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ABSTRACT

Essays on Service and Health Care Operations

by
Gregory James King

Chairs: Professor Xiuli Chao and Professor Izak Duenyas

This dissertation consists of two important research topics from service and health

care operations. The topics are linked by their operational importance and by the

underlying technical methodology required in the analysis for each. In the first part

of the dissertation, we study the resource allocation problem of a profit maximizing

service firm that dynamically allocates its resources towards acquiring new clients

and retaining unsatisfied existing ones. We formulate the problem as a dynamic

program in which the firm makes decisions in both acquisition and retention, and

characterize the structure of the optimal acquisition and retention strategy. We show

that the optimal strategy in each period is determined by several critical numbers,

such that when the firm’s customer base is small, the firm will primarily spend in

acquisition, while shifting gradually towards retention as it grows. Eventually, when

large enough, the firm spends less in both acquisition and retention. Our model

and results differ from the existing literature because we have a dynamic model

and find the existence of a region on which acquisition and retention both decrease.

We extend our model in several important directions to show the robustness of our

vii



results. The second part of this dissertation examines the recent phenomenon in

health care of copay coupons; coupons offered by drug manufacturers intended to be

used by those already with prescription drug coverage. There have been claims that

such coupons significantly increase insurer costs without much benefit to patients,

who incur lower out-of-pocket expenses with coupons but may eventually see higher

costs passed to them. In this research, we analyze how copay coupons affect pa-

tients, insurance companies, and drug manufacturers, while addressing the question

of whether insurance companies always benefit from a copay coupon ban. We find

that copay coupons tend to benefit drug manufacturers with large profit margins

relative to other manufacturers, while generally, but not always, benefiting patients.

While often helping drug manufacturers and increasing insurer costs, we also find

scenarios in which copay coupons benefit both patients and insurers. Thus, a blanket

ban on copay coupons would not necessarily benefit insurance companies in all cases.

viii



CHAPTER I

Introduction

This dissertation consists of two topics from the broad area of health care and

service operations. Each studies an important operations problem through develop-

ment of a mathematical model with subsequent analysis of optimal behaviors and

outcomes. The approach is largely conceptual; we focus on the insights derived from

mathematical models and do not take a data-driven approach to our research. How-

ever when possible, we validate our models with data and numerical examples. Due

to the conceptual nature of the research, we focus on managerial insights and policy

implications derived from our models.

The unifying feature of this dissertation is that both research topics represent

relevant applications of stochastic optimization to important topics from operations.

They extend the existing operations literature by identifying important practical

operations problems which are understudied elsewhere from a modeling perspective.

Beyond these unifying commonalities, the papers are different; one dynamic and one

not, one incorporating game theory with the other a single decision-maker, and one

health care, one service operations. Each of the chapters has a lengthy introduction

and a conclusion, so extensive details are omitted here, though we do provide a brief

summary of each paper.

1
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The first paper is motivated by service industries in which a firm’s profitability is

critically dependent upon successful acquisition and retention of customers. Firms

facing such a trade-off include cable providers, magazine publishers, consultancies,

and airlines. In these industries, the balance between acquisition and retention is

critical, particularly as a firm matures over time. While others have studied the

acquisition and retention trade-off, we take an dynamic approach, focusing research

questions on how optimal acquisition and retention change over time and as a firm

grows.

In the Dynamic Customer Acquisition and Retention chapter, we find that firms

should indeed shift money from acquisition to retention as they grow, confirming

what is known in other literature. However, we find this to be true only up to a point.

Beyond that point, it may become possible for a firm to become too large for their own

cost efficiencies, at which point they invest less in both of acquisition and retention.

These results are robust to a more generalized version of our model with additional

random variables, which we show through extensive numerical testing. Additionally,

we consider other model extensions in order to derive additional managerial insights.

These extensions include allowing the firm to visit both satisfied and unsatisfied

customers, and showing how optimal acquisition and retention may depend on an

exogenous variable representing the current state-of-the-economy.

The second paper is motivated from the prescription drug industry, in which copay

coupons are being used to persuade insured patients to select certain drugs. In this

setting, copay coupons are offered by drug manufacturer and are intended to lower

out-of-pocket expenses for patients in order that they select a specific drug instead of

a possible substitute. Copay coupons are very controversial; banned by the federal

government for Medicare, Medicaid, and Tri-Care, while still allowed in all states
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under private insurance. We develop a Stackelberg game model of prescription drug

choice played by an insurer, two drug manufacturers, and strategic patients. We

attempt to asses the impact of copay coupons (vs. a world without them) while also

generating managerial insights of interest to the insurance industry.

Our results on copay coupons indicate that in many scenarios these coupons in-

crease cost for the insurer while increasing profit for a brand-name drug manufac-

turer. However, this is not universally true, as we find scenarios in which manu-

facturers may be worse off with coupons while insurers benefit from them. Thus, a

blanket ban on copay coupons is not necessarily an optimal cost-saving approach for

an insurer. In terms of their impact on patients, we conclude that copay coupons re-

duce out-of-pocket costs for patients in the short-term, but may lead to higher costs

in the long term as coupons become more widely used across the health care system.

We extend our model in a number of directions, and discuss the impact of copay

coupons in the presence of price competition. In terms of managerial insights, our

paper has a very key messages for the insurance industry. We discuss how insurers

should set copays and adjust strategies in the presence of coupons, while also ana-

lyzing potential insurer profitability gains from having drug manufacturer compete

on price, or from co-sponsoring a coupon for a low-price drug.

The remainder of this dissertation is organized as follows. Chapters II, ‘Dynamic

Acquisition and Retention Management’, is the entirety of the first research project

except for the technical proofs, which are contained in Chapter IV. Likewise, Chapter

III has the entirety of the research project ‘Who Benefits with Copay Coupons’

except for the technical proofs which are located in Chapter V. Throughout this

dissertation, we use the terms increasing and decreasing to mean non-decreasing and

non-increasing respectively.



CHAPTER II

Dynamic Acquisition and Retention Management

2.1 Introduction

Customer loyalty is a growing concern for firms in many industries. From consult-

ing, to finance, to cable service, customer loyalty is the key to long term profitability

for many companies. Also critical is a firm’s ability to acquire new customers in

order to build its customer base. These two considerations in parallel naturally lead

to the question of how a service firm should manage the trade-off between customer

acquisition and retention.

The first author has industry experience working on this problem at a small third-

party-financing company. The firm lent money to patients for medical procedures

through a network of doctors. Thus, these doctors were considered as the firm’s

customers because their satisfaction and service usage drove profitability for the

firm. A sales force located throughout the United States was tasked with acquiring

new customers as well as visiting existing customers to keep them satisfied with the

service being provided. The trade-off between acquisition and retention was widely

discussed at the company, and its impact on profitability was significant. During this

work experience of the first author, the firm heavily emphasized acquisition while

experiencing rapid growth. Analysis supported this practice, concluding that time

4



5

and money were better spent in acquisition. However, as the firm matured, two

things happened. First, the efforts in acquisition became futile, because incremental

prospects were harder to acquire and less profitable. Second, attrition became a

problem because the firm had neglected some of the existing users. Naturally the

focus started to shift towards retention, though subsequent analyses indicated that

the shift occurred too late. A primary motivating factor for this research is to

build a model that helps companies better allocate resources towards acquisition

and retention over time.

Salesforce.com is a major customer relationship management (CRM) tool for firms

to manage external clients and sales prospects. Widely used, this software-based ser-

vice offers a platform for managing both existing and prospective customers. Focused

primarily on providing detailed information on quality and history of each client con-

tact, the larger question of overall management strategy is left untouched by CRM

technologies. We address these high-level management questions in this paper, and

hope to capture the essence of the types of decisions which are currently made in

conjunction with salesforce.com, or other existing CRM technologies.

We consider the acquisition and retention trade-off from the perspective of a ser-

vice manager. The key research questions relate to the timing and quantity of spend

in each of these two areas: How many customers should be targeted and how can

the manager appropriately determine the effort that should be spent on acquisition

of new accounts versus development of existing accounts? Does the strategy change

as the firm grows over time? Are there an efficient number of customers for the firm

to maintain over time? These are some of the research questions we answer in this

paper.

As the economy has become more service oriented, the importance of maintaining
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customer relationships is more critical today than ever before. The goal of this work

is to provide structural insights and analysis of the essential trade-offs that occur in

managing service industries, through the use of a dynamic decision making model.

We begin with a literature review in §2.2, present the model and results in §2.3,

discuss model extensions in §2.4, before we conclude in §2.5.

2.2 Literature Review

The trade-off between acquisition and retention is a well studied research prob-

lem, primarily in the marketing literature. The novel approach of our work is that

we analyze this problem as a dynamic one, which captures the dynamic nature of

resource allocation over time. The vast majority of other work is not dynamic. For

this reason, our approach has system dynamics in the form of state transitions. We

also use the machinery of stochastic optimization, in contrast to most papers which

use regression, empirical, or deterministic techniques.

In a well known article in Harvard Business Review, Blattberg and Deighton

(1996) establish the ‘customer equity test’ for determining the allocation of resources

between acquisition and retention of customers. Using a deterministic model, the

main contribution of this work is a simple calculation used to compare acquisition

and retention costs with potential benefits.

The marketing literature contains numerous sources analyzing the acquisition and

retention trade-off. Reinartz et al. (2005) discuss the problem from a strict profitabil-

ity perspective using industry data. They find that under-investment in either area

can be detrimental to success while over-investment is less costly, and that firms of-

ten under-invest in retention. Thomas (2001) discusses a statistical methodology for

linking acquisition and retention. Homburg et al. (2009) use a portfolio management
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approach to maintaining a customer base.

Fruchter and Zhan (2004) is the paper most closely related to our work in that it

takes a dynamic approach to analyze the trade-off between acquisition and retention.

However, there are fundamental differences between our approach and theirs. In

Fruchter and Zhan (2004), there are two firms and a fixed market in which customers

use one firm or the other. Acquisition represents converting customers from the other

firm while retention is preventing existing customers from switching to a competitor.

Furthermore, their model is a differential game in which they make very specific

assumptions on how effective acquisition and retention are at generating sales, namely

that effectiveness is proportional to the square root of the expenditure. With this

special model structure, Fruchter and Zhan (2004) show that equilibrium retention

increases in a firm’s market share while equilibrium acquisition decreases. Despite not

capturing the competitive aspect of acquisition and retention, our work is much more

general than Fruchter and Zhan (2004) in other ways because we do not have a fixed

market, do not assume specific functions that determine the relationship between

expenditure and impact, and because our model captures randomness (Fruchter and

Zhan (2004) is deterministic). With our model, we also derive different insights.

A recent paper on customer acquisition and retention from the operations man-

agement literature comes from Dong et al. (2011), and the reader is referred to their

introduction for additional references on the problem studied here. Dong et al. (2011)

consider joint acquisition and retention, and use an incentive mechanism design ap-

proach to solve this problem. Additionally, they consider the question of direct versus

indirect selling, in which the firm decides whether to use a sales force (for which an

incentive is designed) or not. Their problem is static, where decisions are made only

once.
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Sales force management is a topic well-studied from the incentive-design perspec-

tive by others in addition to Dong et al. (2011). It often represents a traditional

adverse selection problem where designing a proper incentive structure can be diffi-

cult and costly due to the economics concept of information rent that must be paid

to the sales agent to induce them to truthfully reveal their hidden information. Pa-

pers that discuss sales incentives in this context come from both the economics and

operations management literature. From the economics literature, important works

include Gonik (1978), Grossman and Hart (1983), Holmstrom (1979), and Shavell

(1979). These papers set the stage for how moral hazard applies in the sales con-

text and propose potential incentive mechanisms. In the operations literature, sales

force incentives have been discussed primarily in the context of inventory-control,

and manufacturing. Important references include Chen (2005), Porteus and Whang

(1991), and Raju and Srinivasan (1996). These papers do not discuss the trade-off

between acquisition and retention.

There also exists a body of literature on customer management from a service

and capacity perspective. Hall and Porteus (2000) study a dynamic game model of

capacity investment where maintaining sufficient capacity relative to market share

drives retention, and excess capacity leads to acquisition. With a special structure

for costs and benefits of capacity, they are able to solve explicitly for the subgame

perfect equilibrium. Related dynamic game inventory-based competition research

comes from Ahn and Olsen (2011) and Olsen and Parker (2008). In these papers,

retention and acquisition are driven by fill rates, and are not explicit decisions, as in

our paper.

The main contribution of this paper is to discuss the sales force management

problem using a dynamic optimization approach. With this approach, we are able to
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incorporate the dynamic nature of this important resource allocation problem, and

derive managerial insights on optimal acquisition and retention related to the system

dynamics, e.g., how does a firm’s current level of satisfied and dissatisfied customers

impact its allocation decisions in acquisition and retention?

2.3 Model and Main Results

We model the unconstrained acquisition and retention resource allocation problem

as an N period finite-horizon dynamic program. The decision period is indexed by n,

n = 1, . . . , N . At the beginning of period n, the firm knows its number of customers,

xn, and a random fraction ρn of its customers are identified as being at high risk

for attrition. For simplicity we call these customers ‘unhappy’ customers. After

observing the number of ‘unhappy’ customers, the firm decides how many customers

to retain, and how many to acquire, unconstrained decisions we denote by Rn and

An. Note that ρ1, . . . , ρN are random variables and ρn is realized (and observed)

at the beginning of period n. As an example of how this works in practice, it is

common in the cable industry for customers to call and ask to disconnect service, or

otherwise express discontent. Once these customers are identified, the cable company

will make a retention offer with enhanced service or lower pricing. Should customers

instead be identified one-at-a-time, the firm wants general guideline of how many

retention offers they should plan to make. During the same period n, the firm

also signs up new acquisition prospects. In this section we consider the situation

in which a firm decides how many of its ‘unhappy’ customers to retain and how

many new customers to acquire, and the firm will spend the necessary resources to

implement the decision in the period. Therefore, the outcomes for these decisions

are deterministic, An (acquisition) and Rn (retention) respectively, while the costs
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to implement the decisions are random, with average values denoted by CA
n (An) and

CR
n (Rn), respectively (note that in Subsection 2.4.1 we allow acquisition and retention

outcomes to be stochastic). We assume that the potential pool of acquisition targets

is large enough that acquisition costs depend only on the number targeted, and not

on xn, the number already registered with the firm.

Because customers represent a revenue stream for the firm, the expected revenue

generated during period n, given that the number of customers at the beginning of

period n is xn, is denoted by Mn(xn). It is also possible for some fraction of ‘happy’

customers to discontinue service even though the firm has no prior indication of

their dissatisfaction with the service. We denote the random percentage of ‘happy’

customers that continue service in period n as γn ∈ [0, 1] (thus, 1−γn is the proportion

of ‘happy’ customers that discontinue service). At the beginning of the next period,

n+ 1, the number of customers evolves according to state transition

xn+1 = γn(1− ρn) xn +Rn + An, n = 1, 2, . . . , N − 1.(2.1)

Therefore, the firm retains γn proportion of ‘happy’ customers and Rn of the ‘un-

happy’ ones, while adding An in acquisition. In this section we assume Rn and An

are deterministic, and we will study the case of uncertain acquisition and uncertain

retention in the next section. Suppose the decision maker uses a discount factor,

α ∈ (0, 1), in computing its profit. The objective of the firm is to balance acquisition

and retention in each period to maximize its total expected discounted profits.

Let Vn(xn) be the maximum expected total discounted profit from period n until

the end of the planning horizon, given that the number of customers at the beginning
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of period n is xn. Then the optimality equation is

Vn(xn) = Mn(xn) + Eρn

[
max

0≤An,0≤Rn≤ρnxn

(
−CA

n (An)− CR
n (Rn)(2.2)

+αEγn [Vn+1

(
γn(1− ρn) xn +Rn + An

)
]
)]
.

The boundary condition is VN+1(x) ≡ 0 for all x ≥ 0, implying that the firm makes

profits only through period N .

The optimality equation is described as follows. Suppose xn is the number of

customers at the beginning of period n. The firm earns a revenue related to the size

of its customer base in period n, given by Mn(xn). After observing the number of

‘unhappy’ customers, ρnxn, the firm decides how many ‘unhappy’ customers to retain

and how many new customers to acquire, with respective expected costs CR
n (Rn) and

CA
n (An). The state at the beginning of the next period is (2.1). Since the proportion

of ‘unhappy’ customers is random, we need to take expectation with respect to ρn,

and then with respect to γn. Because the firm’s decision is made after realization

of the number of ‘unhappy’ customers, the optimization decision is inside the first

expectation in (2.2). Note that our model is Markovian, so we are not capturing the

fact that past efforts in acquisition or retention could have some impact on future

efforts in this area (i.e. some customers may have received considerable attention in

the past, while others did not).

Assumption II.1. The expected cost functions for the retention of existing cus-

tomers and for the acquisition of new customers, CR
n (·) and CA

n (·), are increasing

and strictly convex functions with continuous derivatives defined on a domain of

[0,∞).

It is obvious that more acquisition or retention is always more costly to the firm,

thus CR
n (·) and CA

n (·) are increasing functions. Assumption 1 also assumes that
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retention and acquisition costs are both convex in the number of targets captured

by the firm in each category. This can be explained as follows. When given targets,

sales forces usually acquire or retain the easiest prospects in a market first. As the

best prospects are acquired, acquisition and retention grows more difficult and costly.

Furthermore, getting more work from a fixed-size sales force could result in overtime

and other costs, which also leads to an increasing convex cost function.

Convex costs in acquisition is a generalization of a model in which there exists an

upper bound on the number of customers that can be acquired in any given period of

the model (An ≤ TAn , for some constant TAn ). This generalization holds because one

could force such a constraint simply by making acquisition beyond a certain point

prohibitively expensive. Likewise, our model is general enough to handle a constraint

on retention (Rn ≤ TRn ), or even a joint constraint on combined acquisition and

retention (An + Rn ≤ Tn). In this way, we are implicitly modeling a constrained

service problem despite no explicit capacity constraints.

Assumption II.2. The expected revenue function Mn(xn) is increasing concave and

continuous in xn with domain of [0,∞).

The expected revenue is clearly increasing in the number of customers using the

firm’s service. Here we are also assuming that it is concave in the number of cus-

tomers. Larger and higher margin customers are likely to be targeted first in acqui-

sition, so that incremental customers will tend to be less profitable. In the third-

party-financing industry, incremental customers tend to be less profitable because

they are likely to be smaller and more skeptical of the benefit associated with the

service being provided. In addition, as the prospects valuing the service most are

acquired, it takes more effort and better terms to successfully acquire more skeptical

customers.
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With these assumptions, we are ready to present the first main result of this

paper. The following theorem states that there exists a ρn-dependent threshold

Qn(ρn), decreasing in ρn, such that when the number of customers at the beginning

of period n is less than this threshold, the firm targets every ‘unhappy’ customer,

while the optimal number of acquired new customers is decreasing in the current

customer base at a slope no less than -1, i.e., in this range the firm gradually shifts

emphasis from acquisition to retention as it grows. When the firm’s customer base

is over this threshold, the firm begins to target fewer and fewer customers in both

acquisition and retention; in this range, both the optimal acquisition and optimal

retention are decreasing in the customer base xn with slope no less than −(1− ρn).

Theorem II.3. Suppose xn is the number of customers at the beginning of period n,

and the proportion of ‘unhappy’ customers is ρn.

(i) The optimal strategy for period n is determined by a critical number Qn(ρn),

which is decreasing in ρn, and decreasing curves RU∗
n (·), AU∗n (·), and AW∗n (·)

of slopes no less than -1, such that when xn ≤ Qn(ρn), the firm retains all

‘unhappy’ customers and sets (An, Rn) = (AW∗n (xn), ρnxn); and otherwise sets

(An, Rn) = (AU∗n (xn(1− ρn)), RU∗
n (xn(1− ρn))).

(ii) There exist increasing functions QA
n (ρn) and QR

n (ρn) such that when xn ≥

QR
n (ρn), the firm does no retention, and when xn ≥ QA

n (ρn), the firm does

no acquisition.

(iii) There exists a critical decreasing threshold function x∗n(ρn) such that, when op-

timal acquisition and retention decisions are made, the following condition is
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Figure 2.1: Optimal Acquisition and Retention Strategies in terms of number of customers x1 with
fixed ρ1 = 0.5

(N = 2, M2(x2) = 10 ln(1 + x2

2 ), CA
1 (A1) = ( A1

100 )1.2, γ = 1 with probability 1, and CR
1 (R1) =

( R1

100 )1.1)

met

E[xn+1]− xn =


≤ 0 if xn ≥ x∗n(ρn);

≥ 0 if xn ≤ x∗n(ρn),

implying that the optimal strategy will be to lose customers (in expectation) when

above a critical point and add customers (in expectation) when below that same

point.

The optimal strategy takes an intuitive form. For a relatively small base of cus-

tomers, the firm should retain each and every ‘unhappy’ customer. In this region,

acquisition is also critical. After this point, the firm only retains a subset of the

‘unhappy’ customers. As the firm grows, it spends less in acquisition, as one would

suspect. The optimal strategy is demonstrated in Figure 2.1, in which we can observe

the strategy and how it changes as a function of the customer base, xn, for a fixed

value of ρn.

To further characterize the optimal strategy, we need the following result. In this
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result, we use (CA
n )′(0) and (CR

n )′(0) to mean the right derivative of the cost functions

at zero.

Lemma II.4. If (CA
n )′(0) ≤ (CR

n )′(0), then QA
n (ρn) ≥ QR

n (ρn) for all ρn > 0; and

if (CA
n )′(0) ≥ (CR

n )′(0), then QA
n (ρn) ≤ QR

n (ρn) for all ρn > 0. In particular, if

(CA
n )′(0) = (CR

n )′(0), then QA
n (ρn) = QR

n (ρn) for all ρn > 0.

The implication of Lemma II.4 is that the monotone switching curves QA
n (ρn)

and QR
n (ρn) do not cross, and they are ordered based upon the right derivatives of

the respective cost functions at zero. This result allows us to analyze the optimal

strategies when both parameters xn and ρn vary.

In the first case, i.e., QR
n (ρn) ≤ QA

n (ρn), the optimal strategy is demonstrated

in Figure 2.2 as a function of xn and ρn. When both xn and ρn are small (region

I), the optimal strategy is to retain everyone, and also spend in acquisition. When

both become larger, the firm will still spend on both areas, but may not retain all

‘unhappy’ customers (region II); when xn is large with ρn relatively small, the firm

will invest in just acquisition (region III). Finally, when the number of customers is

really large, then the firm will spend neither on retention nor acquisition (region IV).

The second case, i.e., when QR
n (ρn) ≥ QA

n (ρn), is depicted in Figure 2.3. As in

the previous case, when both xn and ρn are small (region I), the optimal strategy is

to retain everyone, and spend some in acquisition. However, now there is another

region (region II), when xn is larger, in which the firm may retain everyone, but not

spend anything in acquisition. The firm spends on both acquisition and retention for

relatively large ρn and small xn (region III); and when xn is large with ρn relatively

small, the firm will invest only in retention (region IV). Finally, the firm invests in

neither acquisition nor retention when the number of customers is really large (region

V).
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Figure 2.2: Case I - Optimal Acquisition and Retention Strategies in terms of number of customers
xn and percentage ‘unhappy’ ρn when QR

n (ρn) ≤ QA
n (ρn)

(Region I - Retain all ‘unhappy’ and do some acquisition, Region II - Some retention, some acqui-
sition, Region III - Only acquisition, Region IV - No spending)

Figure 2.3: Case II - Optimal Acquisition and Retention Strategies in terms of number of customers
xn and percentage ‘unhappy’ ρn when QR

n (ρn) ≥ QA
n (ρn)

(Region I - Retain all ‘unhappy’ and do some acquisition, Region II - Retain all ‘unhappy’ with no
acquisition, Region III - Some retention, some acquisition, Region IV - Only retention, Region V -
No spending)
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In practice, one may expect that the firm would always dedicate some resource

towards retention. In the following, we present a sufficient condition under which

this is true.

Corollary II.5. If there exists a positive number κ > 0 such that

limxn+1→∞M
′
n+1(xn+1) ≥ κ ≥ (CR

n )′(0)
α

, then QR
n (ρn) =∞ and the firm will always do

some retention, as long as ρnxn > 0 (there are ‘unhappy’ customers).

Similarly, the following corollary establishes a sufficient condition under which the

firm always does some acquisition.

Corollary II.6. If there exists a positive number κ > 0 such that

limxn+1→∞M
′
n+1(xn+1) ≥ κ ≥ (CA

n )′(0)
α

, then QA
n (ρn) = ∞ and the firm will always

have some acquisition.

From the results in this section, we learn that a firm should shift resource from

acquisition to retention as it grows. However, this is only true up to some critical

point. After that point, the optimal strategy will be to invest less in both acquisition

and retention. A key insight is that the optimal acquisition and retention strategy

depends critically on the current number of customers subscribed to the firm’s ser-

vices. These findings are consistent with prior literature (e.g. Fruchter and Zhan

(2004)) only on the first region, where the firm increases retention as they grow and

decreases acquisition. However, when the firm is large enough, our results predict

less spending in both of acquisition and retention. Note that this result is not driven

by the concave profit function as it remains true with linear profits.

Also unique to our results, we also find the existence of an ‘efficient’ number of

customers, which we denote by x∗n(ρn). This number represents the point below which

the firm will add customers (in expectation) and above which it will lose customers
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(in expectation), when the optimal strategy is implemented. This suggests that in

order to grow optimally beyond a certain point, the firm would need to invest in

lowering future costs of acquisition and retention.

2.4 Model Extensions

We extend our model in three important directions, first considering a direct

generalization of the main model in which we introduce additional uncertainty, dis-

cussing results and a heuristic for this model. The second extension considers a

situation in which firm profitability is dependent on exogenous factors, and consid-

ers how results may change. Finally, our last extension allows the firm to visit two

types of customers in retention.

2.4.1 Stochastic Retention and Acquisition

The formulation in Section 2.3 is natural in environments where retaining or ac-

quiring customers requires a lot of personal interactions. For example, in the health

care finance industry one of the authors worked in, sales people paid visits to cus-

tomers who intended to discontinue service and sales staff knew whether retention or

acquisition had been successful. Thus sales staff would be given targets on how many

customers to retain and could keep working until their targets were met. However, in

many industries it is common to think about both costs and outcomes being random

for acquisition and/or retention. Such situations apply to industries in which there

is no way to know right away whether you have been successful with an acquisition

or retention contact. For example, in the magazine subscription industry, acquisition

and retention is done through the mail, and success would not be realized until after

the number targeted has been set, and a mailing is sent.

In this extension, we consider this generalization of our model in which outcomes
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in acquisition or retention may be stochastic, meaning that a confirmed success in

acquisition or retention is not always possible at the time the effort is made.

Let ε1n, and ε2n be the random success rates for the firm in retention and acquisition

respectively. Then the state transition for this system is

xn+1 = γnxn(1− ρn) + ε1nRn + ε2nAn, n = 1, 2, . . . , N − 1,

and the optimality equation is

Vn(xn) = Eρn

[
Mn(xn) + max

0≤An,0≤Rn≤ρnxn

(
−CA

n (An)(2.3)

−CR
n (Rn) + αE[Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)]

)]
.

With the same boundary condition as before (VN+1(x) ≡ 0), we have the following

results for this model.

Theorem II.7. (i) The optimal strategy is defined by three state-dependent switching

curves, RU∗
n (xn, ρn), AU∗n (xn, ρn), and AW∗n (xn, ρn), such that

a) if RU∗
n (xn, ρn) ≤ ρnxn, the optimal strategy is to set

(An, Rn) = (AU∗n (xn, ρn), RU∗
n (xn, ρn));

b) otherwise, the firm sets (An, Rn) = (AW∗n (xn, ρn), ρnxn).

(ii) The switching curves AU∗n (·, ·), RU∗
n (·, ·) and AW∗n (·, ·) are not necessarily mono-

tone in xn or ρn, and parts (ii) and (iii) of Theorem II.3 do not hold for this model.

The lack of monotonicity in the switching curves indicates that the optimal policy

for acquisition and retention no longer has a nice, or intuitive structure (note that

similar non-monotonic control parameter behavior has been observed in the inventory

literature under random yield models with multiple suppliers, see (Chen et al., 2011)).

The following example illustrates some of these phenomena; the optimal acquisition
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and retention strategies are given in Figure 2.4, which is in contrast to the optimal

policy structure from Theorem II.3 displayed in Figure 2.1.

Example 2. This example was generated by modifying data from (Chen et al.,

2011). Again we consider a problem with two periods, N = 2, hence V2(·) = M2(·).

The revenue function is piece-wise linear and concave, where the firm makes 14

dollars for each customer up to 500, and half a dollar for customers thereafter, i.e.,

M2(x2) =


14x2, if x2 ≤ 500;

7000 + 0.5(x2 − 500), if x2 > 500,

and the acquisition and retention costs are linear:

C1(A1) = 2.5A1, D1(R1) = 3.6R1.

The random variables for the three random effects are assumed to be discrete: γn = 0

and 1 with probabilities 1/2 and 1/2; ε1n = 0.5 and 1 with probabilities 1/2 and 1/2;

and ε2n = 0.2 and 1 with probabilities 1/2 and 1/2. We fix parameter ρ1 = 0.6, and

study how the strategy varies in the initial number of customers at the beginning of

period 1, x1.

The optimal strategies are presented in Figure 2.4. One can see that acquisition

is no longer decreasing in x1, which was our insight for the previous model. The

intuition for this phenomenon is the following. When x1 is small, the firm prefers

the more certain strategy of retention, and invests up to the upper bound of the

constraint on retention. The firm prefers the certain strategy because that increases

the chances to get to x2 = 500, which is where the marginal customer value changes.

For high x1, the firm already has good chance of getting up to x1 = 500, so it starts

to prefer acquisition, which is more uncertain, but slightly more cost effective. For

this reason, we see that acquisition increases while retention decreases. This lack of
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Figure 2.4: Optimal Acquisition and Retention Strategy for variable x1 and ρ1 = 0.6 for Stochastic
Retention and Acquisition Model

monotonicity is not surprising given the results in the literature for inventory models

with random yield and two suppliers (see Chen et al. (2011)).

A Heuristic

For the model presented in the main section of the paper, the optimal acquisition

and retention strategies had monotone properties (in the number of customers xn)

that naturally led to a nice policy structure. Optimal acquisition was decreasing in

a firm’s market share while optimal retention was first increasing and then decreas-

ing. However, for this extension in which the state transition has three independent

random variables, the strategy no longer necessarily has these properties. For this

reason, a natural question is whether we can develop a heuristic to solve the model

in (2.3). Rather than random variables ε1 and ε2, we instead propose to use E[ε1]

and E[ε2]. Therefore, the heuristic model is

Vn(xn) = Eρn

[
Mn(xn) + max

0≤An,0≤Rn≤ρnxn

(
−CA

n (An)− CR
n (Rn)(2.4)

+αEγn [Vn+1(γnxn(1− ρn) + E[ε1n]Rn + E[ε2n]An)]
)]
.

with the same boundary condition as before (VN+1(·) = 0). It is obvious that, using

the same argument given for Theorem II.3, the heuristic model from equation (2.4)
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Table 2.1: Testing Scenario Overview

Parameter Option 1 Option 2 Option 3
Profit Function 6x0.65n 6x0.8n -
Retention Cost 0.8Rn Rn 1.2Rn

γn Distribution (discrete uniform) {0.8, 0.9} {0.8, 0.9, 1.0} {0.7, 0.8, 0.9, 1.0}
ε1n Distribution (discrete uniform) {0.6, 0.9} {0.5, 0.7, 0.9} {0.6, 0.7, 0.8, 0.9}
ε2n Distribution (discrete uniform) {0.5, 0.8} {0.4, 0.6, 0.8} {0.4, 0.5, 0.6, 0.7}

has optimal solution structure exactly the same as that given in Theorem II.3. Thus,

we propose using the model in (2.4) as a heuristic for the problem with three random

variables from (2.3). We want to know how well the heuristic performs.

To understand the performance of this heuristic approach, we conducted an exten-

sive study on a number of different scenarios, and computed the relative performance

of the heuristic as compared to an optimal strategy. Our testing approach is sum-

marized in Table 2.1, where one can see the parameters across scenarios. For all

scenarios, we consider a five-period problem (N = 5), and assume (for all n) that

ρn = 0.1 and 0.2 with probabilities 1/2 and 1/2, CA
n (An) = An if An ≤ 100, and

CA
n (An) = 100+5(An−100) if An > 100. We also assume that the random variables

γn, ε1n and ε2n are distributed with equal probability across a number of different

values (discrete uniform distribution).

From the table, we can see that by varying the different parameters, we end up

testing 162 different scenarios (equal to 2 × 34). We summarize the results of the

numerical study in Table 2.2. For each scenario, we determine the average error

(across a number of different possible starting states), and the worst error.

In each of the scenarios we tested, the average error was well under one tenth of a

percent with a maximum error under one percent. This indicates that our heuristic

performs extremely well.
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Table 2.2: Testing Summary
Metric Performance

Average Average Error 0.04 %
Average Worst Error 0.31 %
Worst Average Error 0.09 %
Worst Worst Error 0.61 %

2.4.2 Modeling Exogenous Economic Impacts

During the global economic recession of 2008, many companies saw cost cutting as

a priority and implemented strategies of downsizing their work forces. In the indus-

tries of interest in this paper, this resulted in less frequent contact with customers,

and less acquisition and retention. This is precisely what occurred in the third-

party lending industry, when bad credit made the underlying financial product less

profitable. Across consulting and other industries, the same type of cost-cutting oc-

curred. This raises the following interesting question: If the profitability of the firm

is exogenously dependent upon economic factors, how might the optimal strategy

change? This is the primary research question in this section.

In order to model the economy, we introduce a state of the economy variable

which captures the economic factors which impact profitability for the firm. From

one period to the next, the economy evolves stochastically, as one would expect.

Under some general conditions, we are able to analyze how the economy might impact

spending on acquisition and retention.

The model remains the same except for the addition of the state of the economy

variable, which is denoted by Kn, and we assume that ‘happy customers’ are retained

automatically, thus γn = 1. A higher value of Kn represents a more favorable eco-

nomic climate. Customer profitability is now given as an(Kn)Mn(xn),with an(Kn)

the relative impact of a stronger or weaker economy. State transitions for Kn are
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governed by a Markov chain with transition probabilities given by pi,j = P{Kn+1 =

j | Kn = i}. Since Kn+1 is a random variable depending on Kn, we shall also write

it as Kn+1(Kn). The following assumption is made with regard to the evolution of

the state of the economy.

Assumption II.8. (i) The function an(Kn), is increasing in Kn; and

(ii) Kn+1(Kn) is stochastically increasing in Kn, i.e.,∑j
l=1 pi,l ≥

∑j
l=1 pi+1,l for all i, j.

These assumptions are fairly natural. The first says that the economy does impact

profitability, and the correlation is positive, so in a better economy, customers are

more profitable. In practice, this is true because as the economy worsens, customers

become less valuable because of price pressures, credit degradation, or lower usage

of the firm’s service. We also assume here that the economy is positively correlated

from one period to the next, because a strong economy today will make tomorrow’s

more likely to be strong, and a weak economy today makes tomorrow’s more likely

to be weak.

The state of the system for period n is now (xn, Kn), where xn is the number

of customers and Kn is the state of the economy at the beginning period n. Let

Vn(xn, Kn) be the maximum expected discounted total profit from period n to the

end of the planning horizon, given that the state of the system at the beginning of

period n is (xn, Kn). The new optimality equation is

Vn(xn, Kn) = Eρn

[
an(Kn)Mn(xn) + max

0≤An,0≤Rn≤xnρn

(
−CA

n (An)

−CR
n (Rn) + αE[Vn+1(xn(1− ρn) +Rn + An, Kn+1(Kn))]

)]
.

The boundary condition remains as VN+1(·, ·) ≡ 0. The first expectation is with

respect to ρn, and the second with respect to Kn+1, which is a random variable.
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To study the effect of economic conditions on the optimal acquisition and retention

strategy, we need to first study the structural properties of the value function.

Lemma II.9. Vn(xn, Kn) is supermodular in (xn, Kn).

Lemma II.9 states that incremental customers are always more valuable when

economic conditions are better. This shows that the desire for the firm to have more

customers is greater when the economy is better. Intuitively, one would expect this

to imply that the optimal spending levels are higher in a better economy. This is

indeed true, as we show in the following characterization of the optimal acquisition

and retention strategies.

Theorem II.10. (i) When economic conditions are more favorable (higher Kn), the

firms spends more in both acquisition and retention.

(ii) The optimal strategy is characterized the same as that in Theorem II.3, except

that the optimal control parameters are dependent on Kn, i.e., control curves are

now Qn(ρn, Kn), QR
n (ρn, Kn), QA

n (ρn, Kn), AU∗n (xn(1−ρn), Kn), RU∗
n (xn(1−ρn), Kn),

AW∗n (xn, Kn) and x∗n(ρn, Kn). These curves are increasing in Kn, and monotone in

the other parameters in the same way as those in Theorem II.3.

Therefore, the better the economy, the more the firm will spend on acquisition and

retention. Conversely, when profitability becomes an issue due to poor exogenous

economic factors, firms will invest less in both customer acquisition and retention.

This can happen, for example, in the form of downsizing sales or marketing person-

nel. We demonstrate this result graphically in Figure 2.5, where the effect of the

economy can be seen to dampen the absolute spending of the firm, in both acqui-

sition and retention. This is observed in the figure by observing that the dashed

lines representing strong economy optimal spending are above the solid lines, which
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Figure 2.5: Optimal Acquisition and Retention under Weak and Strong Economies
(N = 2, ρ1 = 0.5, M2(x2) = 10 ln(1+ x2

2 )(strong), M2(x2) = 4 ln(1+ x2

2 )(weak), CA
1 (A1) = ( A1

100 )1.2,

and CR
1 (R1) = ( R1

100 )1.1)

are the weak economy spending levels. The exact magnitude of spending changes

will depend on the variability related to the economy and the form of the cost and

revenue functions.

This result accurately predicts the actions taken by many firms during the recent

economic recession. During that time, downsizing sales forces, laying off customer

service representatives, and other cost saving measures were commonplace. Our

model indicates that much of this behavior can be explained by the economy’s un-

derlying impact on profitability. All the results from the proceeding section hold

here, but are monotonically state-dependent upon the economy Kn, indicating that

acquisition and retention decisions cannot be made in the vacuum; the impact of

exogenous factors has to be taken into consideration.

2.4.3 Both Customer Types May be Visited in Retention

Retention efforts are usually targeted at ‘unhappy’ customers who are seen as

high risk for attrition. This is true in most of the industries discussed in this paper.
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However, it may be the case that both types of existing customer relationships are

maintained with retention effort. This is a natural extension to our base model in

which both types of customers may leave, but visits are only made to ‘unhappy’

ones. We use the variable RU
n to represent the visits made to ‘unhappy’ customers,

with RH
n the visits to ‘happy’ customers. We also assume here that γn, the fraction

of ‘happy’ customers who may leave if not visited is deterministic. Now the state

transition is given as:

xn+1 = γn(xn(1− ρn)−RH
n ) +RU

n + An

If visited, neither ‘happy’ nor ‘unhappy’ customers will discontinue service. If not

visited, γn percentage of ‘happy’ customers will still stay. Then our value function

becomes

Vn(xn) = Eρn [Mn(xn) + max
0≤An,0≤RU

n≤ρnxn,0≤RH
n ≤(1−ρn)xn

(−CA
n (An)− CR

n (RU
n +RH

n )+

αE[Vn+1(γn(xn(1− ρn)−RH
n ) +RH

n +RU
n + An)])]

We present the result then proceed with discussion. The solution structure is fairly

complex, which we explain in figure 2.6.

Theorem II.11. (i) There exist critical thresholds Qn(ρn), QR1
n (ρn) and QR2

n (ρn)

with Qn(ρn) ≤ QR1
n (ρn) ≤ QR2

n (ρn), and functions AW∗n (xn), AL∗n (xn, ρn), RL∗
n (xn, ρn),

AU∗n (xn(1− ρn)), RU∗
n (xn(1− ρn)), and AZ∗n (xn(1− ρn)) such that the optimal reten-

tion strategy takes the following form:

(a) Target all existing customers in retention if xn ≤ Qn(ρn), and set (An, R
U
n , R

H
n ) =

(AW∗n (xn), xn)

(b) Target all unhappy customers in retention, and possibly some ‘happy’ ones if

xn ∈ Qn(ρn), QR1
n (ρn), and set (An, R

U
n , R

H
n ) = (AL∗n (xn, ρn), ρnxn, R

L∗
n (xn, ρn))
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Figure 2.6: Optimal Retention Strategy in terms of xn, for fixed ρn
(ρ = 0.5, ε1n = ε2n = 1 (deterministic), fn = gn = 1, hn = 0.7, Mn(xn) = 10 ln(1 + xn

2 ),CA
n (An) =

( An

100 )1.3, and CR
n (Rn) = ( Rn

100 )1.1)

(c) Target a subset of ’unhappy’ customers and no ‘happy customers’ in retention if

xn ∈ (QR1
n (ρn), QR2

n (ρn)] and set (An, R
U
n , R

H
n ) = (AU∗n , RU∗

n , 0)

(d) Target no one in retention if xn > QR2
n (ρn), and set (An, R

U
n , R

H
n ) = (AZ∗n , 0, 0).

(ii) The functions AW∗n (·), AU∗n (·), RU∗
n (·), and AZ∗n (·) are all decreasing.

The optimal strategy takes a relatively intuitive form. When a company is small

and in the process of growing, both customer loyalty and customer acquisition are of

critical importance. For this reason, the firm tends to invest heavily in both, usually

incurring negative profits in the short term in exchange for future payoffs. When

medium sized, the firm will visit all ‘unhappy’ customers, and might also visit some

‘happy’ ones. When large, the firm no longer visits any ‘happy’ customers and does

only retention of ‘unhappy’ customer along with acquisition. When large enough,

they may not do any retention.

The main insight here is that the firm should always visit ‘unhappy’ customers

first, and should emphasize retention differently depending on the size of its exist-
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ing customer base. For small firms, retention of everyone is important. For large

firms, they need only consider doing retention for ‘unhappy’ customers, if any at

all. Medium-sized firms have a delicate balance, and should retain all ‘unhappy’ cus-

tomers while possibly visiting some ‘happy’ ones as well. Because retaining different

types of customers often requires different tactics, our results indicate how different

retention phases can depend on the current size of the firm.

In summary, in this section we considered extensions to the core dynamic acqui-

sition and retention resource allocation problem. While Theorem II.7 reveals that

the structure of the optimal dynamic policy can be complex, we are able to uti-

lize the results from section 2.3 to develop a heuristic solution to this more general

model, and the numerical results have shown that the heuristic solution performs

very well. Because our heuristic achieves near-optimality for the general model, we

can conclude that our policy insights from section 2.3 (which held for the heuristic)

are relevant to more general situations. Namely, decision makers should utilize a

strategy of shifting emphasis from acquisition to retention as they grow to a critical

point, and then de-emphasize spending in both of acquisition and retention when

above the same point.

With a state-of-the-economy variable, we show that service firms should spent

less on acquisition and retention when the economy is in worse shape. Finally, with

two customer types, we saw how retention is critical both for a small firm, and a

medium firm with a growing base on ‘unhappy’ customers.

2.5 Conclusion

Maintaining and growing a base of profitable customers is critical to the success of

many companies across numerous different industries. To succeed, companies need
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to appropriately allocate resources to the retention of existing customers and to ac-

quisition of new ones. In this paper we develop a framework to analyze this problem

which captures the practical interactive dynamic decision-making process. Existing

literature has focused on the acquisition and retention trade-off using regression, em-

pirical analysis, or static optimization. This work is unique because it is a dynamic

optimization perspective on the resource allocation trade-off between customers ac-

quisition and retention. Because customer relationships evolve over time, we believe

the paper makes a meaningful contribution to the literature.

With some plausible assumptions on the costs of acquisition and retention and the

revenue generated from customers, we obtain some interesting structural properties

for the optimal strategy, which then provide important insights to the firm’s optimal

solution. For a small firm undergoing initial growth, our results emphasize the critical

importance of customer retention; the firm should spend heavily on both channels,

while shifting money from acquisition to retention during this initial growth. In

practice, we believe that many firms undervalue retention during initial growth and

overemphasize acquisition. If this were to occur, acquisition can be undermined by

the loss of existing customers, stalling growth. When a firm gets larger, it begins to

invest less in both acquisition and retention. The reason for this is that retention

efforts become prohibitively expensive, so the firm accepts that it might lose some

customers, rather than spending a lot of money to try and keep every customer. This

is an important observation. In practice, some customers may be so expensive to

keep satisfied that it no longer makes sense for the firm to continue retaining every

one of them, if the customer base is large enough. Further, we find the existence

of an ‘efficient’ number of customers, above which the firm will shed customers

(in expectation), and below which it will gain customer (in expectation) when the



31

optimal strategy is implemented. Acquiring every last customer is not optimal for

the firm, but there is a target level of customers at which the firm decides to neither

grow nor contract.

We discuss three extensions to our model. The first includes additional uncer-

tainties on the result of acquisition and retention effort. This model is both mathe-

matically interesting and captures situations in which both costs and outcomes may

be random. However, as the model becomes more general, we lose some of the nice

structural properties of the optimal strategy for the simpler model. However, we val-

idate the main results from our paper by showing that a heuristic with the optimal

strategy dictated by main Theorem II.3 is near-optimal for the more general model.

When economic conditions impact profits, the firm will have a state of the economy

dependent policy, as we showed in the first extension from Section 2.4. We are able

to show that firms will spend more in acquisition and retention in a good economy,

as intuition would support. In addition, our comparative statics results indicate that

acquisition and retention can sometimes be thought of as substitutes. As costs change

in one of the areas, the optimal strategy specifies that the firm should emphasize this

area less, with more emphasis in the other area. We also see that higher profits will

lead to more customer focus in the form of acquisition and retention.

When both ‘happy’ and ‘unhappy’ customers may be visited in retention, we

show how the optimal acquisition and retention strategies may change. Rather than

increasing retention as the the number of customers is larger up to a certain level,

and then decreasing the spending there, we see that firms have two regions on which

optimal retention is increasing in the number of customers the firm has. Retention

should be emphasized both during initial growth and when there is a growing number

of ‘unhappy’ customers.



32

There is significant opportunity for additional research from the operations man-

agement community on the topic of customer acquisition and retention management.

For example, it is often the case in practice that multiple firms target the same pool

of prospective customers, and one would need to apply game theory to study the

dynamic decision making and competition of the firms. There is also the possibility

of incorporating other sales management decisions into the framework of the ac-

quisition and retention trade-off. For example, one may consider joint decisions on

acquisition, retention, and sales compensation design, or joint decisions on acquisi-

tion, retention, and hiring or laying-off employees. Such models would extend our

work to consider other strategic aspects of the dynamic acquisition and retention

management problem.



CHAPTER III

Who Benefits when Drug Manufacturers Offer Copay
Coupons?

In order to manage drug costs, insurance companies induce patients to choose

less expensive medications by making them pay higher copayments for more expen-

sive drugs, especially when multiple drug options are available to treat a condition.

However, drug manufacturers have responded by offering copay coupons; coupons

intended to be used by those already with prescription drug coverage. There have

been claims that such coupons significantly increase insurer costs without much ben-

efit to patients, and thus pressure to ban copay coupons. In this paper, we analyze

how copay coupons affect patients, insurance companies, and drug manufacturers,

while addressing the question of whether insurance companies would in fact always

benefit from a copay coupon ban. We find that copay coupons tend to benefit drug

manufacturers with large profit margins relative to other manufacturers, while gener-

ally, but not always, benefiting patients; insurer costs tend to increase with coupons

from high-price drug manufacturers and decrease with coupons from low-price man-

ufacturers. While often helping drug manufacturers and increasing insurer costs, we

also find scenarios in which copay coupons benefit both patients and insurers. Thus,

a blanket ban on copay coupons would not necessarily benefit insurance companies

in all cases. We also provide recommendations to insurance companies on how they

33
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should adjust their formulary selection policies taking into account the fact that drug

manufacturers may offer coupons. Given that many insurance companies do not take

coupons into account when determining drug placement on formularies, our results

have the potential to significantly impact insurance company profits.

3.1 Introduction

The rising cost of health care in the United States has received considerable atten-

tion in recent years, and prescription drugs account for approximately ten percent of

overall health care spending1. For this reason, the cost of prescription drug choices

has become an important topic in health care. Within the context of prescription

drug choice, the focus of our research is on copay coupons, discounts offered by drug

manufacturers to induce insured consumers to choose a specific drug or set of drugs.

These coupons target only those with prescription drug coverage, not the poor or

uninsured who pay the full cost of a drug. The emergence of copay coupons is ex-

plained by insurance companies increasingly using differentiated copay strategies to

influence drug selection. Our paper is concerned with the effect such coupons have

on drug manufacturers, patients, and insurers.

The term formulary is used to describe the list of medications covered by a pre-

scription drug plan, along with the corresponding copayment for each drug. Rather

than set a unique price for every drug, prescription drug plans use a tiered system,

with three to five different pricing (copay) levels. Most prescription drug plans place

drugs on the formulary based on cost, with the intent that by charging patients

more for more expensive drugs, they may induce more to select cheaper (generic)

alternatives.2 Federal and state governments also use formularies and copayments to

1Center for Medicare and Medicaid Services (http://www.cms.gov)
2We would like to thank Faisal Khan from Blue Cross Blue Shield and Health Alliance Plan Insurance for sharing

information on how insurance companies currently construct formularies and for very useful suggestions that enriched
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influence drug selection.

Drug manufacturers offer copay coupons to offset part or all of the copayment

differentials between their drugs and others. The coupons make drugs cheaper to

the patients in order to alter drug choice decisions. Coupons are usually used in

conjunction with private insurer plans, and are explicitly not allowed to be used for

individuals on Medicare or Medicaid (Foley (2011)). However, some evidence exists

that the coupon ban for Medicare patients is not strictly enforced3.

A November 2011 report from Foley (2011) suggested that ‘copay coupons will in-

crease ten-year prescription drug costs by 32 billion for employers, unions and other

plans sponsors if current trends continue.’ However, consumer advocacy groups

and drug manufacturers have contended that copayment coupons are critical for

low-income patients who may otherwise be unable to afford prescription drugs. A

spokesman for Pizer said the following about copay coupons: ‘Given the larger

cost-sharing burden being placed on patients, Pfizer supports the use of company-

sponsored programs which help patients with out-of-pocket expenses for the medicines

prescribed by their physician4.’ Our research attempts to bridge the gap between

these prevailing thoughts on copayment coupons by utilizing a formal and systematic

study.

A prime example of a competitive scenario with multiple drug manufacturers of-

fering coupons is the market for cholesterol medication. The US market is enormous,

with an estimated 87 million prescriptions filled in the first half of 2009 alone5. There

are a number of options available to patients, and coupons (usually in the form of

our model.
3Medical Marketing and Media: Co-pay cards and coupons sway 2 million US seniors (http://www.mmm-

online.com/co-pay-cards-and-coupons-sway-2-million-us-seniors-study-says/article/237128/)
4Bloomberg News: Pfizer, Abbott, Glaxo Sued Over Brand-Drug Co-Pay Discount (http://www.bloomberg.com/

news/2012-03-07/pfizer-abbott-face-allegations-over-co-pay-coupon-promotions.html)
5Forbes: U.S. Most Popular Cholesterol Drugs (http://www.forbes.com/2009/12/02/cholesterol-heart-disease-

lifestyle-health-heart-attack-drugs-chart.html)
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copay ‘cards’) have become extremely common. In 2012, Lipitor announced that

they were offering a copay card for patients to receive Lipitor for only four dollars

per month (See Figure 3.1). Another cholesterol medication, Livalo offers a similar

copay card to customers.

Figure 3.1: Example of Copay Card

An important intermediary in the prescription drug industry is the pharmacy

benefit manager (PBM), who functions as a middle man between insurers (or other

payers) and drug manufacturers. Traditionally, the PBM negotiates drug supply

prices on behalf of the insurer and may also suggest a formulary design to the insurer.

However, the insurer always has the final say in which drugs are on the formulary and

at what copay. Our contacts at insurance companies have verified that it is common

for small insurers to take prices as given from the PBMs that they work with and

then make formulary placement decisions themselves. This is exactly what we model

in our main model. However, some large insurers have their own PBMs, and can

negotiate price and formulary placement together. We have developed a model that

does this in Section 3.6. The link between formulary design and drug supply prices is

well documented, and discussed in Atlas (2004), Duggan and Scott-Morton (2010),

Frank (2001) and Garrett (2007).

In practice, coupons are not something that insurers always anticipate at the

time when they make formulary selection decisions. This is partly due to the fact

that whether coupons will be offered is often hard to predict, coupons are offered
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and expire frequently, and the insurer does not necessarily know how they should

adjust the formulary design in response to the coupons offered. Therefore, in this

paper we consider two variations of the problem: coupon-anticipating insurer and

non-coupon-anticipating insurer. Hereafter these two cases will be referred to as

coupon-anticipating and non-anticipating insurers.

In this paper we answer research questions related to prescription drug choice and

coupons across two primary dimensions: strategy and impact. In terms of strategy,

we want to generate managerial insights for the insurance industry. Given that copay

coupons are being offered, how should formularies be designed? Should the insur-

ance industry support a ban on copay coupons? How could an insurance leverage

formulary placement to entice drug manufacturer to compete on price? In terms

of impact, we want to understand the effect of coupons across dimensions of drug

manufacturer profits, insurer costs, and patient utility. That is, who benefits from

coupons and who does not? Would a government policy to restrict coupons benefit

insurers, patients, or both? How does the impact of coupons change when price

competition is introduced?

Throughout the paper, we use the term ‘coupon’ to describe the discount that

drug manufacturers offer to patients intended to be used towards a drug copayment.

In practice, these coupons may be in the form of copay cards, traditional coupons,

or even other targeted programs.

Our model and results show that the effect of copay coupons is subtle, and the

benefits and costs depend on the particular market dynamics so that unlike previ-

ously claimed, coupons are not always a net cost. We find support for the conclusion

from Foley (2011) that coupons increase drugs costs in scenarios when the patient

is selecting between an expensive drug (with high profit margin) and a cheap one
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(with much lower margin). Generally, this is the case when the patient/doctor se-

lects between a generic and a brand-name drug. In these cases, the brand-name drug

company can offer a coupon that will induce more patients to select the pricier drug

which may benefit patients but will increase health care expenses. However, there

are a wide variety of cases (such a situations where the only treatments are biological

drugs) where all alternatives are costly. We show in the paper that in these cases,

coupons may result in more intense competition benefiting patients without increas-

ing insurer costs. In our second model in which price and copay are interdependent,

we find that coupons may in some cases suppress price competition, resulting in

higher drug supply prices. However, even with price competition, coupons can be

beneficial to insurers in some situations. Thus, a draconian approach of banning

coupons is not likely to be an optimal cost-savings approach.

The rest of this paper is organized as follows. We start with a literature review

in §3.2, present the model in §3.3, analyze the equilibrium strategies of all players

in the supply chain in §3.4, discuss the implications of coupons in §3.5, present a

second model, with interdependent pricing and copay, and the results and insights

in §3.6, extend our model in §3.7, before we conclude in §3.8.

3.2 Literature Review

Our paper is concerned with how consumers choose drugs in the presence of

copayments and coupons, and when these coupons increase or decrease costs/profits

for patients, drug manufacturers, and insurers. Although coupons and rebates have

been studied in the supply chain and economics literature, our model is unique

because we are explicitly considering copay coupons. We discuss related research

while differentiating our paper throughout this section.
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Bluhm et al. (2007) and Ranfan and Bell (1998) provide useful background sources

on the insurance and pharmaceutical industries. The former is a book that discusses

many aspects of the insurance industry, including information on prescription drug

coverage and formularies; while the latter is a well-used case study focused on a

potential merger between drug manufacturer Merck and prescription drug insurance

provider Medco.

Insurance is studied in the economics literature as a classic moral hazard problem.

Work in this area dates back to Arrow (1963) and often models patients as risk

averse agents with risk neutral insurers. Zeckhauser (1970) builds such a model, and

explicitly analyzes how an insurance policy can provide value for risk-averse patients

while avoiding health care over consumption. A related paper to ours in this domain

is Ma and Riordan (2002). This paper solves a health insurance problem with risk-

averse patients and a risk-neutral insurer. The insurer chooses the copayment and

drug-specific insurance premium to optimize patient welfare while maintaining costs

at zero. However, unlike our paper, Ma and Riordan (2002) do not consider drug

coupons and their effects on insurer and patient outcomes.

Drug pricing has been studied extensively in the literature, e.g. in Danzon (1997),

Jelovac (2002) and Berndt et al. (2011). Danzon (1997) is an empirical study of drug

pricing across the European Union while Jelovac (2002) analyzes the correlation be-

tween drug pricing and formulary design with a model, and finds that higher drug

prices should lead to higher copayments. Berndt et al. (2011) uses basic microeco-

nomic tools to describe how an insurer would set drug prices in a monopolistic or a

competitive market.

There is also some related work in the operations management literature. Hall

et al. (2008) studies the formulary selection problem from a combinatorial optimiza-
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tion perspective. Bala and Bhardwaj (2010) examine a problem in which drug manu-

facturers make advertising decisions, and must trade off between direct-to-consumer

advertising, and advertising to doctors (detailing). Bass et al. (2005) study another

variation of the drug advertising problem and determine how competing firms should

trade-off generic and brand-specific advertising. They assume that generic advertis-

ing increases market size, while brand specific advertising increases market share, and

find that brand specific advertising is more important in the short-term. The paper

also predicts the existence of free-riding firms that are profitable without spending a

lot on advertising. Lastly, So and Tang (2000) consider a model in which an insurer

uses an outcome-oriented reimbursement policy in which medical clinics are only re-

imbursed for drugs when patient’s health is below a threshold. They find that such

a mechanism can lower costs, but usually leaves patients and drug manufacturers

worse off.

Engineering pricing of combination vaccines is studied in Jacobson et al. (1999),

Jacobson et al. (2003), Jacobson and Sewell (2002), Sewell et al. (2001), and Sewell

and Jacobson (2003). This stream of literature uses operations research models and

algorithms to optimize the prices of combination vaccines for children. Such combi-

nation vaccines permit new vaccines to be inserted into an immunization schedule

without requiring children to be exposed to an unacceptable number of injections

during a single clinic visit. This stream of literature answers the question of how

such vaccines should be appropriately priced. Most closely related to our research

is Sewell et al. (2001), which develops an algorithm that weighs distinguishing fea-

tures of economic consequence among competing vaccines to design a formulary that

achieves the lowest overall cost to payers and/or to society for immunization.

Significant work exists on rebates in the supply chain management literature. Cho
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et al. (2009) consider a Stackelberg game in which a manufacturer announces a rebate

strategy and wholesale price before the retailer announces a rebate and final sales

price. Based on prices and rebates, customers buy the product, with some proportion

redeeming the rebate. This research evaluates outcomes in scenarios under which

one or both of the manufacturer or retailer offer a rebate, and determines which

player benefits. Other references on rebates in the supply chain literature include

Chen et al. (2007) and Aydin and Porteus (2008). Our model of copay coupons

differs from the existing rebate literature in a number of ways. First, we explicitly

model an insurer who plays a fundamentally different role than a supplier, retailer,

or consumer would in a traditional supply chain environment. Secondly, because

our price-sensitive patients are already insured, they pay only a fraction of the full

cost of the drug, leaving the potential for copay coupons to significantly reduce out

of pocket expenses in a way that is different than a traditional consumer rebate or

discount. Finally, our insights go beyond profit maximization strategies because we

thoroughly address the question of the impact of copay coupons, providing more of

a policy perspective.

The impact of copay coupons on insurers, patients, and drug manufacturers is not

well-understood analytically in the literature, which is the primary contribution of

this paper.

3.3 The Model

Consider two drugs approved for a certain condition. The prices for the drugs are

p1 and p2, which are traditionally determined through negotiations with pharmacy

benefit managers, third party companies that pool together demand for prescription

drugs in order to gain negotiation power with drug manufacturers. Typically, an



42

insurance company works with a particular pharmacy benefit manager, who will

inform them of the drug prices that have been negotiated. Thus in this section, we

consider the case that the drug prices are exogenously given, and without loss of

generality, we assume that drug two is more expensive, thus p1 ≤ p2. In Section

3.6 we will analyze a case where prices are not exogenously given. Our results are

applicable for any two drugs in a competitive setting, and they can be thought of as

‘generic’ and ‘brand-name’, or two ‘brand-names’. In some cases, the insurer may

not cover a brand-name drug if a generic equivalent is available. However, this is

not a universal practice, and there are also many diseases for which generics do not

exist. For example, for ankylosing spondylitis, a common rheumatological disease,

the only treatments are biologic drugs for which no generic versions are available.

We use the terms ‘low-price’ manufacturer (or drug), and ‘high-price’ manufacturer

(or drug) to refer to manufacturers (drugs) 1 and 2 respectively.

We denote the copayments for drugs 1 and 2 as c1 and c2 respectively. In response

to insurer copayments, one or both of the drug manufacturers may offer a coupon

given as d1 or d2, both non-negative (note that in practice a variety of drug manufac-

turers offer coupon coupons in a variety different drug markets). We assume coupons

do not exceed copayment levels, thus di ≤ ci. Drug manufacturers have variable profit

margins which we denote as q1 and q2 respectively for drugs 1 and 2. Without loss of

generality, we assume that all patients gain access to coupons (our results extend to

a case with only a fraction getting coupons). The final decision in the game is made

by strategic patients, who weigh the options presented to them while considering

their own drug preference. We consider any influence of physicians on drug choice

as part of the patient preference. (Clearly, doctors provide an input to the patients’

decision and in some cases may recommend or decide on one drug. However, there
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are many situations in which doctors present the different treatments and their risks

as alternatives and encourage the patient to choose. For example, with ankylosing

spondylitis, the different treatment options require injections at different intervals

(weekly, bi-weekly, or monthly) and administered differently (self-injected or injec-

tion in clinic setting). Furthermore, the treatments also have different risks. Thus,

the patient may have different preferences. In some scenarios a doctor determines ex-

actly which drug a patient will take, removing the element of copayment-dependent

choice. Our model is general enough to handle such cases by allowing for patients to

have extreme valued preferences such that they always pick a certain drug, regardless

of copayments or coupons. However, the very fact that copay coupons have become

so prolific speaks to the fact that patient choice and price still matter when it comes

to drug choice.) Patients are strategic, and have random valuations v1 and v2 for

drug one and two respectively. The cumulative distribution function, probability

density function, and failure rate of their preference difference v2 − v1 are given as

Φ(·), φ(·) and r(·), respectively. We assume that the support of v2−v1 is [−L,U ], on

which φ(·) is strictly positive. Further, we assume there is a large pool of customers,

with the insurer minimizing cost, patients maximizing utility, and drug manufactur-

ers maximizing profit. The objective function for the patient with coupons is given

as

πP = max {v1 − c1 + d1, v2 − c2 + d2},(3.1)

where πP represents the optimal utility of ‘patient’. Note that the objective above

implicitly assumes that the patient is risk-neutral. However this easily extends to the

risk-averse case in which the patient maximizes max {u(v1− c1 +d1), u(v2− c2 +d2)}

for some increasing concave function u(·), since the latter optimization is equivalent

to (3.1).
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Clearly, the optimal decision for the patient is dependent upon the copayments

(c1 and c2) and coupons (d1 and d2), along with the patients’ valuations of the

drugs (v1 and v2). Here we assume that every patient selects one drug or the other,

representing the case that a drug will be taken, so there is no third option. It is easy

to generalize our model to the case where one of the two drugs has to be offered with

a low copay so that virtually everyone in the population can afford at least one drug.

In fact, in Section 3.6 we consider a scenario in which manufacturers bid on price for

favorable formulary placement, with at least one of the drugs placed on the lowest

pricing tier.

For ease of presentation, we let α1 and α2 be the proportion of customers that

ultimately select the first and second drugs respectively. A patient picks drug one if

and only if v1 − c1 + d1 ≥ v2 − c2 + d2. Thus α1 and α2 can be computed as

α1 = Φ(c2 − c1 + d1 − d2),(3.2)

and

α2 = 1− Φ(c2 − c1 + d1 − d2).(3.3)

Using these, we compute the profit functions for the drug manufacturers, π1 and π2,

as

πi = max
0≤di≤ci

(qi − di)αi, i = 1, 2,(3.4)

which is simply the market share for manufacturer i multiplied by the variable profit

margin, qi, minus the amount of coupon offered, di. Note here that without loss of

generality, we normalize the total market size to one.

In establishing the formulary, the insurer sets the copayments for each drug, deci-

sions we denote by c1 and c2. In practice these are not continuous decisions, but are
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chosen from the list of copay pricing tiers. This means that c1 and c2 are selected

from a finite set of possible tiered prices within the formulary, which we denote by

t1 < t2 < · · · < tn−1 < tn. In practice, n = 3, 4, or 5 are commonly observed

formulary designs.

We first model the problem of a coupon-anticipating insurer, who has an objective

function of

πIA = min
c1,c2∈{t1,t2,...,tn}

(
(p1 − c1)α1 + (p2 − c2)α2

)
,(3.5)

where πIA is the expected per-customer cost to the coupon-anticipating insurer.

In our interviews with major insurers, we have found that currently insurers do

not necessarily take into account or anticipate that coupons will be offered when

determining formularies. In such a scenario, the insurer makes the copayment deci-

sions assuming that patients will choose drugs based only upon the copayments they

have to pay. That is, now instead of using α1 and α2, the percentage of patients

that choose each drug with copayments and coupons, the insurers will use β1 and

β2, the percentage choosing either drug with only copayments. These are computed

explicitly as β1 = Φ(c2 − c1) and β2 = 1− Φ(c2 − c1). The coupon non-anticipating

insurer aims to minimize cost as before, with problem given by

πIN = min
c1,c2∈{t1,t2,...,tn}

(
(p1 − c1)β1 + (p2 − c2)β2

)
,(3.6)

where πIN is the expected per-customer cost to the non-anticipating insurer. The

insurer aims to minimize its payout, and must select copayment amounts from the

insurance plan formulary. In this scenario, however, it does not anticipate coupons,

and uses β1 and β2 in determining its strategy. The objective no longer considers

or depends upon any drug manufacturer decisions. However, βi still depends on the

insurer’s decisions of c1 and c2.
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Note that throughout the paper, we are saying that players ‘benefit’ when their

objective values are improved, based on the objectives defined in this section. While

in reality we may not be capturing all aspects of how various players could ‘benefit’

(i.e. insurers benefit when patients pay lower prices and patients benefit from being

healthy in the future), we believe that we are capturing the essence of who benefits

in different scenarios.

The following assumption is made on the distribution function.

Assumption III.1. The distribution of patient’s preference for drug two versus drug

one, given by v2 − v1, is continuous and has log-concave distribution.

Log-concave distribution is a common assumption in the literature. There are

a host of distributions that satisfy this condition, including normal, exponential,

uniform, Laplace, and many others. There exists a body of literature that discusses

properties of log-concavity, often with example distributions. A good reference is

Bergstrom and Bagnoli (2005). For convenience here we assume that the density

function is strictly positive on the domain it is defined.

3.4 Equilibrium Analysis

In this section, we analyze the Stackelberg equilibrium strategy for all players.

This analysis will allow us to answer research questions related to strategy for each

of the players.

3.4.1 Drug Manufacturer Coupons

The drug manufacturer decision is whether to offer a coupon, and if so, for how

much. We model this coupon problem as a simultaneous-move game played between

the two drug manufacturers. First we discuss properties of the best response strate-
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gies for each of the drug manufacturers. Then, based on these properties, we fully

characterize the equilibrium strategy for drug manufacturers.

By plugging (3.2) and (3.3) into (3.4), we obtain the objective functions for man-

ufacturers one and two as

π1 = max
0≤d1≤c1

(
(q1 − d1)Φ(c2 − c1 + d1 − d2)

)
,(3.7)

and

π2 = max
0≤d2≤c2

(
(q2 − d2)(1− Φ(c2 − c1 + d1 − d2))

)
.(3.8)

The following lemma characterizes the manufacturers’ best response solutions.

Lemma III.2. (i) The manufacturers’ objective functions, π1 and π2, are quasi-

concave in d1 and d2 respectively. The best-response solutions of the drug man-

ufacturers are given as

d∗1(d2) = max
{

0,min
{
d′1(d2), c1, U − (c2 − c1) + d2

}}
,

d∗2(d1) = max
{

0,min
{
d′2(d1), c2, L+ c2 − c1 + d1

}}
,

where d′1(d2) and d′2(d1) are the unique solutions to the equations

q1 = G(c2 − c1 + d′1 − d2) + d′1

q2 = H(c2 − c1 + d1 − d′2) + d′2

with

(3.9) G(y) =



0 if y < −L

Φ(y)
φ(y)

if y ∈ [−L,U ]

Φ(U)
φ(U)

if y > U
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and

(3.10) H(y) =



1
r(−L)

if y < −L

1
r(y)

if y ∈ [−L,U ]

0 if y > U

(ii) The best-response d∗i (dj) is increasing in qi and ci with slope no more than 1,

and decreasing in cj − dj (j 6= i) with slope no less than -1. Furthermore, if dj

increases by ε > 0 and qi by ε′ > 0, then the best response d∗i (dj) would increase

by no more than max {ε, ε′}.

Therefore, when a manufacturer has a higher profit margin, or a higher copayment

for its drug, it offers a larger coupon. Additionally, it offers a larger coupon when the

effective price for its competitor’s drug is lower. This result indicates that in addition

to larger coupons when profit margins are higher (an obvious finding), a firm also

has more incentive to offer larger coupons when its market share is smaller due to

competition. Hence, as one player offers a larger coupon, so does the other. Both of

these observations are not surprising at all given the existing economics literature.

For this best response strategy, we assume that a drug manufacturer with no prospect

of positive profits sets di = min{ci, qi} as convention, which allows our strategy to

be uniquely defined for each manufacturer. (In cases where a manufacturer cannot

make positive profit for any choice of di, they may have infinitely many ways to

achieve zero profit. In order to derive the properties of part (ii) of this lemma, we

must break these ties in a systematic fashion.)

Because both objective functions are quasi-concave with convex and compact

decision spaces, the existence of a Nash equilibrium is guaranteed (see Fudenberg

and Tirole (1991)). We are able to show that our problem has a unique coupon
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equilibrium, and discuss some useful properties of the equilibrium. Note that the

equilibrium coupons d∗1 and d∗2 are functions of all system parameters, and unless it

is confusing otherwise, we shall leave this dependency implicit.

Theorem III.3. There exists a unique Nash Equilibrium coupon equilibrium for any

given copays c1 and c2. The equilibrium can be presented explicitly, according to re-

gions of the system parameters, and it has the following properties (a full coupon

equilibrium characterization, given explicitly in terms of system parameters, is spec-

ified in Chapter V of this document):

(i) The manufacturer’s equilibrium coupon d∗i is increasing in q1, q2 and ci, and

decreasing in cj, i, j = 1, 2 and i 6= j.

(ii) α∗1 = Φ(c2 − c1 + d∗1 − d∗2), is increasing in c2 and q1, and decreasing in c1 and

q2.

This result says that there exists a unique coupon equilibrium, that coupons for

both manufacturers are increasing in q1 and q2, and that the coupon from each manu-

facturer is increasing in its copayment, but decreasing in its competitor’s copayment.

Part (ii) says that more people select the low-price drug as the copayment for the

low-price drug becomes smaller or the copayment for the high-price drug larger.

While many of these properties are intuitive, they will be useful in developing the

insurer strategy.

Figure 3.2 provides a graphical representation of the equilibrium coupon outcome

with a numerical example. For the purposes of this example, we define a ‘full coupon’

by a drug manufacturer to be a strategy in which di = ci, and ‘market domination’

to be a scenario where one of the drug manufacturers captures the entire market

with αi = 1 for i = 1 or i = 2.
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Figure 3.2: Coupon Game Equilibrium Strategy Categorized by Regions on Profit Margins q1 and
q2

(data v2−v1 uniform on [-70,100], c1 = c2 = 85, Region II - Manufacturer two dominates, Region III
- Neither manufacturer offers a coupon, Region IV - Only manufacturer one offers a coupon, Region
V - Only manufacturer two offers a coupon, Region VI - Both manufacturers offer full coupons,
Region VII - Both manufacturers offer coupons and manufacturer one offers a full coupon, Region
VIII - Both manufacturers offer coupons and manufacturer two offers a full coupon, Region IX -
Both manufacturers offer partial coupons)
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3.4.2 Insurer Strategy

Based on the prices it pays for each of the drugs, the insurer sets the copayments

c1 and c2, which are selected from a finite set of possible tiered prices, which we

denote by t1 < t2 < · · · < tn−1 < tn, as described above in Section 3.3. The structure

of the optimal insurer strategy for the optimization problems (3.5) and (3.6) turn

out to be identical, so we proceed to present them together. The insurer’s optimal

strategy is categorized in the following theorem.

Theorem III.4. The insurer always sets the copayment for the high-price drug at

the highest copayment tier, c∗2 = tn. The optimal copayment for the low-price drug is

determined by n+ 1 decreasing critical numbers ∞ = z∗0 ≥ z∗1 ≥ · · · ≥ z∗n−1 ≥ z∗n = 0

such that c∗1 = ti if and only if p2− p1 ∈ [z∗i , z
∗
i−1). In this way, there exist decreasing

step functions FA(·) and FN(·) such that c∗1 = FA(p2−p1) with a coupon-anticipating

insurer and c∗1 = FN(p2 − p1) with a coupon non-anticipating insurer.

According to Theorem III.4, the larger the drug price differential between the two

drugs, the larger the copayment differential the insurer should select. This stands in

contrast to many current tiering practices, where pricing is based on absolute price,

instead of relative price. According to this result, only relative price matters for

optimal tiering. While pricing policies based on absolute prices alone are likely to

approximate pricing based on price difference (especially with one generic and one

brand-name option), such policies could miss the mark, in particular in drug markets

where no generics are available.

One can see the structure of this policy in Figure 3.3. Note that while the optimal

c∗1 selected is monotonicially decreasing in the price differential p2− p1, it is possible

that for some drugs, certain tiers are never used for any possible value of p2−p1. For
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example, if z∗i−1 = z∗i , then tier i is never used. The values of z∗i are calculated by

finding unique points where the insurer is indifferent between two different possible

tier selections.

Note that for the insurer, a possible strategic response to coupons is to raise

copayments for patients, so as to absorb the value from the coupon. While we

observed this optimal response in many examples, it is not necessarily always the

case that coupons lead to higher copayments. In fact, in some cases a strategic

response to coupons may be to lower copayments.

Figure 3.3: Optimal Insurer Strategy for Decision c1

The results above offer the following insights on the strategies for the players in the

coupon game. Patients select the cheaper drug unless they have a large-enough pref-

erence for the other drug. Drug manufacturers offer larger coupons when their profit

margins are larger and their current market share smaller. The insurer copayment

decision is driven by the drug pricing difference, and a larger price difference between

drugs should lead to a larger copayment difference. This analysis sets the stage for

the main results of the paper, in which we discuss the implications of coupons and

analyze whether insurers would benefit from a coupon ban.

3.5 Implications of Coupons

With the equilibrium results obtained in the previous section, we proceed to

analyze the implications of coupons. Questions of interest include, who benefits

with coupons? How do things change as coupons become larger or smaller? Does
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the insurer always favor a coupon ban? We answer these questions in two ways, first

with analytical results and then with numerical examples.

3.5.1 Analytical Results

What happens when drug manufacturers have larger or smaller profit margins?

From Theorem III.3, we know that larger profit margins result in larger coupons

offered by drug manufacturers. We want to know the effect this has on all players in

the game. To answer this question, we present the following proposition.

Proposition III.5. (i) As the high-price manufacturer’s profit margin (q2) in-

creases, the insurer’s cost (πIA or πIN) increases; in addition, for the case of

a non-anticipating insurer, the high-price manufacturer coupon (d∗2), the pa-

tient utility (πP ) and the high-price manufacturer’s profit (π2) increase while

the low-price manufacturer’s profit (π1) decreases.

(ii) As the low-price manufacturer’s profit margin (q1) increases, the insurer’s cost

(πIA or πIN) decreases; in addition, for the case of a non-anticipating insurer, the

low-price manufacturer coupon (d∗1), the patient utility (πP ) and the low-price

manufacturer’s profit (π1) increase and the high-price manufacturer’s profit (π2)

decreases.

The result above shows that larger profit margins from the high-price drug man-

ufacturer increase insurer cost, while larger profit margins from the low-price manu-

facturer decrease insurer cost. With a non-anticipating insurer, a larger profit margin

from either manufacturer results in that manufacturer offering a larger coupon, which

benefits patients and the drug manufacturer offering the coupon, while making the

other manufacturer worse off. It is interesting to note that some of the comparative

statics results in Proposition III.5 do not hold with a coupon-anticipating insurer.
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With such an insurer, it is possible that as profit margin increases for a manufac-

turer, it becomes worse off and so do patients. To see this, note that as the low-price

drug manufacturer profit margin increases, the low-price manufacturer would offer

a larger coupon. Anticipating this, the insurer may decide to increase the copay-

ment for the low-price drug. This could make the low-price drug manufacturer and

patients worse off, and increase profit for the high-price drug manufacturer. Such

a scenario is displayed with a numerical example in Figure 3.4 which highlights the

jumps caused by changes in the insurer’s strategy. In these figures one can see the

outcomes for patients and manufacturers as the parameter q1 is varied. It is interest-

ing to observe the sharp contrast of outcomes between a coupon-anticipating insurer

and a non-anticipating insurer.

Figure 3.4: Manufacturer and Patient Outcomes with Varying Manufacturer One Profit Margin q1
(p1 = 746, p2 = 842, t1 = 10, t2 = 27, t3 = 46, t4 = 85, and q2 = 300)

Using these comparative statics results, we want to compare the scenarios in which

coupons may or may not be allowed. This captures real situations today, where

coupons on copayments are allowed for private insurance plans but are banned for

public options of Medicare part D or Medicaid (Foley (2011)). In order to make

this comparison, we let π0 denote the situation in which coupons are not allowed.

The scenario with coupons allowed is still π, the notation we have used throughout
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the paper. Superscripts have the same meaning as before, identifying the objective

functions for relevant players. We first consider the case with a non-anticipating

insurer.

Theorem III.6. Suppose the insurer is non-anticipating.

(i) If either of the following conditions hold:

(a) q2 − q1 ≥ H(tn − FN(p2 − p1))−G(tn − FN(p2 − p1)), or

(b) q2 ≥ H(tn − FN(p2 − p1)) + FN(p2 − p1),

then insurer costs are higher with coupons than without (πI0 ≤ πIN), and the

low-price manufacturer is worse off with coupons (π1
0 ≥ π1). Otherwise, insurer

costs are lower with coupons (πI0 ≥ πIN), and the high-price drug manufacturer

is worse off with coupons (π2
0 ≥ π2).

(ii) Patients are always better off with coupons (πP ≥ πP0 ).

When the high-price drug manufacturer has a significantly larger profit margin

than the low-price manufacturer (i.e., (a) is satisfied), or a large-enough profit margin

in absolute terms (i.e. (b) satisfied), coupons drive up costs to the insurer; and the

profit of the low-price manufacturer goes down with coupons; the profit of the high-

price drug manufacturer, however, can either go up or go down with coupons. On

the other hand, if neither conditions (a) nor (b) hold, insurer costs are lower with

coupons; high-price manufacturer’s profit goes down with coupons; but the low-price

manufacturer’s profit can either go up or go down with coupons. In either case,

patients always benefit from coupons. Since the right hand sides of the inequalities

in conditions (a) and (b) are both decreasing in p2 − p1, when the price difference

between drugs becomes larger, coupons are more likely to increase insurer costs and

hurt the low-price drug manufacturer. Note also that our conditions (a) and (b)
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imply that manufacturers with small profit margins (relative to a competitor) are

more likely to prefer a scenario in which coupons are not allowed.

When the insurer is coupon anticipating, then we have the following result.

Theorem III.7. Suppose the insurer is coupon-anticipating.

(i) Insurer costs are higher with coupons than without (πI0 ≤ πIA) if either condition

(a) or (b) from Theorem III.6 holds, with the function FA(·) replacing FN(·) in

the conditions.

(ii) At least one drug manufacturer is worse off with coupons.

Thus, if an insurer is anticipating, then at least one of the drug manufacturers

is worse off with coupons. The insurer is also worse off when the high-price drug

manufacturer has a much larger profit margin, as was the case with a non-anticipating

insurer. However, patients do not always benefit from coupons in this case. Indeed,

in the case with an anticipating insurer, the presence of coupons may lead to a larger

copay for the low-price drug, which may leave patients worse off.

Our results indicate the possibility that both drug manufacturers can become

worse off with coupons, a situation in which coupons cut into the profit margins for

each manufacturer without benefiting either significantly enough in terms of mar-

ket share gained. This is possible with a coupon-anticipating or a non-anticipating

insurer.

3.5.2 Examples

We next present two examples of drugs for which coupons (or other targeted

discounts) are available. The first is a generic vs. brand-name drug choice trade-

off between two prescription drugs that treat acne. The second is an example with

two brand-name TNF inhibitor drugs, both expensive and widely used in a market
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where targeted discounts of medication is common. In the first example, coupons

significantly drive up insurer cost, while benefiting the drug manufacturer with larger

profit margin, and benefiting patients. In the second, coupons are ultimately good

for patients and the insurer, but may not actually benefit drug manufacturers.

Acne Drug Example.

A recent National Public Radio broadcast episode and segment from Joffe-Walt

(2009) discusses the brand-name acne drug Minocin PAC and a generic equivalent.

The brand-name drug costs USD $668, while the generic variant costs only USD

$50. The only meaningful difference between the medications is that the brand-

name version is taken only once per day, while the generic is taken twice. Using this

reference for our example, we let the generic be drug one, with price p1 = 50, and the

brand-name drug two with p2 = 668. A 2009 study of formulary designs concluded

that tiers used by prescription drug plans had averages given as t1 = 10, t2 = 27,

t3 = 46, and t4 = 856. We use these for this example. It is reasonable to assume that

the variable production cost for the brand-name drug is twice that of the generic,

at levels 60 and 30 respectively, so that profit margins are given as q1 = 20 and

q2 = 608. Patient preference we will assume is uniform on [−20, 100], so that most,

but not all patients prefer the brand-name option. While this example is generated

with a mixture of real and assumed data, it is the large price (and profit margin)

difference and relatively small copayment differences that drives outcomes, which are

summarized in Table 3.1. In this table, scenario one corresponds to the case where

coupons are banned. Scenario two corresponds to the case where coupons are allowed

(in this case anticipating or non-anticipating insurers lead to same outcomes).

In this example, because the price difference between the two drugs, given as

6Kaiser/HRET: Survey of Employer-sponsored Health Benefits, 2000-2009 (http://ehbs.kff.org)
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Table 3.1: Acne Drug Example (monthly supply)

Scenario No coupons Coupons Prefers
Equilibrium Copays (c∗1/c∗2) 10/85 10/85

Equilibrium Coupons (d∗1/d∗2) -/- 5/85
Equilibrium Patient Decisions (α∗

1/α
∗
2) 79%/21% 13%/87%

Manufacturer 1 per-patient Profit 16 2 No Coupons
Manufacturer 2 per-patient Profit 127 458 Coupons

Insurer per-patient Cost 153 515 No Coupons
Patient post-coupon Costs (c∗1 − d∗1/c∗2 − d∗2) 10/85 5/0 Coupons

p2 − p1 = 588, is relatively large, the optimal strategy for the insurer is to set the

copayment difference as large as possible, so that c1 = 10 and c2 = 85 regardless

of whether coupons are offered. As expected, the fact that the high-price drug

manufacturer has a larger profit margin results in higher profits for them, while

the insurer and low-price drug manufacturer are both worse off. This example is

representative of many potential scenarios where coupons increase cost in markets

with one brand-name and one generic drug manufacturer. Examples such as this one

are generally used to justify the government’s decision to restrict coupons in order

to limit associated costs with Medicare and Medicaid.

TNF Inhibitor Example.

TNF inhibitors are powerful biological drugs used to treat rheumatoid arthritis,

ankylosing spondylitis, and other autoimmine disorders. The global market for these

drugs was estimated at twenty-two billion USD in 20097. Two of the most common

drugs in this market are Humira and Enbrel, and coupons or other copayment assist

programs are extremely common because they are so expensive. All treatment op-

tions involve periodic injections which may be done in a clinic setting or by patients

at home.

A check of online pharmacy prices (www.pharmacychecker.com) yields prices of

7http://en.wikipedia.org/wiki/TNF inhibitor



59

USD $933 and USD $1053 for a two-week supply of Humira and Enbrel respectively.

Because insurers tend to pay discounted prices for prescription drugs, we assume the

insurer faces prices that are twenty percent lower, at p1 = 746 and p2 = 842 (Frank

(2001)). Humira is usually injected bi-weekly, while Enbrel is a weekly injection.

Patients have preferences between the drugs based on this consideration along with

other minor differences between the products. Once again we use copay tiers of

t1 = 10, t2 = 27, t3 = 46, and t4 = 85 as in the previous example. We assume

that patient preference for Enbrel vs. Humira is uniform on [−70, 100], with some

patients preferring either of the drugs. Finally, we assume that both manufacturers

have high profit margins, with the high-price drug profit margin slightly larger, values

of q1 = 300 and q2 = 350. With the data for this example, the outcomes for each

player are given in Table 3.2. For this particular example, we present only the

situation with a coupon-anticipating insurer.

Table 3.2: TNF Inhibitor Example (two weeks supply)

Scenario No coupons Coupons Prefers
Equilibrium Copays (c∗1/c∗2) 85/85 85/85

Equilibrium Coupons (d∗1/d∗2) -/- 85/85
Equilibrium Patient Decisions (α∗

1/α
∗
2) 41%/59% 41%/59%

Humira per-patient Profit 165 130 No Coupons
Enbrel per-patient Profit 265 216 No Coupons
Insurer per-patient Cost 718 718 Indifferent

Patient post-coupon Costs (c∗1 − d∗1/c∗2 − d∗2) 85/85 0/0 Coupons

With coupons, patients are better off, the insurer is neutral, and both drug manu-

facturers are worse off. From a societal perspective, this portrays coupons as possibly

beneficial, helping patients while squeezing profit margins for drug manufacturers.

Particularly for a drug which is both expensive to patients and critical to their health,

we see with this example how coupons can in theory benefit society, cutting into large

drug manufacturer profit margins in order to help patients. This means that insur-
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ers may not necessarily benefit from a policy banning coupons, especially in markets

where no generic drugs exist. In fact, with this example, we see furthermore how

coupons can help insurers by increasing access to drugs by lowering out-of-pocket

expenses for patients.

3.6 Interdependent Pricing and Copays

As discussed in the introduction, in some situations copays and price are interde-

pendent, and taking drug supply prices as fixed is not realistic. This tends to be the

case for large insurers that control a large quantity of demand for prescription drugs.

For this reason, in this section we explore how our results and insights regarding

coupons may be different in an environment in which drug supply prices and copays

are interrelated.

To capture the essence of the fact that manufacturers are willing to lower supply

prices in order to receive a favorable formulary tier (and thus, more drug sales), we

develop a simple model in which two drug manufacturer compete on price in order

to be placed on a favorable formulary tier. Suppose that instead of fixed prices, p1

and p2, these variables represent the reserve prices the manufacturers have to meet

to be placed on the formulary at all. The insurer then allows each manufacturer to

bid a discounted price (ri ≤ pi) it is willing to charge for its drug should it become

the preferred drug option. Whichever manufacturer bids the lower price becomes the

preferred option and receives the lowest copay of t1 along with its bid price. The

other manufacturer is non-preferred and is slotted into a copay by the insurer while

receiving its original reserve price (if the losing bidder were to get his/her bid price

instead of reserve price, they would bid at the reserve price anyways). Suppose ki

is the production cost for manufacturer i and its utility is to maximize expected
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profit, i = 1, 2. Note that the profit margin for manufacturer i, which was fixed at

qi in the previous section, now depends on the outcome of the bidding game and

the product cost. Under this model, the insurer only makes a copay decision for

the non-preferred option, and this occurs after the price bidding occurs. Once the

price bids are made and copays finalized, coupons are offered and patients make a

decision, just as before. With this model, we first present the result for the insurer’s

copay decision for the non-preferred drug.

Theorem III.8. (i) Suppose that after price bidding, manufacturer i is preferred

with bid ri and manufacturer j is non-preferred. Then the optimal copayment for the

non-preferred drug is the highest copay tier (c∗j = tn) if either or both of the following

conditions hold.

(a) pj ≥ r1 + tn−1 − t1,

(b) there are only two copay tiers (n = 2).

(ii) Furthermore, if it holds that ri − t1 ≤ pj − tk for some k < n, then c∗j > tk and

the choice of cj = tk is not optimal.

Note that (ii) implies (b) of (i). This is because, when n = 2 and i is the preferred,

it holds that ri− t1 ≤ rj− t1 ≤ pj− t1 hence k = 1 satisfies the condition in (ii). This

shows that c∗j > 1, leading to r∗j = t2. Thus, when pj is large enough, or there are

only two copay tiers (n = 2), the insurer always sets the non-preferred drug copay at

the highest possible level tn. Furthermore, part (ii) of the theorem says that as pj is

larger, more and more copay levels can be eliminated from consideration as possible

optimal strategies.

Next we characterize the price bidding equilibrium for the case with only two

copay tiers, i.e., n = 2. To that end, we need to make an assumption on breaking
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ties when both manufacturers bid the same value: We assume that, in this case the

manufacturer with smaller value of min{r∗i , pi} will win the bid. This assumption is

plausible because this manufacturer is willing to bid lower.

Theorem III.9. Suppose that n = 2 and two manufacturers bid in order to become

preferred.

(i) Each manufacturer has a unique indifference point r∗i at which they are indiffer-

ent between being the preferred drug (at price r∗i ) or being non-preferred. Using

these critical points, the equilibrium bids are given by

r1 = min{p1,max{r∗1,min{r∗2, p2}}}

r2 = min{p2,max{r∗2,min{r∗1, p1}}}.

(ii) As a function of other parameters, r∗i is increasing in t1, pi, and pj (j 6= i).

The values of r∗1 and r∗2 can be computed easily and independently (as we show

in chapter V of this document). In order to understand the impact of coupons in an

environment with price competition, we revisit our previous examples and discuss

how those results change with the addition of the price competition.

In the acne drug example discussed in Subsection 3.5.2, price competition does not

materialize with the price-bidding model because the two drugs have vastly different

reserve prices (p1 = 50 and p2 = 668) so the generic option becomes preferred without

having to concede at all on price. As a result, the equilibrium outcomes are identical

to those given in Table 3.2, and we conclude that coupons have the same impact

as they had before, helping the expensive drug manufacturer, making the generic

manufacturer worse off, and increasing cost for the insurer.
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3.6.1 TNF Inhibitor Example Revisited

Using the data from the prior section of the paper, we analyze outcomes for

the TNF Inhibitor example with the addition of the price bidding. We present the

equilibrium outcomes along with the subsequent profits or costs for each player in

Table 3.3.

Table 3.3: TNF Inhibitor Example (2 week supply) with Pricing

No Coupons Coupons Prefers?
Equilibrium Price Bids (r∗1/r∗2) 396−/396 746/767
Final Insurer Cost of Drugs 1/2 396/842 746/842

Equilibrium Copays (c∗1/c∗2) 10/85 10/85
Equilibrium Coupons (d∗1/d

∗
2) -/- 10/85

Equilibrium Patient Decisions (α∗
1/α

∗
2) 85%/15% 41%/59%

Manufacturer 1 per-patient Profit 90 127 Coupons
Manufacturer 2 per-patient Profit 59 122 Coupons

Insurer Cost per-patient 456 739 No coupons
Patient post-coupon Costs (c∗1 − d∗1/c∗2 − d∗2) 10/85 0/0 Coupons

An interesting and somewhat surprising observation is made here: coupons sup-

press price competition and end up having a different impact than what we saw with

the same example and no price competition (in 3.5.2). In the case with coupons, the

prices bid are strictly higher than in the case without coupons, indicating that with

coupons, drug manufacturer are less willing to drop price in exchange for favorable

copay placement. As a result of the higher price bids with coupons, the insurer cost

goes up with coupons, and both drug manufacturers benefit from the coupons. This

is in contrast to the prior TNF example without price competition, in which coupons

were bad for the drug manufacturers and only neutral for the insurer.

The fact that the coupons lead to less price competition is explained intuitively

by the fact that coupons are a mechanism by which manufacturers can effectively

lower price for patients. Therefore, without coupons, the manufacturers can only

sway demand with copay alone, and are thus more willing to concede price for a
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favorable formulary position when they are unable to offer coupons.

3.6.2 Depression Medication Example

Based on our prior example, one might have concluded that with price compe-

tition, insurers always are worse off with coupons, because the coupons suppress

competition and may only be offered by more expensive drug manufacturers. This,

however, is not always true. Consider the following example. In the depression med-

ication market, there are numerous brand-name drugs available with similar prices,

in the range of 140 to 170 dollars for a monthly supply (for example, a check of

online prices for Lexapro and Zoloft revealed prices of 145 and 153 dollars respec-

tively). Because an insurer would pay lower prices than those found online, suppose

the two drugs are competing in this market and have identical prices of p1 = 130

and p2 = 130 to the insurer, and similar profit margins of q1 = 56 with q2 = 55.

Assume that patients may prefer either of the two options, so that Φ(·) is uniform

on [−100, 100]. Using the same tiers as in prior examples, we want to analyze the

impact of coupons with price competition.

Table 3.4: Depression Medication Example

No Coupons Coupons Prefers?
Equilibrium Price bids (r∗1/r∗2) 82.8−/82.8 85.0−/85.0

Equilibrium Copays (c∗1/c∗2) 10/85 10/85
Equilibrium Coupons (d∗1/d

∗
2) - 0/15

Equilibrium Patient Decisions (α∗
1/α

∗
2) 88%/12% 80%/20%

Manufacturer 1 per-patient Profit 7.70 8.80 Coupons
Manufacturer 2 per-patient Profit 6.88 8.00 Coupons

Insurer per-patient Cost 69.33 69.00 Coupons
Patient post-coupon Costs (c∗1 − d∗1/c∗2 − d∗2) 10/85 10/70 Coupons

The numerical results are reported in Table 4. As seen from these numerical

results, coupons can still benefit an insurer, even in the presence of price competition.

This reiterates our prior finding that coupons are not always cost-increasing to the
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insurer. Furthermore, in this example coupons are beneficial to all players in the

game, an accomplishment achieved because the coupons have the effect of guiding

players towards decisions which increase the total social welfare while leaving each

player better off.

With a simple model in which copay and price are interdependent, we find that

drug manufacturers are more willing to compete on price in a world without coupons

(vs. one with). As a result, when price competition is present, we find that copay

coupons are more likely to benefit drug manufacturers while leaving insurers worse

off. However, again this is not always the case. We can identify scenarios where

coupons benefit all parties involved, as demonstrated in the depression medication

example.

In practice our proposed auction approach (with bidding) is not currently em-

ployed by insurers, despite the fact that some form of competition often exists be-

tween manufacturer to be preferred on a formulary. However, the authors have

analyzed several alternative models and tested computationally, and we found that

they all lead to the same insights. That is, once copay and price were interdependent,

the value of copay coupons to manufacturers increased, as did the potential cost of

copay coupons to the insurer, but that this was not universally. There are scenarios

in which coupons would benefit all players in the game.

Based on our results from Sections 3.5 and 3.6, we can conclude that a blanket

ban on copay coupons will not necessarily be beneficial to insurers as there are cases

when insurance companies, patients, and drug manufacturers benefit from coupons.

However, we can conclude that insurers should take coupons into account when

placing drugs on the formulary (and our results help with this). Furthermore, we

also notice that having manufacturers compete for favorable formulary placement
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can also benefit insurers. However, even if insurers have manufacturers compete for

formulary placement, they may still benefit from coupons.

3.7 Model Extensions

In this section we extend our model along several important directions. The first

considers a scenario in which copay coupons offered by drug manufacturers may

be larger than copays. The second extension allows for the copays to take any

continuous values, while the third considers an affordability constrained insurer’s

problem, in which the insurer must give at least one of the drugs a relatively low

copay. The fourth extension is a scenario in which the insurer may subsidize a

coupon from the low-price drug manufacturer, and the fifth and sixth discuss the

possibility of only a fraction of patients receiving coupons, or coupons expiring.

These extensions allow us to generate additional operational insights for insurers,

while also demonstrating the robustness of our results.

3.7.1 Unconstrained Coupons

Suppose we allow for coupons to exceed copayments, giving the possibility of

negative effective prices for patients. This is not unreasonable in the prescription drug

industry, where large rebates might be economically viable. The drug manufacturer’s

problem is

πi = max
0≤di

(qi − di)αi, i = 1, 2.(3.11)

This is the same as (3.4) without an upper bound that di ≤ ci. In this situation,

the characterization of the optimal equilibrium strategy in terms of q1 and q2, is

slightly different from before and it is depicted in Figure 3.5. This turns out to be a

simplified version of the prior equilibrium.
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Proposition III.10. If manufacturer coupons may exceed insurer copayments, then

the optimal coupon strategy for the drug manufacturers is categorized just as in The-

orem III.3, with the conditions for Cases I and II simplified to q1− q2 ≥ G(U) +U −

c2 +c1 and q2−q1 ≥ H(−L)+L+c2−c1 respectively, Cases III, IV and V remaining

unchanged, and equilibrium coupons in all other cases determined by the equations

from Case IX of Theorem III.3. The structure of the optimal insurer strategy from

Theorem III.4 is unchanged, as are the implications of coupons from Section 3.5.

Without the upper bounds that di ≤ ci for i = 1, 2, the regions of our equilibrium

categorization on which these constraints are tight will disappear. For this reason, the

prior Cases VI, VII, VIII, and IX from Figure 3.2 are now consolidated into a single

case in which both drug manufacturers offer coupons, with neither dominating the

market. This can be seen in Figure 3.5 with a newly defined region VI. The intuition

for the regions is analogous to that from Theorem III.3, where the magnitude of

the profit margin explains the manufacturer’s willingness to offer smaller or larger

coupons in the equilibrium strategy.

The logic for this equilibrium is analogous to that from Theorem III.3, without

the regions where it could be possible that d∗i = ci for one or both of the players.

Table 3.5: Acne Drug Example with Unconstrained Coupons

Scenario No coupons Constrained Coupons Unconstrained Coupons
Insurer decisions (c1/c2) 10/85 10/85 10/85
Coupon decisions (d1/d2) -/- 5/85 20/115

Manufacturer 1 Profit / Customer 16 2 0
Manufacturer 2 Profit / Customer 127 458 493

Insurer Costs / Customer 153 515 583
Patient Effective Prices 10/85 5/0 −10/−30

Using the acne drug example from the prior section, we analyze the impact of the

unconstrained coupons in Table 3.5. In this example, with no upper bound on the
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Figure 3.5: Coupon Game Equilibrium Strategy with Unconstrained Coupons Categorized by Re-
gions on Profit Margins q1 and q2

(data v2−v1 uniform on [-70,100], c1 = c2 = 85, Region I - Manufacturer one dominates, Region II-
Manufacturer two dominates, Region III- Neither manufacturer offers a coupon, Region IV- Only
manufacturer one offers a coupon, Region V- Only manufacturer two offer a coupons, Region VI-
Both manufacturers offer coupons (and neither dominates))

size of the coupon they may offer, the brand-name drug manufacturer offers a large

enough coupon to completely dominate the market, leaving the generic manufacturer

with no profit, and exaggerating the effect that coupons can have.

3.7.2 Continuous Copayment Decisions

As we have indicated previously, in practice insurers pre-establish copayment tiers

to select from, and face a decision to slot drugs into these pre-existing tiers. However,

in some situations it may be possible for the insurer to set the copayments at any

possible price level. To make the problem reasonable, we assume the presence of an

upper bound c̄, so that the copayments are required to satisfy 0 ≤ ci ≤ c̄. We want to

characterize the optimal insurer strategy in this scenario. As before, we assume that

p1 ≥ c̄ so that the insurer always makes decisions that satisfy the intuitive constraint
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of ci ≤ pi.

Proposition III.11. Suppose copayments may take any values in [0, c̄]. Then the

insurer always sets the copayment for drug two at the highest copayment level, i.e.,

c∗2 = c̄. The optimal copayment for drug one is a decreasing function of the price

differential p2−p1, such that there exist decreasing functions FA(·) and FN(·) with the

optimal copayment for drug one given by c∗1 = FA(p2 − p1) (for anticipating insurer)

or c∗1 = FN(p2 − p1) (for non-anticipating insurer). The coupon equilibrium strategy

from Theorem III.3 is unchanged.

Therefore, in the continuous copayment case it is again optimal for the insurer

to make the high-price drug as expensive as possible. For the low-price drug, the

optimal copayment is a decreasing function of p2− p1, so that large price differences

between drugs give the insurer more incentive to set large copayment differences, as

we saw in the discrete case. We point out that the functions FA(·) and FN(·) are not

necessarily continuous, hence it may be possible for some values never to be used as

an optimal c∗1 strategy.

The insurer can only benefit from the flexibility of setting copayments at any

amount. The other players in the game may be worse or better off. With our acne

drug example, it can be seen how the insurer may benefit in Table 3.6. In this

example, the additional flexibility allows the insurer to set the generic copayment at

zero, lowering its cost slightly while benefiting the low-price drug manufacturer and

patients.

3.7.3 Insurer Affordability Constraint

Our model assumes that all patients select one drug or the other. As long as at

least one of the two drugs is inexpensive enough, this is a very reasonable assumption.
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Table 3.6: Acne Drug Example with Continuous Copayments

Scenario Discrete Continuous
Insurer decisions (c1/c2) 10/85 0/85

Manufacturer 1 Profit / Customer 1.9 3.3
Manufacturer 2 Profit / Customer 458 435.8

Insurer Costs / Customer 515 494
Patient Effective Prices 5/0 0/0

When our model is extended to include such an affordability constraint, many of

our insights continue to hold; coupons remain most beneficial to drug manufacturers

with high profit margins, coupons may lead to higher costs, but often coupons benefit

patients and insurers at the expense of drug manufacturers.

First suppose that the insurer must set the copayment for one or both of the

drugs below a threshold T , so that min(c1, c2) ≤ T . We consider T = 10 such that

at least one of the drugs must be ten dollars or cheaper for patients. For the acne

drug example, the constraint is already satisfied by the current optimal strategy (in

which the optimal c∗1 is ten dollars) so the affordability constraint does not play a

role. Thus, if the affordability constraint does not play a role, the insurer does not

have to change anything. For the TNF inhibitor example, our results do change, and

are summarized below.

Table 3.7: TNF Inhibitor Example (two weeks supply) with min(c1, c2) ≤ 10
q1/q2 125/150 250/300

Humira Profit / Customer (without/with coupons) 107/61 213/99
Enbrel Profit / Customer (without/with coupons) 22/45 44/127
Anticipating Insurer Costs (without/with coupons) 739/746 739/748

Patient Prices (without/with coupons) (10, 85)/(10, 23) (10, 85)/(0, 0)

With the affordability constraint, the impact of coupons is changed, as now

coupons become good for the high-price drug manufacturer, while increasing insurer

cost. With the constraint, the insurer chooses to have the low-price drug under the
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affordability threshold, which benefits the low-price drug manufacturer while hurting

the high-price one. However, once coupons are introduced, the high-price manufac-

turer benefits relatively more from coupons because they are able to offer a larger

coupon than their competitor. Insurer costs increase with the coupons because more

patients end up selecting the more expensive drug when the coupons are present.

An alternative approach to ensuring that both drugs are cheap enough is to add

a constraint that effective drug prices (ci − di) are small enough. Such a constraint

is min(c1 − d1, c2 − d2) ≤ T , where the insurer is able to correctly anticipate the

coupons that will be offered. In this case, and with T = 10, we have an unchanged

acne example, and the TNF example is summarized in the following table.

Table 3.8: TNF Inhibitor Example (two weeks supply) with min(c1 − d1, c2 − d2) ≤ 10
q1/q2 125/150 250/300

Humira Profit / Customer (without/with coupons) 107/42 213/68
Enbrel Profit / Customer (without/with coupons) 22/43 44/127
Anticipating Insurer Costs (without/with coupons) 739/717 739/717

Patient Prices (without/with coupons) (10, 85)/(6, 20) (10, 85)/(0, 0)

In this scenario, we again see that without coupons the insurer sets the low-price

drug copayment at ten dollars, and the high-priced drug at the highest copayment

level of eighty-five. However with coupons, the insurer can leverage the coupons and

make its copayments higher, relying on the drug manufacturers to make the drugs

affordable for patients. Therefore in this scenario the insurer benefits greatly from

coupons, because the coupons make the drugs affordable for its patients.

With these examples, we considered a generalization of our model in which the

insurer is concerned with making at least one of the drugs affordable for all patients.

When our model is extended to include such an affordability constraint, many of

our insights continue to hold; coupons remain most beneficial to drug manufacturers

with high profit margins, coupons may lead to higher costs, but often coupons benefit
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patients and insurers at the expense of drug manufacturers.

3.7.4 Insurer Co-Sponsors Coupon

The analysis in the previous sections show that the insurer always prefers that

the low-price drug manufacturer offers a coupon. This is due to the fact that such a

coupon causes more patients to end up choosing the low-price drug. For this reason,

one can imagine that the insurer might benefit from subsidizing a coupon from the

low-price drug manufacturer. The interesting question is how the insurer balances

the possibility of subsidizing a coupon for the low-price drug, with the resulting

copayment for that drug lower in the first place. Suppose that the insurer provides a

rebate to the low-price drug manufacturer corresponding to a percentage (γ) of the

coupon offered by the manufacturer. Thus the insurer sets the copayment amounts

as well as the percentage of the coupon that he will subsidize (γ). Then his problem

(assuming anticipating insurer) becomes

πIA = min
γ∈[0,1],c1∈{t1,t2,...,tn},c2∈{t1,t2,...,tn}

(
(p1 − c1 + γd1)α1(γ, c1, c2) + (p2 − c2)α2(γ, c1, c2)

)
.

(3.12)

Here we have written the market shares as α1(γ, c1, c2) and α2(γ, c1, c2) to make

the dependency on the parameters explicit. The insurer now sets the copayment

amounts, and the coupon sharing percentage γ. This is the first set of decisions made

at the beginning of the problem. The manufacturers and patients make decisions as

before, but now the low-price manufacturer has its coupon subsidized, so its profit

function changes to

π1 = max
0≤d1≤c1

(q1 − (1− γ)d1)α1(γ, c1, c2).(3.13)

The following proposition characterizes the optimal insurer strategy.
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Proposition III.12. (i) With the opportunity to co-sponsor a coupon, the insurer

will always set c∗1 = c∗2 = tn, and use the co-sponsoring fraction, γ, to drive patient

behavior. The optimal γ is an increasing function of the drug price differential p2−p1,

determined by an increasing function S(·), such that γ∗ = S(p2 − p1).

(ii) The insurer always benefits from the ability to co-sponsor a coupon, while the

drug manufacturers and patients may become better or worse off.

Given the co-sponsoring opportunity, the insurer has two different means to drive

patients towards the low-price drug. It can set a large copayment differential, or it

can subsidize a coupon from the low-price drug manufacturer. Both have the effect

of lowering the price that patients pay for the low-price drug. Proposition III.12

indicates that the insurer always prefers the latter option. The intuition for this

result is that lowering the copayment c1 by any positive amount C > 0 results in

higher insurer costs of magnitude C for each patient that selects the low-price drug.

Instead, if the insurer subsidized a coupon to the level such that the same number of

patients select each drug, the insurer would incur some extra cost of magnitude γC

for each patient that selects the low-price drug, with γ < 1 representing the amount

of coupon being subsidized by the insurer. Therefore, the insurer is better off by

co-sponsoring a coupon, because in co-sponsoring, the insurer incurs a partial cost

increase, while in making the copayment smaller, he pays a full portion of the cost

increase.

With our acne drug example from Subsection 3.5.2, we illustrate in Table 3.9

what happens when the insurer is able to subsidize a coupon. Whereas without the

ability to co-sponsor, the insurer sets c2 and c1 as far apart as possible at 10 and

85, with the opportunity to subsidize, the insurer sets c1 = c2 = 85, and subsidize

eighty-five percent of the generic manufacturer coupon. This approach lowers insurer
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Table 3.9: Acne Drug Example with Subsidized Coupon

Scenario Non-subsidized Subsidized
Equilibrium Subsidy Amount (γ∗) - 0.85

Equilibrium Copays (c∗1/c∗2) 10/85 85/85
Equilibrium Coupons (d∗1/d∗2) 5/85 85/85

Equilibrium Patient Decisions (α∗
1/α

∗
2) 88%/12% 83%/17%

Manufacturer 1 per-patient Profit 1.9 1.2
Manufacturer 2 per-patient Profit 458 436

Insurer per-patient Cost 515 492
Patient post-coupon Costs (c∗1 − d∗1/c∗2 − d∗2) 5/0 0/0

costs and benefits patients, but leaves both drug manufacturers worse off. The low-

price manufacturer is worse off because the copayment for its drug is much higher,

while the high-price manufacturer is worse off because the effective price for the low-

price drug is smaller. This example gives us a clear sense of how this mechanism

can work to benefit the insurer, and how the insurer can benefit when the low-price

manufacturer offers coupons.

3.7.5 Only a Fraction of Customers Use Coupons

In the preceding sections, we assumed that all patients had access to coupons.

Here we consider a scenario where this is not the case. Instead, we consider the

case that ω percentage of patients receive/use the coupons, while 1− ω do not. The

manufacturers’ problems are now given by

πi = min
0≤di≤ci

(
(qi − di)ωαi + (1− ω)qiβi

)
.(3.14)

Recall that αi is the percentage of customers that pick drug i with coupons, and

βi is the percentage that pick drug i without coupons. The term (1 − ω)qiβi is

independent of the decision di, so the objective in (3.14) reduces to the exact same

optimization as given in (3.4), our original model. The non-anticipating insurer faces

the same problem as before, however the anticipating insurer’s problem is changed
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to

πIA = min
c1,c2∈{t1,t2,...,tn}

(
(p1 − c1)(ωα1 + (1− ω)β1) + (p2 − c2)(ωα2 + (1− ω)β2)

)
,

(3.15)

which is a more complicated optimization problem. However, the structure of in-

surer’s optimal strategy turns out to be unchanged.

Proposition III.13. When only a fraction of patients receive/use coupons, all re-

sults and insights from the paper continue to hold. The structure of the optimal

strategies for players is the same as that characterized in Theorems III.3 and III.4.

Thus, our results and insights generalize to a scenario in which a random fraction

of patients gain access to coupons.

3.7.6 Coupon Expiration

When coupons expire, it might be the case that a patient makes a decision assum-

ing they have a coupon, only to realize that the coupon has in fact expired. Suppose

this happens and only ζ percentage of patients redeem the coupon. In such a situ-

ation, the patient problem given in (3.1) is unchanged, as is the insurer’s objective

from (3.5). The manufacturers’ problem changes to

πi = min
0≤di≤ci

(qi − ζdi)αi(3.16)

which is the same as (3.4) except that the cost of the coupon to the drug manufacturer

is smaller, because some coupons are not redeemed. As with the prior extension, this

model does not structurally change our results.

Proposition III.14. When coupons expire before patients are able to redeem them,

all results and insights from the paper continue to hold. The structure of the opti-

mal strategies for players is the same as that characterized in Theorems III.3 and
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III.4. Furthermore, with a non-anticipating insurer, the equilibrium coupons (d∗1, d
∗
2)

are decreasing in ζ, so manufacturers offer larger coupons when fewer patients are

redeeming them.

Therefore, our results generalize to the scenario with coupon expiration, too. In

addition, if a manufacturer can offer a coupon to shift patient demand toward its

product while only paying a partial cost for the coupon because of lack of redemption,

it will tend to offer larger coupons.

3.8 Conclusion

Our paper is one of the first to model and analyze how drug manufacturers influ-

ence patient choice through the use of copay coupons, and how insurance companies

may or may not be able to counteract this effect. With our model, we are able to

obtain equilibrium strategies and discuss the implications of copay coupons. Ulti-

mately our key finding is that copay coupons are not necessarily cost-increasing for

insurers, and thus additional consideration should be taken before insurers support

a blanket ban on them.

In our equilibrium analysis, we fully characterize equilibrium strategies for all

players. We find that drug manufacturers should offer larger copay coupons when

competitors offer larger coupons or when manufacturers have large variable profit

margins. Insurers should set copays based on the differences between drug prices

within a treatment category, while taking coupons into account when making formu-

lary decisions.

When the insurer fails to anticipate coupons, coupons for the more expensive

treatment increase insurer costs while coupons for the cheaper treatment decrease

them. A drug manufacturer benefits from coupons when its profit margin is larger,
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and its competitor’s profit margin smaller. Patients benefit from coupons, because

they pay less for drugs. However, when insurers anticipate coupons, it may be pos-

sible for coupons to have unexpected impacts, hurting patients and possibly drug

manufacturers with larger profit margins. Because the insurer is the Stackelberg

game leader, it has the ability to foresee the impact of coupons and adjusts strat-

egy accordingly. Such adjustments can have adverse or beneficial impacts on other

players.

Ultimately we categorize the impact of coupons in terms of the profit margins

of drug manufacturers. If only the high-price drug manufacturer has a high profit

margin, then coupons increase insurer costs, and tend to benefit the high-price man-

ufacturer, as we demonstrated in our acne drug example. However, when both drug

manufacturers have relatively equal profit margins, manufacturers can become worse

off with coupons, and coupons do not necessarily increase insurer costs. We have

an example of this type of possibility with our TNF inhibitor example. Therefore in

net, the impact of coupons depends on the market dynamics. Our results support

the conclusion of Foley (2011) (that coupons increase cost) when coupons are only

offered by manufacturers of expensive drugs. More generally, however, it is not nec-

essarily the case that coupons always increase cost. A scenario in which a high-price

drug has a lower profit margin than a low-price one may also lower insurer costs (as

suggested by Proposition III.5), but this is unlikely to occur in practice, because low

variable production costs for drugs generally result in highly correlated drug prices

and profit margins.

We also consider a second model in which copays and pricing are interdependent,

in which drug manufacturers bid on price in order to receive favorable formulary

placement. In general we find that the manufacturer willing to bid lower will win the
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bid, while trying to win at the highest price level possible. Such a model guarantees

that at least one of the two drugs is affordable for patients, because it is placed at the

lowest copay tier on the formulary. In terms of the impact of copay coupons when

there is price competition, we find that coupons tend to suppress the price competi-

tion, leaving drug supply prices higher. This is likely to benefit drug manufacturers

and increases insurer costs, though we also show that there are scenarios that is not

true.

Our extensions from Section 3.7 demonstrate the robustness of our model and

provide additional operational insights for the insurance industry. We show how

insurers can benefit from encouraging copay coupons from low-price drug manufac-

turers and discuss how an insurer should consider affordability when setting copays.

We also generalize our model to scenarios in which only a fraction of patients have

coupons, when coupons can expire, when copays can be continuous, or when copay

coupons may exceed copays.

Our results indicate that coupons are usually (but not always) beneficial to pa-

tients, supporting claims of drug manufacturers who defend copay coupons. However,

because they increase insurer costs in many scenarios, the net impact to patients de-

pends on the problem under consideration. While beneficial in the short term for any

individual patient, widespread use of coupons may lead to higher costs for insurers

and eventually higher premiums for all consumers. Thus, the short term benefit to

consumers may be negated by the long term cost increase. However, as demonstrated

and discussed in the paper with both of our models, it is possible (when both drug

manufacturers have large and relatively equal profit margins) that coupons decrease

patient cost without increasing insurance costs (and therefore long-term premiums),

so this downstream effect would not always occur.



CHAPTER IV

Proofs for ‘Dynamic Acquisition and Retention
Management’

4.1 Proofs of Theorems, Lemmas, Propositions, and Corollaries

In this appendix, we present all the technical proofs. Throughout the proofs we

define R∗n(xn, ρn) and A∗n(xn, ρn) to be the optimal solutions for the variables Rn and

An, given that the number of customers at the beginning of period n is xn and the

observed fraction of unhappy customers is ρn.

4.1.1 Proof of Theorem II.3.

Consider the optimization problem in (2.2). We first prove that Vn(xn) is increas-

ing concave in x for n = 1, . . . , N,N + 1. This is done by induction. It is clearly

true with N + 1 because VN+1(xN+1) ≡ 0. Suppose Vn+1(xn+1) has been shown to

be increasing concave, and we proceed to prove n.

As a reminder, the optimality equation is

Vn(xn) = Mn(xn) + Eρn

[
max

0≤An,0≤Rn≤ρnxn

(
−CA

n (An)− CR
n (Rn)(4.1)

+αEγn [Vn+1

(
γn(1− ρn) xn +Rn + An

)
]
)]
.

For any possible selections of An, and Rn, or outcome ρn, the objective function of

the maximization problem on the right hand side of (4.1) is increasing in xn, and the

feasible region is strictly larger for larger xn, therefore after maximization it is also

79
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increasing in xn. Then, by the assumption that Mn(xn) is increasing, we conclude

that Vn(xn) is increasing in xn.

The concavity of Vn(xn) follows by concavity preservation. By Assumptions II.1

and II.2, on CA
n (·) and CR

n (·), and the induction hypothesis on Vn+1(.), the objec-

tive function of the maximization problem on the right hand side of (4.1) is jointly

concave in (An, Rn, xn). Thus, the concavity of Vn(xn) in xn follows from concavity

preservation, because we are maximizing a concave function on a convex set, see

Heyman and Sobel (2004).

We now consider the unconstrained optimization problem given as

(4.2)

Un(xn, ρn) = Mn(xn)+ max
0≤An,0≤Rn

(
−CA

n (An)−CR
n (Rn)+αVn+1(γnxn(1−ρn)+Rn+An)

)
.

We will call this the relaxed problem, and use it for subsequent analysis. Note the

difference between this problem and the original problem (2.2): problem (4.2) does

not have the constraint Rn ≤ xnρn and it assumes the fraction of unhappy customer

ρn is known.

In the following, we prove the following property on the relaxed problem: The opti-

mal solution to the problem Un(xn, ρn), which we denote by (AU∗n (xn(1−ρn)), RU∗
n (xn(1−

ρn)), is decreasing in the expression xn(1− ρn), with slope between 0 and -1.

Rewrite (4.2) as

(4.3) Un(xn, ρn) = Mn(xn) + max
0≤Tn

(
−Dn(Tn) + αVn+1(γnxn(1− ρn) + Tn)

)
.

with

(4.4) Dn(Tn) = min
0≤An≤Tn

(
CA
n (An) + CR

n (Tn − An)
)
.

Looking at equation (4.3), we can see that the given optimization problem is submod-

ular in (Tn, xn), implying that the optimal Tn is a decreasing function of xn(1− ρn),
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hence T ∗n(xn(1 − ρn)) is decreasing (This follows from submodularity properties

in Topkis (1998)). From the problem given in (4.4), we have supermodularity in

(An, Tn), this the optimal AU∗n (xn(1− ρn)) is increasing in T ∗n(xn(1− ρn)) (again by

Topkis (1998)). Considered together, this implies that a smaller value of xn(1− ρn)

results in a larger value of T ∗n(xn(1 − ρn)) and a larger value of AU∗n (xn(1 − ρn)).

Therefore, AU∗n (xn(1− ρn)) is decreasing. We re-write (4.4) as

(4.5) Dn(Tn) = min
0≤Rn≤Tn

(
CR
n (Rn) + CA

n (Tn −Rn)
)
.

Using this equation (4.5), the supermodularity in (Tn, Rn) implies that RU∗
n (xn(1−

ρn)) is decreasing, because a smaller value of xn(1 − ρn) results in a larger value of

T ∗n(xn(1 − ρn)) (as before) and a larger value of RU∗
n (xn(1 − ρn)) (this follows by

sub/supermodularity and properties from Topkis (1998)).

To show that the slope of the optimal retention and acquisition is between -1

and 0, we argue that the optimal T ∗n(xn(1 − ρn)) has slope between 0 and -1. This

is sufficient to say the same about RU∗
n (xn(1 − ρn)) and AU∗n (xn(1 − ρn)) because

the constraint RU∗
n (xn(1 − ρn)) + AU∗n (xn(1 − ρn)) = T ∗n(xn(1 − ρn)) would make it

impossible for one of RU∗
n (xn(1− ρn)) and AU∗n (xn(1− ρn)) to decrease by more than

T ∗n(xn(1− ρn)) (by the fact that each is decreasing in T ∗n(xn(1− ρn))).

Suppose that xn(1 − ρn) increases by c > 0, but T ∗n decreases by d > c. This

condition is formally written as T ∗n(xn(1−ρn)+ c) = T ∗n(xn(1−ρn))−d < T ∗n(xn(1−

ρn))− c. We argue such a situation cannot occur because if true, we are able to find

a very small δ > 0, such that T ∗n(xn(1− ρn) + c) + δ is a strictly better solution than

T ∗n(xn(1 − ρn) + c). We argue this solution is better by the following inequalities.
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Note that it is easy to see from (4.4), that Dn in equation (4.3) is convex.

Dn(T ∗n(xn(1− ρn))− d+ δ)−Dn(T ∗n(xn(1− ρn))− d)

< Dn(T ∗n(xn(1− ρn)))−Dn(T ∗n(xn(1− ρn))− δ)

≤ E[Vn+1(γnxn(1− ρn) + T ∗n(xn(1− ρn)))]− E[Vn+1(γnxn(1− ρn) + T ∗n(xn(1− ρn))− δ)]

≤ E[Vn+1(γn(xn(1− ρn) + c) + T ∗n(xn(1− ρn))− d+ δ)]

− E[Vn+1(γn(xn(1− ρn) + c) + T ∗n(xn(1− ρn))− d)]

The first inequality comes from the convexity of Dn(·), the second from the optimality

of the solution T ∗n(xn(1−ρn)) and the third from the concavity of Vn+1(·) along with

the fact that we can pick δ small enough so that cγn − d + δ ≤ 0. Looking at

the first and last expressions, we see that the proposed solution is strictly superior,

contradicting the existence of the original one.

We are now ready to prove Theorem II.3. We first prove (i). Note that the

relaxed problem (4.2) represents the optimization in problem (2.2) without constraint

Rn ≤ ρnxn. Since the objective function in (4.2) is concave in Rn with maximizer

RU∗
n ((1 − ρn)xn), it is clear that the optimal solution of the original value function

in (2.2) is RU∗
n ((1− ρn)xn) when RU∗

n ((1− ρn)xn) ≤ ρnxn, and otherwise it is ρnxn.

Because RU∗
n (xn(1 − ρn)) ≥ 0 is decreasing in xn, as xn increases, there must exist

a unique point where RU∗
n (xn(1 − ρn)) = xnρn, which establishes the existence of

Qn(ρn) from the theorem, defined by

Qn(ρn) = sup
{
xn ≥ 0; ρnxn ≤ RU∗

n (xn(1− ρn))
}
,(4.6)

such that as xn ≤ Qn(ρn) it holds that RU∗
n (xn(1−ρn)) > ρnxn; while if xn > Qn(ρn)

then RU∗
n (xn(1 − ρn)) ≤ ρnxn. This proves that the optimal policy is to set Rn to

ρnxn if xn ≤ Qn(ρn) and set Rn to RU∗
n (xn(1− ρn)) otherwise.
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To find the optimal acquisition strategy, we let AW
∗

n (.) be defined as the maximizer

of

Wn(xn, ρn) = max
0≤An

(
−CA

n (An) + E[Vn+1(γnxn(1− ρn) + ρnxn + An)])
)
.(4.7)

By the same analysis as above, it can be seen that AW∗n (xn, ρn) is also decreasing

in xn but with slope no less than -1. Note that on the range xn ≤ Qn(ρn), the

optimization problem for An in (2.2) can be written as

max
0≤An

(
−CA

n (An)− CR
n (ρnxn) + αVn+1(γnxn(1− ρn) + ρnxn + An)

)
,

and its optimal solution is AW∗n (xn, ρn) just defined in (4.7). On the other hand,

if x ≥ Qn(ρn), then the optimal Rn is the same as that without the constraint

Rn ≤ ρnxn, hence the optimal An can be obtained from (4.2), so the strategy is

given by AU∗n ((1− ρn)xn).

The argument that Qn(ρn) is decreasing follows from the fact that RU∗
n (xn(1−ρn))

is decreasing in xn(1− ρn) with slope between -1 and 0, and the definition of Qn(ρn)

in (4.6). To see that, suppose ρn were to increase by a positive number s > 0, then

ρnxn would increase by sxn, while RU∗
n (xn(1−ρn)) would increase by a value between

0 and sxn. Therefore to reach equality once again, one would need to decrease xn.

This establishes that Qn(ρn) is decreasing in ρn.

We next prove (ii). From part (i), we know that the optimal decision in acquisition

is decreasing in xn. Therefore, either eventually A∗n(xn, ρn) = 0, or this values is

infinite, establishing the existence of QA
n (ρn) (possibly infinity). Likewise, retention

spending is first increasing, and then decreasing, so eventually either R∗n(xn, ρn) = 0

or is infinite, showing that QR
n (ρn) exists (also possibly infinity). Both are increasing

in ρn, because the curves RU∗
n (xn(1− ρn)) and AU∗n (xn(1− ρn)) are increasing in ρn.
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To establish part (iii), we need to argue that the following expression

(4.8) xn+1 − xn = xn(1− ρn)γn +R∗n(xn, ρn) + A∗n(xn, ρn)− xn

is decreasing in xn for any given ρn and γn, where R∗n(xn, ρn) and A∗n(xn, ρn) are the

optimal retention and optimal acquisition decision of the original problem, which are

given according to cases above. Since A∗n(xn, ρn) is decreasing while R∗n(xn, ρn) first

increases with slope ρn and then decreases, we conclude that the terms combined

must be decreasing in xn.

When xn = 0, the firm can only gain customers, and then the change in number

of customers is decreasing for xn > 0. Therefore there must exist a non-zero point

x∗n(ρn) such that

E[xn+1]− xn =


≤ 0 if xn ≥ x∗n(ρn);

≥ 0 if xn ≤ x∗n(ρn).

This completes the proof of the optimal strategy. Note that it is possible that

x∗n(ρn) =∞, as we cannot rule out this case.

4.1.2 Proof of Lemma II.4.

We prove by contradiction. Suppose that (CA
n )′(0) < (CR

n )′(0), but QA
n (ρn) <

QR
n (ρn) for some ρn. This implies that for such a ρn, and values of xn ∈ (QA

n , Q
R
n ),

the firm has a strategy where A∗n = 0 with R∗n > 0. In this case, we show that there

exists a small value δ > 0, such that a better solution is An = δ, with Rn = R∗n − δ.

Because this strategy has the same impact in Vn+1(·), we need only argue that it has

lower cost.

First we observe that because CR
n (·) is strictly convex, and (CA

n )′(0) < (CR
n )′(0),

it holds that as δ > 0 is small enough we have

(4.9) CR
n (R∗n)− CR

n (R∗n − δ) > CR
n (δ)− CR

n (0) > CA
n (δ)− CA

n (0).
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These inequalities show the existence of solution An = δ and Rn = R∗n − δ, which

as strictly lower cost, and same impact on future periods. This contradicts the orig-

inal optimality of our solution. A symmetric argument establishes that (CA
n )′(0) >

(CR
n )′(0) implies that QA

n (ρn) ≤ QR
n (ρn).

We finally consider the case (CA
n )′(0) = (CR

n )′(0), and prove that in this case

it must hold that QA
n (ρn) = QR

n (ρn) for all ρn > 0. Suppose QA
n (ρn) 6= QR

n (ρn)

for some ρn. Without loss of generality, suppose 0 ≤ QA
n (ρn) < QR

n (ρn). This

implies that there exists an xn ∈ (QA
n (ρn), QR

n (ρn)), such that R∗n(xn, ρn) > 0 and

A∗n(xn, ρn) = 0. We claim that there exists a small number δ > 0, such that a solution

with Rn = R∗n(xn, ρn)− δ, and An = δ is strictly superior. This would contradict the

optimality of the original solution.

Observe that by the strict convexity of CR
n (·), we have that:

(CR
n )′(R∗n(xn, ρn)) > (CR

n )′(0) = (CA
n )′(0).

Therefore, by continuity we can find a small δ > 0 such that

(CR
n )′(R∗n(xn, ρn)− δ) > (CA

n )′(δ).

This implies, by convexity of CR
n (·) and CA

n (·), that

CR
n (R∗n(xn, ρn))− CR

n (R∗n(xn, ρn)− δ) > CA
n (δ)− CA

n (0).

Since solutions Rn = R∗n(xn, ρn) − δ and An = δ have the same impact to future

periods, this proves that the proposed solution has strictly lower cost, contradicting

the optimality of the original solution. A symmetric argument holds to contrdiction

if it were true that 0 ≤ QR
n (ρn) < QA

n (ρn).
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4.1.3 Proof of Corollary II.5.

The fact that limxn+1→∞M
′
n+1(xn+1) ≥ κ > 0, allows us to prove that the value

function is κ increasing in period n+1, meaning that Vn+1(xn+1+s)−Vn+1(xn+1) ≥ sκ

for any s > 0. We can see this from the value function as follows.

E[Vn+1(xn+1 + s)]− E[Vn+1(xn+1)]

= E[Mn+1(xn+1 + s)]− E[Mn+1(xn+1)]

+ E
[

max
0≤Rn+1≤(xn+1+s)ρn+1,0≤An+1

(−CA
n+1(An+1)− CR

n+1(Rn+1)

+ αE[Vn+2((xn+1 + s)(1− ρn+1)γn+1 +Rn+1 + An+1)])
]

− E
[

max
0≤Rn+1≤xn+1ρn+1,0≤An+1

(−CA
n+1(An+1)− CR

n+1(Rn+1)

+ αE[Vn+2(xn+1(1− ρn+1)γn+1 +Rn+1 + An+1)])
]

≥ sκ,

where the last inequality comes from the fact that Mn+1(xn+1+s)−Mn+1(xn+1) ≥ sκ,

while the other terms are non-negative, because Vn+2(·) is increasing, and the case

with s+ xn+1 has a larger feasible region.

By contradiction we now show that a point at which R∗n(xn, ρn) = 0 can never

exist unless ρnxn = 0, because the firm is better off by spending a small incremental

amount more in retention. Suppose, on the contrary, it holds that the optimal

strategies (R∗n(xn, ρn), A∗n(xn, ρn)) has R∗n(xn, ρn) = 0. We will show that in this case

there exists a small δ > 0 such that the solution would be improved if R∗n(xn, ρn) = δ,

contradicting the optimality of the original solution. Using the fact that Vn+1(·) is κ

increasing, we have

CR
n (δ)− CR

n (0) < δακ ≤ αE[Vn+1(xn(1− ρn)γn + δ + A∗n(xn, ρn))](4.10)

−αE[Vn+1(xn(1− ρn)γn + A∗n(xn, ρn))].
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These inequalities follow from the fact that CR
n (·) is strictly convex, (CR

n )′(0) ≤ ακ,

and Vn+1(·) is κ increasing, as we have discussed.

The inequalities (4.10) implies that a strategy of no retention and A∗n(xn, ρn))

is acquisition is strictly dominated by one with the same acquisition and a small

amount δ > 0 in retention, contradicting the optimality of former solution. This

implies QR
n (ρn) =∞.

4.1.4 Proof of Corollary II.6.

Due the symmetric relationship between An and Rn, similar argument as those of

Corollary II.5 is used to prove this result.

4.1.5 Proof of Theorem II.7.

The optimality equation for this more general case is

Vn(xn) = Eρn

[
Mn(xn) + max

0≤An,0≤Rn≤ρnxn

(
−CA

n (An)− CR
n (Rn)

+αE
[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])]
.

The objective function of the maximization problem above is easily seen to be jointly

concave in (An, Rn, xn), and the constraint is a convex set of (An, Rn, xn), hence it

follows from the preservation property that Vn(xn) is concave in xn. By induction, it

is also easy to show that Vn(xn) is increasing in xn, since both the objective function

and the feasible region in the optimization are increasing in xn. Consider the relaxed

problem that, for any realization of ρn,

Un(xn, ρn) = Mn(xn) + max
0≤An,0≤Rn

(
−CA

n (An)− CR
n (Rn)

+ αE
[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])
= Mn(xn) + max

0≤Rn

{
−CR

n (Rn) + g
(
(1− ρn)xn, Rn

)}
,
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where

g((1− ρn)xn, Rn) = max
0≤An

(
−CA

n (An) + αE
[
Vn+1(γnxn(1− ρn) + ε1nRn + ε2nAn)

])
is jointly concave in ((1− ρn)xn, Rn). Therefore, if the optimal RU∗

n (xn, ρn) < ρnxn,

then the solution the the relaxed problem is feasible, thus it optimal. Otherwise by

joint concavity, the optimal solution is (An, Rn) = (AW∗n (xn, ρn), ρnxn), where AW∗n

is the optimal solution of

Wn(xn, ρn) = max
0≤An

(
−CA

n (An) + αE
[
Vn+1(γnxn(1− ρn) + ε1nρnxn + ε2nAn)

])
.(4.11)

This finishes the proof for Theorem II.7.

4.1.6 Proof of Lemma II.9.

We reformulate the dynamic program as a sequential optimization problem, and

prove the supermodularity of Vn(·, ·) by induction. Note that

Vn(xn, kn) = an(kn)Mn(xn) + Eρn

[
max

xn(1−ρn)≤T1≤xn

(
−CR

n (T1 − xn(1− ρn)) + hn(T1, kn)
)]
,

where

hn(y, kn) = max
y≤T2

(
−CA

n (T2 − y) + αE[Vn+1(T2, kn+1(kn))]
)

It follows from Lemma 3.1 of Chao et al. (2008) that, for any supermodular function

f(x, k), if K(k) is stochastically increasing in k, then E[f(x,K(k))] is also supermod-

ular in (x, k). Therefore, we can see that the problem given in hn(·, ·) is supermodular

in (T2, y, kn) before optimization, because kn+1 is stochastically increasing in kn and

Vn+1(·, ·) is supermodular by inductive hypothesis. By supermodularity preservation

from Topkis (1998), this implies that hn(y, kn) is a supermodular function. Because

hn(·, ·) is supermodular, we can see that the first optimization problem is super-

modular in (xn, T1, kn). Again by supermodularity preservation, this implies that

Vn(xn, kn) is supermodular, finishing the proof.
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4.1.7 Proof of Theorem II.10.

For part (i) We need to show that, if k1 > k2, then the optimal retention and

acquisition strategies satisfies

R∗n(xn, k1, ρn) ≥ R∗n(xn, k2, ρn),

A∗n(xn, k1, ρn) ≥ A∗n(xn, k2, ρn).

The proof is by contradiction. We want to show that, if any of the inequalities above

is not satisfied, we can construct a better solution. We consider four cases separately.

Case I: R∗n(xn, k1, ρn) < R∗n(xn, k2, ρn) and A∗n(xn, k1, ρn) ≤ A∗n(xn, k2, ρn).

In this case, we derive a contradiction to show that there exists a small value δ > 0

such that the solution R∗n(xn, k1, ρn) can be strictly improved with the alternative of

R∗n(xn, k1, ρn) + δ. When δ > 0 is small enough, we have

CR
n (R∗n(xn, k1, ρn) + δ)− CR

n (R∗n(xn, k1, ρn))

< CR
n (R∗n(xn, k2, ρn))− CR

n (R∗n(xn, k2, ρn)− δ)

≤ E
[
Vn+1(xn(1− ρn) +R∗n(xn, k2, ρn) + A∗n(xn, k2, ρn), kn+1(k2))

]
−E
[
Vn+1(xn(1− ρn) +R∗n(xn, k2, ρn)− δ + A∗n(xn, k2, ρn), kn+1(k2))

]
≤ E

[
Vn+1(xn(1− ρn) +R∗n(xn, k2, ρn) + A∗n(xn, k2, ρn), kn+1(k1))

]
−E
[
Vn+1(xn(1− ρn) +R∗n(xn, k2, ρn)− δ + A∗n(xn, k2, ρn), kn+1(k1))

]
≤ E

[
Vn+1(xn(1− ρn) +R∗n(xn, k1, ρn) + δ + A∗n(xn, k1, ρn), kn+1(k1))

]
−E
[
Vn+1(xn(1− ρn) +R∗n(xn, k1, ρn) + A∗n(xn, k1, ρn), kn+1(k1))

]
,

where the first inequality follows from the strict convexity of CR
n (·) and the assump-

tion that R∗n(xn, k1, ρn) < R∗n(xn, k2, ρn); the second comes from the optimality of

the solution for state (xn, k2, ρn), the third from the supermodularity of Vn+1(·, ·);

and the last inequality follows from the concavity of Vn+1(·) along with the fact that
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R∗n(xn, k1, ρn) + δ +A∗n(xn, k1, ρn) < R∗n(xn, k2, ρn) +A∗n(xn, k2, ρn). Considering the

first and last expressions, we can see that the cost of increasing R∗n(xn, k1, ρn) by some

small number δ is strictly smaller than the expected profit increase, contradicting

the optimality of (R∗n(xn, k1, ρn), A∗n(xn, k1, ρn)).

Case II: R∗n(xn, k1, ρn) ≤ R∗n(xn, k2, ρn) and A∗n(xn, k1, ρn) < A∗n(xn, k2, ρn).

This is analogous to case I with the role of An and Rn interchanged. In this case,

we derive a contradiction to show that there exists a small value δ > 0 such that the

solution A∗n(xn, ρn, k1) can be improved with alternative of A∗n(xn, ρn, k1) + δ. This

would contradict the optimality of the original solution. Due to its similarity to Case

I, the details are omitted here.

Case III: R∗n(xn, k1, ρn) < R∗n(xn, k2, ρn) and A∗n(xn, k1, ρn) > A∗n(xn, k2, ρn).

We show by contradiction that there exists a small δ such that the solution can be

improved by increasing R∗n(xn, k1, ρn) by δ and decreasing A∗n(xn, k1, ρn) by δ. The

justification for this claim is the following. For small enough δ > 0, we have

CR
n (R∗n(xn, k1, ρn) + δ)− CR

n (R∗n(xn, k1, ρn))

< CR
n (R∗n(xn, k2, ρn))− CR

n (R∗n(xn, k2, ρn)− δ)

≤ CA
n (A∗n(xn, k2, ρn) + δ)− CA

n (A∗n(xn, k2, ρn))

< CA
n (A∗n(xn, k1, ρn) + δ)− CA

n (A∗n(xn, k1, ρn)),

where the first and last inequalities follow from the strict convexity of the cost func-

tions CA
n (·) and CR

n (·) and the assumptions for this case; and the second follows

from the optimality of the strategy used with state k2. The inequalities allow us

to conclude that proposed solution has strictly lower cost than the original optimal

one, with the same impact to future periods, so it must be a strictly better solution,

contradicting the optimality of (R∗n(xn, k1, ρn), A∗n(xn, k1, ρn)).
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Case IV: R∗n(xn, k1, ρn) > R∗n(xn, k2, ρn) and A∗n(xn, k1, ρn) < A∗n(xn, k2, ρn).

This is analogous to case III with the role of An and Rn interchanged. We show

by contradiction that there exists a small δ such that the solution can be strictly

improved by increasing A∗n(xn, k1, ρn) by δ and decreasing R∗n(xn, k1, ρn) by δ. The

details are omitted due to the similarity with case III.

Summarizing the analysis above, we have shown that both optimal retention and

acquisition levels R∗n(xn, kn, ρn) and A∗n(xn, kn, ρn) are increasing in kn. Note that

across all of our contradiction cases, the proposed solutions are feasble because feas-

bily does not depend on kn.

We know prove part (ii). Using exactly the argument as that of Theorem II.3, we

know that for any state of the economy kn at the beginning of period n, the control

parameters exist as before, but now they depend on kn. Let these control curves

be denoted by Qn(ρn, kn), QR
n (ρn, kn), QA

n (ρn, kn), RU∗
n (xn(1 − ρn), kn), AU∗n (xn(1 −

ρn), kn), AW∗n (xn, kn), and x∗n(ρn, kn). From the argument in Theorem II.3, these

control curves are monotone in ρn and xn in the same way as before. Here, we show

that they are all increasing in kn. This is done by contradiction. As in the prior part

of this proof, consider two values of kn, k1 and k2, such that k1 > k2.

If Qn(ρn, k1) < Qn(ρn, k2), then for xn ∈ (Qn(ρn, k1), Qn(ρn, k2)), the optimal

retention strategies are R∗n(xn, ρn, k1) < ρnxn with R∗n(xn, ρn, k2) = ρnxn, which

contradicts part (i) of this theorem, that retention is increasing in kn. Similarly,

if QR
n (ρn, k1) < QR

n (ρn, k2), then for xn ∈ (QR
n (ρn, k1), QR

n (ρn, k2)), the optimal

retention strategies are R∗n(xn, ρn, k1) = 0 and R∗n(xn, ρn, k2) > 0, which contra-

dicts part (i) of this theorem that retention is increasing in kn. If QA
n (ρn, k1) <

QA
n (ρn, k2), then for xn ∈ (QA

n (ρn, k1), QA
n (ρn, k2)), the optimal acquisition strategies

are A∗n(xn, ρn, k1) = 0 and A∗n(xn, ρn, k2) > 0, again contradicting part (i) of this
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theorem, that acquisition is increasing in kn.

To show that AW∗n (xn, kn) is increasing in kn, we need only look at the formulation

for Wn(xn, kn):

Wn(xn) = max
0≤An

(
−Cn(An) + αE

[
Vn+1(xn + An, kn+1)

])
.

Recall that AW∗n (xn, kn) is the maximizer of the optimization problem above, and that

since kn+1 is stochastically increasing in kn, Vn+1(·, ·) is supermodular, it follows that

AW∗n (xn, kn) is increasing in kn. By the optimization problem that defines RU∗
n (xn(1−

ρn), kn) and AU∗n (xn(1 − ρn), kn), one similarly shows that RU∗
n (xn(1 − ρn), kn) and

AU∗n (xn(1− ρn), kn) are increasing in kn.

We finally prove that x∗n(ρn, kn) is increasing in kn. Recall that x∗n(ρ,kn) is defined

by

x∗n(ρn, kn) = sup
{
xn ≥ 0; R∗n(xn, ρn, kn) + A∗n(xn, ρn, kn) ≥ ρnxn

}
,

where sup ∅ = ∞. Hence it follows from both R∗n(xn, ρn, kn) and A∗n(xn, ρn, kn) are

increasing in kn that x∗n(ρn, kn) is increasing in kn.

Therefore, we have shown that all the control curves are monotonically increasing

in kn. This concludes the proof of Theorem 2.

4.1.8 Proof of Theorem II.11.

This proof is quite extensive, and details are omitted here. The idea is to replicate

much of the analysis from Theorem II.3 in order to characterize the optimal strategy

in terms of monotone state-dependent curves.



CHAPTER V

Proofs for ‘Who Benefits when Drug Manufacturers Offer
Copay Coupons?’

5.1 Full Coupon Equilibrium Characterization: Supplement to Theorem
III.3

In Theorem III.3, we discussed the existence and uniqueness of the coupon equi-

librium, along with some important properties of the equilibrium. However, in the

interest of space, we did not specify the equilibrium fully. We do that here.

The manufacturer coupon equilibrium can be given explicitly, according to the

region of the system parameters, as follows.

Case I. (Manufacturer 1 dominates). Manufacturer one dominates the market if and

only if

q2 ≤ c2 − c1 − U,

or

q1 − q2 ≥ G(U) + U − c2 + c1, q2 ∈ (c2 − c1 − U, c2 − U ].

In this case, the equilibrium is (d∗1, d
∗
2) = (max{0, U − c2 + c1 + q2}, q2).

Case II. (Manufacturer 2 dominates). Manufacturer two dominates the market if

and only if

q1 ≤ c1 − c2 − L,

93
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or

q1 ∈ (c1 − c2 − L, c1 − L], q2 − q1 ≥ H(−L) + L+ c2 − c1.

In this case the equilibrium is (d∗1, d
∗
2) = (q1,max{0, L+ c2 − c1 + q1}).

Case III. (Neither manufacturer offers a coupon). If

q1 ≤ G(c2 − c1), q2 ≤ H(c2 − c1),

then neither manufacturer offers a coupon, i.e., the equilibrium is (d∗1, d
∗
2) = (0, 0).

Case IV. (Only manufacturer one offers a coupon). If neither Case I nor Case II

hold, and

q1 > G(c2 − c1), q2 ≤ H(c2 − c1 + min{c1, d
′
1})

where d′1 is the solution to q1 = G(c2 − c1 + d′1) + d′1, then the equilibrium is

(d∗1, d
∗
2) = (min{c1, d

′
1}, 0). In this case, only manufacturer one offers a coupon and

both manufacturers win some market share.

Case V. (Only manufacturer two offers a coupon). If neither of Case I nor Case II

hold, and

q1 ≤ G(c2 − c1 −min{c2, d
′
2}), q2 > H(c2 − c1)

where d′2 is the solution to q2 = H(c2 − c1 − d′2) + d′2, then the equilibrium is

(d∗1, d
∗
2) = (0,min{c2, d

′
2}). In this case only manufacturer two offers a coupon, and

both manufacturers win some market share.

Case VI. (Both manufacturers offer full coupons). If

q1 ≥ G(0) + c1, q2 ≥ H(0) + c2,

then equilibrium is (d∗1, d
∗
2) = (c1, c2).
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Case VII. (Both manufacturers offer coupons but only manufacturer one offers a full

coupon). If neither of cases I nor II hold, and

q1 ≥ G(c2 − d′2) + c1, q2 ∈ (H(c2), H(0) + c2),

where d′2 is the solution to the equation q2 = H(c2−d′2) +d′2, then the equilibrium is

(d∗1, d
∗
2) = (c1, d

′
2). In this case both manufacturers offer coupons, only manufacturer

one offers a full coupon, and both manufacturers win some market share.

Case VIII. (Both manufacturers offer coupons but only manufacturer two offers a

full coupon). If neither of cases I nor II hold, and

q1 ∈ (G(−c1), G(0) + c1), q2 ≥ H(−c1 + d′1) + c2,

where d′1 is the unique solution to the equation q1 = G(−c1 + d′1) + d′1, then the

equilibrium is (d∗1, d
∗
2) = (d′1, c2). In this case, both manufacturers offer coupons,

only manufacturer two offers a full coupon, and both manufacturers win some market

share.

Case IX. (Both manufacturers offer partial coupons). In all other cases, the equilib-

rium is given by (d∗1, d
∗
2) = (d

′′
1 , d

′′
2), where (d

′′
1 , d

′′
2) are solution to equations

q1 − d
′′

1 = G(c2 − c1 − d
′′

2 + d
′′

1)

q2 − d
′′

2 = H(c2 − c1 − d
′′

2 + d
′′

1).

In this case, both manufacturers offer partial coupons, and both manufacturers win

some market share.
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5.2 B - Proofs of Theorems, Lemmas, Propositions, and Corollaries

Throughout the proofs, we use d∗1, d∗2, c∗2 and c∗1 to represent the equilibrium

optimal strategies for the drug manufacturers and insurer. The notation d∗1(d2) and

d∗2(d1) are usually used to represent the best response strategies, while d′1(d2) and

d′2(d1) are the solutions to the equations

q1 = G(c2 − c1 − d2 + d′1) + d′1, q2 = H(c2 − c1 + d1 − d′2) + d′2,(5.1)

with G(·) and H(·) defined as in the statement of Lemma III.2. When relevant, we

write equilibrium strategies as functions of other parameters to highlight dependen-

cies. For example, we often write d∗i (c1, c2) as the optimal equilibrium coupon for

player i given that the insurer has made decisions of c1 and c2.

5.2.1 Proof of Lemma III.2.

Part (i). The derivative of manufacturer one’s objective function, given in (3.7),

with respect to d1 is

dπ1

dd1

= (q1 − d1)φ(c2 − c1 − d2 + d1)− Φ(c2 − c1 − d2 + d1).

Rewrite it as

dπ1

dd1

= Φ(c2 − c1 − d2 + d1)

(
(q1 − d1)φ(c2 − c1 − d2 + d1)

Φ(c2 − c1 − d2 + d1)
− 1

)
.(5.2)

Since Φ(c2 − c1 − d2 + d1) is non-negative, the sign of the derivative is determined

by whether (q1−d1)φ(c2−c1−d2+d1)
Φ(c2−c1−d2+d1)

≥ 1. The log-concavity of the distribution for v2− v1

implies that φ(·)
Φ(·) is decreasing, which implies that the expression (q1−d1)φ(c2−c1−d2+d1)

Φ(c2−c1−d2+d1)

is decreasing in d1 on d1 ≤ q1. When d1 > q1, this expression is non-positive. Thus,

the slope of the original profit function must be first positive then negative, therefore

it is quasi-concave.
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By a similar argument, the derivative of manufacturer two’s objective function,

given in (3.8), is

dπ2

dd2

= (1− Φ(c2 − c1 − d2 + d1))((q2 − d2)r(c2 − c1 − d2 + d1)− 1),(5.3)

where r(·) = φ(·)
1−Φ(·) is the failure rate function. Observe that as (1−Φ(c2−c1−d2+d1))

is non-negative, (5.2) is non-negative when (q2−d2)r(c2− c1−d2 +d1) ≥ 1 and non-

positive otherwise. Furthermore, it follows from the fact that log-concavity implies

increasing failure rate that r(·) is increasing (see Bergstrom and Bagnoli (2005)).

Therefore (q2− d2)r(c2− c1− d2 + d1) is decreasing in d2 when d2 ≤ q2 and negative

when d2 > q2. This implies that the slope of the original profit function in d2 is first

positive, then negative, proving that π2 is quasi-concave in d2.

To obtain the best-response strategy, we also need to consider the boundary con-

ditions for this problem, i.e., 0 ≤ di ≤ ci. It can be seen that d1 can never exceed

U − c2 + c1 + d2 because v2 − v1 only has support on [−L,U ], and if d1 were above

U − c2 + c1 + d2, it would push c2 − c1 + d1 − d2 above U . Above this point, manu-

facturer one would lose profit margin without gaining any market share, so it cannot

be optimal. Similarly, d2 can never exceed L+ c2 − c1 + d1.

We show that the two equations from (5.1) have unique solutions d′1(d2) and d′2(d1).

First observe that G(·) is increasing because Φ(·)
φ(·) is increasing by the log-concavity

of the underlying distribution for v2 − v1, and H(·) is decreasing because r(·) is

increasing by the log-concavity of the underlying distribution for v2 − v1. Both G(·)

and H(·) are continuous functions because the distribution for v2− v1 is continuous.

By their definitions, G(·) and H(·) are bounded, hence as d′1 and d′2 increase from

−∞ to ∞, the right hand sides of (5.1) strictly increases from −∞ to ∞, thus there

must be unique solutions d′1(d2) and d′2(d1) that satisfy (5.1).

We now prove that, with the above definitions of d′1(d2) and d′2(d1), the best
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response for manufacturer one is

d∗1(d2) = max {0,min{d′1(d2), c1, U − c2 + c1 + d2}}.(5.4)

Consider several cases. First, if c2 − c1 − d2 + d′1(d2) ∈ [−L,U ], then d′1(d2) satisfies

the first order condition, and by the quasi-concavity of the objective function, the

manufacturer sets d1 as close as feasible to this point, hence d∗1(d2) is given by (5.4).

Now, suppose c2 − c1 − d2 + d′1(d2) < −L, then G(c2 − c1 − d2 + d′1(d2)) = 0, and

d′1(d2) = q1. In this situation, for any d1 ≤ q1, it follows from (3.2) that α1 = 0 thus

manufacturer one does not win any market share. If d1 > q1, then manufacturer one

would have a negative profit margin. In any case, it is impossible for manufacturer

one to earn positive profit. Therefore in this case, we set d∗1(d2) = q1 as convention,

as long as it is feasible. Therefore because d′1(d2) = q1, we can conclude that d∗1(d2)

is again given by (5.4).

Finally, suppose c2 − c1 − d2 + d′1(d2) > U . By the definition of d′1(d2), we have

q1 = G(U)+d′1(d2), thus d′1(d2) ≤ q1. To prove that d∗1(d2) is given by (5.4), by quasi-

concavity of π1 on d1 it suffices to prove that π1 is increasing on d1 ≤ U−c2+c1+d2 ≤

d∗1(d2). Since (q1 − d1)/G(U) ≥ (q1 − d′1(d2))/G(U) = 1, by (5.2) the derivative of

π1 at d1 = U − c2 + c1 + d2 is Φ(U)((q1 − d1)/G(U) − 1) ≥ 0. Thus (5.4) is always

satisfied.

Part (ii). We only prove the result for manufacturer one’s best response. The

result for manufacturer two can be similarly proved. It suffices to prove that, by Part

(i), each term in the best response d∗1(d2) = max{0,min{d′1(d2), c1, U − c2 + c1 +d2}}

satisfies the desired monotonicity and slope properties.

It is obvious that c1, 0, and U−c2 +c1 +d2 are increasing in c1 with slope between

0 and 1, increasing in q1 with slope no more than 1, and decreasing in c2 − d2 with

slope between -1 and 0. None of the terms depend upon q1 so if d2 and q1 increased
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by ε and ε′ respectively, each of the terms c1, 0, and U − c2 + c1 + d2 could increase

by at most ε ≤ max{ε, ε′}.

Hence, we only need to verify these properties for d′1(d2), which is the unique

solution to

q1 = G(c2 − c1 − d2 + d′1) + d′1.

If q1 increases, the left hand side of this equation increases. Because the right-hand

side is increasing in d′1 with slope no less than one, the only way to reach equality

again is to have d′1 increase by a slope no more than one. Therefore, d′1(d2) is

increasing in q1 with slope between 0 and 1. When c2 − d2 increases by some δ > 0,

the right hand side increases. Because the right-hand side is also increasing in d′1, to

reach equality again, one would need to decrease d′1. However, a decrease of size δ

would be too much because the right hand side would be strictly smaller. This shows

that d′1(d2) is decreasing in c2 − d2 with slope no less than negative one. Should c1

increase by some δ > 0, the right hand would decrease, so d′1 would increase, but

again the amount would be by no more than δ. Lastly, if d2 and q1 increase by ε

and ε′ respectively, it is clear from this expression that d′1 would have to increase,

but not by an amount greater than max{ε, ε′}, because an increase greater than this

amount would result in the right hand side strictly larger than q1.

5.2.2 Proof of Theorem III.3.

We argue that the equilibrium specified in Section A is indeed an equilibrium,

and then we derive the properties given in parts (i) and (ii) of the written result for

Theorem III.3. Thus, the proof here establishes both Theorem III.3 and the specific

equilibrium outlined in Section A above.

The argument for this equilibrium requires the quasi-concavity of the profit func-
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tions π1 and π2 in d1 and d2 respectively, along with the best-response strategies

from Lemma III.2, given as d∗1(d2) = max{0,min{c1, d
′
1(d2), U − c2 + c1 + d2}} and

d∗2(d1) = max{0,min{c2, d
′
2(d1), L+ c2 − c1 + d1}}.

We know that an equilibrium exists because each manufacturer’s profit function

is quasi-concave in its decision of di, and the set of feasible actions (0 ≤ di ≤ ci)

is a compact space (see Fudenberg and Tirole (1991)). Here we argue that this

equilibrium is unique. Suppose for some set of parameters, we have two equilibria

(d1, d2) and (d̂1, d̂2). Because our best-response is unique, it must be the case that

these equilibria are different, so that d̂1 6= d1 and d̂2 6= d2.

If d1 − d̂1 > d2 − d̂2 ≥ 0, then this violates manufacturer one’s best response

strategy from Lemma III.2, because manufacturer one’s discount cannot increase

from d̂1 to d1 if manufacturer two’s discount only increases by d2 − d̂2. This is true

because the best-response d1 is increasing in d2, but with slope less than or equal to

one.

If 0 ≥ d1 − d̂1 > d2 − d̂2, then this violates manufacturer two’s best response

strategy from Lemma III.2, because manufacturer two’s discount cannot decrease

from d̂2 to d2 if manufacturer one’s discount only decreases from d̂1 to d1. This is

true because the best-response d2 is increasing in d1, but with slope less than or

equal to one.

If d1 − d̂1 > 0 ≥ d2 − d̂2, then this violates manufacturer one’s best response

strategy from Lemma III.2, because manufacturer one’s discount cannot increase

from d̂1 to d1 if manufacturer two’s discount decreases. This is true because the

best-response d1 is increasing in d2.

Thus d1 − d̂1 > d2 − d̂2 cannot be true. Symmetric arguments (with the roles of

manufacturers one and two reversed) establish that d1− d̂1 < d2− d̂2 cannot be true.
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Therefore it must hold that d1 − d̂1 = d2 − d̂2.

Without loss of generality, suppose that (d̂1, d̂2) is larger than (d1, d2), so that

(d̂1 − d1) = (d̂2 − d2) > 0.

First consider the case when c2 − c1 + d1 − d2 ≥ U . Because d1 − d2 = d̂1 − d̂2,

this implies also that c2 − c1 + d̂1 − d̂2 ≥ U .

Consider the equilibrium (d1, d2). By the fact that this is an equilibrium, it must

be a best-response for manufacturer two so that d2(d1) = max{0,min{c2, d
′
2(d1), L+

c2− c1 + d1}}. If d2 = c2, then it cannot be true that c2− c1 + d1− d2 ≥ U , because

U > 0 and d1 ≤ c1. Likewise, the condition c2 − c1 + d1 − d2 ≥ U implies that it

cannot be that d2 = L+c2−c1+d1 and it must be that L+c2−c1+d1 > 0. Therefore,

it must hold that d2(d1) = max{0, d′2(d1)}. The condition c2 − c1 + d1 − d2 ≥ U also

implies that d′2(d1) ≥ 0, because looking at the equation to determine d′2(d1), which

is q2 = H(c2 − c1 − d′2 + d1) + d′2, we see that with the value d′2 = 0, plugged in, we

get H(c2− c1 + d1) = H(U) = 0 ≤ q2, implying that to reach equality, we must have

d′2 ≥ 0. Therefore, we must have d2 = d′2(d1), which is determined by the equation

q2 = H(U) + d′2. Because H(U) = 0, we can conclude that d2 = q2.

An analogous argument with the equilibrium (d̂1, d̂2) establishes that d̂2 = q2 and

thus, d̂2 = d2. This contradicts that we have two different equilibria.

Next consider the case when c2 − c1 + d1 − d2 ≤ −L. Because d1 − d2 = d̂1 − d̂2,

this implies also that c2 − c1 + d̂1 − d̂2 ≤ −L. We use a similar argument to the one

above (with the role of manufacturers one and two reversed, and -L instead of U) to

show that d1 = q1 = d̂1 so that the equilibrium is unique.

Finally assume that we have equilibria which satisfy c2 − c1 + d1 − d2 = c2 − c1 +

d̂1− d̂2 ∈ (−L,U). This implies that the slope of the profit function for manufacturer

one (in terms of d1) must be non-negative when the solution (d̂1, d̂2) is used. (because



102

otherwise, player one is better with a strictly smaller discount). Therefore,

(q1 − d1)φ(c2 − c1 + d̂1 − d̂2)

Φ(c2 − c1 + d̂1 − d̂2)
− 1 ≥ 0.

Note that the given condition that c2 − c1 + d1 − d2 = c2 − c1 + d̂1 − d̂2 ∈ (−L,U)

implies that the expression above is well defined.

On the other hand, by optimality of the solution (d1, d2), the slope of profit

functions for manufacturer one (in d1) must be non-positive at the point (d1, d2)

(because otherwise, player one is better with a strictly larger discount). Therefore,

(q1−d1)φ(c2−c1+d1−d2)
Φ(c2−c1+d1−d2)

− 1 ≤ 0. Using these facts we can derive

0 ≥ (q1 − d1)φ(c2 − c1 + d1 − d2)

Φ(c2 − c1 + d1 − d2)
− 1

>
(q1 − d̂1)φ(c2 − c1 + d1 − d2)

Φ(c2 − c1 + d1 − d2)
− 1

=
(q1 − d1)φ(c2 − c1 + d̂1 − d̂2)

Φ(c2 − c1 + d̂1 − d̂2)
− 1

≥ 0

establishing a contradiction (0 > 0). The second inequality comes from the fact that

d̂1 > d1 and the third equality because d̂1− d̂2 = d1−d2. The other inequalities were

derived above.

Now we argue the different types of equilibria on a case-by-case basis.

Case I. If

q2 ≤ c2 − c1 − U,(5.5)

then we argue that the equilibrium is (d∗1, d
∗
2) = (0, q2) by showing that this satisfies

the best response conditions from Lemma III.2. For manufacturer one, the best

reseponse is given by d∗1(q2) = max{0,min{c1, d
′
1(q2), U − c2 + c1 + q2}} = 0 because

U − c2 + c1 + q2 ≤ 0. For player two, d∗2(0) = max{0,min{c2, d
′
2(0), L+ c2− c1}} = q2
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because the solution to q2 = H(c2− c1−d′2) +d′2 is d′2 = q2 (because c2− c1− q2 ≥ U

and H(x) = 0 if x ≥ U), and the condition q2 ≤ c2−c1−U implies that L+c2−c1 ≥ q2

and that c2 ≥ q2.

Otherwise, if

q1 − q2 ≥ G(U) + U − c2 + c1 , q2 ∈ (c2 − c1 − U, c2 − U ],(5.6)

then we argue that the equilibrium is (d∗1, d
∗
2) = (U − c2 + c1 + q2, q2) by showing

that this satisfies the best response conditions from Lemma III.2. For manufacturer

one, d∗1(q2) = max{0,min{c1, d
′
1(q2), U − c2 + c1 + q2}} = U − c2 + c1 + q2 because

q1 − q2 ≥ G(U) + U − c2 + c1 implies that d′1(q2) ≥ U − c2 + c1 + q2, and the

second condition q2 ∈ (c2 − c1 − U, c2 − U ] implies that c1 ≥ U − c2 + c1 + q2, and

U−c2+c1+q2 ≥ 0. For manufacturer two, d∗2(U−c2+c1+q2) = max{0,min{c2, d
′
2(U−

c2+c1+q2), L+c2−c1+U−c2+c1+q2}} = q2 because the solution to q2 = H(U)+d′2

is d′2 = q2 (because H(U) = 0), the condition q2 ≤ c2 − U implies that c2 ≥ q2, and

we have that L+ c2 − c1 + U − c2 + c1 + q2 = L+ U + q2 ≥ q2.

To show that these conditions are necessary and sufficient, we argue the converse,

that if there exists an equilibrium in which manufacturer one dominates the market,

either the condition in (5.5) or the two conditions from (5.6) must hold. Therefore,

suppose we have a strategy (d̂1, d̂2) which satisfies c2 − c1 + d̂1 − d̂2 ≥ U , so that

manufacturer one captures all market share.

If d̂1 = 0, and c2 − c1 − U < q2, this is not an equilibrium, because whereas

currently (with solution (d̂1, d̂2)) manufacturer two makes zero profit, they can earn

strictly positive profit by picking a coupon of q2 − ε (for some small ε > 0), because

such a strategy would give them both a positive market share and a positive variable

profit margin. Therefore if d̂1 = 0, manufacturer one dominating is only possible

with q2 ≤ c2 − c1 − U . This gives the condition in (5.5).
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If d̂1 > 0 and manufacturer one dominates (c2 − c1 + d̂1 − d̂2 ≥ U), then in

order for this to be an equilibrium, manufacturer one’s coupon must be as small

as possible while still capturing the entire market (otherwise, they could be better

by making their coupon smaller). Thus, c2 − c1 + d̂1 − d̂2 = U . If d̂2 < q2, this

cannot be an equilibrium because whereas currently manufacturer two makes zero

profit (with solution (d̂1, d̂2)), they can earn strictly positive profit by picking a

coupon of d2 + ε (for some small ε > 0). Therefore, in this case we must have

d̂1 = U − c2 + c1 + d2 and d̂2 ≥ q2. Then the constraint that d1 ≤ c1 generates the

condition that q2 ≤ d2 ≤ c2−U . The fact that d1 must be a best-response strategy for

manufacturer one implies that q1 ≥ G(U)+U−c2 +c1 +d2 ≥ G(U)+U−c2 +c1 +q2.

Thus, both of the conditions from (5.6) are derived.

Therefore, manufacturer one dominating the market implies either the condition

given in (5.5), or the two given in (5.6).

Case II. If

q1 ≤ c1 − c2 − L,(5.7)

then we argue that the equilibrium is (d∗1, d
∗
2) = (q1, 0) by showing that this satisfies

the best response conditions from Lemma III.2. For manufacturer two, d∗2(q1) =

max{0,min{c2, d
′
2(q1), L + c2 − c1 + q1}} = 0 because L + c2 − c1 + q1 ≤ 0. For

player one, d∗1(0) = max{0,min{c1, d
′
1(0), U − c2 + c1}} = q1 because the solution to

q1 = G(c2 − c1 + d′1) + d′1 is d′1 = q1 (because c2 − c1 + q1 ≤ L and G(x) = 0 when

x ≤ −L), and the condition q1 ≤ c1 − c2 − L implies that U − c2 + c1 ≥ q1 and that

c1 ≥ q1.

Otherwise, if

q2 − q1 ≥ H(−L) + L+ c2 − c1 , q1 ∈ (c1 − c2 − L, c1 − L],(5.8)
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then we argue that the equilibrium is (d∗1, d
∗
2) = (q1, L + c2 − c1 + q1) by showing

that this satisfies the best response conditions from Lemma III.2. For manufacturer

two, d∗2(q1) = max{0,min{c2, d
′
2(q1), L + c2 − c1 + q1}} = L + c2 − c1 + q1 because

q2 − q1 ≥ H(−L) + L + c2 − c1 implies that d′2(q1) ≥ L + c2 − c1 + q1, and the

second condition q1 ∈ (c1 − c2 − L, c1 − L] implies that c2 ≥ L + c2 − c1 + q1, and

L+ c2− c1 +q1 ≥ 0. For player one, d∗1(L+ c2− c1 +q1) = max{0,min{c1, d
′
1(L+ c2−

c1 + q1), U − c2 + c1 +L+ c2− c1 + q1}} = q2 because the solution to q1 = G(−L) +d′1

is d′1 = q1 (because G(−L) = 0), the condition q1 ≤ c1 − L implies that c1 ≥ q1, and

it is easy to see that U − c2 + c1 + L+ c2 − c1 + q1 = U + L+ q1 ≥ q1.

To show that these conditions are if and only if, we argue the converse, that if

there exists an equilibrium in which manufacturer two dominates the market, either

the condition from (5.7) or the two conditions from (5.8) must hold. Therefore,

suppose we have a strategy (d̂1, d̂2) which satisfies c2 − c1 + d̂1 − d̂2 ≤ −L.

If d̂2 = 0, and c1−c2−L < q1, this is not an equilibrium, because whereas currently

manufacturer one makes zero profit (with solution (d̂1, d̂2)), the firm can earn strictly

positive profit by picking a coupon of q1 − ε (for some small ε > 0). Therefore if

d̂2 = 0, manufacturer two dominating is only possible with q1 ≤ c1 − c2 − L, the

condition given in (5.7).

If d̂2 > 0 and manufacturer two dominates (c2 − c1 + d̂1 − d̂2 ≤ −L), then in

order for this to be an equilibrium, manufacturer two’s coupon must be as small as

possible while still capturing the entire market (otherwise, they could be better by

making their coupon smaller). Thus, c2 − c1 + d̂1 − d̂2 = −L. If d̂1 < q1, this cannot

be an equilibrium, because whereas currently manufacturer one makes zero profit

(with solution (d̂1, d̂2)), they can earn strictly positive profit by picking a coupon of

d1 + ε (for some small ε > 0). Therefore in this case, we must have d̂1 ≥ q1 and
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d̂2 = L + c2 − c1 + d1. The contraint that d2 ≤ c2 implies that q2 ≤ d2 ≤ c1 − L

must hold. The fact that d2 must be a best-response strategy for manufacturer two

implies that q2 ≥ H(−L) + L+ c2 − c1 + d1 ≥ H(−L) + L+ c2 − c1 + q1. Thus, we

have generated both conditions from (5.8).

Therefore, manufacturer two dominating the market implies either the condition

in (5.7), or the two conditions in (5.8).

Case III. If the following two conditions hold

q1 ≤ G(c2 − c1) , q2 ≤ H(c2 − c1),

then equilibrium is (d∗1, d
∗
2) = (0, 0), and it satisfies both manufacturer’s best re-

sponses is this situation because one can easily check that the given expressions

imply that d′1(0) ≤ 0 and d′2(0) ≤ 0, so that each has a best response of no coupon.

(based on the best-response functions d∗1(0) = max{0,min{c1, d
′
1(0), U − c2 + c1}}

and d∗2(0) = max{0,min{c2, d
′
2(0), L+ c2 − c1}}).

Case IV. If

q1 > G(c2 − c1) , q2 ≤ H(c2 − c1 + min{c1, d
′
1}),

then we claim an equilibrium is (d∗1, d
∗
2) = (min{c1, d

′
1(0)}, 0). From the expressions

for d′1 and d′2 (q1 = G(c2 − c1 + d′1) + d′1 and q2 = H(c2 − c1 − d′2 + d1) + d′2) with

this equilibrium plugged in, it is clear that d′2(d∗1) ≤ 0 and d′1(0) > 0, implying

that d∗2(d∗1) = 0 and d∗1(0) = max{0,min{c1, d
′
1(0), U − c2 + c1}} are best-response

solutions. We now argue that U − c2 + c1 ≥ min{c1, d
′
1(0)} allowing us to conclude

that d∗1 = min{c1, d
′
1(0)}.

By contradiction suppose that U−c2 +c1 < min{c1, d
′
1(0)}. Then the second con-

dition (q2 ≤ H(c2− c1 +min{c1, d
′
1(0)})) becomes q2 ≤ H(c2− c1 +min{c1, d

′
1(0)}) =
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H(U) = 0, and manufacturer two has no profit margin (and thus never offers a dis-

count). In this case, d′1(0) ≥ U − c2 + c1 implies that q1 ≥ G(U) + U − c2 + c1, and

c1 ≥ U−c2 +c1 implies that q2 = 0 ≤ c2−U , and we derive the conditions for Case I

(from either (5.5) or (5.6)). Therefore, in this Case IV (where we exclude the possibil-

ity of Case I) this can never occur, we must have that U−c2+c1 > min{c1, d
′
1(0)} > 0,

so that d1 = min{c1, d
′
1(0)} is the best response strategy.

Case V. If

q1 ≤ G(c2 − c1 −min{c2, d
′
2}) , q2 > H(c2 − c1),

then we claim an equilibrium is (d∗1, d
∗
2) = (0,min{c2, d

′
2(0)}). From the expressions

for d′1 and d′2 (q1 = G(c2 − c1 − d2 + d′1) + d′1 and q2 = H(c2 − c1 − d′2 + d1) + d′2)

with this equilibrium plugged in, it is clear that d′1(d∗2) ≤ 0 and d′2(0) > 0, implying

that d∗1(d∗2) = 0 and d∗2(0) = max{0,min{c2, d
′
2(0), L + c2 − c1}} are best-response

solutions. We now argue that L+c2−c1 ≥ min{c2, d
′
2(0)} so that d∗2 = min{c2, d

′
2(0)}.

By contradiction suppose that L+ c2− c1 < min{c2, d
′
2(0)}. Then the second con-

dition (q1 ≤ G(c2− c1−min{c2, d
′
2(0)})) becomes q1 ≤ G(c2− c1−min{c2, d

′
2(0)}) =

G(−L) = 0, and manufacturer one has no profit margin (and thus never offers a

discount). In this case, d′2(0) ≥ L + c2 − c1 implies that q2 ≥ H(−L) + L + c2 − c1,

and c2 ≥ L + c2 − c1 implies that q1 = 0 ≤ c1 − L, and we derive the conditions

for Case II (either (5.7) or (5.8)). Therefore, in this case (where we exclude the

possibility of Case II), we must have that L + c2 − c1 > min{c2, d
′
2(0)} > 0, so that

d∗2 = min{c2, d
′
2(0)} is the best response strategy.

Case VI. If

q1 ≥ G(0) + c1, q2 ≥ H(0) + c2,

then we claim an equilibrium is (d∗1, d
∗
2) = (c1, c2). From the expressions for d′1(d2)
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and d′2(d1) (q1 = G(c2 − c1 − d2 + d′1) + d′1 and q2 = H(c2 − c1 − d′2 + d1) + d′2) with

this equilibrium plugged in, it is clear that d′1(c2) ≥ c1 and d′2(c1) ≥ c2. Additionally,

one can see that U − c2 + c1 + d∗2 = U + c1 ≥ c1 and L+ c2 − c1 + d∗1 = L+ c2 ≥ c2,

implying that d∗1(c2) = c1 and d∗2(c1) = c2 are best-response solutions. Therefore this

is an equilibrium.

Case VII. If

q1 ≥ G(c2 − d′2) + c1, q2 ∈ (H(c2), H(0) + c2),

then an equilibrium is (d∗1, d
∗
2) = (c1, d

′
2(c1)) with d′2(c1) ∈ (0, c2). From the expres-

sions for d′1 (q1 = G(c2 − c1 − d2 + d′1) + d′1) with this equilibrium plugged in, it is

clear that d′1(d′2(c1)) ≥ c1. Therefore, the best-response strategy for manufacturer

one is given as d∗1(d′2(c1)) = max{0,min{c1, U − c2 + c1 + d′2(c1)}}. To conclude that

d∗1(d′2(c1)) = c1, we need to argue that U − c2 + c1 + d′2(c1) ≥ c1.

Suppose not, that U−c2 +c1 +d′2(c1) < c1. This implies that with the equilibrium

strategy used ((d∗1, d
∗
2) = (c1, d

′
2(c1))), we know that c2 − c1 + d∗1 − d∗2 ≥ U so that

manufacturer two has no market share. Based on the best response function from

Lemma III.2, a manufacturer with no ability to gain market share selects d∗2 =

min{q2, c2}. It must be that q2 ≤ c2 in this case because otherwise U − c2 + c1 +d∗2 =

U+c1 > c1. Therefore, it holds that d∗2 = q2, and thus q2 < c2−U . Furthermore, the

condition q1 ≥ G(c2− d′2) + c1 combined with the fact that U − c2 + c1 + d′2(c1) < c1

implies that q1 ≥ G(c2 − d′2(c1)) + c1 ≥ G(U) + U − c2 + c1 + q2. Therefore, with

these conditions and if U − c2 + c1 + d′2(c1) < c1, we have derived the two conditions

from (5.6) (or the one from (5.5)). Because we are excluding the possibility of Case

I in this case, it must be that U − c2 + c1 + d′2(c1) ≥ c1 so that d∗1 = c1.

For manufacturer two, one can see from the fact that q2 ∈ (H(c2), H(0) + c2) that

d′2(c1) ∈ (0, c2). Furthermore, because d∗1 = c1, the expression L + c2 − c1 + d∗1 =
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L + c2 > c2, implying that d′2(c1) is a best response for manufacturer two, because

d∗2(c1) = max{0,min{c2, d
′
2(c1), L+ c2 − c1 + c1}} = d′2(c1).

Case VIII. If

q2 ≥ H(−c1 + d′1) + c2, q1 ∈ (G(−c1), G(0) + c1),

then an equilibrium is (d1, d2) = (d′1(c2), c2) with d′1(c2) ∈ (0, c1). From the expres-

sions for d′2 (q2 = H(c2 − c1 − d′2 + d1) + d′2) with this equilibrium plugged in, it is

clear that d′2(c1) ≥ c2. Therefore, the best-response strategy for manufacturer two

is given as d∗2(d′1(c2)) = max{0,min{c2, L + c2 − c1 + d′1(c2)}}. To conclude that

d∗2(d′1(c2)) = c2, we need to argue that L+ c2 − c1 + d′1(c2) ≥ c2.

Suppose not, that L+c2−c1 +d′1(c2) < c2. This implies that with the equilibrium

strategy used ((d∗1, d
∗
2) = (d′1(c2), c2)), we know that c2 − c1 + d∗1 − d∗2 ≤ −L so that

manufacturer one has no market share, and thus uses d∗1 = min{q1, c1} (again by best

response properties from Lemma III.2). It must be that q1 ≤ c1 in this case because

otherwise L + c2 − c1 + d′1(c2) = L + c2 > c2. Therefore, it holds that d∗1 = q1, and

thus q1 < c1 − L. Furthermore, the condition q2 ≥ H(−c1 + d′1(c2)) + c2 combined

with the fact that L+ c2− c1 + d′1(c2) < c2 implies that q2 ≥ H(−c1 + d′1(c2)) + c2 ≥

H(−L)+L+c2−c1+q1. Therefore, with these conditions and if L+c2−c1+d′1(c2) < c2,

we have derived the two conditions from (5.8) (or the one in (5.7)). Because we are

excluding the possibility of Case II in this case, it must be that L+c2−c1+d′1(c2) ≥ c2

so that d∗2 = c2.

For manufacturer one, one can see from the fact that q1 ∈ (G(−c1), G(0) + c2)

that d′1(c2) ∈ (0, c1). Furthermore, because d∗2 = c2, the expression U − c2 + c1 +d∗2 =

U + c1 > c1, implying that d′1(c2) is a best response for manufacturer one, because

d∗1(c2) = max{0,min{c1, d
′
1(c2), U − c2 + c1 + c2}} = d′1(c2).

Case IX. This case consists of all of the scenarios not previously characterized, imply-
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ing that none of the conditions for previous cases apply here. Because our Cases I and

II were necessary and sufficient, we know in this case that neither drug manufacturer

will dominate.

For this case, we define dN1 (q1) to be manufacturer one’s optimal coupon given

that manufacturer two chooses no coupon (d2 = 0), dN2 (q2) to be manufacturer two’s

optimal coupon given that manufacturer one chooses no coupon (d1 = 0), dF1 (q1)

to be manufacturer one’s optimal coupon given that manufacturer two chooses full

coupon (d2 = c2), and dF2 (q2) to be manufacturer two’s optimal coupon given that

manufacturer one chooses full coupon (d1 = c1).

Then using these, we can further define

N1(q2) = G(c2 − c1 − dN2 (q2)),

N2(q1) = H(c2 − c1 + dN1 (q1)),

F1(q2) = G(c2 − dF2 (q2)) + c1,

F2(q1) = H(−c1 + dF1 (q1)) + c2.

First we argue that N1(q2) = G(c2− c1− dN2 (q2)) ≤ F1(q2) = G(c2− dF2 (q2)) + c1.

From Lemma III.2, d2 is increasing in d1 with slope less than or equal to one, which

implies that dF2 (q2) ≤ dN2 (q2) + c1, and G(c2 − c1 − dN2 (q2)) ≤ G(c2 − dF2 (q2)) ≤

G(c2−dF2 (q2))+c1. Likewise, the fact that d1 is increasing in d2 with slope less than or

equal to one implies thatH(c2−c1+dN1 (q1)) ≤ H(−c1+dF1 (q1)) ≤ H(−c1+dF1 (q1))+c2

so that N1(q2) ≤ F1(q2).

Using these definitions, we see that if q1 ≤ N1(q2) and q2 ≤ N2(q1), this is Case III,

because by monotonicity of G(·) and H(·), we have that q1 ≤ G(c2 − c1 − dN2 (q2)) ≤

G(c2−c1) and q2 ≤ H(c2−c1 +dN1 (q1)) ≤ H(c2−c1), generating the exact conditions

for Case III (q1 ≤ G(c2 − c1) and q2 ≤ H(c2 − c1)).
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If q1 > N1(q2) and q2 ≤ N2(q1), this is Case IV. The condition that q2 ≤

H(c2 − c1 + dN1 (q1)) implies that dN2 (q2) = 0 because when manufacturer one of-

fers dN1 (q1), we have that d′2(dN1 (q1)) ≤ 0 (manufacturer two offers no discount

given that manufacturer one offers a discount assuming d2 = 0). Therefore, q1 >

G(c2− c1− dN2 (q2)) = G(c2− c1) to derive one of the two conditions of Case IV. For

the other, q2 ≤ H(c2− c1 + dN1 (q1)) is equivalent to q2 ≤ H(c2− c1 + min{c1, d
′
1(0)})

as long as dN1 (q1) = min{c1, d
′
1(0)} which is true because in this case we are excluding

Case I (where manufacturer one dominates), so we know that the equilibrium must

exist with both players winning some market share. Therefore both conditions from

Case IV hold here.

Similar arguments show that if q1 ≤ N1(q2) and q2 > N2(q1), this corresponds to

Case V, if q1 ≥ F1(q2) and q2 ≥ F2(q1), this corresponds to Case VI, if q1 ≥ F1(q2)

and q2 ∈ (N2(q1), F2(q1)), this corresponds to Case VII, and if q1 ∈ (N1(q2), F1(q2))

and q2 ≥ F2(q1), this corresponds to Case VIII.

Therefore in this final case, it must hold that q1 ∈ (N1(q2), F1(q2)) and q2 ∈

(N2(q1), F2(q1)). From the arguments in Cases I and II, we know also in this case

that neither drug manufacturer will dominate. Therefore, we know that d∗1(d∗2) =

max{0,min{c1, d
′
1(d∗2)}} and d∗2(d∗1) = max{0,min{c2, d

′
2(d∗1)}}. By existence, we

know that an equilibrium exists in this case.

We argue that it must be an interior solution by contradiction.

Suppose that in equilibrium d∗1 = 0 in this final case. Then manufacturer one

cannot be better off by switching their strategy. However, q1 > N1(q2) contradicts

this fact, because q1 > G(c2 − c1 − dN2 (q2)) implies that manufacturer one will be

better off by offering a non-zero discount (which is feasible because c1 > 0).

Similar contradictions arise in any scenarios with d∗1 = c1, d∗2 = 0, or d∗2 = c2,
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using the other conditions of q1 < F1(q2), q2 > N2(q1) or q2 < F2(q1).

Therefore in this final case, it must hold that both drug manufacturers pick ’partial

coupon’ strategies of d∗1 ∈ (0, c1) and d∗2 ∈ (0, c2). Because it is an equilibrium, it

must be a best response strategy for each drug manufacturers (and no boundary

solutions are possible), implying that the equilibrium is given by the solution to the

following equations.

q1 = G(c2 − c1 − d∗∗2 + d∗∗1 ) + d∗∗1 and q2 = H(c2 − c1 − d∗∗2 + d∗∗1 ) + d∗∗2

The solution to these equations is unique, one can see by looking at the difference

between these equations as

q1 − q2 = G(c2 − c1 − d∗∗2 + d∗∗1 )−H(c2 − c1 − d∗∗2 + d∗∗1 ) + d∗∗1 − d∗∗2

which is monotone strictly increasing in (d∗∗1 − d∗∗2 ) implying that the difference

d∗∗1 −d∗∗2 is uniquely determined. Then using either of the original equations, d∗∗1 and

d∗∗2 are also uniquely determined.

Part (i). We argue the comparative statics given here. First we prove that the

unique equilibrium strategy stated in Theorem III.3 is the unique solution of the

following equations:

d̂1(d2) = max{0,min{c1, d
′
1(d2), U − c2 + c1 + q2}};(5.9)

d̂2(d1) = max{0,min{c2, d
′
2(d1), L+ c2 − c1 + q1}},(5.10)

where d′1(d2) and d′2(d1) are defined in Lemma III.2, i.e., they are solutions to equa-

tions q1 = G(c2 − c1 + d′1 − d2) + d′1 and q2 = H(c2 − c1 + d1 − d′2) + d′2. Note that

(5.9) and (5.10) are slight modifications of the manufacturer’s best-response strate-

gies from Lemma III.2. From now on, we will also call (5.9) and (5.10) the best

responses for the two manufacturers. We first observe that, since d′1(d2) and d′2(d1)
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are increasing in d2 and d1 respectively, with slope strictly less than 1, d̂1(d2) and

d̂2(d1) increase in d2 and d1, respectively, with slope strictly less than 1.

Using the same argument as that given at the beginning of Theorem III.3, it is

easily shown that the solution to (5.9) and (5.10), if exists, must be unique. Hence,

it suffices to show that the equilibrium given in Theorem III.3 satisfies (5.9) and

(5.10).

Let (d∗1, d
∗
2) be the equilibrium from Theorem III.3. Because neither manufacturer

may benefit by deviating from this strategy, it must hold that d∗i = d∗i (d
∗
j), i 6= j.

That is, d∗1(d∗2) = max{0,min{c1, d
′
1(d∗2), U−c2+c1+d∗2}} and d∗2(d∗1) = max{0,min{c2, d

′
2(d∗1), L+

c2−c1+d∗1}}. If d∗1 < U−c2+c1+d∗2, then we argue that d∗1 = max{0,min{c1, d
′
1(d∗2)}}.

To see this, first note that U − c2 + c1 + d∗2 > d∗1 ≥ 0. If in addition d′1(d∗2) < 0, then

d∗1 = 0 = max{0,min{c1, d
′
1(d∗2}}. If d′1(d∗2) ≥ 0 then min{c1, d

′
1(d∗2), U−c2+c1+d∗2} ≥

0 hence d∗1 = min{c1, d
′
1(d∗2), U − c2 + c1 + d∗2} and by d∗1 < U − c2 + c1 + d∗2,

it must hold that d∗1 = max{0,min{c1, d
′
1(d∗2)}}. In either way, we have d∗1 =

max{0,min{c1, d
′
1(d∗2)}} when d∗1 < U − c2 + c1 + d∗2. From the characterization

of the equilibrium in Theorem III.3, we know that d∗2 ≤ q2, which implies that

d∗1 < U − c2 + c1 + d∗2 ≤ U − c2 + c1 + q2. Similar argument as above shows that, by

considering whether or not d∗1 ≥ 0, we have d∗1 = d̂∗1(d∗2).

Next consider the case d∗1 ≥ U − c2 + c1 + d∗2, implies that manufacturer one

dominates the market. Thus by the necessity of Case I of Theorem III.3, we must

have d∗2 = q2. Thus, in this case d̂1(d2) is exactly the same as the best-response

strategy for manufacturer one as defined in Lemma III.2, hence (5.9) is also satisfied.

Parallel argument shows that the equilibrium in Theorem III.3 also satisfies (5.10).

Therefore, d̂1(d2) and d̂2(d1) define the equilibrium for the manufacturers.

From the definitions of d̂1(d2) and d̂2(d1), it is clear that d1 is increasing in d2.
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Its slope must be strictly less than 1 because d′1(d2) has this property and the other

terms are constants. Symmetrically, d2 is increasing in d1, with slope also strictly

less than one. These properties will be useful in establishing the comparative statics

of the equilibrium strategy.

We now show that in equilibrium d∗1 is decreasing in c2. By contradiction, suppose

that at equilibrium c2 goes up by ε, and d∗1 changes by some δ > 0. By the best

response properties for manufacturer two and our insight from above, this implies

that d∗2 increases by a value in [0, ε + δ). Therefore, the expression c2 − d∗2 changes

by an amount in (−δ, ε] which contradicts that d∗1 increased by δ (by Lemma III.2).

A symmetric argument shows that d∗2 is decreasing in c1.

We next argue that in equilibrium d∗1 is increasing in c1. By contradiction, suppose

that at equilibrium c1 goes up by ε, and d∗1 changes by some −δ < 0. This implies

that c1−d1 increases by δ+ ε. By the best response properties for manufacturer two

and the insight above, this implies that d∗2 increases by a value in [0, ε + δ). This

contradicts with that d∗1 decreased, because as a best response, it is increasing in both

c1 and d2 (by Lemma III.2). A symmetric argument proves that d∗2 is increasing in

c2.

Similar arguments show that d∗1 is increasing in q1 and q2. Then by symmetry,

one can also demonstrate the statics on d∗2.

Part (ii). This proof uses the fact that each manufacturer’s best response strate-

gies are increasing in their competitor’s coupon, but with slope of dependence strictly

less than one, a property established when we proved part (i) of this result. First we

argue that the equilibrium market share α∗1 is increasing in c2, in two cases.

Case 1. Suppose that c2 increases by δ > 0, and d∗1 increases by ε > 0. By Lemma

III.2, we know that d∗2 will change by some value in [0, ε+ δ), implying that c2 − d2
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changes by a value in [−ε, δ). This implies that the entire expression c2− c1 +d∗1−d∗2

is increasing in this case because d1 increases by ε > 0 and c2 − d∗2 decreases by at

most −ε.

Case 2. Now suppose that c2 increases by δ > 0, and d∗1 changes by −ε < 0. Then by

Lemma III.2, the optimal d2 changes by some value in (−ε, δ] and c2 − d∗2 increases

by an amount γ ∈ [0, ε + δ). Then applying Lemma III.2, it must hold that ε ≤ γ,

implying that c2 − c1 + d∗1 − d∗2 changes by δ − ε ≥ 0, thus it is increasing in c2 as

well.

Next we prove that the expression is decreasing in c1, again in two cases.

Case 1. Suppose that c1 increases by δ > 0, and d∗1 changes by some value ε ≤ δ.

Then in net changes of −c1 + d∗1 is −δ + ε ≤ 0. By Lemma III.2, we know that d2

will change by some value between −δ + ε and 0 as it decreases in −c1 + d∗1. This

implies that the entire expression c2 − c1 + d∗1 − d∗2 decreases in this case, because

−c1 + d∗1 changes by −δ + ε, and −d∗2 increases at most by δ − ε.

Case 2. Now suppose that c1 increases by δ > 0, and d∗1 changes by some value ε > δ.

Then by Lemma III.2, the optimal d∗2 goes up also, by some value γ ∈ [0, ε−δ). Then

applying III.2, c1 increases by δ and c2−d∗2 decreases by γ, meaning that d∗1 increases

by some amount in [0, δ+γ]. However, because d∗1 did increase by ε and we had that

γ ≤ ε − δ, this implies that ε ≤ δ + γ ≤ ε, thus that it must hold that γ = ε − δ.

Since c2 is unchanged,−c1 decreases by δ, d∗1 increases by ε, and −d2 decreases by

ε − δ, in net, the expression c2 − c1 + d∗1 − d∗2 goes neither up nor down in such a

scenario.

Now we prove the monotonicity in terms of q1 and q2. We claim that for any

possible selections of c2 and c1, the resultant α1 is increasing in q1 and decreasing in
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q2. Again, this expression is given as

Φ(c2 − c1 + d∗1 − d∗2)

This is increasing as long as c2− c1 + d∗1− d∗2 is increasing in q1 and decreasing in q2.

We again prove this with two cases, first for the monotonicity in q1.

Case 1. Suppose that q1 goes up and d∗1 increases by an amount δ > 0. Then by

Lemma III.2, d∗2 increases by an amount ε ∈ [0, δ], implying that d∗1 − d∗2 increases

overall.

Case 2. Suppose that q1 goes up, but d∗1 decreases by an amount δ < 0. Then

by Lemma III.2, d∗2 decreases by an amount ε ∈ [δ, 0]. However, by Lemma III.2, q1

increasing with d∗2 decreasing by ε implies that d∗1 decreases by at most ε. Therefore it

must hold that ε = δ implying that d∗1−d∗2 is unchanged, and thus weakly increasing.

We have a similar argument for q2 to show that d∗1 − d∗2 decreases as q2 increases.

Since c2 − c1 + d∗1 − d∗2 has been shown to have the statics discussed, so does

α∗1 = Φ(c2 − c1 + d∗1 − d∗2) because of the monotonicty of the PDF function Φ(·).

5.2.3 Proof of Theorem III.4.

First we derive two conditions that allows us to restrict the set of possible optimal

strategies for the insurer. The first is that there exists an optimal equilibrium insurer

strategy with p1−c∗1 ≤ p2−c∗2. This is done by showing that, if there exists an optimal

solution satisfying p1−c∗1 > p2−c∗2, then we can find another solution that is as good,

or better with p1 − c∗1 ≤ p2 − c∗2. Our proposed alternative solution is ĉ1 = ĉ2 = tn.

Because p1− c∗1 > p2− c∗2 and tn is the highest possible value for c2, we know that

p1 − tn < p2 − tn ≤ p2 − c∗2 < p1 − c∗1. Therefore the insurer can select ĉ1 = ĉ2 = tn

and do as well or better than the cost of the proposed optimal solution, because a

linear combination of p1 − tn and p2 − tn is less than or equal to one of p2 − c∗2 and
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p1−c∗1 (due to the inequality). If it were true that c∗2 = tn, and every patient selected

the second drug, it may be possible for the two solutions to be equivalent.

Therefore for any solution with p1− c∗1 < p2− c∗2, we have found another solution

that is as-good or better where p1 − ĉ1 ≤ p2 − ĉ2.

Next we argue that there exists an optimal solution with drug two copayment

equal to c∗2 = tn. To see this, suppose the optimal strategy is c∗2 < tn. We construct

another solution with ĉ2 = tn that has insurer costs as low or lower. From the prior

result, we know that p1 − c∗1 ≤ p2 − c∗2. For the purposes of this argument, we use

d∗1(c1, c2) and d∗2(c1, c2) to be the equilibrium manufacturer coupons given insurer

decisions of c1 and c2.

By Theorem III.3 part (ii), Φ(c∗2 − c∗1 − d∗2(c∗1, c
∗
2) + d∗1(c∗1, c

∗
2)) is an increasing

function of c∗2. We use these facts to show that a new proposed solution has weakly

lower cost. The new proposed solution is ĉ2 = tn and ĉ1 = c∗1 is unchanged. The

argument for lower costs is

(p1 − c∗1)Φ(tn − c∗1 − d∗2(c∗1, tn) + d∗1(c∗1, tn))

+ (p2 − tn)(1− Φ(tn − c∗1 − d∗2(c∗1, tn) + d∗1(c∗1, tn)))

≤(p1 − c∗1)Φ(tn − c∗1 − d∗2(c∗1, tn) + d∗1(c∗1, tn))

+ (p2 − c∗2)(1− Φ(tn − c∗1 − d∗2(c∗1, tn) + d∗1(c∗1, tn)))

≤(p1 − c∗1)Φ(c∗2 − c∗1 − d∗2(c∗1, c
∗
2) + d∗1(c∗1, c

∗
2))

+ (p2 − c∗2)(1− Φ(c∗2 − c∗1 − d∗2(c∗1, c
∗
2) + d∗1(c∗1, c

∗
2)))

The first inequality follows from c∗2 < tn, and the second from the fact that p1− c∗1 <

p2 − c∗2 is true for this case, so the insurer is better off with more patients selecting

the first drug. This establishes that the proposed solution with ĉ2 = tn is optimal.

We finally argue by contradiction that c∗1 is decreasing in p2 − p1. Suppose that
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there is a situation in which for some p2 − p1 the optimal strategy is ti, but for a

larger p̂2 − p̂1 > p2 − p1, the optimal strategy is some tj, with i < j. Again we use

d∗1(c1, c2) and d∗2(c1, c2) to be the equilibrium manufacturer coupons given insurer

decisions of c1 and c2. In this case, the insurer’s costs are given by

πIA = (p1 − ti)Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))

+ (p2 − tn)(1− Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn)))

π̂IA = (p̂1 − tj)Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

+ (p̂2 − tn)(1− Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn)))

Then we are able to derive a contradiction. By the optimality of the solution at

p1 − p2, it must hold that

(p1 − ti)Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))

+ (p2 − tn)(1− Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn)))

≤(p1 − tj)Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

+ (p2 − tn)(1− Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn)))

Re-arranging terms yields

p2 − p1

≥ (tn − ti)Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− (tn − tj)Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

By the optimality of the solution with p̂1 − p̂2, and rearranging, we can derive that

p̂2 − p̂1

≤ (tn − ti)Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− (tn − tj)Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))
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Then our contradiction comes out as

p̂2 − p̂1

≤ (tn − ti)Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− (tn − tj)Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

Φ(tn − ti − d∗2(ti, tn) + d∗1(ti, tn))− Φ(tn − tj − d∗2(tj, tn) + d∗1(tj, tn))

≤ p2 − p1

< p̂2 − p̂1

Therefore it cannot be true that the manufacturer would ever choose a higher copay-

ment amount ti when the price differential p2− p1 is larger. This implies the desired

result presented in the theorem for c∗1, along with the fact that c∗2 = tn.

5.2.4 Proof of Proposition III.5.

In Theorem III.3 part (ii), we established that a larger value of qi results in more

patients selecting drug i, after the equilibrium coupon strategy is implemented. We

show now that given some q2, and q2 + ε, with ε > 0, the insurer costs are higher in

the case with q2 + ε. Here we write c∗i (q2) to be the insurer’s optimal decision given

q2, and d∗i (q2, c1, c2) to be the equilibrium coupon given q2, c1, and c2. Therefore we

have

(p1 − c∗1(q2 + ε))Φ(c∗2(q2 + ε) − c∗1(q2 + ε) + d∗1(q2 + ε, c∗1(q2 + ε), c∗2(q2 + ε)) − d∗2(q2 + ε, c∗1(q2 + ε), c∗2(q2 + ε)))

+ (p2 − c∗2(q2 + ε))(1 − Φ(c∗2(q2 + ε) − c∗1(q2 + ε) + d∗1(q2 + ε, c∗1(q2 + ε), c∗2(q2 + ε)) − d∗2(q2 + ε, c∗1(q2 + ε), c∗2(q2 + ε))))

≥ (p1 − c∗1(q2 + ε))Φ(c∗2(q2 + ε) − c∗1(q2 + ε) + d∗1(q2, c
∗
1(q2 + ε), c∗2(q2 + ε)) − d∗2(q2, c

∗
1(q2 + ε), c∗2(q2 + ε)))

+ (p2 − c∗2(q2 + ε))(1 − Φ(c∗2(q2 + ε) − c∗1(q2 + ε) + d∗1(q2, c
∗
1(q2 + ε), c∗2(q2 + ε)) − d∗2(q2, c

∗
1(q2 + ε), c∗2(q2 + ε))))

≥ (p1 − c∗1(q2))Φ(c∗2(q2) − c∗1(q2) + d∗1(q2, c
∗
1(q2), c∗2(q2)) − d∗2(q2, c

∗
1(q2), c∗2(q2)))

+ (p2 − c∗2(q2))(1 − Φ(c∗2(q2) − c∗1(q2) + d∗1(q2, c
∗
1(q2), c∗2(q2)) − d∗2(q2, c

∗
1(q2+), c∗2(q2))))

which implies that the insurer’s costs are larger when q2 is larger. The first inequality

comes from Corollary III.3 part (ii), which said that when c2 and c1 are unchanged,

the equilibrium number selecting drug two is increasing in q2 and from the fact that

p2 − c∗2(q2 + ε) ≥ p1 − c∗1(q2 + ε), the optimal insurer strategy property derived in
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Theorem III.4. The second inequality comes from the optimality of the insurer’s

strategy, which says that picking the optimal (equilibrium) c∗1 and c∗2 in the case of

q2 will do better (i.e. costs will be lower) than using the solution from q2 + ε. Note

that this argument holds for a strategic or nonstrategic insurer (in the non-strategic

case, we would have c∗i (q2) = c∗i (q2 + ε) so that the last two expressions are exactly

equal).

The same argument with q1 instead of q2 establishes that insurer costs are de-

creasing in q1. This establishes the statics related to the insurer.

For the remainder of the proof, we may assume that c∗1 and c∗2 are fixed, because in

the case of a non-strategic insurer, the optimal copays are independent of the values

for q1 or q2.

As q1 or q2 increase, it is clear from Theorem III.3 part (i) that both drug man-

ufacturer coupons become larger. This helps patients, because they observe lower

prices for each of the drugs.

As qi increases, the market share for manufacturer i ,α∗i increases as does d∗j the

coupon for the other drug manufacturer. Thus, it is clear from the profit function

for the manufacturers from (3.4) that a larger coupon with less market share can

only make a drug manufacturer worse off, thus the profit function for manufacturer

j must decrease as qi increases.

All that is remaining to show is that πi increases in qi for each manufacturer,

meaning that a larger profit margin makes a drug manufacturer better off. By

contradiction, suppose that qi increases by δ, but manufacturer i becomes worse off.

Because we have already established in Theorem III.3 part (ii) that α∗i is increasing

in qi, one can easily see from (3.4) that manufacturer i can only become worse off in

this scenario if d∗i increases by more than δ. We argue this cannot occur.
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So suppose that qi increases by δ and d∗i increases by ε > δ. By the last part of

Lemma III.2 part (ii) (if qi and d∗j both increase, d∗i may increase by at most the

maximum of the increase from either of qi or d∗j), this is only possible if manufacturer

j has increased its choice of coupon (d∗j) by an amount of at least ε. However, by the

property proved in Theorem III.3 part (i) (which showed that our equilibrium can be

determined by best-response equations in which d∗i (d
∗
j) is increasing in d∗j with slope

strictly less than one), it is impossible for d∗j to increase by an amount as large as ε.

This establishes all of the properties for this proposition.

5.2.5 Proof of Theorem III.6.

We first show that condition (a) implies that manufacturer two offers a larger

coupon than manufacturer one. By contradiction suppose that

q2 −H(tn − FN(p2 − p1)) ≥ q1 −G(tn − FN(p2 − p1))

but d∗1 > d∗2. This implies that either

d∗1 > q1 −G(tn − FN(p2 − p1)) or d∗2 < q2 −H(tn − FN(p2 − p1)).

In the first case, we have d∗1 > q1 − G(tn − FN(p2 − p1)) ≥ q1 − G(tn − FN(p2 −

p1) + d∗1 − d∗2), which implies that d′1(d∗2) < d∗1. From Lemma III.2 we have d∗1(d∗2) =

max{0,min{FN(p2−p1), d′1(d∗2), U−tn+FN(p2−p1)+d∗2}}, hence it can be seen that

d′1(d∗2) < d∗1 can only occur when d∗1 = 0, which is impossible because d∗1 > d∗2 ≥ 0.

In the second case, the inequality implies that d∗2 < q2−H(tn−FN(p2−p1)) ≤ q2−

H(tn−FN(p2−p1)+d∗1−d∗2), which implies that d′2(d∗1) > d∗2. Then by Lemma III.2,

this implies that d∗2 = max{0,min{tn, L+ tn−FN(p2− p1) + d∗1}}. Because d∗1 > d∗2,

and tn ≥ FN(p2−p1), this implies that L+ tn−FN(p2−p1)+d∗1 > d∗2, so that it must

be that d∗2 = tn. But this is a contradiction because d∗2 < d∗1 ≤ FN(p2−p1) ≤ tn = c2.
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Therefore, by contradiction we can see that

q2 −H(tn − FN(p2 − p1)) ≥ q1 −G(tn − FN(p2 − p1))

implies that d1 ≤ d2.

Next we argue that if condition (a) is not true, it must be that d∗1 ≥ d∗2, or

d∗1 = FN(p2−p1) (the upper bound) or that manufacturer one dominates the market

(wins all market share) while offering a smaller coupon than manufacturer two.

If

q2 −H(tn − FN(p2 − p1)) ≤ q1 −G(tn − FN(p2 − p1))

but d∗1 < d∗2, we follow similar logic as above to claim that either of

d∗1 < q1 −G(tn − FN(p2 − p1)) or d∗2 > q2 −H(tn − FN(p2 − p1))

must hold. In the second case, we have d∗2 > q2 − H(tn − FN(p2 − p1)) ≥ q2 −

H(tn − FN(p2 − p1) + d∗1 − d∗2), which implies that d′2(d∗1) < d∗1. Then by looking

at the best response strategy for manufacturer two (Lemma III.2 said that d∗2(d1) =

max{0,min{tn, d′2(d1), L+ tn−FN(p2− p1) +d∗1}}), we see that d′2(d∗1) < d∗1 can only

occur if d∗2 = 0, which is impossible because d∗2 > d∗1 ≥ 0.

In the first case, the inequality implies that d∗1 < q1 − G(tn − FN(p2 − p1)) ≤

q1−G(tn−FN(p2− p1) + d∗1− d∗2), which implies that d′1(d∗2) > d∗1. Then by looking

at the best response strategy for manufacturer one (Lemma III.2 said that d∗1(d∗2) =

max{0,min{FN(p2−p1), d′1(d∗2), U− tn+FN(p2−p1)+d∗2}}), we see that this implies

that d∗1 = max{0,min{FN(p2−p1), U−tn+FN(p2−p1)+d∗2}}. Therefore they either

win all market share, or set d∗1 = FN(p2−p1). Note that if U−tn+FN(p2−p1)+d∗2 ≤ 0

or d∗1 = U − tn + FN(p2 − p1) + d∗2, manufacturer one wins all market share.

Next we claim that condition (b) implies that manufacturer two offers a larger
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coupon than manufacturer one, or that manufacturer two dominates the market

(while offering a smaller coupon).

Suppose we have d∗1 ∈ [0, FN(p2 − p1)]. Then we have that q2 ≥ H(tn − FN(p2 −

p1)) + FN(p2 − p1) ≥ H(tn − d∗1) + d∗1 and so again we have d′2(d∗1) ≥ d∗1, and

tn ≥ d∗1. Therefore, it must hold that d∗2 ≥ d∗1, unless manufacturer two dominates

(and wins all market share), which is true if d∗2 = L + tn − FN(p2 − p1) + d∗1 or

L+ tn − FN(p2 − p1) + d∗1 < 0.

If condition (b) does not hold, and d∗1 = c1, we claim it must be true that d∗2 ≤ d∗1.

This is true because, the opposite of condition (b) is q2 < H(tn − FN(p2 − p1)) +

FN(p2−p1) which implies that d′2(d∗1) ≤ d∗1, which is enough to conclude that d∗2 ≤ d∗1

(by looking at best response d∗2(d∗1) = max{0,min{tn, d′2(d∗1), L+ tn − FN(p2 − p1) +

d∗1}}).

To summarize, if condition (a) holds, then manufacturer two offers a larger coupon

than manufacturer one. In this case, the insurer’s costs always increase, and man-

ufacturer two profit declines. This is true by the first part of Theorem III.4, which

says that at the optimal strategy, p1 − c∗1 ≤ p2 − c∗2. We can show this with

(p1 − FN(p2 − p1))Φ(tn − FN(p2 − p1) + d∗1 − d∗2)

+ (p2 − tn)(1− Φ(tn − FN(p2 − p1) + d∗1 − d∗2))

≥ (p1 − FN(p2 − p1))Φ(tn − FN(p2 − p1)) + (p2 − tn)(1− Φ(tn − FN(p2 − p1)))

because Φ(tn−FN(p2−p1)) ≥ Φ(tn−FN(p2−p1)+d∗1−d∗2) and (p1−FN(p2−p1)) ≤

(p2−tn). Manufacturer two being worse is obvious because they have smaller market

share and profit margin.

If condition (b) holds, then either manufacturer two offers a larger coupon than

manufacturer one, or manufacturer two dominates while offering a smaller coupon
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than manufacturer one. In the first case, the insurer is worse off and first manufac-

turer is worse off. In the second case, manufacturer two will also dominate when

there are not coupons (because tn−FN(p2− p1) + d∗1− d∗2 ≤ −L and d∗2 ≤ d∗1 implies

that tn−FN(p2−p1) ≤ −L) and hence, the insurer is indifferent about coupons, and

so is the first manufacturer because insurer costs are p2 − tn in both cases, and the

manufacturer one profit is zero in both cases.

Thus if either of cases (a) or (b) hold, it must be true that the insurer and

manufacturer two are worse off.

If condition (a) does not hold, there are three possibilities. Either manufacturer

one offers a larger coupon than manufacturer two, manufacturer one dominates while

offering a smaller coupon, or d∗1 = FN(p2− p1). In the first case, the insurer is better

off and manufacturer one is worse off. In the second case, manufacturer one will also

dominate when there are not coupons (because tn − FN(p2 − p1) + d∗1 − d∗2 ≥ U and

d∗2 ≥ d∗1 implies that tn − FN(p2 − p1) ≥ U), and hence, the insurer is indifferent

about coupons (their cost is p1 − FN(p2 − p1) in either case), and so is the second

drug manufacturer (profit is 0 in either case).

If d∗1 = FN(p2 − p1) and condition (b) does not hold either, then manufacturer

two’s coupon will be smaller than manufacturer one’s, helping the insurer but hurting

the second drug manufacturer. Thus when neither (a) nor (b) hold, the insurer is

better off, and drug manufacturer two is worse off.

With a non-anticipating insurer, patients benefit from coupons, because instead

of paying FN(p2 − p1) and tn, they now pay FN(p2 − p1)− d∗1 and tn − d∗2, these are

smaller amounts. This establishes (ii).
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5.2.6 Proof of Theorem III.7.

Using Theorem III.6, we see that Conditions (a) or (b) imply that manufacturer

two will offer a larger coupon than manufacturer one (or dominate with a smaller

one) in the case with coupons, and the strategy of c∗2 = tn and c∗1 = FA(p2 − p1).

Then defining d∗i (c1, c2) as the equilibrium coupon for manufacturer i given insurer

decisions of c1 and c2, we know that

(p1 − FA(p2 − p1))Φ(tn − FA(p2 − p1) + d∗1(tn, FA(p2 − p1))− d∗2(tn, FA(p2 − p1)))

+ (p2 − tn)(1− Φ(tn − FA(p2 − p1) + d∗1(tn, FA(p1 − p1))− d∗2(tn, FA(p2 − p1))))

≥ (p1 − FA(p2 − p1))Φ(tn − FA(p2 − p1)) + (p2 − tn)(1− Φ(tn − FA(p2 − p1)))

≥ (p1 − FN(p2 − p1))Φ(tn − FN(p2 − p1)) + (p2 − tn)(1− Φ(tn − FN(p2 − p1)))

The first inequality comes from the fact that manufacturer two will offer a larger

coupon than manufacturer one (or dominate with a smaller one) in the case with

coupons (and p1 − FA(p2 − p1) ≤ p2 − tn). The second comes from the optimality of

the insurer’s strategy when there are not coupons.

Part (ii) follows because whichever drug manufacturer ends up with less market

share with coupons, will always have lower profits.

5.2.7 Proof of Theorem III.8.

First we show that if ri − t1 ≤ pj − tk for any k < n, then the choice of cj = tk

is never optimal, because a strictly better solution for the insurer is tk+1. For the

purpose of the proof, define α∗i (ci, cj, si, sj) as the equilibrium percentage of patients

that select drug i given copays and supply prices for drugs i and j. Note that here

we define si as the final price the insurer pays the drug manufacturer for drug i. In

the case of drug i being preferred, then it is the case that si = ri and sj = pj. Note
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that from the properties in Theorem III.3, we know that α∗i is increasing in si and

cj while decreasing in sj and ci, i 6= j. We show that the choice of tk+1 is strictly

better with the following inequalities:

(ri − t1)α∗i (t1, tk, ri, pj) + (pj − tk)α∗j (t1, tk, ri, pj)

≥ (ri − t1)α∗i (t1, tk+1, ri, pj) + (pj − tk)α∗j (t1, tk+1, ri, pj)

> (ri − t1)α∗i (t1, tk+1, ri, pj) + (pj − tk−1)α∗j (t1, tk+1, ri, pj),

where the first inequality follows from the fact that ri − t1 ≤ pj − tk along with

α∗i (t1, tk, ri, pj) ≤ α∗i (t1, tk+1, ri, pj) as the α∗i and α∗j terms sum to 1, the second

inequality follows because tk+1 > tk. Thus, such a solution tk with ri − t1 ≤ pj − tk

cannot be optimal. Because of the monotonicity of the copay tiers t1 < t2 < · · · <

tn−1 < tn, this implies that the firm will never use a tier lower than k either.

Applying this result, if pj ≥ ri + tn−1 − t1, then c∗j > tn−1 hence it must be true

that c∗j = tn, proving (a) of part (i). Likewise, because pj ≥ ri + t1− t1 (the winning

bid is lower than the non-preferred price), this implies that if n = 2, then c∗j = t2,

establishing (b) of part (i).

5.2.8 Proof of Theorem III.9.

Let π∗i (c1, c2, s1, s2) denote the equilibrium manufacturer i profit given copays c1

and c2 along with supply prices s1 and s2. Note that this equilibrium profit depends

on the manufacturers’ coupon equilibrium solution for given copays and supply prices,

i.e.,

π∗i (c1, c2, s1, s2) =
(
si − ki − d∗i (c1, c2, s1, s2)

)
αi(c1, c2, s1, s2), i = 1, 2.

Also note that, we use si to represent the final price of manufacturer i and it depends

on which manufacturer wins the bidding game. In the case that manufacturer i wins
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and becomes preferred, then si = ri and sj = pj.

We first show that π∗1(c1, c2, s1, s2) is increasing in c2 and s1 while decreasing in

c1 and s2. Symmetrically, π∗2(c1, c2, s1, s2) is increasing in c1 and s2 while decreasing

in c2 and s1.

From (i) and (ii) of Theorem III.3, we know that as ci increases, so does the

equilibrium coupon d∗i , while the equilibrium drug i market share, α∗i , decreases.

Hence π∗i (c1, c2, s1, s2) = (si − ki − d∗i )α∗i decreases in ci (i = 1, 2). Likewise, as ci

increases, the equilibrium coupon d∗j (j 6= i) decreases, while the market share α∗j

increases, hence π∗i (c1, c2, s1, s2) increases in cj, j 6= i.

To establish the monotonicity results on s1 and s2, we first recall from the proof

of Proposition III.5 for the case of a non-anticipating insurer, that manufacturer i’s

profit increases in the profit margin qi of drug i but decreases in the profit margin

qj of drug j, j 6= i (which was obtained by fixing the copays c1 and c2 to show that

the equilibrium profits satisfied the stated properties). In the current setting the

profit margin qi is given by si − ki. Thus, again if we fix c1, and c2, it follows from

the proof of Proposition III.5 that as a manufacturer’s supply price increases (and

thus, so does its profit margin, because the ki are fixed), so does its profit, while its

competitor’s profit decreases.

Define two points, r∗1 and r∗2, as the solutions to the following equations.

π∗1(t1, t2, r − k1, p2 − k2) = π∗1(t2, t1, p1 − k1, r − k2),(5.11)

π∗2(t2, t1, p1 − k1, r − k2) = π∗2(t1, t2, r − k1, p2 − k2).(5.12)

We argue that r∗1 and r∗2 are well defined. From our argument above regarding

the relationship between equilibrium profits and prices, we can observe that in the

expressions for r∗1 and r∗2, the left-hand-side of the equations are strictly increasing in
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r with the right-hand-side of the equations decreasing in r. To argue that a solution

always exists, we first observe that equilibrium manufacturer profits are continuous in

profit margins. Then we argue that at a small enough level of r, the left-hand-side of

these equations are smaller than the right, and at a large enough r, the left-hand-side

of the equations are larger than the right.

We first consider r∗1. When r = k1, the profit margin for manufacturer 1 on

the left-hand-side of the equation is 0. Because we assume that the reserve price

p1 is greater than production cost k1, the right-hand-side of (5.11 is nonnegative.

When r = p1, then manufacturer one is better off with a lower copay for its drug

(t1 vs. t2), a higher copay for manufacturer two’s drug (t2 vs. t1) and a lower price

for manufacturer two (p1 vs. p2), thus it follows from the monotonicity properties

discussed above that the left hand side is weakly larger.

Now we consider r∗2. When r = k2, the profit margin for manufacturer 2 on the

left-hand-side of (5.12) is 0, and because p2 ≥ k2, the right-hand-side is nonnegative.

As r goes to infinity, we show that the manufacturer two profit on the left-hand-side

of the equation becomes larger than the profit one the right-hand-side. We argue

this by the following inequalities, again with large enough r:

π∗2(t2, t1, p1, r) ≥ (r − k2 −max
{

0,min
{
d′2(t2), c2, L+ c2 − c1 + t2

}}
)

×(1− Φ(t1 −max
{

0,min
{
d′2(t2), c2, L+ c2 − c1 + t2

}}
))

≥ (r − k2 − t1)(1− Φ(0))

≥ p2 − k2

≥ π∗2(t1, t2, r, p2),

where the first inequality follows from the fact that the second manufacturer is

only worse off if the first manufacturer offers the largest possible feasible coupon
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(d1 = c1 = t2) instead of the equilibrium coupon (follows directly from manufacturers’

objective function in (3.4)); the second inequality follows because the best-response

strategy of manufacturer two is not worse than another proposed feasible strategy

(which in this case is d2 = c2 = t1); the third inequality is due to large r and that

(1−Φ(0)) > 0; and finally, the last inequality comes from the fact that manufacturer

two can do no better than having all patients choose its drug while not offering a

coupon, if its profit margin is p2 − k2.

To prove (ii), note that from Proposition III.5 that manufacturer one’s profit is

increasing in c2 and decreasing in c1. Thus, combined with the argument above about

monotonicity in s1 and s2, we conclude that the expression above is increasing in t2

and decreasing in t1, p1, and p2. By symmetry and again from Corollary 1, these

properties also hold for manufacturer two.

To show that the expressions given in Theorem III.9 are indeed equilibrium bids,

we first discuss the best-response strategy for a manufacturer i given a competitor

bid of rj.

If the critical number for one manufacturer is larger than the bid of the other

(condition of r∗i > rj), we argue that manufacturer i can only become worse off by

bidding anything at or below rj, implying that manufacturer i would always want

to be the non-preferred manufacturer. We make the argument from the perspective

of manufacturer one, so the condition is r∗1 > r2 and we want to show that at any

bid of r1 ≤ r2 < r∗1, manufacturer one is worse off than being non-preferred. For the

purposes of the proof, define πi(c1, c2, q1, q2) as the equilibrium profit for manufac-

turer i given the copays and profit margins for both drug manufacturers. Note that

from the result of Proposition III.5, we know that π∗i (c1, c2, q1, q2) is increasing in c2
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and q1 while decreasing in c1 and q2. Then we have

π∗1(t1, t2, r1 − k1, p2 − k2)− π∗1(t2, t1, p1 − k1, r2 − k2)

≤ π∗1(t1, t2, r
∗
1 − k1, p2 − k2)− π∗1(t2, t1, p1 − k1, r2 − k2)

≤ π∗1(t1, t2, r
∗
1 − k1, p2 − k2)− π∗1(t2, t1, p1 − k1, r

∗
1 − k2)

= 0.

The first two inequalities follow from the monotonicity of the profit function in

terms of q1 (increasing) and q2 (decreasing). The last comes from the definition of

r∗1. Considered together, it implies that if one manufacturer has a critical number

higher than the bid of the opposing manufacturer, it will never be better off bidding

lower than the other bid.

If the critical number for one manufacturer is smaller than the bid of the other

(condition of r∗i < rj), then we argue that the best response is for manufacturer i

to bid min(pi, rj) and become preferred. Clearly any lower bid than this would only

leave manufacturer i with lower profits because it would still be preferred, but with a

lower price. If pi ≤ rj, then the bid is ri = pi and bidding any higher is not feasible.

Otherwise, when pi > rj, we argue that any bid of ri ≥ rj is worse than the bid of

r−j . For simplicity we make the argument from the perspective of i = 1. We have

π∗1(t2, t1, p1 − k1, r2 − k2) ≤ π∗1(t2, t1, p1 − k1, r
∗
1 − k2)

= π∗1(t2, t1, r
∗
1 − k1, p2 − k2)

≤ π∗1(t2, t1, r
−
2 − k1, p2 − k2),

where the inequalities follow from r∗i < rj and Proposition III.5 on the monotonicity

of the equilibrium profits in price and profit margin.

Now we prove the equilibrium result by considering cases. If p1 < min{p2, r
∗
1, r
∗
2},

then r1 < r2, and manufacturer one is the preferred drug manufacturer. In this case,
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manufacturer one cannot be better off because it cannot raise their bid above p1,

and if lower the bid, it would become preferred, but at a lower price. Manufacturer

two cannot be better off because r1 = p1 < r∗2, implying that manufacturer two’s

best response is to be non-preferred. A symmetric case of p2 < min{p1, r
∗
1, r
∗
2} can

be similarly proved.

If r∗1 < min{p2, p1, r
∗
2}, then r1 = min{p1, r

∗
2, p2} ≤ r2 = min{r∗2, p2}, and ad-

ditionally it holds that min{p1, r
∗
1} < min{r∗2, p2}. This implies that manufacturer

one is preferred, and manufacturer two is playing a best-response strategy because

r∗2 > r1. For manufacturer one, it holds that r∗1 < r2, implying that its best-response

is to bid at r1 = min(p1, r2), which is the strategy specified above. A symmetric case

is r∗2 < min{p2, p1, r
∗
1}.

If p1 = p2 ≤ min{r∗1, r∗2}, then neither manufacturer wants to be preferred, but

they both cannot bid more than their price, and so they bid exactly their price. Any

lower bids from either would guarantee being the preferred which is not desirable

(because the bid of the other manufacturer is smaller than their indifference point)

and would thus make them worse off. One of them would randomly be chosen as the

preferred drug.

If r∗1 = r∗2 ≤ min{p1, p2}, then r1 = r∗1 = r2 = r∗2, and each manufacturer is

indifferent between winning the bid or not. Neither can do better because a higher

bid would leave them equally as well off, and a lower bid would make them preferred

but worse off because they would have a lower price.

If p1 = r∗1 < min{p2, r
∗
2}, then r1 = p1 = r∗1, and r2 = min{p2, r

∗
2} and manufac-

turer one is preferred. In this case manufacturer one cannot do better because any

lower price would make it worse off (as manufacturer one is already preferred), and

any higher price is infeasible. A symmetric case is p2 = r∗2 < min{p1, r
∗
1}.
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Finally, if p1 = r∗2 < min{p2, r
∗
1}, then r1 = r2 = p1, which implies min{p1, r

∗
1} =

min{r∗2, p2}, so the preferred is determined randomly. At this point, manufacturer

1 cannot bid any higher, and is only worse off bidding lower (because r∗1 > r2).

Manufacturer 2 is indifferent at this point, and thus cannot be better off with any

other bid.

Thus the argument has established the equilibrium result of the bidding game.

5.2.9 Proof of Proposition III.10.

For the case with unconstrained coupons, we can replicate the proof of Lemma

III.2 to show that the best response strategy for manufacturer one is given by d∗1(d2) =

max{0,min{d′1(d2), U − c2 + c1 + d2}}. With the same argument from Lemma III.2,

this is increasing in c1 and d1 while decreasing in c2 with slopes between -1 and 1.

Likewise, d∗2(d1) = max{0,min{d′2(d1), L + c2 − c1 + d1}} is increasing in c2 and d1

and decreasing in c1 with slopes between -1 and 1. Taken together, these results and

arguments identical to Theorem III.3 imply the equilibrium presented in Figure 3.2,

and discussed in this proposition.

5.2.10 Proof of Proposition III.11.

This can be proven by contradiction using the exact same argument used at the

end of the proof for Theorem III.4. The proof is identical so is omitted here.

5.2.11 Proof of Proposition III.12.

The proof of this result is quite involved, and replicates much of the analysis done

in Section 3.4.

First we must replicate the analysis from the first section of the player. The patient

strategy is unchanged, as is the categorization of manufacturer two’s best response
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from Lemma III.2. The profit function for manufacturer one with the co-sponsored

coupon becomes.

π1
W = max

0≤d1≤c1
((q1 − (1− β)d1)Φ(c2 − c1 + d1 − d2))

The first order condition is

dπ1
W

dd1

= (q1 − (1− β)d1)φ(c2 − c1 + d1 − d2)− (1− β)Φ(c2 − c1 + d1 − d2)

Which simplifies to

dπ1
W

dd1

= (1− β)Φ(c2 − c1 + d1 − d2)[
(q1 − (1− β)d1)

1− β
φ(c2 − c1 + d1 − d2)

Φ(c2 − c1 + d1 − d2)
− 1]

The optimization problem is quasi-concave in the same way as before, because the

first order condition is positive and then negative. The first order solution is simply

q1 = (1−β)Φ(c2−c1+d1−d2)
φ(c2−c1+d1−d2)

+ (1− β)d1

Considered with the boundaries, this implies that we can write d∗1 = max(0,min(d′1, c1, U−

(c2 − c1) + q2), the same as before, with d′1 defined by

q1 = G(c2 − c1 + d′1 − d2)(1− β) + (1− β)d′1

Using this, we make two observations. One, d′1 is increasing in β, implying that so

is d∗1, and two, the observations from III.2 part (ii) continue to hold. Specifically, d′1

is increasing in c1 with slope between 0 and 1, and decreasing in c2 − d2 with slope

between -1 and 0.

This allows us to conclude that Φ(c2−c1 +d1(β)−d2) is increasing in c1 as before,

and increasing in β, because a larger β leads to a larger d1, which can only increase

d2 with slope less than or equal to one.

We also note that the results from Theorem III.3 part (i) and (ii) hold for this

model variation with an analogous argument to establish the equilibrium properties.
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What we will need for the sake of this argument is the equilibrium d∗1 increasing in

β and decreasing in c2.

Now we argue that there exists an optimal strategy with p1− c∗1 +βd∗1(β, c1, c2) ≤

p2 − c∗2. By contradiction, suppose that p1 − c∗1 + βd∗1(β, c1, c2) > p2 − c∗2. Then we

propose that a solution with c1 = c∗2 and β = 0 is superior. It follows right away

because p1 − c∗1 + βd∗1(β, c∗1, c
∗
2) > p2 − c∗2 > p1 − c∗2 is true, implying that a weighted

average of the first two numbers is always larger than a weighted average second and

third, at least weakly.

Then using this, we argue that c∗2 = tn. By contradiction assume that c∗2 < tn.

We propose a better solution with c∗1 unchanged and c2 = tn, and β unchanged. It

has lower cost by the following inequalities.

(p1 − c∗1 + βd∗1(β, c∗1, c
∗
2))Φ(c∗2 − c∗1 + d∗1(β, c∗1, c

∗
2)− d∗2(β, c∗1, c

∗
2))

+ (p2 − c∗2)(1− Φ(c∗2 − c∗1 + d∗1(β, c∗1, c
∗
2)− d∗2(β, c∗1, c

∗
2)))

≥ (p1 − c∗1 + βd∗1(β, c∗1, c
∗
2))Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn))

+ (p2 − c∗2)(1− Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn)))

≥ (p1 − c∗1 + βd∗1(β, c∗1, c
∗
2))Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn))

+ (p2 − tn)(1− Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn)))

≥ (p1 − c∗1 + βd∗1(β, c∗1, tn))Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn))

+ (p2 − tn)(1− Φ(tn − c∗1 + d∗1(β, c∗1, tn)− d∗2(β, c∗1, tn)))

The first inequality follows from the fact that Φ(c∗2−c∗1+d∗1(β, c∗1, c
∗
2)−d∗2(β, c∗1, c

∗
2))

is increasing in c∗2 from the argument we made above, along with the fact that

p1−c∗1+βd∗1(β, c1, c2) ≤ p2−c∗2 must hold, as we have argued. The second inequality is

immediate because tn > c∗2, and the last follows because βd∗1(β, c∗1, c
∗
2) ≥ βd∗1(β, c∗1, tn),

which follows from the fact that d∗1 is increasing in β and decreasing in c2 as argued
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above.

Now we argue that the insurer will always set c∗1 = tn, by contradiction. Suppose

that we have a solution with c∗1 < tn with c∗2 = tn and β∗. We propose a new solution

in which we find a small number δ > 0 and pertubate c1. This solution is c′1 = c∗1 +δ,

and β′ defined as

β′ = [min β : d∗1(β, c∗1 + δ, tn) = d∗1(β∗, c∗1, tn) + δ]

We can always find a β such that we reach equality here, because d∗1(β, c∗1 + δ, tn)

is continuous and increasing in β. When β = 1, the coupon is always as large as

possible.

We argue that this proposed solution has lower cost directly. We want to show

that

(p1 − c∗1 + β∗d∗1(β∗, c∗1, tn))Φ(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn))

+ (p2 − tn)(1− Φ(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn)))

≥ (p1 − c′1 + β′d∗1(β′, c′1, tn))Φ(tn − c′1 + d∗1(β′, c′1, tn)− d∗2(β′, c′1, tn))

+ (p2 − tn)(1− Φ(tn − c′1 + d′1(β′, c′1, tn)− d∗2(β′, c′1, tn)))

By definition and because player two’s strategy does not deviate with the new pro-

posed solution, we have that tn − c∗1 + d∗1(β∗, c∗1, tn) − d∗2(β∗, c∗1, tn) = tn − c′1 +

d∗1(β′, c′1, tn)− d∗2(β′, c′1, tn), this implies that this comparison simplifies to

p1 − c∗1 + β∗d∗1(β∗, c∗1, tn) ≥ p1 − c′1 + β′d∗1(β′, c′1, tn)

But we can say further because by definition c′1 = c∗1+δ and d∗1(β′, c′1, tn) = d∗1(β∗, c∗1, tn)+

δ. Our comparison reduces to:

δ + β∗d∗1(β∗, c∗1, tn)) ≥ β′d∗1(β′, c′1, tn)(5.13)
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This is the inequality we want to argue.

Suppose that our original solution (β∗, c∗1, tn) yields an interior point solution for

d∗1(β∗, c∗1, tn). Then it satisfies the first order condition for this problem, which is:

q1 = G(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn))(1− β∗) + (1− β∗)d∗1(β∗, c∗1, tn)

If this holds, then we know that d∗1(β′, c∗1 + δ, tn) must also yield an interior solution,

because the original one was an interior point and all upper bounds for the feasible

region of our problem have increased by δ.

q1 = G(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn))(1− β′) + (1− β′)(d∗1(β∗, c∗1, tn) + δ)

Combined, these imply the following

(1− β∗)d∗1(β∗, c∗1, tn) ≥ (1− β′)(d∗1(β∗, c∗1, tn) + δ)

which implies equation (5.13).

If the original solution d∗1(β∗, c∗1, tn) is not interior, then there are two possibilities,

either it is zero, or at the upper bound. If zero, then β∗ = 0 and (5.13) reduces to:

δ ≥ β′d∗1(β′, c′1, tn) = β′(δ)(5.14)

which follows right away.

The other case is that the first order condition does not hold and the upper bound

solution is optimal. In such a situation, we would have that

q1 > G(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn))(1− β∗) + (1− β∗)d∗1(β∗, c∗1, tn)

Implying that the insurer’s strategy must be sub-optimal because they can reduce

β∗ and achieve the same outcome at lower cost, unless β∗ = 0 already. If β∗ = 0,

this implies that

q1 > G(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn)) + min(c1, U − (c2 − c1) + q2)
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which implies that for small enough δ > 0, it holds that

q1 > G(tn − c∗1 + d∗1(β∗, c∗1, tn)− d∗2(β∗, c∗1, tn)) + min(c1 + δ, U − (c2 − c1 − δ) + q2)

so that β′ = 0 too, and it is obvious that equation (5.13) holds because β′ = β∗ = 0.

This concludes the argument that c∗1 = tn always.

To show that β∗ is increasing in p2 − p1, we do this by contradiction. Suppose

that there is a situation in which for some p2−p1 the optimal strategy is β, but for a

larger p̂2− p̂1 > p2−p1, the optimal strategy is some β̂, with β̂ < β. For convenience,

we define α1(β) to be the fraction who select drug one when the insurer sets β. We

know that α1(β) > α1(β̂). By the optimality of the solution at p2 − p1, it must hold

that

(p1 − tn + βd1(β))α1(β) + (p2 − tn)(1− α1(β))

≤ (p1 − tn + β̂d1(β̂)α1(β̂) + (p2 − tn)(1− α1(β̂))

Rearranging, this we get:

α1(β)[p1 + βd1(β)− p2] ≤ α1(β̂)[p1 + β̂d1(β̂)− p2]

Rearranging and multiplying by -1, we get

(p2 − p1)(α1(β)− α1(β̂) ≥ α1(β)βd1(β)− α1(β̂)β̂d1(β̂)

and finally,

(p2 − p1) ≥ α1(β)βd1(β)− α1(β̂)β̂d1(β̂)

(α1(β)− α1(β̂)

Likewise the optimality of the solution at p̂2 − p̂1, we can derive

(p̂2 − p̂1) ≤ α1(β)βd1(β)− α1(β̂)β̂d1(β̂)

(α1(β)− α1(β̂)
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Then our contradiction comes out as:

p̂2 − p̂1 ≤
α1(β)βd1(β)− α1(β̂)β̂d1(β̂)

(α1(β)− α1(β̂)

≤ p2 − p1

< p̂2 − p̂1

Therefore it cannot be true that the manufacturer would ever choose a lower β when

the price differential p2 − p1 is larger. This implies the form we presented in the

lemma.

Part (ii) follows immediately from the formulation, that the insurer is better off

under the mechanism, but others may not be.

5.2.12 Proof of Proposition III.13.

When only ω fraction of patients receive coupons, the manufacturers’ objective

functions when they make coupon decisions are unchanged. Therefore, clearly the

results from Theorem III.3 continue to hold as before. For the insurer, the problem

changes somewhat, but one can observe that β1 is increasing in c2 and decreasing

in c1 just as the equilibrium α∗1 was. With this monotonicty, one can replicate the

proof of Theorem III.4 to show that the structure of the optimal insurer strategy is

unchanged (though the specific policy may differ). Thus the other results follow as

well.

5.2.13 Proof of Proposition III.14.

The new manufacturer objective function is given as

πi = min
0≤di≤ci

(qi − ζdi)αi,(5.15)
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with ζ a fractional value.

Replicating the analysis in Lemma III.2, we can see that the derivative of the first

manufacturer’s objective is now

dπ1

dd1

= Φ(c2 − c1 − d2 + d1)

(
(q1 − ζd1)φ(c2 − c1 − d2 + d1)

Φ(c2 − c1 − d2 + d1)
− ζ
)
.(5.16)

This is still seen to be quasi-concave, but now the value of d′1(d2) is the solution to

q1 = ζG(c2−c1 +d′1−d2)+ζd′1. By similar analysis, the term d′2(d1) for manufacturer

two changes to become the solution to q2 = ζH(c2 − c1 + d′1 − d2) + ζd′2.

With these new best response conditions, the remaining results can be shown

as before, establishing a coupon equilibrium and then proceeding to the insurer’s

analysis.

Now we argue that the manufacturers coupon equilibrium (d∗1, d
∗
2) is decreasing

in ζ should the insurer be non-anticipating. First note that with the modified best-

responses discussed above, each manufacturer’s best response coupon is decreasing

in ζ, while still increasing in the competitor coupon as before, and with slope less

than one (also as before).

Then by contradiction suppose we have two values of ζ and ζ ′ with ζ ′ > ζ and two

pairs of equilibrium solutions (d∗1(ζ), d∗2(ζ)) and (d∗1(ζ ′), d∗2(ζ ′)), with d∗1(ζ ′) > d∗1(ζ).

If it is true also that d∗2(ζ ′) < d∗2(ζ), this is a contradiction because manufacturer one’s

best-response coupon is increasing in d2 and decreasing in ζ, and thus it cannot occur

for d2 to decrease with the coupon d1 increasing. So now suppose that d∗2(ζ ′)−d∗2(ζ) =

δ > 0 but also it holds that d∗1(ζ ′) − d∗1(ζ) = ε > 0. Then if ε ≤ δ, this would

contradict the fact that manufacturer one’s coupon could increase by δ, because this

cannot occur if ζ increases, and d2 only increases by less than or equal to δ. Likewise,

if ε > δ, this contradicts the best response properties for manufacturer two’s coupon

decision.
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A symmetric argument establishes that d∗2(ζ ′) > d∗2(ζ) can never occur.

Thus, it must be that when copays are fixed (as they are with a non-anticipating

insurer), lower values of ζ result in larger equilibrium coupons being offered. The

proof is complete.
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