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CHAPTER I

Introduction

Value-at-Risk (VaR) has gained increasing popularity in risk management and

regulation for a decade. However, the driving force for its use can be traced back

much further than a decade. According to the brief history of VaR described in [12]

[14], before the term “Value at Risk” was widely used in the mid 1990s, regulators

developed capital requirements for banks to reduce risk. After the Great Depression

and bank failures in the 1930s, the first regulatory capital requirement for banks were

enacted. The Securities Exchange Commission (SEC), established by the Securities

Exchange Act in 1934, required banks to keep their borrowings below 2000% of

their net capital. In 1975, SEC’s Uniform Net Capital Rule (UNCR) refined the

capital requirement in which bank’s financial assets were categorized into twelve

classes according to the security types. Each class has different capital requirement

represented by the haircut percentage. Depending on the risk, capital requirements

ranged from 0% for short term treasuries to 30% for equities. In 1980, the SEC

required financial firms to calculate the potential losses in different security classes

with 95% confidence over a 30-day interval. The capital requirements were tied to

this measure which was described as haircuts. Although the name “VaR” was not

used, it was virtually the one-month 95% VaR and banks are required to hold enough

1
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capital to cover the potential loss. In the early 1990s, the Basel Committee updated

its 1988 accord to add the capital requirements for market risk [4] [5]. The market

risk capital requirement is calculated based on the 10-day VaR with 99% confidence

level of the bank’s risky assets portfolio. Now VaR is a widely used risk measure

of the possible loss on a specific portfolio of financial assets. VaR is often used by

commercial and investment banks to capture the potential loss in the value of their

traded portfolio. In most of the applications, the VaR is used to determine the capital

or cash reserves for ensuring that the future loss can be covered and the firm will

remain solvent. Moreover, the VaR can be used for an individual asset, a portfolio

of assets or an entire company. The risk can be specified more broadly or narrowly

for special use. For example, the VaR in investment banks is specified in terms of

market volatility, interest rate changes, and foreign exchange rate changes etc.

In most of the applications, the VaR estimations are always under the assumption

that there is no trading or adjustment in the underlying portfolio during VaR horizon.

As stated in Hull’s book [9],

“VaR itself is invariably calculated on the assumption that the portfolio will

remain unchanged during the time period.”

Apparently, this assumption is unrealistic in real life. For example, some insurance

companies use one-year VaR as their risk measure. If we assume there is no trading in

one year, it is unreasonable. Companies need to adjust their trading portfolios each

day according to changes in the market. The distribution of the portfolio without

trading is significantly different from the one with certain trading strategies. From

a statistical view, VaR is a percentile of the portfolio loss distribution in the given

investment horizon. The distribution of the portfolio value is the essential compo-

nent in the VaR estimation. The distribution of the portfolio value depends on the



3

portfolio selection strategy. Therefore, the selection strategy could have significant

impact on the VaR estimation. To reflect the true risk of the portfolio, the portfolio

adjustment during investment horizon must be incorporated in the VaR estimation,

especially when the investment horizon is long.

The first goal of this study is to incorporate portfolio selection strategies and

analyze the impact of those strategies in VaR estimation. For simplicity, we denote

the VaR incorporating portfolio selection strategies by “New VaR” and the one with

the assumption of no adjustment by “Old VaR”. There are two types of portfolio

selection strategies considered in this study. The first type represents the strate-

gies derived based on the framework established by Merton (1971)[20]. In this case,

the risk-averse investor is assumed to hold the portfolio over a fixed time interval

[0,T ] and try to maximize the expected utility of the terminal wealth. The optimal

portfolio weight can be expressed in terms of the solution of a nonlinear Partial Dif-

ferential Equation (PDE), namely Hamilton-Jacobi-Bellman (HJB) equation. The

second type represents the strategies in which the weights of each asset remain con-

stant during the whole investment horizon. We call this “simple portfolio selection

strategy”. Although this type of portfolio selection strategies is not as sophisticated

as the first one, its simplicity has made it gain a lot of popularity among many

institutional investors. We analyze the new VaR incorporating different portfolio

selection strategies and compare the difference between the new VaR and old VaR.

The second goal of this study mainly concentrates on the application of VaR in

dynamic portfolio selection. The theoretical applications of VaR in risk manage-

ment and regulation can be divided roughly into two main categories [16]. The

first category is to impose a limit on the VaR of the portfolio. Another is to set

aside a VaR-based capital for the risky portfolio. For the first category, there are
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several papers analyzing the effects of the imposed VaR-limit. Vorst (2001) [26] ana-

lyzes the portfolios with options that maximize expected return under the VaR-limit

constraint. Basak and Shapiro (2001)[7] comprehensively analyze the optimal port-

folio policies of utility maximizing investors under the exogenously-imposed portfolio

VaR-limit constraints. For the second category, the Basel Committee on Banking

Supervision requires the banks to maintain a minimal level of eligible capital whose

amount is a function of the portfolio VaR. Comparing with the VaR-limit, the VaR

based capital risk management is conceptually different.

In the work of Basak and Shapiro, they consider the optimization problem with

the VaR-limit constraint. The formulation of their framework is given by:

(1.1)



maxP (T )>0E [U(P (T ))] ,

E [ξ(T )P (T )] 6 P (0),

V aRp(P, 0, T ) 6 V aR.

In this setting, P (0) and P (T ) are the initial and terminal value of the portfolio, U(·)

is the investor’s utility function, ξ(T ) is the state-price density at time T , T > 0 is the

investment horizon which coincides with the VaR horizon, and V aRp(P, 0, T ) is the

VaR of the terminal portfolio value P (T ) evaluated at time 0 with confidence level p

and V aR is exogenously-imposed limit on the VaR. There are two constraints in this

optimization framework. The first one is the constraint on the budget assuring the

expectation of the discounted portfolio value is no larger than the initial investment

in the unique martingale probability measure. The second constraint is the VaR-

limit on the terminal portfolio value. The optimal terminal portfolio value can be

described by a piecewise function of the state-price density ξ(T ). The possible range

of terminal value of ξ(T ) is divided into three intervals: (−∞, ξ), [ξ, ξ), and [ξ,∞)
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which correspond to “good states”, “intermediate states”, and “bad states” of the

portfolio, respectively. Basak and Shapiro find that, whenever the constraint is

binding, the VaR risk managers are forced to reduce losses in the “intermediate

state” with the expense of increasing loss in the “bad states”. In other words, the

VaR risk managers tend to choose a larger exposure to risky assets than they would

have invested in the absence of the VaR-limit constraints. Consequently, this strategy

leads the losses in the worst states when the large loss occurs. Similarly, Vorst (2001)

[26] also shows that the optimal policies of maximizing expected portfolio return with

VaR-limit lead to a larger exposure to extreme losses.

In risk management with VaR-based capital requirement, the risk measure VaR is

applied in a completely different way. According to the financial agreement in Basel

Accord issued by the Basel Committee on Banking Supervision, the banks must

maintain a minimal level of eligible capital at all times as a function of the portfolio

VaR. The purpose of Basel Accord is to strengthen the soundness and stability of

the international banking system [3]. In 1996, an amendment on the market risk

capital requirement was added to Basel Accord [4],[5],[6]. In this amendment, the

bank’s assets are separated into two categories: Trading book and Banking book. The

trading book contains financial instruments that are intentionally held for short-term

resale and marked-to-market [15]. The banking book consists of loans that are not

marked-to-market and the major risk of this part is credit risk. By the amendment,

the bank has to hold capital to cover the market risk of the portfolio of different

traded instruments in the trading book. The market risk capital charge is equal to

the maximum of the previous day’s 10-day VaR and the average 10-day VaR over the

last 60 business days times a multiplicative factor δ. The 10-day VaR is calculated

at 99% confidence level. The multiplier δ is between 3 and 4 and it is determined by
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back testing results [6]. To summarize, the market risk capital charge on any day t

is

(1.2) max

(
δ

1

60

60∑
i=1

V aR99%(P, t− i, 10), V aR99%(P, t− 1, 10)

)
,

where V aR99%(P, t− i, 10) is 10-day VaR of the portfolio on day t− i with confidence

level 99%.

Comparing with the practice of VaR-based capital risk management, the optimiza-

tion framework (1.1) with VaR-limit has two major shortcomings. First, it assumes

that the portfolio VaR is never reevaluated after the initial date. Many financial in-

stitutions with VaR-based risk management reevaluate VaR under certain frequency

and adjust their investment portfolios according to the updated VaR. For example,

banks complying with the Basel Accord are obligated to reevaluate the VaRs of the

risky portfolios in the trading book daily and reserve the capital according to the

updated VaRs. Therefore, the assumption of only one evaluation in VaR during

the investment horizon is not realistic. Second, the formulation (1.1) does not in-

corporate the risk capital requirement. The required capital is part of the regulated

portfolio and thus affects the portfolio VaR directly. Different trading strategies have

different VaRs which require different amounts of risk capital. The decision of banks

simultaneously influences the portfolio VaR and the required capital to cover the

risk. Therefore, in order to reflect the realistic risk management practice, the opti-

mization framework should incorporate the relationship between the risk-free asset

(used as risk capital) and the VaR of the risky portfolio.

Several studies analyze Basel Accord’s market risk requirement and develop opti-

mization framework to incorporate some characteristics of it. Inspired by the work

of Basak and Shapiro (2001), Kaplanski and Levy (2006) [16] analyze VaR-based

capital requirement regulation under an optimization formulation which is very sim-
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ilar to (1.1). They transform the Basel’s market risk capital requirement into an

inequality constraint which puts a limit on the minimum of the portfolio terminal

value. The solution of this optimization problem also has a similar form to the so-

lution in formulation (1.1). Under their new framework, they analyze the efficiency

of the VaR-based capital requirement regulation with different choices of multiplier

δ. Their results show that there is an optimal level of required eligible capital from

the regulation standpoint and the current Basel’s range of δ is within the inefficient

range. However, the VaR constraint in their framework is evaluated only at the end

of the investment horizon. Cuoco, He, and Isaenko (2007) [11] derive the optimal

portfolio selection subject to the VaR limit which is reevaluated dynamically. In their

formulation, the trader must satisfy the specified risk limit during the investment

horizon. They show that the concern expressed in the work of Basak and Shapiro do

not apply. They also consider the formulation with tail conditional expectation limit

as the constraint in the optimization which is suggested by Basak and Shapiro for

correcting the shortcoming in VaR-limit formulation. Under the situation where the

constraint is constantly reevaluated, the tail conditional expectation limit is equiva-

lent to VaR limit. However, their analysis does not completely reflect Basel Accord’s

market risk requirement because their VaR constraint is not imposed on the amount

of risk-free capital. Keppo, Kofman, and Xu (2010) [17] analyze the undesirable ef-

fect of Basel’s credit and market risk requirements on the bank. They develop their

banking model to account for the market risk capital requirement by restricting the

holding of a risky portfolio within the certain range determined by the simplified

formulation (1.2). In their formulation, the relationship between the holding of a

risky portfolio and a risk-free asset is explicitly reflected in the constraints. That is,

the buffer capital has to be larger than the product of δ and the VaR of the risky
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assets portfolio all the time. They show that if the expected return and volatility

of the risky assets portfolio are high, the market risk requirement raises the default

probability of the bank. That is, the market risk requirement is inefficient.

In this study, we extend those previous works in VaR application. There are two

major improvements we expect to accomplish. First, we construct a sophisticated

framework to develop the optimal portfolio selection strategy in which the Basel’s

VaR-based capital requirement is completely reflected. In other words, VaR-based

capital requirement is formulated in terms of a lower bound on risk free asset and

reevaluated all the time. Second, the framework can accommodate more complicated

risk asset models such as Stochastic Volatility (SV) model as well as the simple

Geometric Brownian Motion (GBM) model.

The rest of this paper is organized as follows. In Chapter II, we describe the gen-

eral model setting from which two famous models (GBM and SV) can be derived.

With this model setting, we apply Merton’s framework to derive the optimal port-

folio selection strategy when there is no constraint. In Chapter III, we analyze the

VaRs incorporating portfolio selection strategies and compare the difference between

the old VaR and new VaR. The strategies include optimal strategies derived from

Chapter II and the simple ones with constant weight. In Chapter IV, we describe

the framework for developing the optimal portfolio selection strategy in which the

Basel’s VaR-based capital requirement is completely reflected.



CHAPTER II

Dynamic Portfolio Selection

2.1 The Model Setting

We assume that the investor has two types of investment opportunities. The first

one is a risk free asset S0(t) with constant interest rate r. The second one is a group

of n risky assets whose prices is a vector process S(t) = (S1(t), ..., Sn(t))′ (′ denotes

transpose). Specifically, the asset prices satisfy the following stochastic differential

equations:

(2.1) dS0(t) = rS0(t)dt,

(2.2) dS(t) = D(S(t))µ(S)(Y (t))dt+D(S(t))σ(S)(Y (t))dW (S),

(2.3) dY (t) = µ(Y )(Y (t))dt+ σ(Y )(Y (t))dW (Y ).

In this setting, Y is a state variable for the presence of stochastic environment.

In this study, Y is used to describe the market volatility. W (S) is an n-dimensional

standard Brownian motion andW (Y ) is a standard Brownian motion. The correlation

between dW (Y ) and dW (S) is ρdt where ρ is a 1×n row vector. D(S(t)) is a diagonal

matrix with (S1(t), ..., Sn(t)) on the diagonal. The instantaneous expected return

µ(S)(Y ) is an n × 1 vector and the instantaneous standard deviation of diffusive

9
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return σ(S)(Y ) is an n× n matrix. Both of them are functions of a one-dimensional

state variable Y . In the stochastic process of Y , the drift rate µ(Y )(Y ) and volatility

σ(Y )(Y ) are scalar functions of Y.

Moreover, we further assume that the instantaneous expected return µ(S)(Y ) and

standard deviation of diffusive return σ(S)(Y ) are formulated as follows

µ(S)(Y ) = r1n + abY

σ(S)(Y ) = a
√
Y ,

(2.4)

where 1n is the n-dimensional column vector with 1 in all components i.e. 1n =

(1, ..., 1)′, a is an invertible n × n matrix and b is an n × 1 vector. As a result, the

risk premium in (2.4) is abY . This form of risk premium is also used by Merton

(1980)[21], Pan (2002)[24], and Liu (2007)[19]. For the state variable Y , the drift

rate µ(Y )(Y ) and volatility σ(Y )(Y ) in (2.3) are formulated as follows

µ(Y )(Y ) = d− cY

σ(Y )(Y ) = g
√
Y ,

(2.5)

where the parameters c, d, and g are all assumed to be nonnegative. Moreover, we

restrict the parameters d and g to satisfy d > g2/2. If this inequality is violated,

Y (t) becomes 0 at some random time τ > 0 with probability 1, and then Y(t)=0 for

all t > τ . Y (t) is a mean reverting square root process. It is obvious that the state

variable Y is always positive. The same process is used in the CIR (1985)[10] for the

spot interest rate and Heston model(1993) [13] for the stochastic volatility.

The dynamics given in (2.1)-(2.3) is a generalized form which nests two models

considered in this study. These two models are, in the order of complexity, Geometric

Brownian Motion (GBM) model and Stochastic Volatility (SV) model.

Case I, Geometric Brownian Motion (GBM) model
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This is the simplest form derived from the generalized model. In this case, the

stochastic volatility is not incorporated in the model. That is, Y = 1. The instan-

taneous expected return µ(S)(Y ) and standard deviation of diffusive return σ(S)(Y )

are then reduced to constants. The S process is formulated as follows

(2.6) dS(t) = D(S(t))(r1n + ab)dt+D(S(t))adW (S).

The risk premium R of the risky assets is a constant vector R = ab.

Case II, Stochastic Volatility (SV) model

In this case, the stochastic volatility Y is incorporated and the risk premium

R = abY is a time-varying random variable. Together with the setting (2.4)-(2.5),

the asset price dynamics becomes

(2.7) dS(t) = D(S(t))(r1n + abY (t))dt+D(S(t))a
√
Y (t)dW (S),

(2.8) dY (t) = (d− cY (t))dt+ g
√
Y (t)dW (Y ).

In this setting, the risky asset prices are driven by two sources of uncertainty: dif-

fusion in S dynamics, W (S), and diffusion in volatility dynamics, W (Y ). One should

notice that the model becomes the Heston model (1993) [13] for single risky asset

when a and b are reduced to scalars.

To construct the investor’s portfolio, we follow the framework and assumptions

in Merton (1971)[20]. The assumptions are:

1. there are no transaction costs;

2. short sales with full use of proceeds are allowed;

3. assets are traded continuously in time;

4. self-financing strategies are applied.
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Given the initial wealth P0, the dynamics of the investor’s portfolio wealth P (t) is

given by

dP (t) = [ω′µ(S)(Y (t)) + (1− ω′1n)r]P (t)dt+ ω′σ(S)(Y (t))P (t)dW (S),(2.9)

where ω is an n × 1 vector which denotes the risky assets’ relative weights. In this

setting, ω represents the portfolio selection strategy used by the investor. It can be a

constant vector, or a time-varying vector, or even a vector of functions of any other

relevant variables such as Y . At time t, the investor’s total wealth P (t) is given by

P (t) = P0exp

{∫ t

0

(
ω′µ(S)(Y (u)) + (1− ω′1n)r − 1

2
ω′Σ(S)(Y (u))ω

)
du

+

∫ t

0

ω′σ(S)(Y (u))dW (S)(u)

}
,

(2.10)

where Σ(S)(Y (u)) = σ(S)(Y (u))σ(S)(Y (u))′.
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2.2 Optimal Dynamic Portfolio Selection

In this study, we assume that the risk-averse investor holds the portfolio over a

fixed time interval [0,T ] and tries to maximize the expected utility E [U(P (T ))] over

terminal wealth. The objective function is only related to the portfolio value at time

T . Arrow (1971)[1] argues that there are three desirable properties for the investor’s

utility function. Those three properties and their mathematical formulations are:

1. positive marginal utility for wealth, i.e. dU
dP

> 0;

2. decreasing marginal utility for wealth, i.e. d2U
dP 2 < 0;

3. non-increasing absolute risk aversion, i.e. d(−d2U
dP 2/

dU
dP

)/dP ≤ 0.

Logarithmic, power, and negative exponential utility functions have these three de-

sired attributes. In this study, the power utility function is used and it has a constant

relative risk aversion ((−d2U
dP 2/

dU
dP

)P = γ) over the terminal wealth. The utility func-

tion is defined as follows

(2.11) U(P ) =


P 1−γ

1−γ , if P ≥ 0,

−∞, if P < 0,

where γ is the risk aversion coefficient within [0,1] and is an indicator of investor’s

risk appetite. The second part of the utility function is a constraint that prevents the

wealth from being negative. This utility function is a concave function and satisfies

all three desirable properties of investor’s utility function. The parameter γ would

be different for different investors. The smaller the γ is, the less risk averse the

investor is or the larger the investor’s risk appetite is . Figure 2.1 shows different

power utility functions with different choices of γ. This graph shows that as portfolio

wealth P becomes larger, the utility of the investor with large γ grows slower than
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that of the investor with small γ. The utility function converges to P , U(P ) = P ,

as γ converges to 0. This is the risk neutral case.

2.2.1 Optimization framework for portfolio selection

Following the framework established by Merton (1971)[20], we define a value func-

tion for the formulations (2.1)-(2.3)

V (P, Y, t) = max
{ω(s)}Ts=t

Et [U(P (T ))] .

and the Hamilton-Jacobi-Bellman(HJB) equation for V is:

max
{ω(t)}Tt=0

{
Vt +

1

2
ω′Σ(S)ωP 2VPP + ω′Σ(S,Y )PVPY +

1

2
Σ(Y )VY Y

+[ω′µ(S) + (1− ω′1n)r]PVP + µ(Y )VY
}

= 0,

(2.12)

where

Σ(S) = σ(S)σ(S)′ ,

Σ(S,Y ) = σ(S)ρ′σ(Y ),

Σ(Y ) = σ(Y )σ(Y )′ .

(2.13)

The terminal condition is given by

V (P, Y, T ) =
P 1−γ

1− γ
.

In order to solve for the optimal portfolio weight ω∗, we introduce the ansatz

(2.14) V (P, Y, t) =
1

1− γ
P 1−γf(Y, t),

where f is a function of Y and t satisfying the terminal condition f(Y, T ) = 1. Then,

the HJB equation (2.12) becomes

max
{ω(t)}Tt=0

{
ft +

[
(1− γ)ω′Σ(S,Y ) + µ(Y )

]
fY +

1

2
Σ(Y )fY Y

+(1− γ)
[
−γ

2
ω′Σ(S)ω + ω′(µ(S) − r1n) + r

]
f
}

= 0.

(2.15)
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The first order condition with respect to ω is

Σ(S,Y )fY +
(
−γΣ(S)ω + µ(S) − r1n

)
f = 0.

Then, the optimal portfolio weight is given by

(2.16) ω∗ =
1

γ
Σ(S)−1 (

µ(S) − r1n
)

+
1

γ
Σ(S)−1

Σ(S,Y )fY
f
.

The function f in (2.16) is an unknown function. To solve for f , we can substitute

(2.16) back to (2.15) and obtain a PDE for f . The complete form of optimal portfolio

weight can be derived by solving the PDE of f .

2.2.2 The solution of a general PDE

Before solving for the optimal portfolio weight, we first derive the solution of

a general PDE. The special case of this PDE will be used in solving the portfolio

selection problem for SV model. In this section, we consider a general PDE

(2.17) ft + C1fY Y + C2fY + C3
f 2
Y

f
+ C4f = 0,

with the terminal condition f(Y, T ) = 1. This PDE can not be solved analytically in

general. We impose some conditions on the coefficients of this PDE in order to solve

it. If all the coefficients C1, C2, C3, C4 of above PDE are linear in Y , say Ci = hi+ liY

for i = 1, ...4, then the ansatz of f is f(Y, t) = exp(A(t) + B(t)Y ), where A(t) and

B(t) are scalar functions. The corresponding partial derivatives of f are

ft = (At +BtY ) f,

fY = Bf,

fY Y = B2f.

(2.18)

When f(Y, t) = exp(A(t) +B(t)Y ) is substituted into the PDE (2.17), we have

(At +BtY )f + (h1 + l1Y )B2f + (h2 + l2Y )Bf + (h3 + l3Y )B2f + (h4 + l4Y )f = 0.
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Combining all the like terms, we have:

(At + (h1 + h3)B2 + h2B + h4) +
(
Bt + (l1 + l3)B2 + l2B + l4

)
Y = 0

In order to hold the equation for all Y, the coefficients of Y and Y 0 (terms not

related to Y) have to be zero, which leads to ordinary differential equations (ODEs)

for A(t) and B(t). The PDE (2.17) can be solved by solving the following two Riccati

equations:

(2.19) At + (h1 + h3)B2 + h2B + h4 = 0

(2.20) Bt + (l1 + l3)B2 + l2B + l4 = 0

with the terminal conditions A(T ) = 0 and B(T ) = 0. From the ODEs above, one

can notice that the ODE (2.19) for A(t) can be easily solved once B(t) is given. The

ODE for B(t) is a Riccati equation. In order to solve (2.20), we define q0 = −l4,

q1 = −l2, q2 = −(l1 + l3), and ξ =
√

(q1)2 − 4q0q2. After the transformation the

equation (2.20) becomes

(2.21) Mtt − q1Mt + q0q2M = 0,

where B(t) = − Mt

Mq2
. Depending on the value of ξ2, there are two possible solutions

for the equation (2.21).

Case I: ξ2 ≥ 0

The solution of (2.21) is given by M(t) = u1e
v1t+u2e

v2t where v1,2 =
q1±
√
q12−4q0q2

2

and u1 and u2 are certain constants to be determined by the terminal condition. From

B(t) = − Mt

Mq2
, we have

B(t) = − Mt

Mq2

= −u1v1e
v1t + u2v2e

v2t

(u1ev1t + u2ev2t)q2
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By using the terminal condition, we have u1 = −u2
v2
v1
e(v2−v1)T and the function B(t)

is given by

B(t) = − v1v2(−e−v1(T−t) + e−v2(T−t))

(−v2e−v1(T−t) + v1e−v2(T−t))q2

= − q0q2(−e(v2−v1)(T−t) + 1)

(−1
2
(q1 + ξ)e(v2−v1)(T−t) + 1

2
(q1 − ξ))q2

= − 2(eξ(T−t) − 1)q0

(q1 + ξ)(eξ(T−t) − 1) + 2ξ
.

Case II, ξ2 < 0

By defining η =
√

4q0q2 − (q1)2, the solution of (2.21) is given by M(t) =

e
1
2
q1t
(
u1cos(

1
2
ηt) + u2sin(1

2
ηt)
)

where and u1 and u2 are certain constants to be de-

termined by the terminal condition. Similarly, the function B(t) is given by

B(t) = − Mt

Mq2

= − q1

2q2

−
η
2
(−u1sin(1

2
ηt) + u2cos(

1
2
ηt))

q2(u1cos(
1
2
ηt) + u2sin(1

2
ηt))

By using the terminal condition, we have u1 = u2
q1sin( η

2
T )+ηcos( η

2
T )

ηsin( η
2
T )−q1cos( η2T )

and

B(t) = − q1

2q2

+
η(

q1sin( η
2
T )+ηcos( η

2
T )

ηsin( η
2
T )−q1cos( η2T )

sin(η
2
t)− cos(η

2
t))

2q2(
q1sin( η

2
T )+ηcos( η

2
T )

ηsin( η
2
T )−q1cos( η2T )

cos(η
2
t) + sin(η

2
t))

= − q1

2q2

+
ηq1cos[

η
2
(T − t)]− η2sin[η

2
(T − t)]

2q2(q1sin[η
2
(T − t)] + ηcos[η

2
(T − t)])

= − q2
1 + η2

2q2(q1 + ηcot[η
2
(T − t)])

= − 2q0

q1 + ηcot[η
2
(T − t)]

.

Therefore, the complete form of B(t) is

(2.22) B(t) =


− 2(eξτ−1)q0

(q1+ξ)(eξτ−1)+2ξ
, if ξ2 ≥ 0

− 2q0
q1+ηcot[ η

2
(T−t)] , if ξ2 < 0

where τ = T − t, η =
√

4q0q2 − (q1)2, q0 = −l4, q1 = −l2, q2 = −(l1 + l3) and

ξ =
√

(q1)2 − 4q0q2. Then we can substitute B(t) into ODE (2.19), A(t) can be

easily solved simply by integrating both sides of the equation.
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Liu [19] did more general work for a PDE similar to (2.17). He makes each coeffi-

cient in the PDE quadratic in Y and solves the PDE up to the solutions of ordinary

differential equations. In order to get each coefficient quadratic in Y , a lot of compli-

cated restrictions are imposed on the parameters which involve tensors calculation

and require very tremendous computational effort for parameter calibration. There-

fore, for practical purpose we use simpler constraints on the drift and diffusion terms

by setting them as linear functions of the state variable Y .

2.2.3 Optimal portfolio weight solution

The optimal portfolio weight formula (2.16) is directly related to an unknown

function f . In order to derive the complete form, we need to substitute this formula

back to the HJB equation. Depending on the parameter settings of the two models

under consideration, we have the following cases.

Case I, Geometric Brownian Motion (GBM) model

In this simple case, the parameter setting for (2.4) and (2.5) are:

(2.23) Y = 1, c = d = g = 0

The second term of (2.16) is gone, the optimal portfolio weight becomes

(2.24) ω∗ =
1

γ
Σ(S)−1 (

µ(S) − r1n
)

=
1

γ
(aa′)−1R.

where R = µ(S) − r1n. Since Y = 1, there is no need to solve for the unknown

function f in this case. When the investor has only one risky asset in the portfolio,

the optimal weight ω∗ is positively related to the risky asset risk premium R. It

suggests that the investor should long the risky asset if its risk premium is positive

or short the risky asset otherwise. The volatility parameter σ(S) = a affects the

magnitude of the optimal weight . If the risky asset is very volatile the investor
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should reduce the amount of risky asset in the long or short position. Moreover,

the optimal weight also depends on the risk-aversion of the given investor. If the

investor is more risk averse (larger γ), the optimal weight decreases in its magnitude.

If the investor has a great risk appetite (smaller γ), the optimal weight magnitude

increases.

Under the optimal trading strategy, the risky asset weight is a constant vector

when the asset price follows the GBM. Although the risky asset weight is kept con-

stant throughout the whole time interval, it does not mean that there is no trading.

On the contrary, the optimal strategy requires the investor to actively rebalance the

investment portfolio in order to maintain the optimal risky asset weight. In other

words, if the investor does not execute any trading within the given period, the quan-

tity of the asset does not change but the risky asset weight will change with the asset

price movement. In Figure 2.2, we show how the asset weight (dotted line) changes

with the asset price (solid line). If there is no trading during the given time period,

the relative asset weight increases (decreases) as the asset price increases (decreases).

Therefore, in order to maintain the constant risky asset weight, the investor needs

to buy or sell the risky assets according to the price movement as shown in the

Figure 2.3.

Case II, Stochastic Volatility (SV) model

For SV model, in order to solve ω∗, one needs to substitute the optimal weight

(2.16) into (2.15), then (2.15) becomes

ft +
1

2
Σ(Y )fY Y +

[
µ(Y ) +

1− γ
γ

Σ(S,Y )′Σ(S)−1 (
µ(S) − r1n

)]
fY

+
1− γ

2γ
Σ(Y,ρ)f

2
Y

f

+ (1− γ)

[
1

2γ

(
µ(S) − r1n

)′
Σ(S)−1

(µ(S) − r1n) + r

]
f = 0,

(2.25)
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where Σ(Y,ρ) = σ(Y )ρρ′σ(Y ). This PDE is a special case of the general PDE (2.17)

solved in the previous section. Together with (2.4), (2.5), and (2.13), the coefficients

C1, ..., C4 of the PDE are given by

C1 = h1 + l1Y =
1

2
Σ(Y )

=
1

2
g2Y,

C2 = h2 + l2Y = µ(Y ) +
1− γ
γ

Σ(S,Y )′Σ(S)−1 (
µ(S) − r1n

)
= d+

(
−c+

1− γ
γ

ρbg

)
Y,

C3 = h3 + l3Y =
1− γ

2γ
Σ(Y,ρ)

=
1

2γ
(1− γ)g2ρρ′Y,

C4 = h4 + l4Y = (1− γ)

[
1

2γ

(
µ(S) − r1n

)′
Σ(S)−1

(µ(S) − r1n) + r

]
= (1− γ)r +

1− γ
2γ

b′bY.

Since the solution of the PDE (2.17) has the form f(Y, t) = exp(A(t) + B(t)Y ), the

optimal portfolio weight (2.16) becomes

(2.26) ω∗ =
1

γ
a′−1b+

1

γ
a′−1ρgB,

where B is given by (2.22) with l1 = 1
2
g2, l2 = −c + 1−γ

γ
ρbg, l3 = 1−γ

2γ
g2ρρ′, and

l4 = 1−γ
2γ
b′b.

The optimal risky asset weight in this case is time-varying due to the stochastic

state variable Y . The risk premium R = abY and the risky asset volatility σ(S) =

a
√
Y are positively related to Y . To analyze the optimal weight with respect to risk

premium, we define a constant vector R0 = ab, namely risk premium coefficient. The

optimal weight becomes

(2.27) ω∗ =
1

γ
(aa′)−1R0 +

1

γ
a′−1ρgB
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The optimal weight of SV model is the sum of the myopic demand and the in-

tertemporal hedging demand caused by the dynamics of the state variable [19]. The

myopic demand is the risky asset weight that the investors would hold as if the state

variable is constant. It is virtually the optimal weight in GBM model. The intertem-

poral hedging demand is the adjustment on myopic demand for the uncertainty of

the state variable. When the correlation ρ between risky asset and state variable

is zero, the intertemporal hedging demand is zero since there is no needs to hedge

the uncertainty of Y . The intertemporal hedging demand converges to zero at the

end of the investment horizon. In particular, we have several remarks regarding this

time-varying function B(t).

Remark II.1. The function B(t) is non-negative and non-increasing on the interval

[0, T ].

In the SV model, we assume that a is an invertible matrix and g > 0. Together

with b = a−1R0, we have l1 = 1
2
g2 > 0, l2 = −c + 1−γ

γ
ρga−1R0, l3 = 1−γ

2γ
g2ρρ′ ≥ 0,

and l4 = 1−γ
2γ
R′0(aa′)−1R0 ≥ 0. Moreover, the ODE of B (2.20) can be revised as

(2.28) Bt = Q(B) = −(l1 + l3)B2 − l2B − l4.

This ODE is an autonomous differential equation and can be analyzed on the phase

line. On the phase line (Figure 2.4), the solution of the ODE moves along B axis.

The number and positions of equilibrium points (Bt = 0) depend on the parameters:

l1, ..., l4. The line can be segmented by the equilibrium points (grey circles) and the

direction (solid arrows) of each segment is determine by the sign of Q(B). Together

with the terminal condition B(T ) = 0, we can determined the possible direction

(dotted arrows) for the solution B(t) on the interval [0, T ]. In the three panels of

Figure 2.4, all possible positions of equilibrium points are demonstrated. Given the
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terminal condition B(T ) = 0 (black star), the possible solution must move toward the

black start on the phase line. Among all the segments shown on the diagram, only

those with dotted arrows are possible solutions. When R0 = 0, the terminal condition

coincides with the equilibrium and B is zero on the interval [0, T ]. The parameter

l2 determines the relative positions of equilibrium points on B axis. Another key

parameter ξ2 = l22 − 4(l1 + l3)l4 determines the number of the equilibrium points.

It’s obvious that all possible solutions always stay on the right-hand side of 0 on

the phase line and point from right to left (B ≥ 0 and Bt ≤ 0). Therefore, B(t) is

non-negative and non-increasing on the interval [0, T ].

Remark II.2. In the case of the portfolio with only one single risky asset, if ρ and

R0 are non-negative, B is non-decreasing with respect to R0 at any time t in [0, T ].

By taking the derivative with respect to R0 on both sides of ODE (2.28), we have

(2.29) Bt,R0 = −2(l1 + l3)BBR0 − l2BR0 −
1− γ
γa

gρB − 1− γ
γa2

R0.

Denote BR0 by H(R0). The ODE above becomes

(2.30) H
(R0)
t = [−2(l1 + l3)B − l2]H(R0) − 1− γ

γa
gρB − 1− γ

γa2
R0.

with the terminal condition H(R0)(T ) = 0. The solution of the ODE is given by

(2.31)

H(R0)(t) =

∫ T

t

(
1− γ
γa

gρB(s) +
1− γ
γa2

R0

)
exp

{∫ s

t

[2(l1 + l3)B(u) + l2]du

}
ds.

Apparently, H(R0) is non-negative when ρ and R0 are non-negative at any time t in

[0, T ]. Therefore, B is non-decreasing with respect to R0.

Remark II.3. In the case of the portfolio with one single risky asset, if ρ and R0

are non-negative, B is non-increasing with respect to the volatility coefficient a at

any time t in [0, T ].
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Similarly, by taking the derivative with respect to a on both sides of ODE (2.28),

we have the following ODE with H(a) = Ba

(2.32) H
(a)
t = [−2(l1 + l3)B − l2]H(a) +

1− γ
γa2

gρR0B +
1− γ
γa3

R2
0,

with the terminal condition H(a)(T ) = 0. The solution of the ODE is given by

(2.33)

H(a)(t) =

∫ T

t

(
−1− γ

γa2
gρR0B(s)− 1− γ

γa3
R2

0

)
exp

{∫ s

t

[2(l1 + l3)B(u) + l2]du

}
ds.

Apparently, H(a) is non-positive when ρ and R0 are non-negative at any time t in

[0, T ]. Therefore, B is non-increasing with respect to a.

By taking the derivative of ω∗ (2.27) with respect to R0 and a respectively, we

have

ω∗R0
=

1

γa2
+

1

γa
ρgH(R0),

and

ω∗a = − 2

γa3
R0 −

1

γa2
ρgB +

1

γa
ρgH(a).

Based on the previous three remarks, it is very straightforward that ω∗R0
≥ 0 and

ω∗a ≤ 0 . Therefore, we have the following result for the optimal risky asset weight.

Remark II.4. In the case of the portfolio with one single risky asset, if ρ and R0

are non-negative, ω∗ is non-decreasing with respect to R0 and is non-increasing with

respect to the volatility coefficient a at any time t in [0, T ].

However, when the correlation coefficient ρ is negative, the analysis for the optimal

weight is more complicated. As shown in Figure 2.5 - 2.6, the optimal weight could be

decreasing with R0 and increasing with a for certain parameter setting with negative

ρ.

Through the analysis of the optimal weight on risky asset, one can notice that

the GBM model and SV model share some common properties in optimal portfolio
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selection. First, the risky asset weight is positively related to risk premium R in GBM

model. In SV model, the risky asset weight is positively related to risk premium

coefficient R0 when ρ ≥ 0 and R0 ≥ 0. Second, when risk premium is non-negative,

the risky asset weight decreases as the volatility (volatility coefficient in SV model)

a increases (ρ ≥ 0 is required in SV model). Some of these results can be used to

analyze the expected utility with the optimal risky asset weight. The analysis on

the expected utility is a fundamental element for optimal portfolio selection with

the constraints of VaR-based capital requirement. However, those results might not

be valid when ρ is negative in SV model. It induces lots of complexities in the

analysis of the next step. Therefore, it becomes very difficult for us to analyze the

relationship between the expected utility obtained by the optimal risky asset weight

and the related parameters.
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Figure 2.1: Utility function for non-negative portfolio value P with different choices of γ.
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Figure 2.2:
Risky asset weight (dotted line) changes as the asset price (solid line) changes when the
share number of the asset is fixed. The risky asset price follows the GBM model with
parameters: µ(S) = 0.000278, σ(S) = 0.0315 and T = 252 days.
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Figure 2.3:
Risky asset share number (dotted line) changes as the asset price (solid line) changes
when the weight of the asset is fixed. The risky asset price follows the GBM model
with parameters: µ(S) = 0.000278, σ(S) = 0.0315 and T = 252 days.
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Figure 2.4: Phase line for the ODE of B(t) with different parameter choices.
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Figure 2.5:
The optimal weight ω∗ at time 0 changes with respect to R0 under the SV model. When
the correlation coefficient ρ is negative, the optimal weight could be decreasing with
R0. The parameters are set as: ρ = −0.5, a = 0.21, c = 0.0015, d = 0.0015, g = 0.0525
and T = 252 days.
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Figure 2.6:
The optimal weight ω∗ at time 0 changes with respect to a under the SV model. When
the correlation coefficient ρ is negative, the optimal weight could be increasing with a.
The parameters are set as: ρ = −0.5, R0 = 0.0119, c = 0.0015, d = 0.0015, g = 0.0525
and T = 252 days.



CHAPTER III

Value-at-Risk (VaR) Incorporating Portfolio Selection
Strategies

3.1 Value-at-Risk (VaR) Overview

To clarify the definition of VaR, we consider a portfolio whose value P (t) is a

time-dependent stochastic process. Given the portfolio value P (t) at any time t

and the investment horizon τ > 0, VaR with confidence level p is the loss in value

corresponding to p-quantile of the distribution of the portfolio loss P (t) − P (t + τ)

over the investment horizon. The confidence level p is usually a number slightly less

than 1 such as 99% in practice. In other words, if FP (t)−P (t+τ) denotes the cumulative

distribution function (cdf) of the loss in value over [t, t+ τ ], the VaR of the portfolio

at time t is

V aRp (P, t, τ) = F−1
P (t)−P (t+τ)(p).

Another equivalent formulation of VaR can be derived as

(3.1) V aRp (P, t, τ) = P (t)− F−1
P (t+τ)(1− p),

where FP (t+τ) is the cdf of the portfolio value P (t+τ) at time t+τ . Both formulations

provide the same information to the investors. That is, the loss of the portfolio over

the next investment horizon is no more than V aRp (P, t, τ) with probability p. For

example, if a portfolio’s two-week VaR with confidence level 95% is $1 million, it

31
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means there is a 95% chance that the value of the portfolio will drop no more than

$1 million over any given two-week period. From a statistical view, this value at

risk measures the 1 − p critical value of the probability distribution of the changes

in market value. Apparently, there are three key elements in VaR definition, a

confidence level p, the distribution of P (t + τ) and a fixed time interval over which

the risk is assessed.

In the VaR estimation, the distribution of portfolio value P (t+τ) at the end of the

investment horizon is the key component. The P (t+τ) distribution is affected by the

initial value P (t) and the portfolio selection strategy applied during the investment

horizon [t, t + τ ]. In most applications of VaR, the VaR estimation is always under

the assumption that there is no trading during the VaR horizon. Apparently, this

assumption is unrealistic in real life. The distribution of a portfolio without trading

is significantly different from the one with certain trading strategy. In Figure 3.1,

the comparison of portfolio distributions is demonstrated. Two portfolios are both

constructed with one risky asset and one risk-free asset. The risky asset price follows

the GBM. Both portfolios start with the same risky asset weight which is the optimal

risky asset weight and the same initial value which is $100. However, one portfolio is

not subject to any change during the investment horizon (T = 252 days). Another

portfolio is always adjusted by the investor in order to maintain the optimal risky

asset weight. For all levels of risk aversion parameter γ, these two portfolio value

distributions are very different. Since the distributions are different, VaR estimations

are also different. To reflect the true risk of the portfolio, the adjustment during the

investment horizon must be incorporated in the VaR estimation, especially when the

investment horizon is long. In the rest of study, we refer to the old VaR as the VaR

with the assumption of no trading or rebalancing during the VaR horizon, and the
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new VaR as the VaR incorporating certain trading strategy. The trading strategy

could be an optimal selection strategy or just as simple as the one with constant

weight on each asset.

The rest of this chapter is organized as follows. In the second section, we demon-

strate the new VaR estimation incorporating the optimal portfolio selection strategy

and analyze the difference between the old VaR and new VaR. In the third section, we

develop a theoretical framework to analyze the VaR incorporating a simple portfolio

selection strategy.
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3.2 VaR With Optimal Dynamic Portfolio Selection

The main objective of this section is to demonstrate the VaR estimation incorpo-

rating the portfolio selection strategy and the difference between the new VaR and

the old VaR. The VaR analysis is based on the portfolio consisting of a risk-free asset

and one risky asset. One of the advantages of the analysis with only one risky asset

lies in the parameter dimension and the identification of essential factors. With one

single risky asset, the number of parameters is greatly reduced comparing to the

problem with multiple risky assets. Moreover, those important factors such as drift

rate and volatility can be easily identified as scalars. On the contrary, the drift rate

is a vector and the diffusion term is a matrix in the case of multiple risky assets.

Another advantage with one single risky asset is that analytical forms of VaRs can

be derived under certain model such as GBM model. Even with a simple portfolio

consisting of a risk-free asset and one single risky asset, the difference between the

old VaR and the new VaR is very significant. The difference between these two VaRs

depends on many factors such as drift rate, volatility, the length of VaR horizon, and

the investor’s risk-averseness. In the case of multiple risky assets, more variations

will be added on the VaR difference due to the increasing number of parameters.

Therefore, the simple case with only one risky asset is used to describe the impact.

In this study, two different models are used to describe the dynamics of the risky

asset: Geometric Brownian Motion (GBM) model and Stochastic Volatility (SV)

model. Under these two models, the analytical formulation for optimal portfolio

selection can be derived given that the investor’s utility over terminal wealth is a

concave function (2.11) with constant relative risk aversion.

Both old VaR and new VaR are calculated in this section. For the purpose of
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comparison, we construct two portfolios. In the first portfolio, there is no trading ac-

tivity during the investment horizon. On the contrary, the second portfolio is actively

adjusted according to certain selection strategy. P (1) and P (2) denote the portfolio

value for the first portfolio and second portfolio, respectively. Both portfolios start

with the same initial wealth and initial risky asset weight. The VaR estimation is

based on the distribution of the wealth at the end of the investment horizon. It

is obvious that the VaR estimation based on P (1) gives the old VaR (V aR(1)) and

the VaR estimation based on P (2) gives the new VaR (V aR(2)). The analysis of the

impact of the portfolio selection on VaR is based on the difference between these two

VaRs. The VaR difference is represented by

G = V aR(1) − V aR(2).

Then, ifG is positive (negative), it means the old VaR overestimates (underestimates)

the true risk of the portfolio (the new VaR). For simplicity, the initial wealth is set

to be $100. Therefore, the estimations from either VaRs or VaR difference can be

viewed as the the percentage of the initial wealth. From all the following numerical

experiments, we notice that the VaR difference changes sign with various parameter

settings. The sign (positive or negative) of VaR difference shows whether the old

VaR overestimates or underestimates the risk of the portfolio (the new VaR). Even

with the GBM model in which analytical forms of VaR difference can be derived, the

relationship between VaR difference and relevant parameters is very complicated.

The numerical results suggest that the old VaR with no-trading assumption is not

suitable in a volatile market (large volatility)or for a long investment horizon.
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3.2.1 The case with Geometric Brownian Motion (GBM) model

In this case, parameters and optimal risky asset weight are constants. In particu-

lar, the optimal risky weight ω∗ (2.24) is positively proportional to the risk premium

R = µ(S) − r with the multiplier 1/(γσ(S)2). Without loss of generality, we can first

start the analysis of VaR difference on the R−ω plane and concentrate on the effects

of general ω and other variables. After that, we can easily extend our analysis to

incorporate the optimal risky asset weight ω∗ which is represented by a straight line

on the R− ω plane.

The portfolio value P (2)(t) with constant risky asset weight ω also follows the

GBM

dP (2)(t) = [ω(µ(S) − r) + r]P (2)(t)dt+ ωσ(S)P (2)(t)dW (S).

Over the investment horizon [0,T ], the analytical solution of P (2)(T ) is given by:

P (2)(T ) = P (2)(0)exp

([
ω(µ(S) − r) + r − 1

2
ω2σ(S)2

]
T + ωσ(S)

√
TZ

)
,

where Z is a random variable following a normal distribution with mean zero and

standard deviation one. The weight ω in this portfolio is fixed. In order to keep ω

fixed, the investor needs to actively trade based on the market change. The VaR

calculation based on this strategy is essentially the new VaR, V aR(2).

For the purpose of comparison, we construct another portfolio with the same

initial risky asset weight ω and assume the investor will not execute any trading to

adjust the portfolio. The VaR calculation based on this assumption is essentially the

old VaR, V aR(1). Since the investor will not make any adjustment to the portfolio,

the number of shares in the risky asset does not change during the given time interval

and remains at ωP (1)(0)/S(0). The portfolio value P (1)(t) at time t = T is given by:

P (1)(T ) = P (1)(0)

{
ω exp

[
(µ(S) − 1

2
σ(S)2)T + σ(S)

√
TZ

]
+ (1− w)exp(rT )

}
.
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VaR with confidence level p is the p-quantile of the loss distribution in portfolio

value over the time interval [0,T]. The confidence level p is usually set no less than

0.95. In Basel’s regulation [4], p is equal to 0.99 for the VaR estimation. By definition,

we can calculate the VaRs for the above two portfolios as follows:

V aR(1)
p = P (1)(0)

{
1− ω exp

[
(µ(S) − 1

2
σ(S)2)T + σ(S)

√
TZ1−p

]
− (1− ω)exp(rT )

}
V aR(2)

p = P (2)(0)

{
1− exp

([
ω(µ(S) − r) + r − 1

2
ω2σ(S)2

]
T + ωσ(S)

√
TZ1−p

)}
,

where Z1−p is the (1 − p)-quantile of the normal distribution with mean zero and

standard deviation one. In general, Z1−p is a negative number. In practice, we

usually use the 99th percentile of the loss and therefore Z1−p is the 1st percentile of

the normal distribution which is -2.3263.

For simplicity, we assume P (0) = P (1)(0) = P (2)(0) = 100. The difference F

between these two VaRs is:

G = V aR(1)
p − V aR(2)

p

= P (0)erT [eg1 − ωeg2 − (1− w)] ,

where

g1 =

(
ωR− 1

2
w2σ(S)2

)
T + ωσ(S)

√
TZ1−p

g2 =

(
R− 1

2
σ(S)2

)
T + σ(S)

√
TZ1−p

R = µ(S) − r.

The difference between these two VaRs is a function with multiple variables such

as r, R, ω, σ(S) and T . If we consider the optimal trading strategy ω∗ (2.24), the

difference is also related to the risk aversion coefficient γ. To analyze the effects

of all these parameters, we plot the contour map of VaR difference on the R − ω

plane (Figures 3.2- 3.3) with different choices of σ(S) and T . In all the numerical
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experiments, parameters r, R and σ(S) are set in terms of one trading day and we

assume that there are 252 trading days in one year. The Table 3.1 shows the range

of parameters and the corresponding measurement per year.

Parameter Value per trading day Value per year
r 0.00019841 5%
R [−0.00019841, 0.00039683] [−5%, 10%]

σ(S) [0.0094, 0.0441] [15%, 70%]

Table 3.1: Parameter setting for numerical experiments with the GBM model.

There are some common patterns in Figures 3.2-3.3. First, it is obvious that

G = 0 when ω = 0 or ω = 1. When ω = 0 or ω = 1, it means that the investor does

not hold any risky asset or the investor spends all the wealth in the risky asset. In

either case, the strategy with the fixed weight is the same as the passive strategy (no

trading strategy) and therefore the difference in VaR between these two strategies

is zero. Second, when the weight is between 0 and 1, G is less than zero. G < 0

implies that the old VaR is less than the new VaR. Third, when ω > 1 or ω < 0,

VaR difference G is greater than zero. That is, the old VaR is greater than the new

VaR.

As we discussed before, even the simple trading strategy with fixed constant ω

requires the investor constantly to adjust the share number of the risky asset to

maintain the preset weight. To understand the common patterns shown in those

VaR difference contour maps, we need to derive the formula of risky asset share

number movement under the circumstance where the investor maintains constant

risky asset weight. At any given time t, the risky asset weight can be represented as

(3.2) ω =
k(t)S(t)

P (2)(t)
,

where k(t) is the share number of the risky asset. Since the risky asset weight remains
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fixed, the same formula holds at time t+ τ

(3.3) ω =
k(t+ τ)S(t+ τ)

P (2)(t+ τ)
.

The ratio of share number between t and t+ τ is given by

k(t+ τ)

k(t)
=

S(t)

S(t+ τ)

P (2)(t+ τ)

P (2)(t)

=
exp

{(
ωR + r − 1

2
ω2σ(S)2

)
τ + ωσ(S)

√
τZ
}

exp
{(
R + r − 1

2
σ(S)2

)
τ + σ(S)

√
τZ
}

= exp

{
−(1− ω)

[
Rτ − 1

2
(1 + ω)σ(S)2τ + σ(S)

√
τZ

]}(3.4)

where Z is a random variable following a normal distribution with mean zero and

standard deviation one. Z is also the key variable that determines whether the risky

asset price S moves up or down between t and t+ τ . If Z satisfies

(3.5) Z > −

(
R + r − 1

2
σ(S)2

)√
τ

σ(S)
,

the risky asset price increases from t to t + τ . Otherwise, it decreases. Regarding

the share number ratio, we have the following results.

Lemma III.1. On the interval [t, t + τ ], the share number ratio k(t + τ)/k(t) in

(3.4) has the following properties:

1. When ω > 1, the ratio k(t+ τ)/k(t) < 1 if risky asset price S decreases between

t and t+ τ ;

2. When 0 < ω < 1, the ratio k(t + τ)/k(t) > 1 if risky asset price S decreases

between t and t+ τ ;

3. When ω < 0, the ratio k(t+ τ)/k(t) < 1 if risky asset price satisfies

(3.6) S(t+ τ) > S(t)exp

(
rτ +

1

2
ωσ(S)2τ

)
.
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Proof: When risky asset price S decreases between t and t+ τ , Z satisfies

(3.7) Z < −

(
R + r − 1

2
σ(S)2

)√
τ

σ(S)
.

Substituting the above inequality into (3.4), we have the first two properties.

When (3.6) holds, Z satisfies the following inequality

(3.8) Z > −

(
R− 1

2
(1 + ω)σ(S)2

)√
τ

σ(S)
.

Substituting the above inequality into (3.4), we have the last property. �

These three properties give a clear picture of the movement of the risky asset

share number under the undesirable price change. Three plots in Figure 3.4 show

the numerical results paralleling the properties listed in Lemma III.1. When ω is

positive, the investor is holding the long position of the risky asset and hoping that

the price of the risky asset will go up. Under the undesirable price change (price goes

down) of the risky asset, the investor’s behaviors are completely different for ω > 1

and 0 < ω < 1. If ω > 1, the investor will reduce the holding of the risky asset. On

the contrary, the investor will increase the holding of the risky asset if 0 < ω < 1.

According to the definition of VaR, VaR is a measurement of the loss in the extremely

undesirable scenario given that the confidence level p is large enough. In this case,

the extremely undesirable scenario is that the risky asset price continuously keeps

falling. The investor with ω > 1 will reduce the loss in the worst scenario. The

investor with 0 < ω < 1 will have much larger loss in the worst scenario. Therefore,

the old VaR overestimates the risk (VaR difference G is positive) when ω > 1 and

underestimates the risk (VaR difference G is negative) when 0 < ω < 1. With

ω < 0, the investor shorts the risky asset (k < 0) and anticipates the asset price will

decrease. Loss occurs when the risky asset price increases. According to the third
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property, investor will reduce the number of the risky asset in short position when the

risky asset price is above certain level relative to the previous price. In other words,

the investor’s behavior reduces risk in the extremely undesirable scenario in which

the risky asset price continuously increases. Therefore, the old VaR overestimates

the risk and the VaR difference G is positive. These results imply that the strategies

used by investors could greatly change the risk characteristics of the portfolio. Since

the old VaR does not account for the investor’s strategy, it cannot reflect the true

risk of portfolio.

Another important result observed from Figures 3.2-3.3 is that the absolute mag-

nitude of the VaR difference increases as the volatility σ(S) or VaR horizon T increases

for all levels of ω and R. Under a highly volatile market or a long investment horizon,

the old VaR may largely underestimate or overestimate the risk. Based on the results

shown on the contour map, we found that the types of trading strategies (long or

short the risky asset) corresponding to different levels of ω determine whether the

old VaR overestimates or underestimates the true risk. However, the volatility and

the VaR horizon determine how big is the difference between the old VaR and the

true risk.

With all the analysis based on general ω above, the VaR difference with optimal

portfolio selection is straightforward. Based on the formula (2.24), the optimal weight

is linear to the risk premium with the slope equal to 1/γσ2. On the contour map

(Figures 3.2- 3.3), the optimal weight can be represented by a straight line passing

through the origin. With small γ (less risk averse investor), the optimal weight

line is steeper. VaR differences caused by the optimal portfolio selection strategy

for different investors can be observed on the corresponding straight line on the

map. For those aggressive investors with small γ, a small change in risk premium
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would cause large change in VaR difference due to the large change in risky asset

weight. Moreover, given a fixed risk premium, VaR difference may be positive or

negative for different γ. This reflects the reality that different investors have various

strategies to achieve their investment goals and those strategies significantly impact

the VaR estimation. The old VaR without accounting for the investor’s strategy

cannot distinguish the risks among the investors with different levels of risk aversion.

3.2.2 The case with Stochastic Volatility (SV) model

Comparing with the GBM model, there are several obstacles for analyzing the VaR

difference in the SV model ((2.7)- (2.8)). First, there is no analytical form for either

the asset price or VaR. Therefore, the analysis cannot be done through deriving

formulas for some important variables such as VaR difference G and risky asset

share number k. Second, those important variables such as risk premium, volatility,

and optimal risky asset weight are time-varying. The previous analysis based on

the R − ω plane is not applicable in this case. Third, there are many parameters

in the SV model. Actually, there are 9 parameters included in the analysis. The

relationship among these parameters could be complicated. In order to overcome

these difficulties, we analyze the VaR difference based on a large random sample

from the parameter space. We draw a large sample (size of 50000) which is randomly

sampled in the 9-dimensional cube with the uniform distribution. The 9-dimensional

cube is constructed by specifying the range for each parameter. For each sample, the

optimal risky asset weight and VaR difference are calculated. The analysis is then

based on the observation of VaR difference distribution variation along different

parameters.

The parameters of the SV model can be categorized into two groups. The first

group is the group of parameters for the stochastic process of the risky asset and
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investor’s decision: a, b, ρ, γ and T . Since R0 = ab is the risky premium coefficient,

the parameter R0 is used instead of using b alone. The second group is the parameters

for the stochastic process of the state variable Y : c, d, g and the initial value Y0.

Since the Y process is a mean-reverting process, the parameter d/c represents the

equilibrium of the process and c is the rate by which the variable reverts towards

the equilibrium. In the numerical experiments, we use the ratio d/c as a parameter

instead of using d alone. All the parameters are set in terms of one trading day and

we assume that there are 252 trading days in one year. The ranges of parameters in

both groups are given by the Tables 3.2-3.3. The ranges of all those 9 parameters

form a multi-dimensional cube in the parameter space. A large sample (size of 50000)

is drawn randomly from the uniform distribution. All the numerical experiments for

the VaR difference in the SV model are conducted based on this sample.

Parameter Range
a [0.001, 0.15]
R0 [−0.000794, 0.002]
ρ [−1, 1]
γ [0.1, 0.9]
T [22, 252]

Table 3.2:
Parameter setting for the stochastic process of the risky asset price and investor decision
in numerical experiments (first group).

Parameter Range
c [0.005, 0.1]
d/c [0.05, 2]
g [0.01, 1]
Y0 [0.05, 1.5]

Table 3.3:
Parameter setting for the stochastic process of the state variable Y in numerical experi-
ments (second group).

The process for identifying the relationship between the VaR difference and any

specific parameter can be divided into three steps. First, the optimal weight and VaR

difference are calculated for each element in the sample. The sample of VaR difference
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is then formed. Second, the range of the specific parameter is evenly divided into

20 subintervals. Since the sampling is based on uniform distribution, the number

of samples falling into each subinterval is roughly 2500. Third, the VaR difference

sample is aligned with the subintervals of the specific parameter. The statistics such

as mean and quantiles of the 20 sub-samples of VaR difference are estimated. Unlike

the GBM model, the optimal risky asset weight is a function of time in the SV model.

In order to reveal the relationship between the VaR difference and the optimal risky

asset weight, the average value of ω∗ over the entire VaR horizon is used. Figures

3.5- 3.6 show the numerical results of the process for all the parameters. In each

plot, three statistics: mean, 5th-percentile and 95th-percentile of the VaR difference

are plotted against the given parameters. These three curves reveal the changes in

value and the range of the VaR difference changing with the parameters. The 6 plots

in Figure 3.5 demonstrate the relationship between the average optimal risky weight

ω∗average and parameters of risky asset price process and investor’s decision in the

first group. Graphs in Figure 3.6 demonstrate the results for the 4 parameters of

the state variable Y process in the second group. Compared with the results in the

first group, the curves of VaR difference related to second group are much flatter.

Therefore, the VaR difference is less sensitive to the parameters in the second group.

Apparently, the 6 parameters in the first group differ a lot in the relationship with

VaR difference. The results shown in the panels for parameters: ω∗average, T , and a

share some similarities with the results in the GBM case. Some common properties

lie in the panel of parameter ω∗average. First,the VaR difference tends to be zero when

the average weight, ω∗average, is close to 0 or 1. The mean of VaR difference is also

very close to zero when ω∗average is 0 or 1. Moreover, the range of VaR difference is

relatively narrow when ω∗average is 0 or 1. Second, when ω∗average is between 0 and 1,
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most of the VaR difference samples are negative. Third, the value of VaR difference

tends to be positive when ω∗average is less than 0 or greater than 1. Although the range

of VaR difference increases dramatically when ω∗average is less than 0, most samples of

the VaR difference are positive. Other significant similarities with the GBM model

lie in the results with the VaR horizon T and volatility coefficient a. It is evident

that the range of VaR difference increases as T or a increases. In the other three

plots, three curves imply that both the value and range of the VaR difference change

along with the corresponding parameters. The range of VaR difference shrinks as γ

increases. That is because the holding of risky asset is less (in absolute magnitude)

for the investor with higher γ. In such case, the VaR differences tend to zero. Similar

pattern can be observed when the risk premium coefficient R0 is close to zero. For

the correlation coefficient ρ, the curves of VaR difference are relatively flat compared

to the other five plots. One can still observe that the range of VaR difference narrows

when ρ tends to 1.

No matter how different are the VaR difference patterns shown in all the plots,

they all convey the same information. That is, the old VaR with assumption of no

trading during the VaR horizon could not reflect the true risk when the investor ap-

plies some trading strategy (sometimes the strategy is optimal) in his/her investment.

Moreover, the difference between two VaRs is sensitive to some of the parameters.

When the model for risky asset price is more complicated (more parameters), the

number of key parameters increases and the range of VaR difference varies dramati-

cally.
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3.3 VaR With Simple Portfolio Selection Strategy

In this section, the main objective is to analyze VaR incorporating simple portfolio

selection strategy for the portfolio consisting of risky assets only . Simple portfolio

selection strategy is a strategy in which the weight of each asset remains constant

during the whole investment horizon. Although this portfolio selection may not be

optimal, many investors always maintain their portfolio according to certain preset

structure in practice. Institutional investors have their own purposes and investment

guidelines for the portfolio. For example, in some insurance companies, an investment

portfolio could be used as capital for the loss reserve and the main goal of the

portfolio is not for the aggressive return. For all kinds of investment purposes, many

financial institutions have investment guideline documents in which the structure of

the portfolio is specified and the boundaries of all types of investment are given. In

some cases, the portfolio is maintained to match the preset target weight of each

type of asset. Therefore, the simple portfolio selection strategy is one of the popular

strategies in the real world. In 1996 amendment of Basel Accord [4],[5],[6], the

banks are required to calculate the VaR of the risky assets for market risk capital

requirement. The VaR estimation is essentially based on the portfolio consisting of

risky assets only.

To match reality, we construct a risky portfolio consisting of n risky assets: S(t) =

(S1(t), ..., Sn(t))′ with self-financing. The portfolio value is denoted by PR(t). With

the general setting in (2.2) and (2.4), the stochastic process for PR(t) is given by

(3.9) dPR(t) = (r + ω′abY (t))PR(t)dt+ ω′a
√
Y (t)PR(t)dW (S),

where ω satisfies the constraint ω′1n = 1. Since the term ω′adW (S) is essentially a lin-

ear combination of a random vector with multivariate normal distribution, ω′adW (S)
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is equivalent to a normal random variable with zero mean and standard deviation

√
ω′aa′ωdt. Therefore, we can define a 1-dimensional Brownian motion W (X) by

(3.10) dW (X) =
ω′a√
ω′aa′ω

dW (S).

The stochastic process PR(t) can be equivalently represented with a 1-dimensional

Brownian motion W (X) instead of the original n-dimensional Brownian motion W (S)

(3.11) dPR(t) = (r +RωY (t))PR(t)dt+ σω
√
Y (t)PR(t)dW (X),

where Rω = ω′ab and σω =
√
ω′aa′ω. Since the correlation between dW (Y ) and

dW (S) is ρ, the correlation between dW (Y ) and dW (X) is ρω = ρa′ω/
√
ω′aa′ω.

3.3.1 The case with Geometric Brownian Motion (GBM) model

Under the model of GBM, the risky portfolio PR(t) is given by

dPR(t) = (r +Rω)PR(t)dt+ σωPR(t)dW (X).(3.12)

Over the investment horizon [t, t+ τ ], the analytical solution of PR(t+ τ) is given by

PR(t+ τ) = PR(t)exp

([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ

)
,

where Z is a random variable following a normal distribution with mean zero and

standard deviation one. By definition, the VaR of the risky portfolio PR(t) at time

t with confidence level p and VaR horizon τ > 0 is given by

(3.13) V aRp(PR, t, τ) = PR(t)

{
1− exp

([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ1−p

)}
,

where Z1−p is the (1 − p)-quantile of the normal distribution with mean zero and

standard deviation one. Based on the above VaR formulation, we can define a VaR

percentage (VaR%) function φ

(3.14) φ(p, τ, ω) = 1− exp
([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ1−p

)
.
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The VaR% (φ) is not related to the size of the portfolio and only gives the relative

loss for the risky portfolio with simple portfolio strategy ω. This function is related

to the portfolio selection strategy ω, VaR confidence level p, and VaR horizon τ .

The VaR% (φ) is a good measurement for evaluating the risk of a certain portfolio

selection strategy.

Theorem III.2. For the simple portfolio selection policy ω, a risky portfolio PR

consists of n risky assets whose value processes follow GBM in (2.6) and the portfolio

value follows the stochastic process in (3.12). The VaR% (φ) (3.14) of the risky

portfolio PR with confidence level p and VaR horizon τ > 0 is a decreasing function

of Rω and an increasing function of σω if p > 50%.

Proof: The derivatives of φ (3.14) with respect to Rω and σω are

φRω = −τexp
([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ1−p

)
,

φσω = (σωτ −
√
τZ1−p)exp

([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ1−p

)
.

(3.15)

It is evident that φRω is negative. If p > 50%, Z1−p is negative and then φσω is

positive. Therefore, the VaR% is a decreasing function of Rω and is an increasing

function of σω if p > 50%. �

In practice, the VaR confidence level p is always above 90%. This theorem will

be applicable in all the VaR applications.

3.3.2 The case with Stochastic Volatility (SV) model

With the presence of state variable Y (t), the analytical solution of PR(t+ τ) over

the investment horizon [t, t+ τ ] is more complicated. From (3.11), PR(t+ τ) is given

by

(3.16)

PR(t+τ) = PR(t)exp

(∫ t+τ

t

[
r +RωY (s)− 1

2
σ2
ωY (s)

]
ds+

∫ t+τ

t

σω
√
Y (s)dW (X)(s)

)
.
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Since Y (t) is also a stochastic process, these two integrations

(3.17) k1(t, τ) =

∫ t+τ

t

Y (s)ds and k2(t, τ) =

∫ t+τ

t

√
Y (s)dW (X)(s),

are random variables with unknown distributions. The analytical form of VaR is

not available in this case. However, we still can analyze the VaR based on two key

parameters: Rω and σω. First, by definition, the VaR and VaR% (φ) of the risky

portfolio PR have the following forms

V aRp(PR, t, τ) = PR(t)
{

1− exp
[
rτ + F−1

K(t,τ)(1− p)
]}

,

φ(p, t, τ, ω) = 1− exp
[
rτ + F−1

K(t,τ)(1− p)
]
,

(3.18)

where

(3.19) K(t, τ) =

(
Rω −

1

2
σ2
ω

)
k1(t, τ) + σωk2(t, τ).

and FK(t,τ) is the cdf of the random variable K(t, τ). The key component in VaR

estimation is the (1 − p)-quantile of K(t, τ), i.e. F−1
K(t,τ)(1 − p). The relationship

between F−1
K(t,τ)(1−p) and parameters Rω can be summarized in the following lemma.

Lemma III.3. F−1
K(t,τ) is a non-decreasing function of Rω.

Proof: For simplicity, we denote K(t, τ), k1(t, τ), and k2(t, τ) by simpler symbols

K, k1, and k2 respectively. Based on (3.19), the random variable K is a linear

combination of two random variables: k1 and k2. The distribution function FK(x)

can be formulated

FK(x) = Prob

{
(k1, k2) |

(
Rω −

1

2
σ2
ω

)
k1 + σωk2 ≤ x

}
.

For the given pair of Rω,1 and Rω,2 satisfying Rω,1 < Rω,2, we have(
Rω,1 −

1

2
σ2
ω

)
k1 + σωk2 <

(
Rω,2 −

1

2
σ2
ω

)
k1 + σωk2,
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because k1 is positive. For a real number x, the corresponding two sets of (k1, k2)

pairs satisfy{
(k1, k2) |

(
Rω,2 −

1

2
σ2
ω

)
k1 + σωk2 ≤ x

}
⊆
{

(k1, k2) |
(
Rω,1 −

1

2
σ2
ω

)
k1 + σωk2 ≤ x

}
.

Therefore, the corresponding two cdfs FK1 and FK2 satisfy

(3.20) FK2(x) ≤ FK1(x).

By the definition of the inverse distribution function, we have

F−1
K1

(q) = inf
x∈R
{FK1(x) ≥ q} ,

F−1
K2

(q) = inf
x∈R
{FK2(x) ≥ q} ,

for any q ∈ [0, 1]. Based on (3.20), we have

{FK2(x) ≥ q} ⊆ {FK1(x) ≥ q} .

Therefore, the corresponding two inverse cdfs, F−1
K1

and F−1
K2

, satisfy

F−1
K2

(q) ≥ F−1
K1

(q).

and the statement of this lemma is then proven. �

Based on this lemma and the formulation of VaR% in (3.18), the following theorem

can be directly derived.

Theorem III.4. For the simple portfolio selection policy ω, a risky portfolio PR

consists of n risky assets whose value processes follow the SV mdoel in (2.7-2.8) and

the portfolio value follows the stochastic process in (3.11). The VaR% (φ) (3.18)

of the risky portfolio PR with confidence level p and VaR horizon τ > 0 is a non-

increasing function of Rω.
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Proof: By (3.18), VaR% is a decreasing function of F−1
K(t,τ)(1− p). Together with

the Lemma III.3, The VaR% is a non-increasing function of Rω. �

Unfortunately, we can not determine the relationship between the VaR% and σω

in this case. First, the parameter σω appears in both coefficients of random variables

k1 and k2. The range of random variable k2 covers all the real numbers. Second, the

correlation between k1 and k2 is unknown because the distributions of k1 and k2 are

unknown. In this study, we rely on numerical experiments to unfold the relationship

between the VaR% and σω. Figure 3.7 shows the VaR% (φ) with different choices of

Rω, σω and ρω. The range of those three parameters are summarized in the following

table. All the plots in Figure 3.7 indicate that VaR% (φ) decreases with Rω with all

Parameter Range
Rω [0, 0.004]
σω [0.01, 0.25]
ρω {−1,−0.5, 0, 0.5, 1}
c 0.05
d/c 1
g 0.1
Y0 1
τ 10 days

Table 3.4:
Parameter setting for the numerical experiments of observing the relationships between
VaR% φ and parameters: Rω, σω and ρω.

the choices of σω and ρω which matches the statement in Theorem III.4 and increases

with σω with all the choices of Rω and ρω. Moreover, the effect of σω on VaR% is

much larger than the effect of Rω.

By the theorems and lemma (III.2-III.4) and the numerical results shown in Fig-

ure 3.7, we establish the relationship between the VaR% (φ) and two key parameters:

Rω and σω for both GBM and SV models. By the risky portfolio formulation (3.11),

Rω and σω are essentially the risk premium (risk premium coefficient in the SV

model) and volatility (volatility coefficient in the SV model) of the risky portfolio.
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The market risk capital requirement in Basel Accord puts an upper bound on the

amount of capital that the banks are allowed to invest in the risky portfolio. This

upper bound is directly related to the VaR of the risky portfolio. The portfolio se-

lection for the risky portfolio directly affects these two key parameters by which the

VaR and the maximal amount of capital on the risky assets are determined. If the

investors apply a very aggressive strategy (pursuing high risk premium) to build the

risky portfolio, their portfolio will be inevitably with high volatility and large VaR.

It leads to higher market risk capital requirement and smaller amount of capital

allocated to the risky assets. It may hurt the profitability of the portfolio overall.

The relationship revealed in the theorems above give banks the guidelines to build

the risky portfolio in the proper way such that enough amount of capital is allocated

to a risky portfolio with balanced risk premium and volatility. The theorems are the

important building blocks in developing optimal portfolio selection under the Basel’s

market risk capital requirement.
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Figure 3.5:
VaR difference with respect to the parameters for the stochastic process of risky asset
and investor decision.
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Figure 3.7: VaR% φ (in percentages) for difference choices of Rω, σω, and ρω.



CHAPTER IV

Dynamic Portfolio Selection With VaR Capital requirement

4.1 VaR-based Risk Management Overview

In this study, we develop numerical schemes to find optimal portfolio selection

strategies of the trading book under Basel’s VaR-based capital requirement. The

trading book contains financial instruments that are intentionally held for short-

term resale and marked-to-market[15]. Ignoring the capital requirement for credit

risk from the banking book, we consider the portfolio consisting of risk-free asset

(used as capital) and marked-to-market risky assets. The group of risky assets forms

the risky portfolio. According to the Basel’s market risk capital requirement, the

amount of risk-free asset (1.2) is equal to the maximum of the previous day’s 10-day

VaR and the average 10-day VaR over the last 60 business days times a multiplicative

factor δ which is between 3 and 4. The VaR is estimated based on the risky portfolio

with 99% confidence level. For simplicity, we assume the market risk capital charge at

any time t is given by the positive part of the current 10-day VaR at 99% confidence

level multiplied by δ, i.e.

(4.1) δV aR99%(P, t, 10)+,

where x+ = max(x, 0). The positive operator + mathematically eliminates the pos-

sibilities of negative VaRs which lead negative risk capital requirement. Some of the

60
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assets in the trading book might also have credit risk (e.g. corporate bond) and

counterparty risk (e.g. OTC derivative). In this study, since we mainly analyze the

effect of market risk in the trading book, we assume that the capital charges for the

risk other than market risk are zero.

By the Basel’s VaR-based capital requirement, the portfolio of the trading book

can be separated into two components: risk-free asset and risky portfolio consisting

of risky assets. The investment strategy can be decomposed into two allocation

problems. The first one is the capital allocation between the risk-free asset and risky

portfolio. The second one is the portfolio selection among the risky portfolio. These

two problems are actually coupled with each other. The decision on the second

problem determines the upper bound of the capital allocated in the risky portfolio.

On the other hand, the constraint in the first problem affects the bank’s decision

on the selection strategy of the risky portfolio. Aggressive strategy may give a high

return on the risky portfolio. However, the consequence of high volatility leads to

large VaR and reduces the amount of capital allocated to the risky portfolio and the

return of the total wealth.

The rest of this chapter is organized as follows. Section 2 describes the formu-

lation of the Basel’s VaR-based capital requirement. Section 3 derives the optimal

allocation between risk-free asset and risky portfolio under Basel’s market risk cap-

ital requirement. Section 4 analyzes the expected utility obtained by the optimal

allocation derived in section 3. Section 5 develops the process to find the optimal

allocation within the risky portfolio.
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4.2 Basel’s VaR-based Capital Requirement Formulation

We assume that the trading book of the bank has one risk-free asset and n risky

assets. The price of risk-free asset is denoted by S0(t). The risk-free asset is used

as risk capital for the Basel’s VaR-based capital requirement. The prices of those

n risky assets are denoted by a vector process S(t) = (S1(t), ..., Sn(t))′ (′ denotes

transpose). The asset prices follow the general form in (2.1)-(2.3) which nests two

models (GBM and SV) under consideration in this study. The total wealth P (t) of

the whole trading book can be divided into two parts: risk-free capital PC(t) and

risky portfolio PR(t). The risk-free capital PC(t) is a portfolio consisting of only one

asset. That is the risk-free asset. The amount of capital allocated to the risk-free

capital or the share number of risk-free asset depends on the VaR of risky portfolio

PR. For the second part, the risky portfolio is a portfolio consisting of n risky assets

whose prices follow the process S(t). At any time t, the total wealth P (t) is the sum

of the risk-free capital PC(t) and the risky portfolio PR(t).

According to the Basel’s market risk capital requirement, at any time t, the

amount of risk-free capital should satisfy the following constraint

(4.2) PC(t) ≥ δV aRp (PR, t, τ)+ ,

where δ is a positive number between 3 and 4, τ=10, and p = 99%. Because of this

constraint, the bank needs to adjust the capital allocation between PC and PR from

time to time to achieve two goals. The first goal is to satisfy the Basel’s market risk

capital requirement and the second one is to maximize the return or utility of the

whole trading book. The optimization involves two allocation problems. The first

allocation problem is the allocation between PC and PR. It can be denoted by ψ
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which is the relative weight of PR and satisfies

ψ =
PR
P
.

The variable ψ is affected by the constraint in (4.2) and the bank’s decision which

depends on many factors such as risk aversion and investment purpose. The second

one is the allocation within the risky portfolio PR which can be denoted by an n-

dimensional vector ω. ω is the relative weight vector of n risky assets in PR and

satisfies ω′1n = 1. In this study, we assume that the simple portfolio selection

strategy is applied when the bank constructs the risky portfolio in the trading book.

That is, the relative weight vector ω of n risky assets is a constant vector. Under this

assumption, the bank always maintains the preset structure in the risky portfolio PR.

In this setting, the risky portfolio PR is equivalent to a portfolio with only one

hypothetical asset or index. This hypothetical index is constructed based on those n

risky assets by using the simple trading strategy ω and this constant relative weight

vector ω is always maintained. Therefore, with the general setting in (2.2) and (2.4),

the index value can be described by the following stochastic process

(4.3) dX(t) = (r + ω′abY (t))X(t)dt+ ω′a
√
Y (t)X(t)dW (S),

with initial value X(0) = 1. Since the term ω′adW (S) is essentially a linear combina-

tion of a random vector with multivariate normal distribution, ω′adW (S) is equivalent

to
√
ω′aa′ωdW (X) where the 1-dimensional standard Brownian motion W (X) is de-

fined as in (3.10)

(4.4) dW (X) =
ω′a√
ω′aa′ω

dW (S).

The stochastic process X(t) can be equivalently represented with the 1-dimensional

standard Brownian motion W (X) instead of the original n-dimensional Brownian
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motion W (S)

(4.5) dX(t) = (r +RωY (t))X(t)dt+ σω
√
Y (t)X(t)dW (X),

where Rω = ω′ab and σω =
√
ω′aa′ω. Since the correlation between dW (Y ) and

dW (S) is ρ, the correlation between dW (Y ) and dW (X) is ρω = ρa′ω/
√
ω′aa′ω. One

can notice that Rω and σω are essentially the risk premium coefficient and volatility

coefficient of the index X.

The index dynamics in (4.5) reflects the return value on each unit of capital

invested in those n risky assets with the trading strategy ω. In other words, at any

time t, one unit of capital invested in the index will have

exp

{∫ t+τ

t

(
r +RωY (s)− 1

2
σ2
ωY (s)

)
ds+

∫ t+τ

t

σω
√
Y (s)dW (X)(s)

}
in return after the investment horizon τ . Therefore, the index value X(t) can be

viewed as the “price” of the portfolio with strategy ω. The risky portfolio with

strategy ω is equivalent to buying the index X(t). If the bank invests PR(t) in the

index X(t) at time t, at the end of the investment interval [t, t + τ ], the value of

P (t+ τ) is given by

(4.6)

PR(t+τ) = PR(t)exp

(∫ t+τ

t

[
r +RωY (s)− 1

2
σ2
ωY (s)

]
ds+

∫ t+τ

t

σω
√
Y (s)dW (X)(s)

)
.

Based on this formulation, the τ -day VaR of PR(t) with confidence level p has the

following form

(4.7) V aRp (PR, t, τ) = PR(t)φ(p, Y, t, τ, ω),

where φ(p, Y, t, τ, ω) is the VaR percentage (VaR%) function defined in Chapter 3

and represents the risk of each capital unit invested on the index X. Based on
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the theorems (III.2-III.4) and numerical experiments in the previous chapter, the

VaR% function φ is a decreasing function of Rω and an increasing function of σω if

p > 50%. These results give a very important guideline for the bank to construct its

risky portfolio with balanced return and volatility for achieving maximal utility of

the whole trading book.

With the hypothetical risky index X, we can view the total wealth P (t) from a

different perspective. The portfolio P (t) in the trading book is essentially a portfolio

consisting of two assets: S0 and X. The relative weight ψ of risky portfolio PR is

essentially the relative weight on the risky index X. The portfolio selection strategy ω

in risky portfolio directly affects the risk premium coefficient Rω, volatility coefficient

σω and the correlation ρω of the index X. The VaR of risky portfolio is the product

of PR and the VaR% function φ of X. Under the assumption of self-financing, the

total wealth P (t) can be described by the following stochastic process

(4.8) dP (t) = (ψRωY (t) + r)P (t)dt+ ψσω
√
Y (t))P (t)dW (X).

In this formulation, the relative weight ψ also represents the allocation strategy

between risk-free capital and risky portoflio. It could be a function of time or any

other relevant factors. Given the capital allocation between the risk-free capital and

the risky portfolio, we have PR(t) = ψP (t). Together with (4.7), the τ -day VaR with

probability p of the risky portfolio is

V aRp (PR, t, τ) = ψP (t)φ(p, Y, t, τ, ω).

Since PC(t) = (1 − ψ)P (t), the inequality (4.2) derived from Basel’s market risky

capital requirement becomes

(4.9) ψ ≤ 1

1 + δφ(p, Y, t, τ, ω)+
.
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Therefore, to construct the portfolio with risk-free capital and risky portfolio, the

bank has to cope with two control variables ψ and ω. ω represents the asset allocation

within the risky portfolio consisting of n risky assets and ω′1n = 1. ψ is the relative

weight on the risky portfolio with the strategy ω. The inequality (4.9) gives the

constraint on the risky portfolio construction strategy ω and the capital allocation

ψ on the risky portfolio. If the bank chooses a very aggressive strategy ω, it leads

a high VaR of PR which lowers the upper bound of the capital allocation ψ on the

risky portfolio and the return of the total wealth will be limited. On the other hand,

a conservative strategy ω can increase the upper bound for the capital allocated to

the risky portfolio. However, the low return on PR could reduce the return of the

total wealth. Therefore, to find a ω with balanced return and volatility in PR is the

essential part in the optimization process.

The process of finding optimal allocation to maximize the bank’s utility in trading

book can be divided into two steps. The first step is to develop the optimal ψ∗(ω)

for any given simple portfolio selection ω in the risky portfolio. In this step, we only

concentrate on deriving the optimal allocation between risk-free capital and risky

portfolio under the constraint (4.9). The optimal solution ψ∗ is a function of ω.

Moreover, the expected utility E [U(P (T ))] obtained by ψ∗ is also a function of ω.

In further analysis, we notice that ω affects ψ∗ and expected utility only through

three parameters: Rω, σω and ρω. Instead of performing analysis based on ω directly,

we develop the relationship between the expected utility E [U(P (T ))] with strategy

ω and the parameters Rω, σω and ρω of the risky index. The relationship is the

foundation for the second step. The second step is to find the optimal ω∗ based on

the results in first step. Since ω is an n-dimensional vector, searching for an optimal

solution in a high dimensional space could be very difficult. However, the results



67

from the first step can help us convert the searching space into a parameter space

formed by Rω, σω and ρω. That is, the result derived in the first step is used to

reduce the dimension of the problem.
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4.3 Optimal Allocation Between Risky Portfolio And Risk-free Capital

In this section, the goal is to derive the optimal allocation strategy between the

risky portfolio and risk-free capital with the given simple portfolio selection strategy

ω in the risky portfolio. The allocation between the risky portfolio and risk-free

capital is represented by the relative weight ψ on the risky portfolio. As discussed

in the previous section, when ω is fixed, the risky portfolio with n risky assets is

equivalent to the portfolio with only one hypothetical risky index X. The stochastic

process ofX is given by (4.5). The relative weight ψ of the risky portfolio is essentially

the relative weight on the risky index X. The fixed ω may not be the optimal choice

for the allocation within risky portfolio. It just represents any one of the admissible

portfolio selection policies used by the bank in the risky portfolio. Since ω affects

the risk premium coefficient, volatility coefficient and correlation of the risky index,

the optimum ψ∗ is a function of the vector ω. With the optimum ψ∗(ω), the optimal

choice of ω can be derived in the next step.

The capital allocated in the risky portfolio is limited by the constraint (4.9) based

on Basel’s market risk capital requirement. According to the constraint (4.9), the

upper bound of the risky portfolio weight ψ is

1

1 + δφ(p, Y, t, τ, ω)+
,

where φ(p, Y, t, τ, ω) is the VaR% function of X. For simplicity, we define

(4.10) G(δ, p, Y, t, τ, ω) =
1

1 + δφ(p, Y, t, τ, ω)+
.

Under the objective of maximizing utility over the investment horizon [0, T ], the

optimization problem for identifying the optimal policy ψ can be formulated as the
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following framework

(4.11)


max{ψ(t)}Tt=0

E [U(P (T ))]

ψ ≤ G(δ, p, Y, t, τ, ω),

where the utility function is given by (2.11). The corresponding value function is

defined as

V (P, t) = max
{ψ(t)}Tt=0

E
[
P (T )1−γ

1− γ

]
.

Apparently, this is a constrained optimization problem. We first derive the formula-

tion of optimum ψ∗ under the general forms (4.5) and (4.8) with the state variable Y

dynamics (2.3). After that, the generalized solution is applied in the further discus-

sion in those two models (GBM and SV) under consideration. In GBM model, the

analytical form of ψ∗ can be obtained. However, in SV model, the complete form of

ψ∗ comes from a system of two nonlinear PDEs with free boundary. Therefore, we

have to rely on numerical methods to obtain ψ∗.

Combining the framework established by Merton (1971)[20] with the constraint,

the HJB equation for the problem in (4.11) is:

(4.12)



max
{ψ(t)}Tt=0

{
Vt +

1

2
ψ2Σ(X)P 2VPP + ψΣ(X,Y )PVPY +

1

2
Σ(Y )VY Y

+ (ψRωY + r)PVP + µ(Y )VY

}
= 0,

V (P, T ) = P 1−γ

1−γ ,

ψ ≤ G(δ, p, Y, t, τ, ω).

In this setting, the terms Σ(X), Σ(X,Y ), and Σ(Y ) are given by

Σ(X) = σ2
ωY,

Σ(X,Y ) = σωρωgY,

Σ(Y ) = g2Y.

(4.13)
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The terminal condition is given by

V (P, Y, T ) =
P 1−γ

1− γ
.

To solve the above optimization problem, we define a function

L = Vt +
1

2
ψ2Σ(X)P 2VPP + ψΣ(X,Y )PVPY +

1

2
Σ(Y )VY Y

+ (ψRωY + r)PVP + µ(Y )VY + α(G− ψ),

where α is a non-negative Karush-Kuhn-Tucker (KKT) multiplier (dual feasibility).

In the KKT conditions, the first-order condition Lψ = 0 (stationarity) leads

(4.14) RωY PVP + P 2VPPΣ(X)ψ + Σ(X,Y )PVPY − α = 0.

Moreover, in the KKT conditions, the primal feasibility and complementary slackness

conditions are

(4.15) G(δ, p, Y, t, τ, ω)− ψ ≥ 0,

(4.16) α (G(δ, p, Y, t, τ, ω)− ψ) = 0.

From equation (4.14), we have

ψ =− 1

Σ(X)PVPP

[
RωY VP + Σ(X,Y )VPY −

α

P

]
=ψ0 +

α

Σ(X)P 2VPP
,

(4.17)

with

(4.18) ψ0 = − 1

Σ(X)PVPP

[
RωY VP + Σ(X,Y )VPY

]
.

One can notice that ψ0 is the optimal solution for the problem without constraint.

Therefore, the effect of the constraint is represented by the second term α/Σ(X)P 2VPP

in (4.17). From the complementary slackness condition (4.16), we have two possible
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cases: α = 0 or ψ = G(δ, p, Y, t, τ, ω). The first case implies that ψ = ψ0 and ψ0

must satisfy the primal feasibility condition G(δ, p, Y, t, τ, ω)− ψ0 ≥ 0. In this case,

the constraint is not binding since the optimal solution of the unconstrained problem

satisfies the constraint. In the second case, the constraint is binding and the solution

is at the boundary of the constrain ψ = G(δ, p, Y, t, τ, ω). It implies

α = (G(δ, p, Y, t, τ, ω)− ψ0) Σ(X)P 2VPP

Therefore, we have the optimal solution ψ∗ as following

ψ∗ =


ψ0 if ψ0 < G(δ, p, Y, t, τ, ω)

G(δ, p, Y, t, τ, ω) otherwise

or

(4.19) ψ∗ = min (ψ0, G(δ, p, Y, t, τ, ω))

Substituting (4.19) into (4.12), the PDE of the value function V is given by

(4.20) 0 =



Vt + (ψ0RωY + r)PVP +
1

2
ψ2

0Σ(X)P 2VPP

+ ψ0Σ(X,Y )PVPY +
1

2
Σ(Y )VY Y + µ(Y )VY ,

if ψ0 < G(δ, p, Y, t, τ, ω)

Vt + (GRωY + r)PVP +
1

2
G2Σ(X)P 2VPP

+GΣ(X,Y )PVPY +
1

2
Σ(Y )VY Y + µ(Y )VY ,

otherwise

with the terminal condition V (P, T ) = P 1−γ

1−γ . In order to solve for V , we introduce

the ansatz

(4.21) V (P, Y, t) =
P 1−γ

1− γ
f(Y, t).

Then, ψ0 in (4.18) is given by

(4.22) ψ0 =
1

γ
Σ(X)−1

(
RωY + Σ(X,Y )fY

f

)
.
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Substituting the ansatz of V (4.21) and ψ0 (4.22) into the PDE (4.20), we obtain

(4.23)

0 =



ft +
1

2
Σ(Y )fY Y +

[
µ(Y ) +

1− γ
γ

Σ(X,Y )′Σ(X)−1

RωY

]
fY

+
1− γ

2γ
Σ(Y,ρ)f

2
Y

f
+ (1− γ)

[
1

2γ
Σ(X)−1

R2
ωY

2 + r

]
f,

if ψ0 < G(δ, p, Y, t, τ, ω)

ft +
1

2
Σ(Y )fY Y +

[
(1− γ)GΣ(X,Y ) + µ(Y )

]
fY

+

[
(1− γ)(GRωY + r)− γ(1− γ)

2
G2Σ(X)

]
f,

otherwise

where Σ(Y,ρ) = σ(Y )ρ2
ωσ

(Y ) and the terminal condition is f(Y, T ) = 1.

From formulas (4.19)-(4.23), the structure of the generalized solution of ψ∗ is

revealed. There are two components in the solution: ψ0 and G. The function G is

relatively straightforward once the VaR% function φ is given. The main obstacle for

us to derive ψ∗ is the component ψ0. The function ψ0 is related to a function f which

can be solved from PDE system (4.23). With different risky asset models, the PDE

system (4.23) could be completely different. In the rest of this section, we further

develop the procedure for obtaining ψ∗ with GBM and SV models.

In the GBM model the state variable Y is not present. f is a function of time

t and the PDEs in (4.23) are reduced to be ODEs. Moreover, ψ0 and G are just

constants. The formulation of the optimal solution ψ∗ is straightforward. That is

(4.24) ψ∗ = min

(
Rω

γσ2
ω

, G

)
.

In the SV model, the solution becomes much more complicated and the analytical

form can be obtained only when ρω = 0. In the case of ρω = 0, the optimal solution

ψ∗ is also straightforward because there is no need to solve the PDE for f . That is,

(4.25) ψ∗ = min

(
Rω

γσ2
ω

, G(δ, p, Y, t, τ, ω)

)
.

However, when ρω 6= 0, solving for ψ0 is very difficult because the key component f is

a solution of two PDEs (4.23) based on the switch condition ψ0 < G. Unfortunately,
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the switch condition itself depends on the unknown function f . In other words,

the boundary between those two PDEs is to be determined and varies with Y and

t. This is a free boundary problem. Moreover, the first PDE is also a nonlinear

PDE. Solving such PDEs is very intractable even with numerical methods. In this

study, instead of solving the PDEs in (4.23), we develop a numerical scheme based

on dynamic programming to obtain the optimal solution ψ∗ for the SV model.

First, we discretize the continuous time model (4.8) and (2.3). For the stochastic

process of the total wealth, we discretize the stochastic process of the portfolio growth

rate RP (t) instead of the portfolio P (t). The relationship between RP (t) and P (t)

are formulated as follows

P (t) = P (0)exp(RP (t)) and RP (0) = 0.

By Îto lemma, the SDE of RP (t) is given by

(4.26) dRP (t) =

(
r + ψRωY (t)− 1

2
ψ2σ2

ωY (t)

)
dt+ ψσω

√
Y (t)dW (X).

To match setting of the numerical experiment, we represent the investment horizon

T in trading days and one time step corresponds to one trading day, i.e. ∆t = 1. All

time-varying processes or functions are estimated at the sequence of discrete time

points t = 0, 1, ..., T . To distinguish the discretized variables from the original ones,

we add ” ¯ ” on top of the corresponding notation of each variable. With explicit

Euler method, the recurrence relations of RP (t) and Y (t) are given by

R̄P,t+1 = R̄P,t +

(
r + ψ̄tRωȲt −

1

2
ψ̄2
t σ

2
ωȲt

)
+ ψ̄tσω

√
Ȳtz

(X)
t

Ȳt+1 = Ȳt + d− cȲt + g
√
Ȳtz

(Y )
t .

(4.27)

where zX0 , z
X
1 ,..., are i.i.d. (identical independent distributed) standard normal and

zY0 , z
Y
1 ,..., are also i.i.d. standard normal. In the setting above, z

(X)
t and z

(Y )
t are
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two correlated standard normal random variables with correlation coefficient ρω.

Moreover, (z
(X)
t , z

(Y )
t ) and (z

(X)
s , z

(Y )
s ) are independent with each other when t 6= s.

For simplicity, we can always represent z
(X)
t in terms of z

(Y )
t and an auxiliary standard

normal random variable z
(A)
t

(4.28) z
(X)
t = ρωz

(Y )
t +

√
1− ρ2

ωz
(A)
t .

where z
(A)
t is independent with z

(Y )
t . At any time point t, the total wealth P̄t is given

by

(4.29) P̄t = P̄t−1exp(R̄P,t − R̄P,t−1).

Second, we apply the dynamic programming technique to find the optimal solu-

tions
{
ψ̄∗0, ..., ψ̄

∗
T−1

}
maximizing the expected utility of P̄T . The optimization can be

expressed as

max
{ψ̄t}T−1

t=0

E
[
P̄ 1−γ
T

1− γ

]
,

with the constraint

ψ̄t ≤ G(δ, p, Ȳt, t, τ, ω).

For simplicity, we denote G(δ, p, Ȳt, t, τ, ω) by G(Ȳt, t). The main principle of dy-

namic programming is that the optimal control sequence
{
ψ̄∗0, ..., ψ̄

∗
T−1

}
must also

be optimal for the remaining sequence at any intermediate time point t [8]. That is,{
ψ̄∗t , ..., ψ̄

∗
T−1

}
must be optimal for conditional expectation Et

[
P̄ 1−γ
T

1−γ

]
given all the

information at any time point 0 < t < T − 1. This property is very well known,

namely Principle of Optimality. Define the value function by

V̄ (t, P̄t, Ȳt) = Et
[
P̄ 1−γ
T

1− γ
|
{
ψ̄∗t , ..., ψ̄

∗
T−1

}]
.

This value function gives the conditional expectation of the utility of the terminal

portfolio value given all the information up to time t and the optimal control se-
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quence starting from t. With the value function, the principle of optimality can be

summarized by the Bellman equation

V̄ (t, P̄t, Ȳt) = max
ψ̄t<G(Ȳt,t)

Et
[
V̄ (t+ 1, P̄t+1, Ȳt+1)|ψ̄t

]
,

with the terminal condition V̄ (T, P̄T , ȲT ) =
P̄ 1−γ
T

1−γ . With the Bellman equation, we

can develop a numerical scheme to derive the optimal solution sequence {ψ̄∗t }T−1
t=0

backwards over time.

Apparently, the optimal solution ψ∗ is also a function of Y . The approximate

solution ψ̄∗ generated by a numerical scheme cannot cover all possible Y at each

time step t. In this study, a trinomial tree model introduced by Nawalkha and Beli-

aeva [22] is used to approximate the stochastic process of Y . Binomial and trinomial

tree approaches are widely accepted techniques for derivative pricing. The stochastic

evolution of the underlying variable is represented by a tree structure in which the

tree nodes and links are associated with the discretized states and transition proba-

bilities. When the volatility of the stochastic process is constant, the corresponding

tree is recombining such that the number of tree nodes is significantly reduced and

computation based on the tree is tractable. However, the tree is non-recombing when

the volatility is time-varying. In the Nawalkha and Beliaeva’s work, an efficient tri-

nomial tree for the Cox, Ingersoll, and Ross (CIR) model is developed based on the

solution presented by Nelson and Ramaswamy (NR)[23]. In our model setting, the

stochastic process of Y (t) is essentially a CIR model. In order to achieve the re-

combining property of the tree for the square root process, Nelson and Ramaswamy

suggest using a transformation of the underlying variable such that the volatility of

the new variable is constant. For the CIR model, the transformation is given by

y(t) =
2
√
Y (t)

g
.
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By taking the inverse of the above equation, the state variable Y (t) is given by

(4.30) Y (t) =
y(t)2g2

4
.

By Îto lemma, the SDE of y(t) is given by

dy(t) = µ(y)dt+ dW (Y ),

where

µ(y) =
1

y

[
1

2
c

(
4d

cg2
− y2

)
− 1

2

]
.

The trinomial tree is actually constructed based on y(t) instead of Y (t). The

resulted tree can be easily transformed into the one for Y (t) via the formula (4.30).

To distinguish from the original notations, the value of y on the tree node is denoted

by ŷ. In the trinomial tree, the branches of each tree node ŷ (except those at the

ending time point) go up to ŷ + v
√

∆t, stay at ŷ and go down to ŷ − v
√

∆t in the

next time step. According to Nawalkha and Beliaeva’s work, the parameter v is

determined by

(4.31) v =


vc if |vc −

√
1.5| < |ve −

√
1.5|

ve otherwise

where vc and ve are given by

ve =
y0/
√

∆t

F loor(y0/
√

1.5∆t)

vc =
y0/
√

∆t

F loor(y0/
√

1.5∆t+ 1)
.

(4.32)

y0 is the initial value of y(t) at time t = 0. Between vc and ve, the final value of v is

the one closest to the starting value of
√

1.5 in absolute distance. Moreover, there is

an additional constraint on v which is

(4.33) 1 6 v 6
√

2.
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This particular setting of v ensures that the probabilities are non-negative for three

different moves. For each tree node (except those at the end), the up, middle and

down moves are given by

ŷu = ŷ + v(J + 1)
√

∆t

ŷm = ŷ + vJ
√

∆t

ŷd = ŷ + v(J − 1)
√

∆t

(4.34)

where J is the multiple node jump indicator and is defined later. The corresponding

probabilities are given by

pu(ŷ) =
1

2v2
− J

2
+

1

2v
µ(y)(ŷ)

√
∆t

pd(ŷ) =
1

2v2
+
J

2
− 1

2v
µ(y)(ŷ)

√
∆t

pm(ŷ) = 1− 1

v2
.

(4.35)

The jump indicator J is set as follows

(4.36) J = Floor

(
µ(y)(ŷ)

√
∆t

v
+

1

v2

)
.

To check whether pu, pm and pd are valid probabilities, we make several observations

based on the formulas (4.33)-(4.36). First, it is obvious that the sum of pu, pm and

pd is 1. Second, based on the inequality (4.33), pm is a number between 0 and 1.

Third, from the formula of J (4.36), we have

(4.37)
µ(y)(ŷ)

√
∆t

v
− 1

v2
6 J 6

µ(y)(ŷ)
√

∆t

v
+

1

v2
.

Substituting the inequality above into the formulas of pu and pd, we have

0 6 pu, pd 6
1

v2
.

Therefore, the formulas of pu, pm and pd are valid probabilities for three different

movements in the trinomial tree.
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Moreover, the parameter J essentially controls the evolution of the tree and pre-

vents the branches move into the infeasible range of the process. The formula of J

above ensures that J can take some integer value. When J = 0, there is no multiple

node jumps and the branches extend in three directions: up, middle and down. When

J ≥ 1, the tree branches reach the bottom level of the tree and move upward. When

J ≤ −1, the tree branches reach the upper bound of the tree and move downward.

Depending on the parameters, it is possible that the tree nodes could reach zero

if the number of time steps becomes large. When a tree node ŷ becomes exactly

zero, the above formulations of branch movements and probabilities are not valid.

Nawalkha and Beliaeva provide a special treatment for it. In this case, the middle

and down moves are the same and they stay at zero, i.e.

(4.38) ŷm = ŷd = 0.

For the upward move, the up node is selected as the node closest to the zero line

where the following inequality is satisfied

(4.39) ŷu = v(J + 1)
√

∆t ≥ 2

g

√
d∆t.

The corresponding probabilities are given by

pu =
4d∆t

ŷ2
ug

2

pm = 0

pd = 1− pu.

(4.40)

After the trinomial tree of ŷ is constructed, it can be directly converted into the

tree for Y (t) by the formula (4.30). Figure 4.1 demonstrates the construction of a

trinomial tree for Y process with the first 21 time steps. The method recognizes

the upper and lower bounds of stochastic process and restricts the branches evolving
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within the range. Denote the Y value on the tree nodes by Ŷ . At any time t

(t = 0, ..., T ), there are nt tree nodes and the corresponding Y values are denoted by

Ŷt,1, ..., Ŷt,nt .

On top of the trinomial tree, we develop the numerical scheme to derive the

optimal solution sequence {ψ̄∗t }T−1
t=0 backwards over time. Starting with time T − 1,

by the Bellman equation, the value function is given by

V̄ (T − 1, P̄T−1, ȲT−1) = max
ψ̄T−1<G(ȲT−1,T−1)

ET−1

[
V̄ (T, P̄T , ȲT )|ψ̄T−1

]
= max

ψ̄T−1<G(ȲT−1,T−1)
ET−1

[
P̄ 1−γ
T

1− γ
|ψ̄T−1

]
= max

ψ̄T−1<G(ȲT−1,T−1)
ET−1

[
P̄ 1−γ
T−1

1− γ
exp

{
(1− γ)

(
r + ψ̄T−1RωȲT−1

−1

2
ψ̄2
T−1σ

2
ωȲT−1 + ψ̄T−1σω

√
ȲT−1z

(X)
T−1

)}
|ψ̄T−1

]
= max

ψ̄T−1<G(ȲT−1,T−1)

P̄ 1−γ
T−1

1− γ
exp

{
(1− γ)

(
r + ψ̄T−1RωȲT−1 −

γ

2
ψ̄2
T−1σ

2
ωȲT−1

)}
.

(4.41)

Therefore, the optimal solution at time T − 1 is given by

(4.42) ψ̄∗T−1 = min

(
Rω

γσ2
ω

, G(ȲT−1, T − 1)

)
.

Since ψ̄∗T−1 is a function of ȲT−1, on the trinomial tree, the corresponding optimal

weight ψ̄∗T−1 for {ŶT−1,1, ..., ŶT−1,nT−1
} are denoted by ψ̂∗T−1,i

(4.43) ψ̂∗T−1,i = min

(
Rω

γσ2
ω

, ĜT−1,i

)
, i = 1, ..., nT−1,

where ĜT−1,i = G(ŶT−1,i, T − 1). Similarly, the value function for each ŶT−1,i can be

formulated by

(4.44) V̂T−1,i(P̄T−1) =
P̄ 1−γ
T−1

1− γ
AT−1,i,

where

(4.45) AT−1,i = exp
{

(1− γ)
(
r + ψ̂∗T−1,iRωŶT−1,i −

γ

2
ψ̂∗

2

T−1,iσ
2
ωŶT−1,i

)}
.
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At time T −2, the computation is much more complicated because the correlation

between z(X) and z(Y ) needs to be considered in this step. In the previous step, the

expectation is estimated only based on z
(X)
T−1 because the terminal condition does not

depends on Y . However, the expectation at time T − 2 must be estimated based on

z
(X)
T−2 and z

(Y )
T−2 together. On the trinomial tree, the tree node ŶT−2,i can reach three

possible tree nodes at time T − 1: ŶT−1,i1 , ŶT−1,i2 and ŶT−1,i3 where i1, i2 and i3

are integers between 1 and nT−1. The corresponding probabilities can be denoted by

q
(T−2)
i,i1

, q
(T−2)
i,i2

and q
(T−2)
i,i3

which are determined by the formulas in (4.35) and (4.40).

Given the transition from ŶT−2,i to ŶT−1,ij (j = 1, 2, 3), z(Y ) is approximated by

(4.46) ẑ
(Y )
T−2,i,ij

=
ŶT−1,ij − ŶT−2,i − d+ cŶT−2,i

g
√
ŶT−2,i

.

Then, by formula (4.28) z(X) can be approximated by

(4.47) ẑ
(X)
T−2,i,ij

= ρωẑ
(Y )
T−2,i,ij

+
√

1− ρ2
ωz

(A).

With this setting and the given condition ȲT−2 = ŶT−2,i, the expectation of V̄ at

time T − 2 can be calculated as

ET−2

[
V̄ (T − 1, P̄T−1, ȲT−1)|ψ̄T−2

]
=ET−2

[
3∑
j=1

q
(T−2)
i,ij

P̄ 1−γ
T−1

1− γ
AT−1,ij |ψ̄T−2

]

=ET−2

[
P̄ 1−γ
T−2

1− γ

3∑
j=1

q
(T−2)
i,ij

AT−1,ijexp

{
(1− γ)

(
r + ψ̄T−2RωŶT−2,i

−1

2
ψ̄2
T−2σ

2
ωŶT−2,i + ψ̄T−2σω

√
ŶT−2,iz̄

(X)
T−2,i,ij

)}
|ψ̄T−2

]
=
P̄ 1−γ
T−2

1− γ

3∑
j=1

q
(T−2)
i,ij

AT−1,ijexp

{
(1− γ)

(
r + ψ̄T−2RωŶT−2,i

+
(1− γ)(1− ρ2

ω)− 1

2
ψ̄2
T−2σ

2
ωŶT−2,i + ψ̄T−2σωρω

√
ŶT−2,iz̄

(Y )
T−2,i,j

)}

(4.48)
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For simplicity, we define a function

B
(T−2)
i,ij

(x) =exp

{
(1− γ)

(
r + xRωŶT−2,i +

(1− γ)(1− ρ2
ω)− 1

2
x2σ2

ωŶT−2,i

+xσωρω

√
ŶT−2,iz̄

(Y )
T−2,i,ij

)}(4.49)

Then, the expectation can be revised as

(4.50) ET−2

[
V̄ (T − 1, P̄T−1, ŶT−2,i)|ψ̄T−2

]
=
P̄ 1−γ
T−2

1− γ

3∑
j=1

q
(T−2)
i,ij

AT−1,ijB
(T−2)
i,ij

(ψ̄T−2).

According to the Bellman equation, we have

(4.51) V̄ (T − 2, P̄T−2, ŶT−2,i) = max
ψ̄T−2<GT−2,i

ET−2

[
V̄ (T − 1, P̄T−1, ȲT−1)|ψ̄T−2

]
.

The optimal solution ψ̂∗T−2,i can be obtained by the following optimization expression

(4.52) ψ̂∗T−2,i = arg max
ψ̄T−2<GT−2,i

P̄ 1−γ
T−2

1− γ

3∑
j=1

q
(T−2)
i,ij

AT−1,ijB
(T−2)
i,ij

(ψ̄T−2).

The objective function is highly nonlinear. The traditional method of finding extreme

points by differentiation gives rise to a very complicated transcendental equation.

Therefore, this optimization problem has to be solved numerically. In this study,

we directly use optimization tools in MATLAB to find the maximizer in (4.52).

In MATLAB, the function fminbnd finds the minimum of a function in the given

interval. In order to utilize fminbnd, the negative of the original objective function is

used instead and the searching interval is set as [0, GT−2,i]. With the optimal solution

ψ̂∗T−2,i, we define

B
(T−2)∗
i,ij

= B
(T−2)
i,ij

(ψ̂∗T−2)

AT−2,i =
3∑
j=1

q
(T−2)
i,ij

AT−1,ijB
(T−2)∗
i,ij

.
(4.53)

Then, the value function at time T − 2 with ȲT−2 = ŶT−2,i can be formulated as

(4.54) V̂T−2,i(P̄T−2) =
P̄ 1−γ
T−2

1− γ
AT−2,i.



82

In particular, when ρω = 0, the function B
(T−2)
i,ij

is simplified as

(4.55) B
(T−2)
i,ij

(x) = exp
{

(1− γ)
(
r + xRωŶT−2,i −

γ

2
x2σ2

ωŶT−2,i

)}
.

The optimal solution ψ̂∗T−2,i can be derived analytically, i.e.

(4.56) ψ̂∗T−2,i = min

(
Rω

γσ2
ω

, GT−2,i

)
.

This result matches the formulation in (4.25).

As we continue to move backwards (shown in Figure 4.2), the numerical scheme

can be formulated similarly at each step. That is, at time point T − k (k = 2, ..., T )

and the tree node ŶT−k,i (i = 1, ..., nT−k), the optimal solution ψ̂∗T−k,i and value

function V̂T−k,i(P̄T−k) can be obtained by

ψ̂∗T−k,i = arg max
ψ̄T−k<GT−k,i

P̄ 1−γ
T−k

1− γ

3∑
j=1

q
(T−k)
i,ij

AT−k+1,ijB
(T−k)
i,ij

(ψ̄T−k)

B
(T−k)∗
i,ij

= B
(T−k)
i,ij

(ψ̂∗T−k)

AT−k,i =
3∑
j=1

q
(T−k)
i,ij

AT−k+1,ijB
(T−k)∗
i,ij

V̂T−k,i(P̄T−k) =
P̄ 1−γ
T−k

1− γ
AT−k,i.

(4.57)

Eventually, the complete ψ̂∗t,i for each t and possible i can be calculated. Moreover,

the expected utility with ψ̂∗ is given by V̂0,1(P̄0).
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4.4 Expected Utility With Optimal Allocation

Now we have the optimal allocation strategy ψ∗ between risky portfolio and risk-

free capital. ψ∗ is closely related the simple portfolio selection strategy ω. However,

the effect of ω only takes place through three parameters: Rω, σω and ρω. Rω and σω

are the risk premium coefficient and volatility coefficient of the risky index X which

is constructed by simple portfolio selection strategy ω on n risky assets. Those three

parameters affect not only the optimum ψ∗ but also the maximal expected utility

obtained through ψ∗. To analyze the effect of ω on the expected utility, we don’t

need to perform the analysis directly on ω. Instead, we just need to analyze the

effects from those three parameters.

In order to further analyze those parameters, we define a function Φ which is

the expected utility of terminal total wealth in which the simple portfolio selection

strategy ω is used to construct the risky portfolio and the optimal weight ψ∗ in (4.19)

is used for allocation between risk-free capital and risky portfolio. That is,

(4.58) Φ(Rω, σω, ρω) = E
[
P (T )1−γ

1− γ

]
and the terminal total wealth P (T ) has the following form derived from (4.8)

P (T ) = P (0)exp

{∫ T

0

[
r + ψ∗(s, Y )RωY (s)− 1

2
σ2
ωψ
∗2(s, Y )Y (s)

]
ds

+

∫ T

0

σωψ
∗(s, Y )

√
Y (s)dW (X)(s)

}
.

(4.59)

Apparently, Φ is the maximal expected utility for the given simple portfolio selection

strategy ω. The term ”maximal” is only for the fixed strategy ω. To avoid confusion,

we call Φ the ω-utility. Moreover, Φ is a function of three parameters: Rω, σω, and

ρω. In the next step, we analyze the effect of these parameters on the ω-utility for

two different models: GBM and SV.
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4.4.1 The case with Geometric Brownian Motion (GBM) model

In this case, all the parameters are constants and state variable Y is not considered

in the model. Therefore, the parameter ρω is irrelevant. The other two parameters

Rω and σω are actually the risky premium and volatility of the index X. Based on

(3.14), VaR% (φ) is given by

(4.60) φ(p, τ, ω) = 1− exp
([
r +Rω −

1

2
σ2
ω

]
τ + σω

√
τZ1−p

)
.

The Theorem (III.2) states that the VaR% (φ) of the risky portfolio PR with con-

fidence level p and VaR horizon τ > 0 decreases with Rω and increases with σω if

p > 50%. Based on the characteristics of φ, the upper bound G of the risky portfolio

weight (4.10) increases with Rω and decreases with σω. Since ρω is not in the model,

the component ψ0 (4.18) becomes

(4.61) ψ0 =
1

γ

Rω

σ2
ω

.

It is evident that ψ0 also increases with Rω and decreases with σω if Rω > 0. Since

the optimal policy ψ∗ is the minimum of ψ0 and G, ψ∗ has the same relationship

to Rω and σω as ψ0 and G. Namely, ψ∗ increases with Rω and decreases with σω.

Since the purpose of holding the risky portfolio is pursuing the higher return over

the risk-free rate for the normal investor, the risky index is constructed in such a

way that its risk premium is positive. It is possible that there are some risky assets

with negative risk premium in the index. However, the bank can short those assets

to make the overall risk premium positive. Therefore, we can always assume that

the risk premium Rω of the risky index is positive. Based on this assumption, ψ0

is always positive and so is ψ∗. With all these properties of ψ∗, we can develop the

relationship between the ω-utility and the parameters: Rω and σω.
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Theorem IV.1. Considering all the risky assets in the trading book follow the GBM

model (2.6), if the capital allocation of the trading book satisfies

1. the simple portfolio selection strategy (constant vector ω) is applied with Rω > 0;

2. the confidence level p of the risky portfolio VaR is greater than 50%;

3. the optimal policy ψ∗ from (4.19) is used to allocate capital between risky port-

folio and risk-free asset,

the expected utility of total wealth

(4.62) Φ(Rω, σω) = E
[
P (T )1−γ

1− γ

]
is an increasing function of the index risk premium Rω and a decreasing function of

the index volatility σω.

Proof: First, we derive the formula for the expected utility of total wealth under

the optimal policy ψ∗. Based on (4.8), the stochastic process of total wealth P (t)

with ψ∗ under GBM model is given by

(4.63) dP (t) = (ψ∗Rω + r)P (t)dt+ ψ∗σωdW
(X).

The analytic form of P (T ) is given by

(4.64) P (T ) = P (0)exp

{(
ψ∗Rω + r − 1

2
ψ∗

2

σ2
ω

)
T + ψ∗σω

√
TZ

}
,

where Z is a standard normal random variable. Then, the expected utility of P (T )

is

Φ(Rω, σω) = E
[
P (T )1−γ

1− γ

]
=
P (0)1−γ

1− γ
exp

{
(1− γ) (ψ∗Rω + r)T − 1

2
(1− γ)γψ∗

2

σ2
ωT

}
=
P (0)1−γ

1− γ
exp

{
(1− γ)T

[
ψ∗
(
Rω −

1

2
γψ∗σ2

ω

)
+ r

]}
.

(4.65)
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Since ψ∗ = min(ψ0, G), we have

(4.66) ψ∗ ≤ ψ0 or γψ∗σ2
ω ≤ Rω

Given any pairs of (Rω,1, Rω,2) satisfying Rω,1 < Rω,2, the corresponding ψ∗1 and ψ∗2

satisfy ψ∗1 < ψ∗2. Together with (4.66), we have

ψ∗2

(
Rω,2 −

1

2
γψ∗2σ

2
ω

)
− ψ∗1

(
Rω,1 −

1

2
γψ∗1σ

2
ω

)
=(ψ∗2 − ψ∗1)

(
Rω,2 −

1

2
γψ∗2σ

2
ω −

1

2
γψ∗1σ

2
ω

)
+ ψ∗1(Rω,2 −Rω,1)

≥(ψ∗2 − ψ∗1)

(
Rω,2

2
− Rω,1

2

)
+ ψ∗1(Rω,2 −Rω,1)

=
1

2
(ψ∗2 + ψ∗1)(Rω,2 −Rω,1) > 0.

(4.67)

Similarly, for any pair of (σω,1, σω,2) satisfying σω,1 < σω,2, the corresponding ψ∗1 and

ψ∗2 satisfy ψ∗1 > ψ∗2. Together with (4.66), we have

ψ∗2

(
Rω −

1

2
γψ∗2σ

2
ω,2

)
− ψ∗1

(
Rω −

1

2
γψ∗1σ

2
ω,1

)
=(ψ∗2 − ψ∗1)

(
Rω −

1

2
γψ∗2σ

2
ω,2 −

1

2
γψ∗1σ

2
ω,1

)
+

1

2
γψ∗1ψ

∗
2(σ2

ω,1 − σ2
ω,2)

<(ψ∗2 − ψ∗1)

(
Rω −

Rω

2
− Rω

2

)
+ 0

=0.

(4.68)

Based on the inequalities (4.67) and (4.68), the term ψ∗
(
Rω − 1

2
γψ∗σ2

ω

)
is an increas-

ing function of the index risk premium Rω and a decreasing function of the index

volatility σω. Therefore, the same property holds for the expected utility Φ(Rω, σω).

�

4.4.2 The case with Stochastic Volatility (SV) model

In this case, the analysis is much more difficult due to several reasons. First, the

optimal weight ψ∗ does not have an analytical formulation except when ρω = 0. Due

to the additional state variable Y , we have to rely on a numerical scheme to derive ψ∗
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by using dynamic programming approach. Moreover, the numerical scheme based

on a trinomial tree is used to approximate the Y process. Therefore, there is no

analytical closed form for the expected utility of the terminal total wealth. Second,

the risky portfolio selection strategy ω affects three parameters: Rω, σω, and ρω.

All of them affect the expected utility of the terminal total wealth. In the study, we

derive the analytical result on the relationship between Φ and parameter Rω with the

condition ρω = 0. For the case of ρω 6= 0, we have to rely on numerical experiments.

First, we define a set of admissible simple portfolio selection strategies ω satisfying

ρω = xρ and σω = xσ for any given real numbers xρ ∈ [−1, 1] and xσ ≥ 0

(4.69) Γ(ρω ,σω)
xρ,xσ = {ω|ω′1n = 1 and ρω = xρ and σω = xσ}.

The set of Rω on Γ
(ρω ,σω)
xρ,xσ can be defined as

(4.70) Ω(ρω ,σω)
xρ,xσ = {Rω|ω ∈ Γ(ρω ,σω)

xρ,xσ }.

If the set Ω
(ρω ,σω)
xρ,xσ is not empty, we define the restriction of function Φ to Ω

(ρω ,σω)
xρ,xσ as

(4.71) Φ|
Ω

(ρω,σω)
xρ,xσ

(Rω) = Φ(Rω, xσ, xρ) where Rω ∈ Ω(ρω ,σω)
xρ,xσ .

The following theorem for the relationship between Φ and parameters Rω is then

restricted on the sets Ω
(ρω ,σω)
xρ,xσ where xρ = 0.

Theorem IV.2. Considering all the risky assets in the trading book follow the SV

model (2.7), if the capital allocation of the trading book satisfies

1. the simple portfolio selection strategy (constant vector ω)is applied with Rω > 0

and Ω
(ρω ,σω)
xρ,xσ is not empty with xρ = 0;

2. the optimal policy ψ∗ from (4.19) is used to allocate capital between risky port-

folio and risk-free asset;
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the ω-utility Φ of total wealth restricted on the set Ω
(ρω ,σω)
xρ,xσ defined in (4.71), Φ|

Ω
(ρω,σω)
xρ,xσ

,

is a non-decreasing function of the index risk premium coefficient Rω.

Proof: Based on (4.59), Φ can be formulated as

Φ(Rω, σω, ρω) =
P (0)1−γ

1− γ
E
[
exp

{
(1− γ)

∫ T

0

(
r + ψ∗(s, Y (s))RωY (s)− 1

2
σ2
ωψ
∗2(s, Y (s))Y (s)

)
ds

+(1− γ)

∫ T

0

σωψ
∗(s, Y (s))

√
Y (s)dW (X)(s)

}]
.

(4.72)

For simplicity, we define

K(Rω, σω, ρω) =(1− γ)

∫ T

0

(
r + ψ∗(s, Y (s))RωY (s)− 1

2
σ2
ωψ
∗2(s, Y (s))Y (s)

)
ds

+ (1− γ)

∫ T

0

σωψ
∗(s, Y (s))

√
Y (s)dW (X)(s).

(4.73)

Since the state variable Y follows a stochastic process, K is a random variable with

unknown distribution. However, K|Y is a random variable with well known distri-

bution. When Y (t) is given over [0, T ],
∫ T

0
σωψ

∗(s, Y (s))
√
Y (s)dW (X)(s) is a normal

random variable with zero mean and variance
∫ T

0
σ2
ωψ
∗2(s, Y (s))Y (s)ds because the

correlation coefficient ρω between dW (X) and dW (Y ) is zero. Therefore, K|Y is a

normal random variable with mean

(1− γ)

∫ T

0

(
r + ψ∗(s, Y (s))RωY (s)− 1

2
σ2
ωψ
∗2(s, Y (s))Y (s)

)
ds

and variance

(1− γ)2

∫ T

0

σ2
ωψ
∗2(s, Y (s))Y (s)ds.

Then, E[exp(K|Y )] has closed analytical form

E[exp(K|Y )] = exp

{
(1− γ)

∫ T

0

[
r + Y (s)

(
ψ∗(s, Y (s))Rω −

γ

2
σ2
ωψ
∗2(s, Y (s))

)]
ds

}
.
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The ω-utility Φ can be formulated as

Φ =
P (0)1−γ

1− γ
EY
[
E[exp(K|Y )]

]
.

Based on this formula, Φ and E[exp(K|Y )] have the same relationship with param-

eters Rω and σω when ρω = 0. Within the formulation of E[exp(K|Y )], the term

ψ∗Rω − γ
2
σ2
ωψ
∗2 is the key component for our analysis.

When the simple portfolio selection strategy is restricted on the set Γ
(ρω ,σω)
xρ,xσ with

xρ = 0 (ρω = 0), from (4.25), the optimal policy ψ∗ satisfies the following inequality

(4.74) ψ∗ ≤ ψ0 =
1

γ

Rω

σ2
ω

.

Moreover, ψ0 increases with Rω and decreases with σω. Since the risky portfolio upper

bound G is reciprocal with VaR% function (φ), G is a non-decreasing function of Rω

according to the Theorem III.4. Therefore, the optimal policy ψ∗ is a non-decreasing

function of Rω. Together with (4.74), we can prove the terms ψ∗Rω − γ
2
σ2
ωψ
∗2 is

a non-decreasing function of the index risk premium coefficient Rω by the same

method used in the proof of Theorem IV.1. Therefore, the same property holds for

the expected utility of total wealth restricted on the set Γ
(ρω ,σω)
xρ,xσ with xρ = 0 i.e.

Φ|
Ω

(ρω,σω)
xρ,xσ

. �

For the case of ρω 6= 0, we have to rely on the numerical experiments to unfold

the relationship between Φ and those two parameters: Rω and σω. Figure 4.3 shows

the ω-utility Φ with different choices of Rω, σω and ρω. The range of those three

parameters are summarized in Table 4.1. All the plots of Figure 4.3 indicate the

same relationship between Φ and Rω, σω. First, Φ increases with Rω with all the

choices of σω and ρω. Theorem IV.2 only reveals the relation between Φ and Rω when

ρω = 0. Actually, the numerical results shown in Figure 4.3 suggest that the same

property holds for non-zero ρω. Second, Φ decreases with σω with all the choices of
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Rω and ρω. These results give the banks the same guidelines as derived in the GBM

model. That is, the optimal allocation ω∗ lies in the balanced combination of risk

premium coefficient Rω and volatility coefficient σω.

Parameter Range or Value
Rω [0, 0.004]
σω [0.01, 0.25]
ρω {−1,−0.5, 0, 0.5, 1}
c 0.05
d/c 1
g 0.1
Y0 1
γ 0.5
δ 3.5
T 252 days

Table 4.1:
Parameter setting for the numerical experiments of observing the relationship between
Φ and parameters: Rω, σω and ρω.

In brief, the results from Theorems IV.1-IV.2 and the numerical results shown

in Figure 4.3 give a very important guideline in the next step for finding the opti-

mal allocation ω∗ within the risky portfolio. First, for any simple portfolio selection

strategy ω in the risky portfolio, the bank can achieve the maximal expected util-

ity (ω-utility Φ) of the total wealth through the allocation strategy ψ∗ formulated

in (4.19). Second, the strategy ω affects Φ of the total wealth through three pa-

rameters: Rω, σω and ρω. Especially, when certain condition is satisfied, Φ is an

increasing function of Rω and a decreasing function of σω. In the next step, since the

optimal allocation ω∗ within the risky portfolio is an n-dimensional vector, in order

to avoid searching in the n-dimensional space, the characteristics of ω-utility Φ must

be utilized in the optimization process.
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4.5 Optimal Allocation Within Risky Portfolio

The goal of this section is to develop an algorithm to search for the optimal al-

location ω∗ within the risky portfolio. The results from Theorems IV.1-IV.2 and

numerical experiments in previous section lay down the groundwork for this step.

Although two different algorithms are developed based on different risky asset mod-

els, both of them utilize the relationship between ω-utility and parameters: Rω and

σω.

4.5.1 The case with Geometric Brownian Motion (GBM) model

In this case, the simple portfolio selection strategy ω affects the ω-utility Φ of the

total wealth through only two parameters: Rω and σω. According to the Theorem

IV.1, Φ is an increasing function of the index risk premium Rω and a decreasing

function of the index volatility σω. Therefore, when searching for the optimal ω∗, the

banks have two optimization processes simultaneously. The first one is to maximize

Rω and the second one is to minimize σω. Rω is linear with ω and σ2
ω is quadratic

with ω i.e.

Rω = ω′ab and σ2
ω = ω′aa′ω.

Unfortunately, these two parameters move together with ω. Usually, higher Rω comes

with higher σω. Therefore, the optimal ω∗ lies in the balanced combination of Rω

and σω. In order to avoid searching in an n-dimensional space, we first develop a

method to find the ω for a given Rω with the minimal σω.

Lemma IV.3. Considering the constrained minimization problem

min
Θω=θ

ω′Aω

where A is an n × n positive definite matrix, Θ is an m × n (m < n) matrix and
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θ is an m-dimensional vector, if there exist at least one solution ω satisfying the

constraint

(4.75) Θω = θ,

the solution of the problem is given by

(4.76) ω̂ = −1

2
A−1Θ′α,

where α is an m-dimensional vector, i.e. α = (α1, ..., αm)′. α is the solution of the

following linear equation

(4.77) − 1

2
ΘA−1Θ′α = θ.

In particular, if the rank of matrix Θ is m, α is given by

(4.78) α = −2(ΘA−1Θ′)−1θ.

Proof: With the Lagrangian multiplier α = (α1, ..., αm)′, we define the Lagrange

function

L = ω′Aω + α′(Θω − θ).

The formula (4.76) can be directly derived from the first order condition of L

Lω = 2Aω + Θ′α = 0.

Substituting (4.76) into the constraint (4.75), we have the linear equation (4.77). If

there is at least one solution for the constrain (4.75), the vector θ is in the column

space of the matrix Θ. Since matrix A is positive definite, so is its inverse A−1. By

Cholesky decomposition, we have

A−1 = UU ′,
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where U is a lower triangular and invertible matrix. Therefore, the matrix ΘA−1Θ′

can be formulated as

ΘUU ′Θ′.

By Theorem A.1 and A.5, the vector θ is also in the column space of the matrix

ΘUU ′Θ′ which guarantees the existence of solution in the linear equation (4.77). If

the rank of the matrix Θ is m, the matrix ΘUU ′Θ′ is invertible by Theorem A.1 and

A.6 and the solution of the linear equation can be represented in (4.78). �

This lemma enables us to choose ω from the set

Γ(Rω)
xR

= {ω|1′nω = 1 and Rω = xR}

with the lowest possible σω. Since the ω-utility Φ decreases with σω by Theorem

IV.1, the lemma essentially enables us to find the ω for the highest Φ within the pool

of strategies giving the same risk premium xR. We denote this lowest possible σω

for the given xR by σ̂(xR) and the corresponding ω by ω̂(xR). According to Lemma

IV.3, σ̂2(xR) and ω̂(xR) can be formulated as

ω̂(xR) = A−1Θ′(ΘA−1Θ′)−1θ,

σ̂2(xR) = θ′(ΘA−1Θ′)−1θ,

(4.79)

where A = aa′, Θ = (1n, ab)
′ and θ = (1, xR)′. The optimal allocation ω∗ within the

risky portfolio lies in the set

Γ = {ω̂(x)|x ∈ R̂},

where R̂ is the set of all possible Rω. Therefore, only searching in the interval of

possible Rω is needed for the optimal ω∗. In other words, the optimization process

is essentially to search the optimal x∗R in the interval of Rω instead of searching in

the n-dimension space of ω. In order to develop the optimization framework, we also
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need the following notations

ψ̂0(xR) =
1

γ

xR
σ̂(xR)2

,

Ĝ(xR) = G(xR, σ̂(xR)),

φ̂(xR) = φ(xR, σ̂(xR)),

ψ̂(xR) = min(ψ̂0(xR), Ĝ(xR)),

Φ̂(xR) = Φ(xR, σ̂(xR))

(4.80)

Equipped with the results in Lemma IV.3 and formulation of Φ in (4.65), we have

(4.81) Φ̂(xR) =
P (0)1−γ

1− γ
exp

{
(1− γ)T

[
ψ̂(xR)

(
xR −

1

2
γψ̂(xR)σ̂2(xR)

)
+ r

]}
.

The optimization process is essentially finding the suitable risk premium x∗R to max-

imize Φ̂(xR) and the maximum Φ̂∗ is the global maximum of Φ.

If the function Φ̂(xR) is differentiable, it is very straightforward to find the op-

timum x∗R. Unfortunately, Φ̂ is not differentiable for all xR because ψ̂ is not differ-

entiable. ψ̂ is the minimum of ψ̂0 and Ĝ. Based on these two components of ψ̂, we

define

Φ̂(ψ̂0)(xR) =
P (0)1−γ

1− γ
exp

{
(1− γ)T

[
ψ̂0(xR)

(
xR −

1

2
γψ̂0(xR)σ̂2(xR)

)
+ r

]}
Φ̂(Ĝ)(xR) =

P (0)1−γ

1− γ
exp

{
(1− γ)T

[
Ĝ(xR)

(
xR −

1

2
γĜ(xR)σ̂2(xR)

)
+ r

]}
(4.82)

Then, Φ̂ can be formulated in a different form

(4.83) Φ̂(xR) =


Φ̂(ψ̂0)(xR) if ψ̂0(xR) < Ĝ(xR)

Φ̂(Ĝ)(xR) otherwise

Therefore, the maximizer x∗R of Φ̂ can be one of the following three cases:

1. the maximizer xψ̂0∗
R of Φ̂(ψ̂0);
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2. the maximizer xĜ∗R of Φ̂(Ĝ);

3. elements in {xIR|ψ̂0(xIR) = Ĝ(xIR)}.

In brief, the optimization in this case can be reduced to the problem of finding

solutions for three simpler problems which can be solved either analytically or nu-

merically.

For the first case, xψ̂0∗
R can be derived by solving the equation dΦ̂(ψ̂0)

dxR
= 0. By

(4.82), we have

Φ̂(ψ̂0)(xR) =
P (0)1−γ

1− γ
exp

{
(1− γ)T

(
x2
R

2γσ̂2(xR)
+ r

)}
.

The equation dΦ̂(ψ̂0)

dxR
= 0 is equivalent to

d

(
x2
R

σ̂2(xR)

)
/dxR = 0,

where σ̂2 is defined in (4.79). Then, we have

2xRσ̂
2(xR)− x2

R
dσ̂2(xR)
dxR

σ̂4(xR)
= 0.

It is equivalent to the following equation

2σ̂2(xR)− xR
dσ̂2(xR)

dxR
= 0.

We set (ΘA−1Θ′)−1 = Λ, where

Λ =

 α11 α12

α21 α22

 .
Then, the equation becomes

2σ̂2(xR)− xR
dσ̂2(xR)

xR
= 2α11 + 2(α12 + α21)xR + 2α22x

2
R − 2α21xR − 2α22x

2
R

= 2α1,1 + 2α1,2xR

= 0.
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To get xψ̂0∗
R , we just need to solve

α1,1 + α1,2xR = 0,

where αi,j is the element on ith row and jth column of the matrix Λ. Therefore, the

maximizer xψ̂0∗
R of Φ̂(ψ̂0) is given by

(4.84) xψ̂0∗
R = −α1,1

α1,2

.

For the second case, it is more complicated than the previous one. By (4.10), the

key component Ĝ is given by

Ĝ(xR) =
1

1 + δφ̂(xR)+

and is piecewise differentiable with the exceptions on the set {xR|φ̂(xR) = 0}. More-

over, Ĝ = 1 for all xR with φ̂(xR) ≤ 0. We define

Ḡ(xR) =
1

1 + δφ̂(xR)
.

Then, the function Φ̂(Ĝ) can be formulated as

(4.85)

Φ̂(Ĝ)(xR) =


P (0)1−γ

1−γ exp
{

(1− γ)T
(
xR − 1

2
γσ̂2(xR) + r

)}
if φ̂(xR) ≤ 0

P (0)1−γ

1−γ exp
{

(1− γ)T
[
Ḡ(xR)

(
xR − 1

2
γḠ(xR)σ̂2(xR)

)
+ r
]}

otherwise

From the second component of formulation (4.85), the traditional method of find-

ing extreme points by differentiation gives rise to a very complicated transcendental

equation. Therefore, there is no analytical solution for this case. In this study, we

directly use optimization tools in MATLAB to find the maximizer of Φ̂(Ĝ). In MAT-

LAB, the function fminbnd finds the minimum of a function in the given interval. In

order to utilize fminbnd, the objective function is set as −Φ̂(Ĝ) instead. The searching

interval is the possible range of xR.
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For the third case, it is essentially finding the solution of a nonlinear equation

ψ̂0(xR) = Ĝ(xR) which can also be solved numerically. Denote this solution by

xIR. Again, we use the numerical analysis tools in MATLAB to find the solution

xIR. In MATLAB, the function fsolve finds the roots of nonlinear equation with a

given initial starting point. The solution obtained by the function fsolve varies with

the starting point. When there are multiple solutions for the equation, in order to

identify all the solutions in the given interval, we evenly sample multiple points in

the interval of xR and apply each of them as the starting point in the function fsolve.

Then, all possible solutions can be obtained.

In summary, the maximizer of Φ̂ comes from one of xψ̂0∗
R , xĜ∗R and xIR. The

first candidate can be derived analytically. The other two can be obtained by the

numerical tools in MATLAB. When xψ̂0∗
R , xĜ∗R and xIR are available, we just need to

choose the one with the highest value of Φ̂ as shown in Figure 4.4. In the numerical

experiments, the risky portfolio is constructed based on 10 risky assets. The risk

premium R = ab and diffusion coefficient a are a vector and a matrix, respectively.

The setting of the parameters are shown in the Table 4.2

Figure 4.4 shows the process of xR selection for maximizing Φ̂. In the upper panel,

the dashed and dotted curves represent functions ψ̂0(xR) and Ĝ(xR), respectively.

The red continuous curve represents the function ψ̂(xR) which is the minimum of

ψ̂0(xR) and Ĝ(xR). The vertical lines passing the intersections of ψ̂0(xR) and Ĝ(xR)

identify the locations of xIR. In the lower panel, the three curves (dashed, dotted and

red continuous) represent the expected utilities when ψ̂0(xR), Ĝ(xR) and ψ̂(xR) are

applied in the calculation. The vertical lines identify the locations of the possible

maximizers: xψ̂0∗
R , xĜ∗R and xIR. The markers are the corresponding expected utilities

ψ̂(xR) of those candidates. It is obvious that the optimal x∗R is one of those four
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candidates shown in the plot.

Parameter Range or Value
n 10
γ 0.3
δ 3.5
T 252 days

Table 4.2:
The parameter setting of the numerical experiment for finding the optimal x∗R with GBM
model.

4.5.2 The case with Stochastic Volatility (SV) model

In this case, the optimization is much more complicated than the case with GBM

model. First, the simple portfolio selection strategy ω affects the ω-utility Φ of the

total wealth through three parameters: Rω, σω, and ρω. Their formulas are given as

follows

Rω = ω′ab and σ2
ω = ω′aa′ω and ρω = ρa′ω/

√
ω′aa′ω.

According to the numerical results shown in Figure 4.3, the relation between Φ and

those three parameters can be well determined. For any given ρω, Φ is an increasing

function of Rω and a decreasing function of σω. Second, the time complexity of

expected utility estimation for any given simple portfolio selection strategy ω is very

high. Due to the additional state variable Y , there is no closed-form expression for the

ω-utility Φ. The estimation of the ω-utility Φ relies on the numerical scheme based

on the trinomial CIR-tree and dynamic programming. In the numerical procedure,
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we calculate the ψ∗ as well as the expected utility at each tree node iteratively. Based

on the formulas in (4.57), the calculation at each tree node involves an optimization.

At each time step, the number of tree nodes varies from 1 to nmax where nmax is the

maximal number of tree nodes at any time step. If the investment horizon is long

enough, most of the time steps are associated with nmax tree nodes. For example, in

order to determine the optimal ω∗ for one year investment horizon, the simulation is

performed based on the discretized model with 252 time steps. With the numerical

example shown in Figure 4.1, there are 25 tree nodes at each time step after t = 17.

The total number of tree nodes could be very large. Therefore, the estimation of

ω-utility Φ for one trial of ω is very time consuming. In practice, the total number

of trials is limited for the searching algorithm. When the number n of risky assets

is large, searching in an n-dimensional space is impossible because it needs large

number of trials to achieve acceptable solution. The main purpose of this section

is to reduce the scale of the optimization problem by reducing the dimension of the

searching space.

As mentioned before, the simple portfolio selection strategy ω only affects three

parameters: Rω, σω, and ρω. Moreover, the numerical results shown in Figure 4.3

imply that Φ is an increasing function of Rω and a decreasing function of σω for

any given ρω. Based on this fact, we first develop a method to find the ω with the

maximal Rω for the given parameters ρω and σω. Then, the searching space can be

reduced to the 2-dimensional parameter space. In such way, the number of trials can

be significantly reduced, especially when n� 3.

Lemma IV.4. Considering the constrained maximization problem

max
Θω=θ

ω′Aω=x2

β′ω
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where A is an n × n positive definite matrix, Θ is an m × n (m < n) matrix with

rank m, θ is an m-dimensional vector, β is an n-dimensional non-zero vector and x

is a scalar, if the following conditions are satisfied

1. β is not in the row space of Θ (or column space of Θ′);

2. x2 > θ′(ΘA−1Θ′)−1θ,

the solution of the problem is given by

(4.86) ω̂ = − 1

2λ
A−1(β + Θ′α),

where λ is a scalar and α is an m-dimensional vector, i.e. α = (α1, ..., αm)′. α is

given by

(4.87) α = −κ0 − κ1λ.

and λ is one of the two solutions from the quadratic equation

(4.88) λ2(4x2 − 2θ′κ1) + β′A−1Θ′κ0 − β′A−1β = 0,

where κ0 and κ1 are given by

(4.89) κ0 = (ΘA−1Θ′)−1ΘA−1β and κ1 = 2(ΘA−1Θ′)−1θ.

Proof: With the Lagrangian multipliers α = (α1, ..., αm)′ and λ, we define the

Lagrange function

L = β′ω + α′(Θω − θ) + λ(ω′Aω − x2).

The formula (4.86) can be directly derived from the first order condition of L

Lω = β + Θ′α + 2λAω = 0.
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Substituting (4.86) into the constraint Θω = θ, we have

ΘA−1Θ′α = −2λθ −ΘA−1β.

Since matrix A is positive definite, so is its inverse A−1. By Cholesky decomposition,

we have

A−1 = UU ′,

where U is a lower triangular and invertible matrix. Therefore, the matrix ΘA−1Θ′

can be formulated as

ΘUU ′Θ′.

Since the rank of matrix Θ is m, so is the rank of ΘU . Therefore, the matrix ΘUU ′Θ′

is invertible by Theorem A.6 and α can be represented in (4.87) with (4.89).

Substituting (4.86) and (4.87) into the constraint ω′Aω = x2, we have the quadratic

equation of λ in (4.88). Together with (4.89), the coefficient of λ2 is

4x2 − 2θ′κ1 = 4
[
x2 − θ′(ΘA−1Θ′)−1θ

]
.

Based on the second condition, we have 4x2−2θ′κ1 > 0. Moreover, by Theorem A.9,

we have

β′A−1Θ′κ0 − β′A−1β ≤ 0,

and the equality holds if and only if β ∈ Row(Θ). Since β is not in the row space of

Θ, the term β′A−1Θ′κ0− β′A−1β is always negative. That implies that the equation

in (4.88) always has two distinct solutions in real numbers. Moreover, between these

two solutions, one is the minimizer and another is the maximizer of β′ω with the

constraints Θω = θ and ω′Aω = x2. �

When the ρω and σω are given, the set of ω is defined as

Γ(ρω ,σω)
xρ,xσ = {ω|1′nω = 1 and ρω = xρ and σω = xσ} .
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If Γ
(ρω ,σω)
xρ,xσ is not empty for the given xρ and xσ, the results of Lemma IV.4 can be

applied with the following adjustment

β = ab, Θ = (1n, aρ
′)′, θ = (1, xρxσ)′, A = aa′, x2 = x2

σ.

The lemma enable us to choose the ω from the set Γ
(ρω ,σω)
xρ,xσ with highest possible

Rω. By the numerical results in previous section, the ω-utility Φ increases with the

Rω. Therefore, the lemma essentially enables us to find the ω for the highest Φ

within the pool Γ
(ρω ,σω)
xρ,xσ of strategies with correlation and volatility equal to xρ and

xσ, respectively. We denote this highest possible Rω for the given xρ and xσ by

R̂(xρ, xσ) and the corresponding ω and Φ by ω̂(xρ, xσ) and Φ̂(xρ, xσ), respectively.

The optimal allocation ω∗ within the risky portfolio lies in the set

Γ =
{
ω̂(xρ, xσ)|xρ ∈ [−1, 1] and xσ ∈ Σ̂

}
,

where Σ̂ is the set of all possible σω. Therefore, the optimization process is essentially

finding the suitable pair of (xρ, xσ) to maximize Φ̂(xρ, xσ) and the maximum Φ̂∗ is

the global maximum of Φ. The searching space is indeed 2-dimensional.

In this study, Simulated Annealing (SA) algorithm is used to search for the opti-

mal (x∗ρ, x
∗
σ). SA is a generic probabilistic metaheuristic method of locating a good

approximation to the global optimum for the global optimization problem. The

method was independently described by Kirkpatrick in 1983 [18] and by C̆erný in

1985 [25]. SA starts with a randomly selected point in the searching space. At

each step, the algorithm randomly selects a neighbor point of the current point and

probabilistically decides whether moves to the new position or stays in the current

location. The probability leads the selection to move to the area with high objective

value (Φ̂ in this case). In the pure SA method, only the current position is stored

and the algorithm stops when the preset conditions are met (Maximal number of
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steps is used in this study). In this study, the SA algorithm always keeps track of

the best solution found so far because the estimation of Φ̂ for one trial (xρ, xσ) is

time-consuming and should not be thrown away easily. When a new trial solution is

selected, its utility is compared to the utility of current solution. If the new solution

has higher utility, it replaces the current one and the algorithm starts from it in the

next step. However, if the utility of the new solution is lower, the algorithm accepts

the new solution with probability exp(Φ̂i − Φ̂i−1) where Φ̂i−1 and Φ̂i are utility of

current solution and new solution, respectively. Apparently, with this setting, the

new solution is definitely accepted if its utility is higher than the current one. On

the contrary, exp(Φ̂i− Φ̂i−1) is less than 1 and the new solution is accepted with this

probability. The procedure is outlined in the Algorithm 1. In Figure 4.5, an example

of SA searching is demonstrated. In this numerical experiment, a risky portfolio of

10 risky assets is used. The risk premium coefficients of all the risky assets can be

condensed in a 10-dimensional vector: R0 = ab. The diffusion term a is a 10 × 10

matrix. The correlation coefficient between dW (Y ) and dW (S) is also represented in

a 10-dimensional vector ρ. The setting of parameters are shown in the Table 4.3.

The upper panel of the Figure 4.5 shows the surface of Φ̂ with respect to ρω and

σω. The lower panel shows the corresponding contour map. In the contour map,

we use different shapes to demonstrate how the SA procedure evolves and pushes

the sampling moving to the area around the global optimum. First of all, the square

represents the global optimal solution. Since our modified SA method keeps track on

the best solution found so far at each iteration, the best solution changes in each step

and moves toward to the optimal solution during the whole procedure. The small

circles represent the best solutions found so far at each iteration. The triangle is the

starting point and the diamond is the best solution at the end of the procedure. In
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the numerical experiment shown in the figure, the diamond is very close to the square

at the end of 500 iterations. The accuracy of this algorithm mainly depends on the

number of iterations which is m in the Algorithm 1. Although SA algorithm may not

be the best way for searching the optimal solution, the main purpose of the section is

to reduce the dimension of the optimization problem. Moreover, any possible better

searching algorithm can be applied in this case. However, before using any searching

method, the dimension reduction technique we present in this study is crucial since

searching in a 2-dimensional space is obviously much more efficient than searching

in an n-dimensional space with n� 2.

Parameter Range or Value
n 10
c 0.05
d/c 1
g 0.1
Y0 1
γ 0.5
δ 3.5
T 252 days

Table 4.3: Parameter setting of the numerical experiments of SA method with SV model.
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Algorithm 1 Find the optimal allocation ω∗1 for SV model

Initialization:
Set β = ab; A = aa′; Θ = (1n, aρ

′)′;
Set the iteration number m;
Randomly select (xρ,0, xσ,0) from the feasible space [0, 1]× Σ̂;

Procedure:
1: Set θ = (1, xρ,0xσ,0)′;

2: Calculate R̂0 = R̂(xρ,0, xσ,0) and ω̂0 = ω̂(xρ,0, xσ,0) and Φ̂0 = Φ(R̂0, xσ,0, xρ,0);

3: Set x∗ρ = xρ,0 and x∗σ = xσ,0 and Φ̂∗ = Φ̂0 and ω∗ = ω0;
4: for all i = 1 to m do
5: Randomly select (xρ,i, xσ,i) from the neighborhood of (xρ,i−1, xσ,i−1);
6: Set θ = (1, xρ,ixσ,i)

′;

7: Calculate R̂i = R̂(xρ,i, xσ,i) and ω̂i = ω̂(xρ,i, xσ,i) and Φ̂i = Φ(R̂i, xσ,i, xρ,i);
8: Randomly select ε from [0, 1];
9: if exp(Φ̂i − Φ̂i−1) < ε then

10: set xρ,i = xρ,i−1 and xσ,i = xσ,i−1;
11: else
12: if Φ̂i > Φ̂∗ then
13: Set x∗ρ = xρ,i and x∗σ = xσ,i and Φ̂∗ = Φ̂i and ω∗ = ωi;
14: end if
15: end if
16: end for
17: Output the solution ω∗;
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Figure 4.3: Expected utility Φ for difference choices of Rω, σω, and ρω.
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Figure 4.4:
Optimal xR selection for Φ̂ in the GBM model. In the upper panel, the dashed and
dotted curves represent functions ψ̂0(xR) and Ĝ(xR), respectively. The red continuous

curve represent the function ψ̂(xR) which is the minimum of ψ̂0(xR) and Ĝ(xR). The

vertical lines passing the intersections of ψ̂0(xR) and Ĝ(xR) identify the locations of
xIR. In the lower panel, the three curves (dashed, dotted and red continuous) represent

the expected utilities when ψ̂0(xR), Ĝ(xR) and ψ̂(xR) are applied in calculation. The

vertical lines identify the locations of the possible maximizers: xψ̂0∗
R , xĜ∗R and xIR. The

markers are the corresponding expected utility ψ̂(xR) of those candidates.
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Figure 4.5:
The surface and contour map of Φ̂ with respect to ρω and σω in the SV model. In the
lower panel, the square represents the global optimal solution. The circles represent
the best trial solutions so far at each iteration during the SA procedure. The triangle
is the starting point of the procedure. The diamond is the best solution at the end of
the procedure.



CHAPTER V

Conclusion

In this study, we analyze the combination of VaR and dynamic portfolio selection

strategy. First, we notice that the VaR estimation in most of the applications is based

on the assumption of no adjustment in the portfolio during the VaR horizon. Under

this assumption, the VaR does not reflect the risk of the underlying portfolio. In

order to reflect the risk induced by the portfolio adjustment during the VaR horizon,

the VaR incorporating portfolio selection strategy is developed. The analysis of the

new VaR reveals that any adjustment during the VaR horizon could have significant

impact on the risk of the portfolio. Second, when VaR is used as a constraint in

dynamic portfolio selection, it is not just applied on the terminal portfolio value.

According to the Basel’ market risk capital requirement, the 10-day VaR needs to

be estimated daily and the banks need to adjust the capital reserve according to the

updated VaR. The process of finding the optimal selection strategy can be divided

into two parts. The first one is the allocation problem between risk-free capital and

risky portfolio. The second one is the allocation within the risky portfolio. Each part

itself is also an optimization problem and involves sophisticated theoretical analysis

and numerical algorithm to achieve the optimal solution.

In Chapter II, we apply the framework established by Merton (1971)[20] and the

111
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extended work by Liu [19] to derive the optimal portfolio selection strategies for the

GBM and SV models. In this case, the investor is assumed to be risk-averse and try

to maximize the expected utility over the terminal wealth. The optimal solution is

expressed in terms of the solution of HJB equation. Depending on the choice of the

model, the optimal weight vector of risky assets could be as simple as a constant

for the GBM model, or could be a very complicated and time-varying function for

the SV model. Moreover, for the portfolio with only one risky asset, the optimal

solution has a very simple relationship with risk premium and volatility (increases

with risk premium and decreases with volatility) in the GBM model. However, in

the SV model, the same relationship only holds if the correlation between risky asset

price and state variable Y is non-negative. The analysis in this chapter reveals the

complexity of the optimal solution when stochastic volatility is present.

In Chapter III, we analyze the VaR estimation incorporating the portfolio selection

strategy and the difference between the new VaR and the old VaR. Starting with

one single risky asset in the portfolio, we calculate the new VaR with the assumption

that the investors apply the optimal portfolio selection strategy in their portfolios.

In order to apply the preset strategy, the investors have to actively adjust their

portfolios according to the price movement of risky asset. The share number of

risky asset changes with the adjustment. Ultimately, the selection strategy could

lead to a significant change in the distribution of the portfolio value. Since VaR

is essentially a percentile of the portfolio loss, the VaR will be different when the

portfolio adjustment is incorporated in the estimation. Moreover, we also calculate

the old VaR and difference between those two different VaRs. Based on all the

numerical experiments, we notice that the VaR difference changes sign with various

parameter setting. The sign (positive or negative) of VaR difference shows whether
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the old VaR overestimates or underestimates the risk of the portfolio. Moreover, the

relationships between VaR difference and relevant parameters are very complicated.

The numerical results suggest that the old VaR with no-trading assumption is not

suitable in the volatile market (large volatility) or for a long investment horizon.

Besides the optimal selection strategies, we also analyze the VaR with the simple

portfolio selection strategy in which the weight of each risky asset remains constant.

By applying the simple strategy in the risky portfolio, we can identify several impor-

tant parameters: Rω, σω and ρω. These three parameters are functions of the risky

asset weight vector and other parameters of the risky asset value process. If the

risky portfolio is viewed as one single asset, these parameters are the risky premium

(risk premium coefficient in the SV model), volatility (volatility coefficient in the SV

model) and correlation coefficient (with state variable Y ) of the risky portfolio. Ba-

sically, the risky asset weight vector affects the VaR estimation through those three

parameters. By theoretical analysis and numerical experiments, we can observe the

relationship between VaR and these parameters. That is, VaR decreases with Rω

and increases with σω. This finding is an important building block for finding the

optimal portfolio selection strategy with Basel’s market risk capital requirement.

In Chapter IV, we develop numerical schemes to find the optimal portfolio selec-

tion strategy under Basel’s VaR-based capital requirement. Essentially, the Basel’s

market risk capital requirement gives an upper bound on the weight of the risky

portfolio. In this study, we assume that the simple portfolio selection strategy is

applied when the bank constructs the risky portfolio in the trading book. The in-

vestment strategy can be decomposed into two allocation problems. The first one is

the capital allocation between risk-free capital and risky portfolio. The second one

is the portfolio selection among the risky assets in the risky portfolio.
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By viewing the risky portfolio as a portfolio of one hypothetical asset or index

constructed by the simple portfolio selection strategy, we first solve the problem of

finding optimal allocation between risk-free capital and risky portfolio. Incorporating

the Basel’s market risk requirement, it becomes a constrained optimization problem.

For the GBM model, the analytical solution can be derived. For the SV model, we

have to rely on the dynamic programming technique to develop an iterative numerical

scheme to find the optimal solution based on the CIR-tree of state variable Y . With

the optimal allocation between risk-free capital and risky portfolio, we define the ω-

utility which is the maximal expected utility with the given simple portfolio strategy

ω. We also find that the ω-utility increases with Rω and decreases with σω. With

this finding, we can reduce the dimension of the searching space in the optimization

for ω.

To identify the optimal ω∗, the main difficulty is the dimension of the search space.

For a risky portfolio with n risky assets, searching in an n-dimensional space makes

the problem intractable when n is large. With the results in the previous step, the

searching space can be reduced to 1 or 2 dimensional space. Instead of finding the

ω to maximize the complicated ω-utility function, we first identify a set Γ of special

ω. In the GBM model, Γ includes all the ω giving minimal σω for each possible Rω.

In the SV model, Γ includes all the ω giving maximal Rω with each possible pair

of (ρω,σω). Since the parameter Rω is a linear function of ω and σω is a quadratic

function of ω, the element in Γ can be analytically derived. The optimal ω∗ lies

in the set Γ. Moreover, the searching space is only the domain of Rω or (ρω,σω).

The dimension of the search space is significantly reduced. In conclusion, we provide

a tractable solution to the dynamic portfolio selection strategy under the Basel’s

VaR-capital requirement.
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APPENDIX A

This appendix gives proofs and related definitions of several theorems used in this

study.

Theorem A.1. If A is an n×m matrix and B is an m×m invertible matrix, the

column space of A is the same as the column space of AB, i.e.

Col(A) = Col(AB).

Proof: For any x ∈ Col(A), there exists a vector u ∈ Rm×1 such that

Au = x.

Since B is invertible, we have

x = Au = ABB−1u.

Therefore, we have x ∈ Col(AB).

On the other hand, for any x ∈ Col(AB), there exists a vector u ∈ Rm×1 such

that

ABu = x.

It is evident that x ∈ Col(A). Therefore, Col(A) = Col(AB). �
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Definition A.2. Let W be the subspace of the vector space Rm, the orthogonal

complement of W (denoted by W⊥) is the set of vectors which are orthogonal to all

elements of W, i.e.

W⊥ = {v|v′x = 0 for any x ∈ W}.

Theorem A.3. Let W be a subspace of the vector space Rm and W⊥ be the orthogonal

complement of W , any vector x ∈ Rm can be represented as

x = u+ v,

where u ∈ W and v ∈ W⊥.

Proof: The detail of the proof is provided in [2],Page 111. �

Theorem A.4. If A is an n×m matrix, the null space Null(A) of A is orthogonal

complement of the row space Row(A) of A.

Proof: For any vector x ∈ Row(A), there exist a vector u ∈ Rn s.t. u′A = x.

Given any vector v ∈ Null(A), we have

x′v = u′Av = 0.

Therefore, v ∈ Row(A)⊥ and it leads to Null(A) ⊆ Row(A)⊥.

On the other hand, for any vector v ∈ Row(A)⊥, we have Av = 0. It leads to

v ∈ Null(A) and Row(A)⊥ ⊆ Null(A).

Therefore, the null space Null(A) of A is orthogonal complement of the row space

Row(A) of A. �

Theorem A.5. If A is an n × m matrix, the column space of A is same as the

column space of AA′, i.e.

Col(A) = Col(AA′).
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Proof: For any vector y ∈ Col(A), there exists a vector x ∈ Rm such that

Ax = y.

By Theorem A.3 and A.4, we have

x = u+ v,

where u ∈ Row(A) and v ∈ Null(A). Since u ∈ Row(A), there exists a vector z ∈ Rn

such that

z′A = u′ or A′z = u.

Therefore, we have

y = Ax = A(u+ v) = Au = AA′z,

which implies y ∈ Col(AA′).

For any vector y ∈ Col(AA′), there exists a vector x ∈ Rn such that

AA′x = y,

which implies y ∈ Col(A). �

Theorem A.6. If A is an n × m (n ≤ m) matrix satisfying Rank(A) = n, the

matrix AA′ is invertible.

Proof: From the theorem A.5, we have Col(A) = Col(AA′). Therefore, we have

Rank(AA′) = Rank(A) = n. Since AA′ is n× n matrix, AA′ is invertible. �

Definition A.7. If a matrix A satisfies the following conditions

1. Av0 = v0 for any vector v0 in the subspace W ;

2. Av1 = 0 for any vector v1 in the subspace W⊥;

then A is a perpendicular projection operator onto the subspace W .
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Theorem A.8. If A is an m×n (m ≤ n) matrix satisfying Rank(A) = m, the matrix

A′(AA′)−1A is a perpendicular projection operator onto the row space Row(A) of A.

Proof: According to the definition of perpendicular projection operator, the proof

is divided into two steps. First, for any vector v ∈ Row(A)⊥, we have Av = 0 by the

Definition A.2. Therefore, we have A′(AA′)−1Av = 0.

Second, for any vector v ∈ Row(A), there exist a vector x ∈ Rm satisfying A′x = v.

For an arbitrary vector y ∈ Rn, by Theorem A.3,we can decompose y as following

y = y0 + y1,

where y0 ∈ Row(A) and y1 ∈ Row(A)⊥. Since y0 ∈ Row(A), we can find a vector

z ∈ Rn satisfying A′z = y0. Therefore, we have

y′A′(AA′)−1Av =(z′A+ y′1)A′(AA′)−1Av

=z′AA′(AA′)−1Av

=z′Av

=z′Av + y′1A
′x

=z′AA′x+ y′1A
′x

=(z′A+ y′1)Ax

=y′v.

Since the vector y is chosen arbitrarily, the result above implies that A′(AA′)−1Av =

v. Therefore, A′(AA′)−1A is a perpendicular projection operator onto the row space

of A. �

Theorem A.9. If A is an n× n positive definite matrix and X is a m× n(m ≤ n)

matrix satisfying Rank(X) = m, then the following inequality holds for any vector

β ∈ Rn

β′AX ′(XAX ′)−1XAβ − β′Aβ ≤ 0.
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Moreover, the equality holds if and only if β ∈ Row(X).

Proof: Since matrix A is positive definite, by Cholesky decomposition, we have

A = UU ′,

where U is an lower triangular and invertible matrix. Therefore, the matrix XAX ′

can be formulated as

XUU ′X ′.

Since the rank of m×n matrix X is m, so is the rank of XU . Therefore, by Theorem

A.8, the matrix

U ′X ′(XUU ′X ′)−1XU

is a perpendicular projection operator onto row space Row(XU) of XU .

For any vector β ∈ Rn, the vector U ′β can be decomposed as

U ′β = y0 + y1

where y0 ∈ Row(XU) and y1 ∈ Row(XU)⊥. Moreover, y0 and y1 are orthogonal to

each other, i.e. y′0y1 = 0. Then, we have

β′AX ′(XAX ′)−1XAβ =β′UU ′X ′(XUU ′X ′)−1XUU ′β

=(y0 + y1)′y0

=y′0y0.

Since U ′ is invertible and U ′β = y0 + y1, we have

β′AX ′(XAX ′)−1XAβ − β′Aβ =y′0y0 − (y0 + y1)′U−1A(U ′)−1(y0 + y1)

=y′0y0 − y′0y0 − y′1y1

=− y′1y1 ≤ 0.
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Based on previous inequality, the equality holds if and only if y1 = 0 which is

equivalent to U ′β ∈ Row(XU). The condition U ′β ∈ Row(XU) holds if and only

if there exists a vector x ∈ Rm such that (XU)′x = U ′β. Since U ′ is invertible,

(XU)′x = U ′β is equivalent to X ′x = β which implies β ∈ Row(X). �
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