤ y−
1
4 t

1
2 , precisely the growth

factor from our previous results. These heuristics suggest that the size of the sin-

gularity at the origin in frequency is what generates the troublesome growth factor.

On the other hand, it appears that the solution to this issue is to consider data in

L2, which is an /improvement over previous results.

The Lq(R) bounds on u(t, x) are uniform in compact sets of t. We relate the

function u(t, x) to u(t, yt2) to take advantage of scaling in t but return to u(t, x)

after manipulations have recast the problem in a nicer form.

Theorem V.13 follows from this proposition relating u(t, yt2) to a singular integral

of ψ.

Proposition V.15. Let u be a solution to (4.2) with u0 ∈ Ḣ
1
4 (R) and supp û0(ξ) ⊆

(−1, 1). Then,

(5.15) |u(t, yt2)| ≤ C

∫
1

|y − z|
1
2

∣∣∣t|D|
1
2Hu0(t2z)

∣∣∣ dz.

Proof. Since u0 ∈ Ḣ
1
4 (R) and is compactly supported in frequency, û0 must take the

following form for −1/4 < γ and ψ ∈ C∞
0 (R) with suppψ ⊆ (−1, 1):

(5.16) û0 = |ξ|−
1
2 sgnξ|ξ|γψ̂(ξ).

The range of γ is easily deduced by considering where the Ḣ
1
4 norm of u0 is finite.

We make no additional assumptions on ψ.

To prove the theorem, we begin by rewriting the solution in a different form.
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Observe that

u(t, yt2) =

∫
ei(yt

2ξ+t|ξ|
1
2 )û0(ξ)dξ

=

∫
ei(yξ+|ξ|

1
2 )|ξ|−

1
2 sgnξ|ξ|

1
2 sgnξ

1

t2
û0

(
ξ

t2

)
dξ

=

∫
ei(yξ+|ξ|

1
2 )|ξ|−

1
2 sgnξ

∫
δ(ξ − η)|η|

1
2 sgnη

1

t2
û0

( η
t2

)
dηdξ

=

∫
ei(yξ+|ξ|

1
2 )|ξ|−

1
2 sgnξ

∫∫
Ce−iz(ξ−η)dz|η|

1
2 sgnη

1

t2
û0

( η
t2

)
dηdξ

=

∫∫
ei((y−z)ξ+|ξ|

1
2 )|ξ|−

1
2 sgnξdξ

∫
Ceizη|η|

1
2 sgnη

1

t2
û0

( η
t2

)
dηdz

=

∫
k(y − z)t|D|

1
2Hu0(t2z)dz.

The second line comes from rescaling in t and k(y− z) =
∫
ei((y−z)ξ+|ξ|

1
2 )|ξ|−

1
2 sgnξdξ.

To complete the proof of this theorem, we simply need to show that |k(y − z)| ≤

C|y − z|−
1
2 . We will conduct our analysis on k(x) for simplicity in notation. Now, if

we change variables ζ = |ξ|
1
2 ,

k(x) =

∫
ei(xξ+|ξ|

1
2 )|ξ|−

1
2 sgnξdξ

= 2

∫ ∞

0

ei(xζ
2+ζ)dζ − 2

∫ ∞

0

e−i(xζ2−ζ)dζ

= 2

∫ ∞

0

eiζ
(
eixζ

2 − e−ixζ2
)
dζ.(5.17)

From (5.17), it is clear that k(−x) = −k(x). Since the phase functions in the

calculation above are quadratic, it is possible to solve exactly for pieces of the kernel.

Now,

sgnxk(x) = 2e
−i
4|x|

∫ ∞

0

ei|x|(ζ+
1

2|x|)
2

dζ − 2e
i

4|x|

∫ ∞

0

e−i|x|(ζ− 1
2|x|)

2

dζ

= 2e
−i
4|x|

∫ ∞

1
2|x|

ei|x|ζ
2

dζ − 2e
i

4|x|

∫ ∞

− 1
2|x|

e−i|x|ζ2dζ

= −2e
i

4|x|

∫ ∞

−∞
e−i|x|ζ2dζ + 2e

i
4|x|

∫ − 1
2|x|

−∞
e−i|x|ζ2dζ + 2e

−i
4|x|

∫ ∞

1
2|x|

ei|x|ζ
2

dζ

= −k1(|x|) + k2(|x|).



68

The term k1(|x|) is straightforward to solve exactly using contours:

−2e
i

4|x|

∫ ∞

−∞
e−i|x|ζ2dζ = 2e

i
4|x|

∫

e
−iπ
4 R

e−i|x|ζ2dζ

= 2e
i

4|x| e−
iπ
4

∫ ∞

−∞
e−|x|ζ2dζ

=
2
√
πe

i
4|x| e−

iπ
4

|x|
1
2

.

Therefore, |k1(|x|)| ≤ 2
√
π|x|−

1
2 . It only remains to control the second term, k2(|x|).

Observe that k2(|x|) is the sum of integral and its complex conjugate, so it is sufficient

to consider just one of the terms and show it is bounded by C|x|−
1
2 . By construction,

we can use integration by parts on the terms of k2 as they avoid the critical point of

the phase function. Thus,

∣∣∣∣∣2e
−i
4|x|

∫ ∞

1
2|x|

ei|x|ζ
2

dζ

∣∣∣∣∣ = 2

∣∣∣∣∣

∫ ∞

1
2|x|

ei|x|ζ
2

dζ

∣∣∣∣∣

= 2

∣∣∣∣∣∣

∫ ∞

1
2|x|

∂ζ

(
ei|x|ζ

2
)

2i|x|ζ dζ

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
ei|x|ζ

2

2i|x|ζ

∣∣∣∣∣

∞

1
2|x|

+

∫ ∞

1
2|x|

ei|x|ζ
2

2i|x|ζ2dζ

∣∣∣∣∣∣
≤ 4

If |x| ≤ π/16, this calculation implies that k2(|x|) is bounded by C|x|−
1
2 . In order

to see the behavior of this term for large x, we will calculate it using contours as we

did for k1. Then,

(5.18) 2e
−i
4|x|

∫ ∞

1
2|x|

ei|x|ζ
2

dζ = 2e
−i
4|x|

(
e

iπ
4

∫ ∞

1
2|x|

e−|x|ζ2dζ +

∫

Γ

ei|x|ζ
2

dζ

)

where Γ = {|ζ | = 1
2|x| , θ ∈ (0, π/4)}. By a similar argument similar to the one used

for k1, the first term is bounded by e
−1
8|x| |x|−

1
2 . The second term can be rewritten as
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an integral in θ and bounded like so:

∣∣∣∣
∫

Γ

ei|x|ζ
2

dζ

∣∣∣∣ =
∣∣∣∣∣

∫ π
4

0

e
ie2iθ

4|x|
ieiθ

2|x|dθ
∣∣∣∣∣

≤ π

8|x|

If |x| > π
16
, we get precisely that the sum of these two terms is less than 2

√
π|x|−

1
2 .

Therefore,

(5.19) |k(x)| ≤ C|x|−
1
2 .

and we can conclude that

(5.20) |u(t, yt2)| ≤ C

∫
t||D|

1
2Hu0(t2z)|
|y − z|

1
2

dz.

Given the relationship between u(t, yt2) and the fractional integral of |D|
1
2Hu0,

the proof of Theorem V.13 reduces to careful application of the Hardy-Littlewood-

Sobolev lemma.

Proof of Theorem V.13. By a straightforward change of variables,

C

∫
t||D|

1
2Hu0(t2z)|
|y − z|

1
2

dz = C

∫ ||D|
1
2Hu0(z)|

|yt2 − z|
1
2

dz.

Let F (x) =
∫ ||D|

1
2Hu0(z)|
|x−z|

1
2

dz. Observe that |u(t, x)| ≤ |F (x)|, independent of t.

By the Hardy-Littlewood-Sobolev lemma, we know that for n ≥ 1, 1 < p < q <∞,

and the operator Iβ defined by

(5.21) Iβg(x) =

∫

Rn

1

|x− z|β g(z)dz,

we have the bounds

‖Iβg‖Lq(Rn) ≤ ‖g‖Lp(Rn) when
1

q
=

1

p
− n− β

n
.
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In this case, we have ‖F‖Lq ≤ ‖|D|
1
2Hu0‖Lp for 1

q
= 1

p
− 1

2
. To complete the proof,

it suffices to identify to which Lp spaces |D|
1
2Hu0 belongs.

Recall û0 is of the form (5.16). When γ > 0, |D|
1
2Hu0 is some order derivative of

ψ. Since ψ̂ ∈ C∞
0 , we know that ψ is in Schwartz class, and thus |D|

1
2Hu0 is in Lp

for all p. Then, we can conclude that F ∈ Lq for all q ∈ (2,∞).

When −1
4
< γ < 0, we will need to apply the Hardy-Littlewood-Sobolev lemma

for a second time. By definition, |D|
1
2Hu0(z) = I1−|γ|ψ(z), so we know that for

1 < r < p <∞

‖|D|
1
2Hu0‖Lp ≤ ‖ψ‖Lr when

1

p
=

1

r
− |γ|

1
.

By combining the bound on F with the bound on |D|
1
2Hu0, we have

‖F‖Lq ≤ ‖|D|
1
2Hu0‖Lr for

1

q
=

1

r
− |γ| − 1

2
.

Since ψ is Schwartz, we know that ψ ∈ Lr for 1 ≤ r ≤ ∞. In order to satisfy the

lemma, we limit r to the range (1, 1
1
2
+|γ|), which implies that q ∈ ( 2

1−2|γ| ,∞)

In addition to the upper bounds found above, we also have the following lower

bounds for more specialized data.

5.3.1 Sharp lower bounds compactly supported data

Theorem V.16. Let u be a solution to the initial value problem




∂tu− i|D|
1
2u = 0

u(0, x) = u0(x)

where û0(ξ) = |ξ|−
1
2 sgnξϕ̂(ξ) and ϕ(x) compactly supported in the interval (− 1

M
, 1
M
),

M ∈ N and ϕ(x) does not change sign. Let C
t
≤ |y| ≤ δ where δ > 0 and independent

of t. In addition, assume that δ + 1
M

≤ π
64
. Then,

(5.22) |u(t, yt2)| ≥
√
π

2

∫
t|ϕ(t2z)|
|y − z|

1
2

dz.
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Remark V.17. The sign assumption on ϕ is a technical condition which allows us

to move absolute values inside the integral without changing the value. It may be

possible to avoid this condition through other techniques.

Proof. We will show that given sufficient large M , this part of the kernel convolved

with the scaled initial data bounds the solution below. To begin, we verify that

1
2
|k1| > |k2|. Observe that k2(|x|) is the sum of integral and its complex conjugate,

so it is sufficient to consider just one of the terms and show it is bounded by 1
4
|k1|.

Then,
∣∣∣∣∣2e

−i
4|x|

∫ ∞

1
2|x|

ei|x|ζ
2

dζ

∣∣∣∣∣ = 2

∣∣∣∣∣

∫ ∞

1
2|x|

ei|x|ζ
2

dζ

∣∣∣∣∣

= 2

∣∣∣∣∣∣

∫ ∞

1
2|x|

∂ζ

(
ei|x|ζ

2
)

2i|x|ζ dζ

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
ei|x|ζ

2

2i|x|ζ

∣∣∣∣∣

∞

1
2|x|

+

∫ ∞

1
2|x|

ei|x|ζ
2

2i|x|ζ2dζ

∣∣∣∣∣∣
≤ 4.

As long as |x| ≤ π/4, k1 is the dominant part of the kernel. In our convolution

operator, x = y − z with |z| ≤ 1
Mt2

, so |y − z| ≤ |y| + |z| ≤ δ + 1
Mt2

. By our

assumption on M and δ , k1 is the dominant part of the kernel.

Now, since

|u(t, yt2)| =
∣∣∣∣
∫
k(y − x)tϕ(t2z)dz

∣∣∣∣

≥
∣∣∣∣
∫
k1(y − x)tϕ(t2z)dz

∣∣∣∣ −
∣∣∣∣
∫
k2(y − x)tϕ(t2z)dz

∣∣∣∣ ,

in order to show we have a lower bound we also need that

∣∣∣∣
∫
k2(y − x)tϕ(t2z)dz

∣∣∣∣ ≤
1

2

∣∣∣∣
∫
k1(y − x)tϕ(t2z)dz

∣∣∣∣ .

In fact we will show first that
∣∣∫ k1(y − x)tϕ(t2z)dz

∣∣ is bounded below and then show

that
∣∣∫ k2(y − x)tϕ(t2z)dz

∣∣ is bounded by half of this lower bound for the k1 term.
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Claim V.18. Assume that ϕ does not change sign (that is, it is strictly positive or

negative inside its support). For k1(x) defined as above, we have

(5.23)

∣∣∣∣
∫
k1(y − z)tϕ(t2z)dz

∣∣∣∣ ≥
√
π

∫
t|ϕ(t2z)|
|y − z|

1
2

dz.

Proof. Recall that k1(y − z) =
2
√
πe

i
4|y−z| e−

iπ
4 sgn(y−z)

|y−z|
1
2

. Then,

∫
k1(y − z)tϕ(t2z)dz =

∫
2
√
πe

i
4|y−z| e−

iπ
4 sgn(y − z)

|y − z|
1
2

tϕ(t2z)dz

=

∫
2
√
πe

i
4|y| e−

iπ
4 sgny

|y − z|
1
2

tϕ(t2z)dz

+

∫ 2
√
π
(
e

i
4|y−z| sgn(y − z)− e

i
4|y| sgny

)
e−

iπ
4

|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣
∫
k1(y − z)tϕ(t2z)dz

∣∣∣∣ ≥
∣∣∣∣∣

∫
2
√
πe

i
4|y| e−

iπ
4 sgny

|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣∣

−

∣∣∣∣∣∣

∫ 2
√
π
(
e

i
4|y−z| sgn(y − z)− e

i
4|y| sgny

)
e−

iπ
4

|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣∣∣

≥
∣∣∣∣∣

∫
2
√
πtϕ(t2z)

|y − z|
1
2

dz

∣∣∣∣∣

−

∣∣∣∣∣∣

∫ 2
√
π
(
e

i
4|y−z| sgn(y − z)− e

i
4|y| sgny

)
e−

iπ
4

|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣∣∣

Since ϕ doesn’t change sign, we can move the absolute value inside the first term,

and it is sufficient to show

(5.24)

∣∣∣∣∣∣

∫ 2
√
π
(
e

i
4|y−z| sgn(y − z)− e

i
4|y| sgny

)
e−

iπ
4

|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣∣∣
≤
∫ √

πt|ϕ(t2z)|
|y − z|

1
2

dz.

To show (5.24), we will use the assumption of compact support for ϕ. Assume that

2δ > 1
M
. Then, sgn(y − z) = sgny. By the mean value theorem, we have

e
i

4|y−z| sgn(y − z)− e
i

4|y| sgny =
−ize

i
4p(z)

p(z)2
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for p(z) ∈ (y − z, y + z) gives the correct point in this interval for the Mean Value

Theorem. Then,

∣∣∣∣
∫ 2

√
π
(
e

i
4|y−z| sgn(y − z)− e

i
4|y| sgny

)
e−

iπ
4 tϕ(t2z)dz

|y − z|
1
2

∣∣∣∣∣∣

≤
∣∣∣∣∣

∫ −2i
√
πze

i
4p(z) e−

iπ
4

p(z)2|y − z|
1
2

tϕ(t2z)dz

∣∣∣∣∣

≤
∫

2
√
π|z|

|p(z)|2|y − z|
1
2

t|ϕ(t2z)|dz

Since |z| ≤ 1
Mt2

, p(z) ∈ (y − z, y + z), and y > 1
t
, we have

|z|
p(z)2

≤
1

Mt2

|y − 1
Mt2

|2 ≤ Mt2

|Mt2y − 1|2 ≤ M

(M − 1)2
.

For M > 4 , we have |z|
p(z)2

< 1
2
, and so (5.23) holds.

Finally, we need only to show that
∣∣∫ k2(y − x)tϕ(t2z)dz

∣∣ is less than or equal to

half of this lower bound on the k1 term.

Claim V.19. Let ϕ and k2 be defined as above. Then

∣∣∣∣
∫
k2(y − x)tϕ(t2z)dz

∣∣∣∣ ≤
√
π

2

∫
t|ϕ(t2z)|
|y − z|

1
2

dz

Proof. Clearly, ∣∣∣∣
∫
k2(y − x)tϕ(t2z)dz

∣∣∣∣ ≤ 4

∫
t|ϕ(t2z)|dz.

Now, all we need to show is that

4 ≤
√
π

2|y − z|
1
2

.

By the triangle inequality and our assumptions on y and M in the statement of the

theorem, we have |y − z| < |y|+ |z| < π
64
. Then we have precisely that

√
π

2|y − z|
1
2

≥
√
π

2

8√
π
≥ 4,

proving the claim.



74

By combining the two claims, we see that

|u(t, yt2)| ≥
√
π

2

∫
t|ϕ(t2z)|
|y − z|

1
2

dz,

which completes the proof of the theorem.

The key ingredient in the proof above is the smallness of the support of ϕ. That

assumption allows us to treat the kernel without worrying about the oscillatory factor

e
i

|y−z| , which may contribute some cancellation in the region where t2z ∼ y.



CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

We began by identifying an area in need of improvement in the proof of almost

global existence for the water wave in two dimensions. Adapting the techniques

of Keel, Smith, and Sogge to a general class of one dimensional equations lead to

Theorem IV.3 which identified the possibility for growth along certain trajectories.

The presence of this growth impedes the ideal decay of t−
1
2 for the full water wave

problem, and its appearance was unexpected. The sharpness result of Theorem

IV.5 emphasizes that there is something even in the linear problem which keeps the

solution from decaying. However, the specificity of the assumptions in Theorem IV.5

leaves open the possibility that a more restrictive class of data, but still larger than

that allowed by Wu’s results, could overcome the obstacles.

While a promising direction, the obvious combination of Theorem IV.3 and the

Klainerman-type bounds used by Wu does not achieve the ideal decay rate. The

implication here is something non-trivial is keeping solution to the linearized problem

from decaying as we would like. In particular, the part of the solution intitially at

small frequency and propagating in the wedge t < |x| < t2 is not decaying quickly

enough. A promising first step towards a complete analysis of the effect of initial

75



76

data on long time decay is Theorem V.13. This theorem relates, in some sense, the

spatial decay of a solution to the linearized water wave problem to the size of the

singularity at the origin in frequency.

6.2 Future Work

The immediate goal is to sharpen the bounds of Chapter V and use them to pro-

duce a long time existence result for the full water wave problem with a more general

class of initial data than [20]. Once the bounds in Theorem V.13 are sharp, we will

be able to completely characterize the relationship between singularities at the origin

in frequency to growth and decay in the linearized problem. A full understanding of

the linearized problem will clarify the class of initial data neccessary for long time

existence in the nonlinear problem.

In addition, all of the theorems in Chapter IV can be generalized in some form

to higher spatial dimensions. We plan to generalize those theorems and continue

the analysis of initial data to the three dimensional water wave problem. As a

consequence, we will have global solutions in the three dimensional case for a more

general class of allowable initial conditions than in existing work.
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APPENDIX A

Results for the 2D Wave Equation

During our study of the techniques of Keel, Smith, and Sogge, we extended their

results to the two dimensional case. Since this result is not easily found in the

literature, we include it here.

Consider the following initial value problem for the inhomogeneous wave equation

in two space dimensions:

(A.1)





�v = ∂2t v −∆v = (∂1v)
3

v(0, x) = f(x)

vt(0, x) = g(x).

The full complement of the vector fields used by Klainerman is Γ = {∂i, L,Ωjk :

0 ≤ i ≤ 2, 1 ≤ j < k ≤ 2} where L = t∂t + x1∂1 + x2∂2 and Ωjk = xk∂xj
− xj∂k.

Instead of using all the invariant vector fields of the d’Alembertian, the techniques

of Keel, Smith, and Sogge restrict to the collection Z = {∂t, ∂1, ∂2,Ω12}. Let ‖F‖ =

‖F‖L2(R2).

Theorem A.1. Let (f, g) ∈ C∞(R2)× C∞(R2) with

∑

|α|≤6

‖Zαg‖+
∑

|α|≤7

‖Zαf‖ ≤ ǫ.

Then there is a unique solution u(t, x) to (A.1) with u(t, x) ∈ C∞([0, T∗]×R
2) where

T ∗ = e
c
ǫ .
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Proof. First, recall the energy estimate for inhomogeneous wave equation with forcing

G(s, x):

‖v′(t)‖ ≤ C

(
‖v′(0)‖+

∫ T

0

‖G(s)‖ds
)
.

We have an additional weighted energy estimate:

‖|x|−
1
2 v′‖L2([0,T ]×[R,2R]) ≤ C

(
‖v′(0)‖+

∫ t

0

‖G(s)‖ds
)
.

This particular bound was first found by Metcalfe in [13]. A proof of this bound can

also be found in the Appendix B of [2].

Notice that the right hand side is the same in both of these cases. We will use the

second of these to derive a weighted energy estimate for ‖|x|−
1
2Zαv′‖L2([0,T ]×{|x|>1}).

For |x| > T , we have the following:

‖|x|−
1
2v′‖L2([0,T ]×{|x|>T}) ≤ T−1/2

(∫ T

0

∫

|x|>T

|v′(t, x)|2dxdt
)1/2

≤ T−1/2

(
T sup

[0,T ]

∫

|x|>T

|v′(t, x)|2dxdt
)1/2

≤ sup
[0,T ]

‖v′(t)‖

≤ C

(
‖v′(0)‖+

∫ t

0

‖G(s)‖ds
)

For T > |x| > 1, we decompose ‖|x|−
1
2v′‖L2([0,T ]×{T>|x|>1}) into annuli Rj = {x : 2j <

|x| < 2j+1} The necessary range of j is 0 to β =
⌊
lnT
ln 2

⌋
. Then, we have:

‖|x|−
1
2 v′‖L2([0,T ]×{T>|x|>1}) =

(
β∑

j=0

‖|x|−
1
2v′‖2L2([0,T ]×Rj)

)1/2

≤ (β + 1)1/2C

(
‖v′(0)‖+

∫ t

0

‖G(s)‖ds
)

≤ ln(T + 2)1/2C

(
‖v′(0)‖+

∫ t

0

‖G(s)‖ds
)

By combining these two and noticing that ln(T + 2) ≥ c > 0, we get

∑

|α|≤6

‖|x|−
1
2Zαv′‖L2([0,T ]×{|x|>1}) . ln(T + 2)

1
2


∑

|α|≤6

‖Zαv′(0)‖+
∑

|α|≤6

∫ t

0

‖ZαG(s)‖ds


 .
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For |x| < 1, we recall the work of Hidano-Yokoyama [2]. Let 〈x〉 = (1 + |x|)1/2.

We state without proof the following proposition found in [2, Appendix B]:

Proposition A.2. [2, Proposition B.1] Let n ≥ 1, (f, g) ∈ S(Rn) × S(Rn) and

δ > 0. Let u be a solution of (A.1) with data (u(0), ∂tu(0)) = (f, g). Then the

solution satisfies

‖|x|−1/2+δ〈x〉−δu′‖L2(0<t<T,|x|<1) ≤ C(δ)

(
‖v′(0)‖+

∫ t

0

‖G(s)‖ds
)
.

The constant C(δ) = 22δ

22δ−1
blows up as δ goes to zero.

For simplicitity, we will use functions A(T ), Bδ(T ) and m(T ) defined

A(T ) = ln(T + 2)−1/2
∑

|α|≤6 ‖|x|
− 1

2Zαv′‖L2([0,T ]×{|x|>1})

m(T ) = sup[0,T ]

∑
|α|≤6 ‖Zαv′(t)‖

Bδ(T ) =
∑

|α|≤6 ‖|x|−1/2+δ〈x〉−δZαu′‖L2(0<t<T,|x|<1).

We want to show that we can bound A(T ) + m(T ) + Bδ(T ) by various powers of

A(T ), m(T ), and Bδ(T ). First, notice by the above facts that we have

A(T ) +m(T ) +Bδ(T ) ≤ C(δ)


∑

|α|≤6

‖Zαv′(0)‖+
∑

|α|≤6

∫ T

0

‖Zα(∂1v)
3(s)‖ds


 .

We need to work on the integral term. We first decompose the L2 norm into |x| < 1/2

and Rj for j ≥ 0. Then, using the product rule to expand Zα(∂1u)
3, we get

∑

|α|≤6

‖Zα(∂1v)
3(t)‖ =


∑

|α|≤6

‖Zα(∂1u)
3(t)‖2L2(|x|<1/2) +

∞∑

j=−1

‖Zα(∂1u)
3(t)‖2L2(Rj )




1/2

≤




∑

|α|≤3

|Zαu′(t)|L∞(|x|<1/2)




4
∑

|α|≤6

‖Zαu′(t)‖2L2(|x|<1/2)

+

∞∑

j=−1


∑

|α|≤3

|Zαu′(t)|L∞(Rj)




4
∑

|α|≤6

‖Zαu′(t)‖2L2(Rj)




1/2

=(I + II)1/2
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where I is the term involving the norms on |x| < 1/2 and II is the term with the

sum over j. We will consider the first of these terms to start. Notice that by standard

Sobolev lemmas, we can bound the L∞ norms by L2 norms with a slight increase in

derivatives and in the size of the domain. Therefore,

I ≤


∑

|α|≤5

‖Zαu′(t)‖L2(|x|<1)




4
∑

|α|≤6

‖Zαu′(t)‖2L2(|x|<1/2)

≤


∑

|α|≤5

‖|x|−1/2+δ〈x〉−δZαu′(t)‖L2(|x|<1)




4
∑

|α|≤6

‖Zαu′(t)‖2L2(|x|<1/2)

as long as δ < 1/2.

For the second term, we recall the weighted Sobolev estimate Lemma II.6:

|f |L∞(R<|x|<2R) ≤ R−1/2
∑

|β|≤2

‖Zβf‖L2(R/2<|x|<4R).

Using this inequality, we derive the following:

II ≤
∞∑

j=−1


∑

|α|≤5

‖|x|−
1
2Zαu′(t)|L2(R̃j)




4
∑

|α|≤6

‖Zαu′(t)‖2L2(Rj)

≤ sup
j

∑

|α|≤6

‖Zαu′(t)‖2L2(Rj)

∞∑

j=−1


∑

|α|≤5

‖|x|−
1
2Zαu′(t)|L2(R̃j)




4
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Now we plug these back into the time integral, and use Hölder’s inequality:

∫ T

0

(I + II)
1
2dt ≤

∫ T

0

∑

|α|≤6

‖Zαu′(t)‖L2(|x|< 1
2
)


∑

|α|≤5

‖|x|−1
2
+δ〈x〉−δZαu′(t)‖L2(|x|<1)




2

dt

+

∫ T

0

sup
j

∑

|α|≤6

‖Zαu′(t)‖L2(Rj)




∞∑

j=−1


∑

|α|≤5

‖|x|−
1
2Zαu′(t)|L2(R̃j)




4


1
2

dt

≤m(T )

∫ T

0


∑

|α|≤6

‖|x|−1/2+δ〈x〉−δZαu′(t)‖L2(|x|<1)




2

dt

+m(T )

∫ T

0

∞∑

j=−1


∑

|α|≤5

‖|x|−
1
2Zαu′(t)|L2(R̃j )




2

dt

≤Cm(T )Bδ(T )
2 + Cm(T )

∫ T

0

∑

|α|≤6

‖|x|−
1
2Zαu′(t)|2L2(|x|>1)dt

≤C(m(T )Bδ(T )
2 + ln(T + 2)m(T )A(T )2)

If we plug this bound into the original inequality, we have

A(T ) +m(T ) +Bδ(T ) .
∑

|α|≤6

‖Zαu′(0)‖+ C(m(T )Bδ(T )
2 + ln(T + 2)m(T )A(T )2).

An application of a continuity argument implies the solution exists for times on the

order of ec/ǫ.
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