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ABSTRACT 

Pancreatic cancer has the worst prognosis among all cancers, mainly due to lack of 

effective diagnostics capable of early-stage detection. There have been many studies on 

pancreatic cancer biomarkers, among which serum protein markers are of particular 

interest as a minimally-invasive technique.  

In this dissertation, multiple mass spectrometric assays have been utilized to 

characterize protein N-glycosylation at the glycan, glycopeptide, and peptide levels both 

qualitatively and quantitatively, for identification of serum-based pancreatic cancer 

biomarkers. The assays incorporated optimization of sample pre-processing, liquid 

chromatography separation, and analysis by mass spectrometry. State-of-the-art mass 

spectrometric fragmentation methods including collision-induced dissociation (CID), 

electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) 

have been utilized to study N-glycosylation of both individual proteins isolated from 

human serum and depleted human serum.  

Chapter 2 describes a MALDI-MS/MS based method for analysis of N-glycans 

which integrates N-glycan extraction, desialylation, permethylation, structure elucidation, 

and fucosylation degree measurement. The fucosylation degree of human serum 

haptoglobin is elevated in pancreatic cancer relative to non-cancer conditions, including 

normal controls, chronic pancreatitis and type II diabetes. Chapter 3 presents a 

CID/ETD-MS/MS method for detailing the site-specific glycosylation patterns of human 

serum alpha-2-macroglobulin (A2MG). For targeted analysis of A2MG site-specific 
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core-fucosylation, an endoglycosidase-assisted strategy was utilized. All eight potential 

N-glycosylations sites were identified with six of them found to be core-fucosylated. 

Chapter 4 extends the work in Chapter 3 to a quantitative level and investigates the 

alterations of A2MG core-fucosylation at specific sites in pancreatic cancer using a 

label-free method. Core-fucosylation ratios at sites N396, N410 and N1424 were found to 

decrease in pancreatic cancer relative to normal controls. Chapter 5 describes total 

core-fucosylation profiling of human serum, where the core-fucosylated glycopeptide 

enrichment and mass spectrometric methods were optimized, leading to identification of 

135 core-fucosylation sites in serum. The quantitative aspect of this assay used an 

isobaric labeling strategy, which may prove potentially useful for future high-throughput 

serum pancreatic cancer biomarker screening.  

The results of this thesis provide insight into the potential of protein fucosylation 

alterations as pancreatic cancer biomarkers, and relevant strategies will be useful in other 

clinical applications. 
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Chapter 1 

Introduction 

1.1 Pancreatic cancer 

Pancreatic ductal adenocarcinoma, the most common form of pancreatic cancer, is the 

fourth leading cause of cancer death in United States. In the year 2008, 37,700 people 

were diagnosed with pancreatic cancer, and 34,300 people died from it.1, 2 Pancreatic 

cancer has the worst prognosis among all types of cancers with a five year survival rate at 

4%.1-3 Pancreatic cancer is known to be a silent cancer, whose symptoms do not become 

noticeable until an advanced stage, where the tumor migrates to the surrounding or 

distant organs and surgery is no longer an effective option.2 While the cause of pancreatic 

cancer is not well understood, risk factors include family history, age, gender and 

smoking.  

Current diagnostics of pancreatic cancer include imaging techniques (Computer 

Tomography, Magnetic Resonance Imaging and Positron Emission Tomography) and 

biopsy, which are either expensive or invasive. It is desirable to have a routine blood test 

which is capable of detecting pancreatic cancer at an early stage, especially for high-risk 

populations4. The only FDA-approved blood test for pancreatic cancer is the level of 

protein CA 19-9. However, this diagnostic has its own limitations including: (1) low 

sensitivity and specificity; (2) lack of power in detection of early stage pancreatic cancer; 

and (3) false positives as 10% of the patients are not able to synthesize CA 19-9 even at 

an advanced stage of pancreatic cancer.1, 5 With the advent of LC-MS/MS techniques, the 
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last decade has seen a plethora of research exploring human serum proteomics for the 

identification of pancreatic cancer biomarkers.5-10 

 

1.2 N-Glycosylation 

Glycosylation where carbohydrates attach to proteins, is one of the most prevalent 

post-translational modifications. There are two major types of glycosylation. 

N-glycosylation, where N-glycans attach to the amide nitrogen of Asn in the sequence of 

Asn-Xxx-Ser/Thr (Xxx cannot be Pro), and O-glycosylation, where glycans attach to 

hydroxyl oxygen of Ser and Thr. N-glycosylation is usually more complex compared to 

O-glycosylation and is the focus of this dissertation. Common monosaccharides involved 

in N-glycosylation in humans are N-acetylglucosamine (GlcNAc), N-acetylgalactosamine 

(GalNAc), mannose (Man), galactose (Gal), fucose (Fuc), and N-acetylneuraminic acid 

(NeuAc) as shown in Figure 1.1. N-glycosylation is initiated in the endoplasmic 

reticulum where a 14-monosaccharide structure is assembled and transferred to the 

asparagine residues on proteins, and is further extended and modified in the Golgi 

apparatus.11 Various glycosidases which truncate the monosaccharide units (eg. 

glucosidase and mannosidase) and glycosyltransferases which add monosaccharide units 

(eg. fucosyltransferrase and N-acetylglucosaminyltransferrase) are involved in the 

process of N-glycosylation.12, 13  

N-glycans are usually highly branched and diverse in structure. It is speculated that 

over 3000 glycoforms potentially exist based on the available monosaccharides and 

linkages.14 There are three types of N-glycans, all sharing the same pentasaccharide core 

structure (Man3GlcNAc2). As shown in Figure 1.2, high-mannose type glycans extend the 
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core structure with mannoses only; complex type glycans add any monosaccharide other 

than mannose to the core structure; hybrid type glycans are a combination of 

high-mannose and complex type glycans. 

It is important to note that unlike protein expression, N-glycosylation occurs in a 

non-template manner with glycosidic bonds formed in multiple ways15; hence, changes in 

the physiological and pathological cellular environment may alter the N-glycosylation. 

N-glycosylation exerts profound impacts on the activity and functions of proteins and 

cells in various ways, including protein folding, protein binding, protein recognition, 

cell-cell interaction, cell-metastasis and immune responses.16-18 Aberrations of 

N-glycosylation have been found to be associated with different types of diseases, 

including cancers, and may serve as promising blood-based biomarkers. The common 

types of N-glycosylation aberrations in serum/plasma proteins include increased 

branching19, and hyper or under expression of mannosylation20, 21, sialylation22, 23 and 

fucosylation24, 25. 

Early studies of N-glycosylation utilized lectin blotting or lectin microarray26, 27. 

Lectins are a family of proteins which recognize and specifically bind to different glycan 

epitopes. By conjugating lectins with chemiluminescent or fluorescent tags and 

measuring the chemiluminescence or fluorescence signals, different N-glycosylation 

patterns can be identified and quantified. However, limited specificity of lectins is a 

concern, and this method does not provide enough structural information of the glycan. 

Methods providing more structural information, such as exoglycosidase-assisted HPLC 

and tandem MS analysis, are gaining popularity in the field of glycoproteomics. A 

comprehensive study of N-glycosylation includes identifying the composition of 
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monosaccharides, revealing the glycan structures (including branching, linkage positions 

and substitution of fucose or sialic acids), quantifying the glycoforms, locating the 

glycosylation site, and determining the site occupancy. 

 

1.3 Global N-glycosylation analysis 

Although it is desirable to characterize the N-glycosylation in aforementioned levels 

simultaneously, it is technically difficult. Usually N-glycans are released from the protein 

or peptide backbones with N-glycans and deglycosylated peptides studied separately. The 

analysis of N-glycans offers information in glycan composition and structure details, 

while the study of deglycosylated peptides reveals glycosylation site and site occupancy.  

A commonly used enzyme which liberates the N-glycans is peptide-N-glycosidase F 

(PNGase F), which cleaves the amide bond between the GlcNAC and Asn. This 

hydrolysis is accompanied by converting Asn to Asp and introducing a 0.98 Da mass shift 

on the peptide which is frequently used as an indicator of the N-glycosylation site28, 29. 

However, deamidation of the Asn may occur spontaneously, introducing ambiguity in the 

site-identification.30 To alleviate, but not entirely overcome this problem, PNGase F 

digestion may be performed in H2
18O, producing a 3.98 Da mass increment29. An 

alternative is partial deglycosylation with endoglycosidases, which hydrolyze the 

glycosidic bond between the two core GlcNAc31. This generates a 203.08 Da (if the site is 

not core-fucosylated) or 349.13 Da (if the site is core-fucosylated) mass increase which 

enables site-identification even with a low-resolution mass spectrometer.  

Similar to phosphorylation studies, enrichment of N-glycopeptides and N-glycans is 

essential. Various enrichment strategies including lectin affinity22, 32, hydrazide 
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chemistry33, 34, hydrophilic affinity35, 36, and hydrophilic interaction (HILIC)37, 38 have 

been applied to separate the N-glycopeptides from more abundant non-glycopeptides. 

Porous graphitized carbon (PGC)39, cation exchange40 and HILIC41 are commonly used 

for desalting and pre-concentration of N-glycans. 

N-glycans are usually derivatized for both HPLC and MS analysis. Unlike peptides, 

which have UV absorbance at 210 nm, the natural N-glycans do not absorb UV light 

sufficiently to give a reasonable detector signal. For HPLC analysis, N-glycans are 

usually labeled with 2-aminobenzamide (2-AB) or 2-aminobenzoic acid (2-AA) at the 

reducing end through reductive amination, separated by C18, HILIC or PGC, and detected 

by fluorescence with an excitation wavelength set at 320 nm and emission wavelength set 

at 420 nm42. The composition information is obtained by matching the retention time 

with a glucose ladder index15. Although quantification information may be obtained by 

measuring the fluorescence, the chromatographic resolution and sensitivity of this 

method are not satisfying43.  

An alternative to analyzing N-glycans is to eliminate the LC separation and use 

MALDI-MS. For this purpose, glycans are usually permethylated, where the hydroxyl 

groups are substituted by methoxy groups. Permethylation increases the ionization 

efficiency and stability of glycans while enabling the detection of acidic and neutral 

glycans simultaneously in positive ion mode44. CID of N-glycans usually produces 

glycosidic bond cleavages, generating B, Y ions which could be used to infer the 

monosaccharide compositions. When using high-energy CID in a time-of-flight mass 

spectrometer, cross-ring cleavages (A,X ions) are also observed and may be used to 

reveal glycosidic linkage patterns45-47.  
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Notably, a unique advantage of using an ion trap instrument for permethylated glycan 

analysis is that the MSn experiment is made possible. Isobaric fragments or fragments 

with close masses can appear in MS2 spectra although they result from different 

fragmentation pathways, and such ambiguity of assignment can be reduced by further 

analysis of MS3 which probes the formation of the ions in MS2 48, 49. Furthermore, glycan 

branching isomerism information can be obtained by additional fragmentation of MS2 

ions48, 50. For example, Reinhold etc. reported using MSn to determine the structural 

isomer of a bovine ovalbumin glycan at m/z 1923.1 (composition Man3GlcNAc5) as 

shown in Figure 1.3 where Structure A was confirmed based on the presence of the 

fragment ion at m/z 893.2 in MS5. 

Quantitative analysis can be performed both label-free21, 51 or with stable isotopic 

labeling52, 53 (CH3I, CH2DI, CHD2I and CD3I or 13CH3I) for comparative glycomic 

studies across various conditions. 

 

1.4 Site-specific N-glycosylation analysis 

The aforementioned methods analyze glycan and deglycosylated peptides separately, 

and the information provided is limited due to the inability to characterize site-specific 

glycosylation, which is crucial in disease biomarker studies. Previous study of α-1-acid 

glycoproteins identified increased triantennary α 1,3 fucosylation at sites 3,4 and 

increased tetraantennary α 1,3 fucosylation at site 3, 4, and 5 for chronic inflammation.54 

Another study reported an increase of terminal fucosylation at site 3 in serum haptoglobin 

of pancreatic cancer36.  

The analysis of native N-glycopeptides for site-specific glycosylation is much more 
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challenging compared to the separate analysis of glycan and deglycosylated peptides. A 

single protein may have multiple N-glycosylation sites and there is usually more than one 

glycoform associated with each site. The abundance of a single glycopeptide is usually 

very low, requiring mass spectrometric analysis methods with high sensitivity. 

Furthermore, the low ionization efficiency of glycopeptides and ionization suppression 

from the non-glycopeptides pose another technical obstacle for analysis. Advances in the 

enrichment and separation methods, and novel mass spectrometric methods can be used 

to circumvent the problems. For example, the use of new generation mass spectrometers 

which enable the selection of top 10-20 precursor ions for MS/MS scans with 

significantly increased scan speed greatly enhances the chance of glycopeptides to be 

analyzed55.  

With respect to fragmentation methods, conventional CID mainly produces fragments 

across glycosidic bonds, leaving the peptide backbone intact. The production of oxonium 

ions ([HexNAc+H]+ (204.1 Da), [NeuAc+H]+ (292.1 Da), [HexNAc-Hex+H]+ (366.1 Da) 

and [NeuAc-Hex-HexNAc+H]+ (657.2 Da)) are normally used as markers for presence of 

the glycopeptides56. Although some studies use the masses of Y1 (peptide+HexNAc) ions 

to deduce the peptide sequences36, 57, 58, the false positive rate is higher and requires prior 

knowledge of the protein, which limits this method to profiling of single proteins or 

simple protein mixtures. Aside from CID, electron transfer dissociation (ETD) is also 

widely utilized, often in tandem with CID. ETD preferentially produces extensive 

fragmentation on the peptide backbone, generating sequence-related c,z- ions, and 

normally leaving the glycan portion intact59, 60. By using CID and ETD in the same 

LC-MS run, both glycan composition and peptide sequence information can be obtained 
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simultaneously56, 61, 62. However, ETD has comparatively low fragmentation efficiency, 

especially for ions with low charge states63. Recently, the emerging higher-energy 

collisional dissociation (HCD) has been used for intact glycopeptide analysis38, 64-66. HCD 

mainly generates glycosidic bond cleavages, producing oxonium ions, and to a lesser 

extent peptide fragments (b, y ions similar to CID). Compared to CID in an ion trap, the 

1/3 cut-off issue is not present for HCD fragmentation method and low-mass oxonium 

ions, such as [HexNAc+H]+ (204.1 Da) and [NeuAc+H]+ (292.1 Da), can be measured. 

Compared to CID in high-resolution instruments such as Q-TOF, HCD may be used in 

conjunction with ETD in an “oxonium ion-triggered ETD” manner which enables 

higher-efficiency identification of glycopeptides65, 67. An example is demonstrated in 

Singh and coworkers’ study which identifies the glycoforms at various N-glycosylation 

sites in ribonuclease B67 as shown in Figure 1.4. 

Analysis of MS/MS spectra of intact glycopeptides is often done manually or 

semi-automatically by experienced personnel for targeted studies of single proteins. For 

large scale glycoproteomic profiling, automatic database search is required. However, it 

is difficult to implement the most widely used database search algorithms such as Sequest, 

Mascot and X!Tandem in analysis of ETD data for glycosylation site identification. The 

main reason is the high heterogeneity of N-glycosylation, where over a thousand 

glycoforms have to be specified as possible modifications in a search. This greatly 

increases the search time and storage space, and favors random assignment which 

increases false-positive rates68. 

In order to reduce the microheterogeneity of N-glycosylation and enable automatic 

database search, a series of exoglycosidases (eg. neuraminidases, fucosidases, 
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galactosidases) or endoglycosidases (eg. Endo H, D, and F) may be used to target 

subtypes of N-glycosylation, such as galactosylation or fucosylation. Endoglycosidases 

are a family of enzymes which cleave between the two innermost GlcNAc to leave only 

the core GlcNAc or GlcNAc-Fuc attached to the peptides. Endoglycosidase digestion 

produces mass increments of 203.1 Da (GlcNAc) or 349.1 Da (GlcNAc-Fuc) which may 

be utilized to identify protein N-glycosylation sites and core-fucosylation sites 31, 69-72. 

Compared to PNGase F deglycosylation, this strategy eliminates the false-positive 

identification due to spontaneous deamidation, and enables detection using 

low-resolution mass spectrometers. Compared to intact glycopeptide analysis, this 

strategy greatly increases the ionization efficiency of glycopeptides, and reduces 

glycosylation microheterogeneity while retaining the core-fucosylation patterns, which 

has been found to alter in various proteins in different cancers24, 72-74.  

Site-specific glycosylation quantification may be achieved by both label-free and 

label-based strategies. The label-free method is usually based on the intensities of 

extracted precursor ion chromatograms. Label-based methods introduce stable isotopic or 

isobaric mass tags to different samples, and compare respective mass spectrometric signal 

abundances for relative quantification. The differentially labeled species are identical or 

very similar in chemical properties. Various labeling methods may be used, including 

chemical labeling (isotopic reductive dimethylation, isotopic/isobaric tag for relative and 

absolute quantification (iTRAQ)75 and tandem mass tag (TMT))76, metabolic labeling 

(stable isotope labeling by amino acids in cell culture (SILAC))77, and enzymatic labeling 

(H2
18O peptide C-terminal labeling)70.  

Both precursor ion intensities and fragment ion intensities can be utilized for 
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quantification based on the assumption that the mass spectrometric signal is proportional 

to the analyte concentration. In precursor ion intensity-based quantification, 

normalization is usually required to account for the variation in ionization efficiency, 

either against an internal standard which may or may not be isotopically labeled, or 

against the sum of peak intensities of all analytes. Although precursor ion intensity based 

quantification is known to be less accurate and reproducible compared to other strategies 

such as multiple reaction monitoring (MRM) or iTRAQ labeling,  it is known to provide 

the deepest proteome coverage78. In the field of glycoproteomics, it is commonly used as 

compared to the other strategies which will be detailed in the following paragraph. 

Fragment ion intensity-based quantification methods usually incorporate isobaric tags 

(iTRAQ or TMT). Typical iTRAQ or TMT reagents are composed of three groups- a 

reporter ion group, a mass balance group, and an amine-reactive group. Owing to the 

isobaric nature, the differentially labeled peptides appear as one peak in the full MS scan. 

Upon fragmentation, the reporter ions are readily cleaved from the reagent-peptide 

complex and relative quantification information can be obtained by comparing their 

intensities. An illustration of how isobaric 6-plex TMT labeling works is shown in Figure 

1.579. A recent publication reported the application of TMT in intact glycopeptide 

analysis for quantification of site-specific glycosylation76. However, this work observed 

very low-intensity reporter ions with HCD caused by the preference in lower-energy 

glycosidic bond cleavage rather than amide bond cleavage which produces reporter ions. 

Furthermore, iTRAQ labeling is generally believed to be inferior in characterizing low 

abundance peptides78. 

MRM is a highly-specific quantification strategy based on the intensities of 
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transitions, where a transition is defined as a pair of a precursor ion m/z and its fragment 

ion m/z. MRM is usually performed in a triple quadrupole instrument where the first 

quadrupole only allows a designated precursor ion m/z to pass, the second quadrupole 

fragments the precursor ion, and the third quadrupole only passes selected fragment ion 

m/ z as shown in Figure 1.680. Compared to precursor ion based quantification, the 

sensitivity and specificity of MRM is greatly enhanced. Normally, commercial isotopic 

peptide standards are utilized for selection of fragment ions for the transitions and 

optimization of collision conditions. In the glycopeptide (both intact and partially 

deglycosylated) study, such glycopeptides standards are not available. Due to the 

prevalence of glycosidic cleavage in CID of glycopeptides, oxonium ions are commonly 

used as transitions rather than peptide backbone fragments, which greatly reduces the 

specificity of the MRM assay81-83.  

Due to the aforementioned limitation of iTRAQ/TMT and MRM strategies, precursor 

ion intensity based quanfication is more often used for measuring site-specific 

glycosylation72, 84, 85. 

 

1.5 Outline of the dissertation 

This dissertation consists of four research chapters which describe mass spectrometric 

analytical strategies for qualitative and quantitative analysis of protein N-glycosylation at 

the glycan, intact glycopeptide and partially deglycosylated glycopeptide levels as shown 

in Figure 1.7. The studies highlight the applications of mass spectrometric assays in 

discovery of glycosylation aberrations in human serum as potential pancreatic cancer 

biomarkers, with minimal sample consumption.  
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Chapter 2 describes a MALDI-MS assay which incorporates exoglycosidase digestion 

and permethylation to characterize haptoglobin N-glycans with the quantification 

information obtained based on peak area integration. A fucosylation-degree index was 

utilized to measure the extent of fucosylation in haptoglobin and the indices were 

compared between disease states including normal control, chronic pancreatitis, type II 

diabetes and pancreatic cancer. Fucosylation of haptoglobin was found to increase in 

pancreatic cancer. This study provides sensitive profiling of fucosylated glycans both 

qualitatively and quantitatively, and may prove useful in cancer biomarker study. The 

work was published as detailed in Reference 44 and 51.  

Chapter 3 describes characterization of individual protein site-specific glycosylation 

by combining ETD/CID MS/MS to analyze the intact glycopeptides and CID MS/MS or 

MS3 to analyze endoglycosidase treated glycopeptides. The assay was used to 

comprehensively analyze alpha-2-macroglobin (A2MG) N-glycosylation at glycan, 

glycopeptide and peptide levels, and should have a wide application in study of 

site-specific glycosylation, particularly core-fucosylation. The work was published as 

detailed in Reference 62.  

Chapter 4 extends the peptide-level work of Chapter 3 to the quantitative level, where 

the site-specific core-fucosylation of A2MG was quantified in a label-free manner using 

precursor ion intensity. The core-fucosylation ratios of A2MG were obtained at various 

glycosylation sites and compared between normal controls, chronic pancreatitis and 

pancreatic cancer. Core-fucosylation at three sites was found to decrease in both 

pancreatic cancer and chronic pancreatitis. This analytical assay is robust and 

straightforward, allowing probing of site-specific glycosylation change which may be a 
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novel cancer biomarker. Furthermore, the alteration of A2MG core-fucosylation in 

pancreatic cancer may be used in conjunction with other pancreatic cancer biomarkers to 

improve the accuracy of the diagnostics. 

Chapter 5 applies the endoglycosidase-assisted strategy to large-scale serum 

core-fucosylation profiling. Effective optimization and combination of multiple 

experiment steps enables the most comprehensive profiling of the serum 

core-fucosylation. Furthermore, the potential of combining iTRAQ labeling to the 

workflow for discovery of pancreatic cancer-related core-fucosylation aberrations was 

explored. This high-throughput assay allows simultaneous screening of core-fucosylation 

pattern changes of hundreds of proteins, which should be valuable for cancer biomarker 

discovery purposes.  
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Figure 1. 3. MSn spectra of an ovalbumin glycan at m/z 1923.2 with composition of 
Man3GlcNAc5. The diagnostic ion of m/z 893.5 in MS5 confirms the isomer structure B. 
(Reprinted with permission from (49). Copyright (2007) American Chemical Society) 
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Figure 1. 4. HCD-triggered-ETD analysis of a ribonuclease B glycopeptide. (a) MS survey 
scan, (b) HCD MS/MS spectrum of precursor ion at m/z 645.6194, and (c) ETD-MS/MS 
spectrum of precursor ion at m/z 645.6194. (Reprinted with permission from (66). 
Copyright (2012) American Chemical Society) 
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Figure 1.5. Quantitative mass spectrometric analysis with isobaric TMT labeling. 
Differentially labeled peptides are not distinguishable in MS1, MS2 generates reporter ions 
with different intensities on which quantification is based. (Reprinted with permission 
from (78). Copyright (2011) Nature Publishing Group)  
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Figure 1. 6. In an MRM-MS analysis, precursor ions are preselected in Q1 and fragmented 
in Q2. Predefined fragment ions are filtered in Q3. Synthetic peptides are labeled with a 
stable isotopic tag as shown with asterisks and spiked in the sample to improve the 
precision of relative quantitation. (Reprinted with permission from (79). Copyright (2013) 
Nature Publishing Group) 
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Chapter 2 

A Mass Spectrometric Assay for Analysis of Haptoglobin Fucosylation in Pancreatic 

Cancer 

2.1 Introduction 

Pancreatic cancer is the fourth leading cause of cancer deaths in the United States 

with the worst prognosis among all cancers. One of the causes of poor prognosis is the 

lack of a reliable early-detection method of the disease. Currently, the most widely used 

serum-based marker is CA 19-9 whose diagnostic value is limited because of a high false 

positive rate, further it does not allow early detection and can not readily discriminate 

between chronic pancreatitis and pancreatic cancer.1, 2 Thus, there is an urgent need for 

reliable noninvasive or low-invasive methods for early detection of pancreatic cancer. 

Unique protein glycosylation patterns have recently been explored as a potential 

target for cancer biomarker detection. Distinctive serum glycomic patterns have been 

reported to be associated with various types of cancers and other malignancies.3-7 Unlike 

proteins which have genetic templates that determine the structures, glycans have greater 

variability which is determined by both genetic polymorphisms and the physiological 

environment of the cells.8 The microheterogeneity of glycans depends on activities of 

glycosidases and glycosyltransferases which are influenced by the physiological and 

pathological states of cells.9 In general, changes of branching, and alternation of levels of 

sialylation and fucosylation are the most common tumor-associated glycan aberrations.9, 

10 The most common types of fucosylation in human serum glycoproteins are core 
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fucosylation where fucoses attach to the core N-acetylglucosamine (GlcNAc) via α 1-6 

linkage and antennary fucosylation where fucoses attach to terminal GlcNAc via α 1-3 or 

α1-4 linkage. Fucosylation is controlled by fucosyltransferases capable of different types 

of linkages where it has been reported that the activity of fucosyltransferases are related 

to cancer progression.11-13 The potential clinical utility of fucosylation changes as a 

cancer marker has been explored.14, 15 

Acute phase proteins (APP) secreted by the liver are attractive potential markers 

because they display changes in both protein levels and glycosylation modification in 

response to inflammation and diseases including cancer.16 Haptoglobin is one of the APPs 

which binds to liver hemoglobin and plays an important role in defense response to 

inflammation and infection.17 There has been increasing evidence that the glycosylation 

status of haptoglobin is associated with various cancers such as prostate cancer, ovarian 

cancer, liver cancer, and colon cancer.18-22 In particular, the elevation of haptoglobin 

fucosylation in pancreatic cancer using various methods such as lectin blot, 

lectin-antibody microarray and lectin-antibody ELISA has been shown.23-25 The 

structures of 2-aminopyridine-labeled N-glycans were elucidated with NP-HPLC and 

MALDI-TOF MS analysis.24, 26 Site-specific glycan analysis was also performed with 

LC-ESI-MS, revealing that fucosylated glycans are markedly increased at N211.26 

However, in their study, mass spectrometric analysis of haptoglobin glycans was 

performed in a qualitative instead of quantitative manner and was not performed on every 

individual sample.  

In the current study, we have examined the unique fucosylation patterns of 

haptoglobin in serum samples obtained from patients with pancreatic cancer, chronic 
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pancreatitis, type II diabetes, and normal controls using a mass spectrometry based 

approach. A method has been developed to assay fucosylation using an antibody to 

extract the protein from serum followed by deglycosylation, desialylation and extraction 

of the N-glycan units. The N-glycans were then permethylated to increase the sensitivity 

of the assay. The MALDI-QIT MS was then used to study the fucosylation pattern of the 

glycans in MS and MS/MS modes for all stages of cancer versus chronic pancreatitis, 

type II diabetes and normal controls. We found that there were distinct changes in the 

level of both core and antennary fucosylation associated with all stages of cancer 

compared to the noncancerous samples. An index comparing the changes in fucosylated 

glycans has been developed and the results over a limited analytical test set show the 

potential of using haptoglobin fucosylation changes as a marker of disease state for 

pancreatic cancer.  

 

2.2. Experimental Section 

2.2.1 Serum samples.  

Human normal serum (n=5, 3 females and 2 males, median age 59), chronic 

pancreatitis serum (n=5, 3 females and 2 males, median age 59), type II diabetes 

serum(n=5, 4 females and 1male, median age 58) and pancreatic cancer serum(n=16, 1 

stage IA, 3 stage IIA, 4 stage IIB, 4 stage III, and 4 stage IV, 7 females and 9 males, 

median age 69) were provided by the University Hospital, Ann Arbor, Michigan and the 

University of Pittsburgh according to IRB approval.  

The samples were aliquoted and stored in a -80oC freezer until further use. All 

samples were frozen and thawed only once except for the freeze-thaw study. In the 



 

30 
 

freeze-thaw study, serum from a pancreatic cancer IIB patient was aliquoted into three 

fractions, frozen in a -80oC freezer, and then thawed at room temperature. The 

freeze-thaw cycles were repeated for once, twice and four times, respectively.  

2.2.2 Separation of haptoglobin from serum.  

10uL of human serum was thawed and diluted to 250uL using coupling buffer 

(10mM sodium phosphate, 150mM sodium chloride, pH7.2) in Cross-link IP kit (Pierce 

Scientific, Rockford, IL). Ig G is the most abundant glycoprotein in serum with a 

concentration of 8-16 mg/mL and may interfere with protein A/G based 

immunoprecipitation. Hence, IgG was depleted prior to haptoglobin capture using Protein 

A/G agarose beads (Pierce Scientific, Rockford, IL). In this procedure, 100uL bead slurry 

was incubated with diluted serum samples at 4 oC for 3 hours in a 900uL spin column on 

an end-to-end rotator. The depleted serum dilution was spun down in a centrifuge at 

1000×g for 1 minute. The beads were washed once with 100uL coupling buffer.  

Immunoprecipitation was performed using the Cross-link IP kit according to the 

supplier protocol. Briefly, 10ug monoclonal haptoglobin antibody (Abcam, Cambridge, 

MA) was bound to 20uL protein A/G plus agarose slurry at room temperature for 30 

minutes, and cross-linked with the beads by 1×disuccinmidyl suberate (DSS) crosslinker 

at room temperature for 30 minutes. Unbound antibody that was not cross-linked was 

removed by extensive washing with coupling buffer and elution buffer (100mM 

Glycine-HCl, pH 2.8) respectively. The antibody-conjugated beads were then incubated 

with IgG depleted serum at 4 oC overnight and elution was carried out with 60uL elution 

buffer. The eluted haptoglobin was dried down in a SpeedVac concentrator (Labconco, 

Kansas city, MO) at room temperature, redissolved in 10uL water, and desalted by 75uL 
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Zeba desalting spin columns (Pierce Scientific, Rockford, IL) according to the protocol 

supplied.  

Fast on-plate digestion and mass spectrometric analysis were performed for 

identification of haptoglobin. 0.5uL desalted haptoglobin was spotted on a MALDI plate, 

and dried in air. 0.4ug (1uL) trypsin (Promega, Madison, WI) was added to 10uL 100mM 

ammonium bicarbonate solution with 20% acetonitrile. 0.5uL trypsin solution was 

deposited on top of the haptoglobin spot and the plate was placed in a covered humid 

chamber at 37 oC for 10 minutes. 10mg/mL 2,5-dihydroxybenzoic acid (DHB) (Laser 

Biolabs, France) was prepared in 50% acetonitrile and added on top of the dried spot. 

Mass spectrometric analysis was carried out using an Axima MALDI quadrupole ion 

trap-TOF instrument (Shimadzu Biotech, Manchester, UK). Ionization was performed 

with a pulsed N2 laser (337nm) at 5HZ where two laser shots generated one profile. 

Helium was used to cool the trapped ions and Argon was used for CID fragmentation. 

MALDI spectra were recorded only in positive ion mode. The TOF detector was 

calibrated with 1nmol/uL peptide mixtures of Angiotensin II (m/z 1046.54), Angiotensin I 

(m/z 1296.68), Substance P (m/z 1347.74), Bombesin (m/z 1619.82), ACTH 1-17 (m/z 

2093.09), and ACTH 18-39 (m/z 2465.20). The mass accuracy with calibration was 

50ppm. The peptide peaks were searched in the Mascot database with methionine 

oxidation as the variable modification. 

SDS-PAGE followed by silver staining was used to evaluate the yield of haptoglobin. 

1/4 of the haptoglobin eluant was boiled for 3 minutes and separated by 4-20% precast 

gel (Bio-Rad, Hercules, CA) in a MINI-PROTEAN cell (Bio-Rad, Hercules, CA) at 

120V supplied by Power Pac3000 (Bio-Rad, Hercules, CA). 5uL of the Kaleidoscope 
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protein marker (Bio-Rad, Hercules, CA) was used. Silver staining was performed 

according to the protocol provided by the manufacturer. 

2.2.3 Deglycosylation and desialylation of haptoglobin.  

The denaturing solution (0.2% SDS, 100mM 2-mercaptoethanol) was added to 10uL 

haptoglobin solution to make the final denature solution concentration 10%. The mixture 

was incubated in a 60 oC oven for 30 minutes. Ammonium bicarbonate solution was then 

added to make a final concentration of 15mM. 1U of N-glycosidase F (PNGase F) (New 

England Biolabs, Ipswich, MA) was added. Deglycosylation was performed at 37oC for 

18 hours. PNGase F was deactivated by boiling for 5 minutes and the protein-glycan 

mixture was dried down in a SpeedVac and reconstituted in 30uL 20mM ammonium 

acetate solution. 40mU neuraminidase from Clostridium perfrigens (Sigma Aldrich, St. 

Louis, MO) was added. Desialylation was performed at 37 oC for 20 hours. 

2.2.4 Extraction of desialylated glycans.  

Desialylated glycans and the protein mixture was dried in a SpeedVac and 

redissolved in 10uL water (with 0.1% TFA). 10uL porous graphitized carbon tips (PGC 

tips) (Sigma Aldrich, St. Louis, MO) were used to separate glycans from proteins and 

other impurities. The tip was activated by 50% acetonitrile (with 0.1% TFA) and 

equilibrated by water (with 0.1% TFA). The samples were then loaded and the tips were 

washed with water (with 0.1% TFA) to remove non-specific binding. 10uL 10% 

acetonitrile (with 0.1% TFA) and 10uL 25% acetonitrile (with 0.1% TFA) were used for 

glycan elution where the two elutions were combined and dried with the SpeedVac. 

2.2.5 Permethylation of glycans.  

Permethylation was performed according to the procedure of Kang in the literature.27 
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3mg grounded sodium hydroxide powder was added to the glycans, and mixed with 20uL 

DMSO, 3.8uL methyl iodide and 0.2uL water at room temperature for 10 minutes. 24uL 

water and 24uL chloroform were added, and the chloroform phase was washed with 24uL 

water for 5 times. The water phase was discarded and the permethylated glycans were 

dried and redissolved in 2uL 20% acetonitrile for mass spectrometric analysis. 

2.2.6 MALDI-QIT-TOF instrument  

0.5uL of permethylated glycans were spotted on a MALDI plate and allowed to dry 

in air. 0.5uL of sodiated DHB (10mg/mL DHB in 50% acetonitrile with 100mM sodium 

chloride) was added on top. The parameters of the MALDI-QIT-TOF were the same as 

previously described. Glycomod tool (http://www.expasy.org/tools/glycomod) was 

utilized to predict the glycan composition. Only glycan structures included in GlycoSuite 

database (http://glycosuitedb.expasy.org/glycosuite/glycodb) were selected. The glycan 

compositions were further confirmed by MS/MS analysis. All glycans were sodiated and 

analyzed in positive ion mode in this study.  

2.2.7 Data evaluation  

The MALDI MS data were acquired and processed in Launch-pad software (Karatos, 

Manchester, UK). The m/z values and intensities were exported as ASCII files and 

plotted in SigmaPlot (San Jose, CA) and peak intensities were scaled with the highest 

peak as 100%. Glycan peak area integration was performed with Matlab (Natick, MA). 

The peak area of each glycan was the addition of both permethylated glycan peak and the 

most abundant underpermethylated glycan peak detected 14 Da lower than the fully 

permethylated peak. For data visualization, a column scatter plot of the calculated 

fucosylation index was generated with Prism (La Jolla, CA).  
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2.3 Results and Discussion 

In our work, we sought to develop a mass spectrometric assay to identify and evaluate 

haptoglobin fucosylation patterns to discriminate pancreatic cancer samples from benign 

pancreatic diseases and normal controls. The work flow of this study is outlined in Figure 

2.1. Briefly, haptoglobin was immunoprecipitated from IgG depleted human serum. 

On-plate digestion followed by MALDI-QIT MS peptide analysis was used to verify the 

success of immunoprecipitation. The haptoglobin yield was evaluated by SDS-PAGE 

analysis and silver staining. The haptoglobin was then deglycosylated and desialylated 

and the glycans were purified using the PGC tips and permethylated. Permethylated 

glycans were subject to mass spectrometric analysis for structural elucidation. Analysis of 

fucoyslation degrees was performed by Matlab and visualized with Prism.  

2.3.1 Purification of haptoglobin from human serum 

Prior to immunoprecipitation with antibody-conjugated protein A/G agarose, 

depletion of IgG is required where IgG will bind to unoccupied protein A/G and coelute 

with the target protein, interfering with subsequent glycomic analysis. Haptoglobin is one 

of the plasma acute-phase proteins produced in liver with a molecular weight around 

45kDa. It is a tetramer composed of α-1, α-2 and two β chains. Haptoglobin has four 

potential N-glycosylation sites at N184, N207, N211 and N241 which are all located in 

the β chain. In this study, haptoglobin was purified from the sera of 5 normal volunteers, 

5 chronic pancreatitis patients, 5 type II diabetes patients, and 16 pancreatic cancer 

patients (1 Stage IA, 3 Stage IIA, 4 Stage IIB, 4 Stage III, and 4 Stage IV). 10-minute 

on-plate digestion and MALDI-QIT analysis were performed to confirm the identity and 

purity of haptoglobin. The mass spectrum as shown in Figure 2.2a was searched in the 
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Mascot database and returned human haptoglobin as the only significant protein with 13 

matched peptides. SDS-PAGE followed by silver staining was used to visualize the yield 

of haptoglobin (Figure 2.2b). 1/4 of the eluent from immunoprecipitation was used for 

silver-staining analysis. Haptoglobin β chain (~ 42 kDa), α-2 chain (~ 18 kDa) and α-1 

chain (~13 kDa) were all observed. As shown in Figure 2.2b, there was no contamination 

from other proteins in the eluted haptoglobin, and the total yield of haptoglobin β chain 

was estimated to be around 1-2ug per 10uL serum. The yield of immunoprecipitation was 

limited by the starting volume of serum and amount and efficiency of haptoglobin 

antibody. In this method, 1ug of protein is sufficient for subsequent glycan analysis. 

2.3.2 N-glycan profiles of haptoglobin with and without desialylation reveal elevated 

fucosylation in pancreatic cancer 

After purification of haptoglobin glycans, in-solution permethylation was performed. 

Permethylation stabilizes the relatively labile sialic acids and fucoses, and significantly 

improves the sensitivity and signal-over-noise ratio of glycans (comparison not shown), 

so that 10uL of serum aliquot and 1~2 ug of haptoglobin suffice for the identification of 

glycan structures.  

Glycan structures of haptoglobin were first analyzed without desialylation. 

N-glycans were extracted from two 10uL pooled serum samples of 5 normal controls and 

5 pancreatic cancers respectively. The representative spectra are shown in Figure 2.3a. All 

glycans observed from haptoglobin are complex-type. The major glycans are 

nonfucosylated mono- and disialylated bi-antennary structures for both normal controls 

and pancreatic cancer patients. Minor peaks corresponding to tri-antennary 

nonfucosylated glycans with one, two and three sialic acids are also observed in both 
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samples. The abundances of two bi-antennary fucosylated glycans and one tri-antennary 

fucosylated glycan with three sialic acids (m/z 2605.21, m/z 2966.50 and m/z 3776.89 

respectively) are elevated in pancreatic cancer. More strikingly, tri-antennary fucosylated 

glycans with one and two sialic acids (m/z 3052.39 and m/z 3415.73) only appear in 

pancreatic cancer but not in normal samples. However, tetra-antennary glycans and 

bifucosylated glycans with molecular weight higher than 3800Da were not detected due 

to low abundances. 

Since preliminary studies indicated that the fucosylation level is different between 

pancreatic cancer and normal controls, we cleaved the sialic acids from the glycans in 

order to: (1) merge glycans with sialic acid contents as the only difference into one peak 

so that sensitivity would be improved; and (2) eliminate the complicated heterogeneity of 

sialic acids so that the glycan spectrum and subsequent analysis would be simplified. 

However, it should be noted that glycan sialylation information which may serve as a 

potential cancer biomarker is missing with this approach.  

A typical desialylated N-glycan profile of human haptoglobin from a normal control 

and a pancreatic cancer patient is shown in Figure 2.3b. The nonfucosylated biantennary 

complex type glycan (m/z 2070.10) was the most abundant structure as previously 

discussed. Eight glycan structures in total were identified as listed in Table 2.2.1. 

Compared with Figure 2.3a, the tri-antennary bifucosylated glycan (glycan 5) and three 

additional tetra-antennary glycans (glycan 6-8) were identified. We examined each glycan 

peak for structures which were increased or decreased in pancreatic cancer compared to 

healthy controls, type II diabetes patients and chronic pancreatitis patients. A zoom-in 

peak comparison illustrates that the fucosylated triantennary and tetrantennary structures 
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resulted in the best performance in discriminating pancreatic cancer from non-cancers. A 

representative zoom-in comparison of tri-antennary and tetra-antennary structures of 

normal control, type II diabetes, chronic pancreatitis and pancreatic cancer is shown in 

Figure 2.4. Both the fucosylated tri-antennary (m/z 2693.45) and tetra-antennary (m/z 

3142.59) glycans were elevated in pancreatic cancer. The most striking finding was that 

bifucosylated tri-antennary (m/z 2867.46) and tetra-antenary (m/z 3316.60) glycans were 

present in 12 of 16 pancreatic cancer samples but never in non-cancerous samples. These 

two glycans may serve as possible markers for pancreatic cancer. The bifucosylated 

tetra-antennary glycan was reported to be unique at site N211 in pancreatic cancer in a 

site-specific study of haptoglobin by ESI-MS method.25,26 However, the tri-antennary 

glycan of human haptoglobin (m/z 2867.46) with both core and antennary fucosylation 

has not been reported previously with either the NP-HPLC or MALDI-TOF MS 

analysis16, 24 or ESI-MS approach for glycopeptide analysis26. Our method detects this 

structure probably because desialylation reduces heterogeneity of glycans and improves 

sensitivity. 

2.3.3 Fucosylation degree indices 

In order to quantify the degree of fucosylation, Imre and coworkers developed a 

fucosylation index for α-1-acid glycoprotein N-glycans to discriminate between healthy, 

lymphoma and ovarian tumors.28 The fucosylation index gives the average number of 

fucose units for a group of oligosaccharides. It is defined as: 

Fucosylation degree= (1×glycanF1+2×glycanF2)/ ∑glycans 

Where glycanF1 denotes the sum of abundances of singly-fucosylated glycans, glycanF2 

denotes that of bifucosylated glycans, and ∑glycans denotes the sum of abundances of all 
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glycans. In our study, we used this index to characterize the fucosylation level of 

tri-antennary and tetra-antennary glycans because they illustrated the greatest differences 

between pancreatic cancer and non-cancer in mass spectra depiction as discussed above. 

Hence the local fucosylation degree in our study is: 

Fucosylation degree= (1×glycan4+2×glycan5+1×glycan7+2×glycan8)/ ∑glycan3-8 

The abundance of each glycan was normalized by the sum of all glycan abundances. 

The overall fucosylation degree ranges from 0.06 to 0.95 for all samples. Non-cancer 

groups (normal, chronic pancreatitis and type II diabetes) have low fucosylation degree 

(mean is 0.27, 0.18 and 0.30 respectively), but fucosylation degrees are elevated in early 

stage pancreatic cancer (stage IIA and prior) with a mean of 0.40, and this index increases 

significantly for later stages (mean is 0.68, 0.63 and 0.64 for IIB, III and IV respectively). 

Fucosylation degree is generally lower in other pancreatic diseases such as chronic 

pancreatitis and in type II diabetes. A general comparison of fucosylation degrees 

between non-cancer and pancreatic cancer is shown in Figure 2.5. A student’s t-test was 

also performed, indicating statistically significant differences between pancreatic cancer 

and non-cancer with a low p-value of 1.9×10-7. If the cutoff value is set at 0.40, the 

sensitivity of the test is 94% while the specificity is 100% for this limited sample set. The 

result is that none of the benign samples was misidentified, however, one of the stage IIA 

cancer samples was below the index limit, as shown in Table 2.3 which summarizes 

numbers of correct classification with this fucosylation degree index. A high false 

positive rate is currently a major issue in diagnosis with the markers CA19-9 and CEA. 

With the use of haptoglobin fucosylation as a potential diagnostic marker, an individual 

with high fucosylation degree is likely to suffer from pancreatic cancer while pancreatic 
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cancer is unlikely for an individual with low fucosylation degree. 

2.3.4 Reproducibility study and influence of freeze/thaw cycles 

In order to utilize glycan structures as biomarkers for cancers and other malignancies, 

it is essential to develop a method for comprehensive, informative and quantitative 

glycan profile mapping (GPM). High-throughput methods such as lectin assay and 

antibody assay are able to quantify specific types of glycosylation patterns, but they are 

of low specificity for glycan epitopes, and detailed structural information is missing. 

HPLC or HPLC-ESI-MS methods provide both quantitative measurement and structure 

elucidation of glycans, but these existing approaches are time-consuming and do not have 

the potential for utilization in a high-throughput assay. MALDI (matrix-assisted laser 

desorption-ionization) MS has the attributes of simplicity in application and accuracy in 

composition assignment of glycans.29 Moreover, application of permethylation procedure 

minimizes ion suppression by enabling glycans to have equivalent hydrophobic 

properties, thus quantitative power is enhanced. Permethylation also improves the 

reproducibility and sensitivity of glycan analysis,30 and the spin-column based 

permethylation makes it more attractive in high-throughput analysis27. According to a 

comparative study conducted by HUPO HGPI (Human Proteome Organization Human 

Disease Glycomics/Proteome Initiative) participated in by 20 research groups, 

MALDI-TOF MS analysis of permethylated glycans yields equivalent performance as the 

HPLC method with reductive amination.31 In this study, MALDI-TOF MS analysis of 

permethylated glycans was claimed to be highly repeatable and reproducible. 

In order to evaluate the analytical reproducibility of our method and especially the 

repeatability of the fucosylation degree index, we processed four aliquots of a normal 
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control sample as described in the experimental section, and calculated the fucosylation 

degree of each aliquot as listed in Table 2.2a. The relative standard deviation (RSD) is 

only 6.3% for these four replicates, indicating high analytical reproducibility of this assay. 

Intra-assay variability has several possible sources: (1) losses or degradation of glycans 

during deglycosylation, desialylation or glycan purification; (2) peeling reactions at high 

pH during permethylation; (3) sample loss during liquid-liquid extraction in 

permethylation; (4) glycans were unevenly distributed on the MALDI plate due to uneven 

crystal formation of matrix. Although the reproducibility is excellent, special attention 

should be paid to sample handling to improve the stability of analysis. 

In order to determine how repetitive freeze-thaw effects glycan stability, we 

performed one, two and four freeze-thaw cycles on three aliquots of the same serum 

sample from a pancreatic cancer Stage IIB patient. On the protein level, we did not 

identify any significant differences in the on-plate tryptic digestion spectrum. There were 

no missing peptides and there was no significant change in relative intensities of the 

peptides (data not shown). On the glycan level all 8 glycans were identified. Fucosylation 

degrees of three aliquots as displayed in Table 2.2b are consistent for the three aliquots, 

and the RSD is 4.6%. Our study indicates that free-thaw cycles did not exert significant 

modifications at either the peptide level or glycan level, up to four freeze-thaw cycles 

analyzed. 

2.3.5 MS/MS study confirms glycan composition and location of fucosylation 

While accurate masses can provide the oligosaccharide composition such as numbers 

of Hex (hexose), HexNAc (N-acetylhexosamine) and Fuc (fucose), MS2 was performed 

to confirm oligosaccharide composition. At low energy CID, the predominant fragments 
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are y- ions resulting from the cleavage of labile GlcNAc-Hex glycosidic bond, thus the 

oligosaccharide composition can be inferred from mass differences of fragment ions.32 

Permethylation also allows one to obtain branching information of a glycan because only 

unoccupied hydroxyl groups can be permethylated.30 Fucosylation occurs during 

maturation of N-glycans and fucoses are usually attached to the N-glycan innermost core 

GlcNAc via α 1-6 linkage, or to subterminal GlcNAc via α 1-3 or α 1-4 linkage. While 

the fragmentation from CID could not provide detailed linkage information, one is able to 

discriminate between core fucosylation and antennary fucosylation based on diagnostic 

ions.  

The CID spectrum of the newly identified bifucosylated triantennary glycan (m/z 

2867.46) is shown in Figure 2.6a, demonstrating that it is a tri-antennary structure with 

both core and antennary fucosylation. The trimannosyl core fragment ion at m/z 852.24 

carries the information that three antenna are originally attached.30 The fragment ion at 

m/z 2404.05 is the product after loss of one non-reducing terminal Gal-GlcNAc. From 

the fact that the ion at m/z 2404.05 is able to lose another non-reducing terminal 

Gal-GlcNAc, producing an ion at m/z 1940.79 with high intensity, we know that for the 

majority of the glycans, one of the two fucoses must be attached to the core GlcNAc. 

Core fucosylation is also confirmed by the presence of a fragment ion at m/z 1303.46 

corresponding to a fucosylated pentasaccharide core structure. A peak at m/z 1489.49 

resulting from loss of core Fuc-GlcNAc unambiguously indicates antennary fucosylation. 

We cannot rule out the possibility that a minority of the glycan structures have both 

fucoses at the antenna as reported in Sarrats’ work16 since there is a minor peak at m/z 

2590.03 corresponding to loss of core GlcNAc only from the parent ion. 
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Similarly, we could conclude that glycan 2 (m/z 2244.20) as in Figure 2.6b is core 

fucosylated because of a diagnostic fragment at 1317.40 which corresponds to a 

fucosylated pentasaccharide core. This conclusion is also supported by an ion at 1329.40 

resulting from loss of core Fuc-GlcNAc. Likewise, glycan 7 (m/z 3142.59) in Figure 2.6c 

is antennary fucosylated. A diagnostic peak at m/z 1939.08 is the cleavage product of 

peak at 2216.25 after loss of core GlcNAc, revealing that there is no core fucose attached 

originally. The glycan is only able to sequentially lose three antennary Gal-GlcNAc, 

resulting in fragments at m/z 2679.38, 2216.25 and 1753.14. The loss of the fourth 

antennary Gal-GlcNAc (theoretical m/z at 1290.01) is not observed, revealing that the 

fucose is located at this fourth antennary GlcNAc. 

Thus, MS/MS analysis reveals that both core fucosylation and antennary fucosylation 

are present in the elevated haptoglobin fucosylation in pancreatic cancer.  

 

2.4 Conclusion 

In our study, a highly-sensitive analytical strategy is developed to elucidate N-glycan 

structures and evaluate fucoyslation for target proteins in human cancer serum. A volume 

of 10uL human serum is sufficient for total analysis. This strategy consists of five steps: 

immunoprecipitation of target protein, deglycosylation and desialylation, purification of 

glycans, permethylation, and mass spectrometric analysis for structure elucidation of 

glycans. Glycans of haptoglobin from pancreatic cancer serum, control disease states, and 

normal controls were used to evaluate this method. Compared with the lectin miroarray 

method, the mass spectrometric method on permethylated glycans yields more abundant 

structural information and has improved reproducibility. However, the large numbers of 
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glycans discovered and great overlap of glycans between cancer and non-cancer makes 

subsequent data analysis challenging. In our work, preliminary studies revealed 

fucosylated N-glycans as the indicative pancreatic cancer biomarker, hence desialylation 

was performed to simplify the glycan profile without losing fucosylation information. 

Due to the high sensitivity nature of our method, a tri-antennary complex type glycan 

with both core and antennary fucosylation was identified for the first time in haptoglobin 

in pancreatic cancer. This glycan as well as another bifucosylated tetra-antennary glycan 

are unique in pancreatic cancer, and do not appear in normal controls, chronic pancreatitis 

or type II diabetes. Besides, singly-fucosylated tri-antennary and tetra-antennary glycans 

were also found to be increased in pancreatic cancer. 

Fucosylation degree index which measures the degree of fucosylation and hence 

activity of fucosyltransferase was utilized to provide a numerical depiction of 

haptoglobin glycomic differences between pancreatic cancer and other pancreas chronic 

diseases/normal controls. The predictive power of fucosylation degree index was 

evaluated with a sensitivity of 94% and a specificity of 100%. Elevation of haptoglobin 

fucosylation is present in all stages of pancreatic cancer including the early stage, 

revealing the potential of early detection, though this result has to be verified in a larger 

sample cohort. Because pancreatic cancer is a relatively rare disease, this method is most 

likely to be applied to high risk cohorts such as those with a genetic predisposition or 

those identified through risk stratification modeling. In the future, we plan to carry out 

this assay in an easily used and high-throughput format for larger sample size screening. 

Agarose bead-based immunoprecipitation can be performed in a 96-well filter plate. 

Sample incubation, purification with porous graphitized carbon resin and derivatization 
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can also be carried out in a 96-well filter plate platform in analogy to what is describe in 

previous work.33 
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Chapter 3 

An N-glycosylation Analysis of Human Alpha-2-Macroglobulin Using an Integrated 

Approach 

3.1 Introduction 

Glycosylation is one of the most prevalent post-translational modifications for 

proteins and plays an important role in cell recognition, signal transduction and cell 

proliferation. N-glycosylation is the most common type of glycosylation, where glycans 

attach to asparagine in the consensus sequence N-X-S/T, where X cannot be proline. 

Aberrant glycosylation, such as site-specific glycosylation abnormalities, has been found 

to be associated with various types of cancers or other malignancies.1-3 Site-specific 

glycosylation information is of great importance in both clinical research and 

fundamental biology. 

N-glycosylation analysis at the glycopeptide level currently remains challenging for 

many reasons. Proteins can have multiple glycosylation sites (glycosylation heterogeneity) 

and each site can be occupied by more than one glycan (glycosylation 

microheterogeneity), hence the concentrations of individual glycopeptides are usually 

very low and require highly sensitive methods. Glycopeptides have low ionization 

efficiency and often suffer from ion suppression from non-glycopeptides during mass 

spectrometric analysis. Furthermore, collision induced dissociation (CID) of 

glycopeptides mostly produces fragments from the glycan moiety and no peptide 

sequence or glycosylation site information is produced.4   
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Recently introduced electron transfer dissociation (ETD) overcomes some of the 

limitations of CID for glycopeptide analysis.5 ETD uses reagents, such as nitrobenzene or 

fluoranthene, to produce radical anions that interact with analyte cations (normally with 

charge +3 or above) to produce fragmentation mainly along the peptide backbone, 

generating c and z type ions without disrupting the glycan.6 By combining ETD, which 

mainly yields information on peptide sequence and glycosylation sites, with CID, which 

cleaves glycosidic bonds to reveal glycan composition, site-specific glycosylation can be 

identified in a single LC MS/MS run.5, 7 

An alternative method to identify glycosylation sites uses 

endo-β-N-acetylglucosaminidases to partially deglycosylate glycopeptides.8-10 Endo H 

and Endo F1 cleave high-mannose and hybrid type glycans. Endo F2 and Endo F3 are 

able to cleave complex type glycans with two or three branches.11 

Endo-β-N-acetylglucosaminidase F3 cleaves between the two GlcNAc at the 

pentasaccharide core, leaving only the innermost GlcNAc and core fucose, if present, 

attached to the peptides.11 The fact that fucose remains attached provides 

endo-β-N-acetylglucosaminidase with the unique ability to identify core fucosylation 

sites. Core fucosylation occurs during the maturation stage of glycosylation where 

fucoses are added to the innermost GlcNAc via α (1,6) linkage.12 

Endo-β-N-acetylglucosaminidase leaves a 203 Da (GlcNAc) or 349 Da (GlcNAc-Fuc) 

modification on the asparagine and such modifications allow for reliable identification of 

glycosylation sites by CID MS/MS and database searching. False positive identifications 

are less common because of the large mass increment introduced by GlcNAc or 

GlcNAc-Fuc attachment.  
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Alpha-2-macroglobulin is one of the largest and the most abundant proteins in 

human serum with a molecular weight around 720 kDa. Usually in a tetrameric form, 

alpha-2-macroglobulin is an acute phase protein that is mainly synthesized in the liver 

and is known as a proteinase inhibitor.13 Alpha-2-macroglobulin has eight potential 

N-glycosylation sites at N55, N70, N247, N396, N410, N869, N991 and N1424, and all 

the sites have been identified by previous work.14-18 However, the previous studies were 

performed on completely deglycosylated peptides where no information on glycans was 

obtained. In the current work, we have used several complementary approaches to study 

the site-specific glycosylation pattern of alpha-2-macroglobulin. Three N-glycosylation 

sites (N70, N396 and N1424) were identified in the CID/ETD MS/MS approach, where 

heterogeneity of glycans at each site was described. Five N-glycosylation sites (N396, 

N410, N869, N991 and N1424) were found with the Endo F3 partial deglycosylation 

method, which uniquely revealed core fucosylation at site N396, N410 and N1424. This 

integrated approach to studying N-glycosylation was performed with only 10μL of serum 

and could serve as a model for studies of other glycoproteins. 

 

3.2 Experimental Section 

3.2.1 Serum samples 

Human normal sera were provided by the University Hospital, Ann Arbor, Michigan 

according to IRB approval. The samples were aliquoted and stored in a -80 °C freezer 

until further use. All samples were frozen and thawed only once. 

3.2.2 Purification of alpha-2-macroglobulin from serum 

Alpha-2-macroglobulin was purified from human serum as described in previous 
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work.19 Briefly, 10 μL of human serum was depleted of immunoglobulin (IgG) with 

protein A/G agarose beads (Pierce Scientific, Rockford, IL) to avoid IgG interference 

during immunoprecipitation. Twenty micrograms of alpha-2-macroglobulin antibody 

(Abcam, Cambridge, MA) was immobilized on protein A/G agarose beads with 

disuccinmidyl suberate (DSS) crosslinker and then incubated with the depleted serum 

overnight. Alpha-2-macroglobulin was eluted with 100 mM glycine-HCl at pH 2.8 and 

desalted with 75 μL Zeba desalting columns (Pierce Scientific, Rockford, IL).  

On-plate tryptic digestion and mass spectrometric analysis were performed to verify 

the success of immunoprecipitation. Desalted alpha-2-macroglobulin was spotted on the 

MALDI plate and dried in air. Trypsin (Promega, Madison, WI) (0.4μg) was added to 10 

μL of 100 mM ammonium bicarbonate solution with 20% of acetonitrile and added onto 

the alpha-2-macroglobulin spot and incubated in a humid chamber at 37 °C for 10 min. 

2,5-dihydroxybenzoic acid (DHB, 10mg/mL) (Laser Biolabs, France) was dissolved in 50% 

acetonitrile with 0.1% trifluoroacetic acid and added on top of the dried spot. The peptide 

peaks were searched against SWISS-PROT Homo sapiens and other mammalia protein 

database (2012_03) using Mascot, with methionine oxidation set as a variable 

modification. The tolerance for MS matching was set at 0.2 Da. Mass spectrometric 

analysis was performed on an Axima MALDI quadrupole ion trap-time of flight mass 

spectrometer (Shimadzu Biotech, Manchester, U.K.). A pulsed nitrogen laser (337 nm) at 

5Hz was used for ionization. Helium was used to cool the trapped ions and argon was 

used for CID fragmentation. All spectra were acquired in the positive ion mode. Spectra 

were calibrated with an external peptide standard mixture (Bruker Daltonics, Billerica, 

MA) to a mass accuracy of 30 ppm. 
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3.2.3 Deglycosylation, purification, permethylation and identification of N-glycans 

Alpha-2-macroglobulin was denatured in 10% denaturing solution (0.02% SDS, 10 

mM 2-mercaptoethanol) at 60 °C for 30 min. Ammonium bicarbonate solution was added 

to a final concentration of 15 mM. N-glycosidase F (New England Biolabs, Ipswich, MA) 

was added to release N-glycans at 37 °C overnight. Ten microliter porous graphitized 

carbon tips (Sigma Aldrich, St. Louis, MO) were used to purify N-glycans from proteins 

and other impurities as described previously.19 In-solution permethylation was performed 

on dried purified N-glycans according to published procedures.19 Permethylated 

N-glycans were dissolved in 2.5 μL of 20% acetonitrile and 0.5 μL was spotted on a 

MALDI plate and 0.5 μL sodiated DHB (10 mg/mL in 50% acetonitrile with 100 mM 

sodium chloride) was spotted on top. N-glycans were analyzed by MALDI-QIT-TOF MS 

with the same parameters as described before. Glycomod 

(http://www.expasy.org/tools/glycomod) was utilized to predict the N-glycan 

compositions. Only N-glycans included in the GlycoSuite database were selected. The 

glycan compositions were further confirmed with CID MS/MS analysis. 

3.2.4 LC-ESI-CID/ETD-MS analysis of chymotryptic glycopeptides 

Purified alpha-2-macroglobulin was reduced with 10 mM of dithiothreitol (DTT) at 

95 °C for 15 min and then alkylated with 22 mM of iodoacetamide (IAA) at room 

temperature in the dark for 15 min. Alpha-2-macroglobulin was diluted in 50 mM 

ammonium bicarbonate and incubated with 0.3 U of chymotrypsin (Promega, Madison, 

WI) at 37 °C for 16 h. Chymotrypsin was deactivated by boiling for 3 min. The digested 

mixture was dried in a SpeedVac and reconstituted in 10 μL 80% acetonitrile with 2% 

formic acid. ZIC-HILIC ziptips (Protea, Morgantown, WV) were used to enrich 
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glycopeptides. After the tips were equilibrated with 80% acetonitrile with 2% formic acid, 

the samples were loaded on the tips followed by washing with 80% acetonitrile with 2% 

formic acid to remove non-specific binding. The glycopeptides were eluted by 98% water 

with 2% formic acid.  

Fused silica PicoTips (New Objectives, Woburn, MA) packed with C18 material (5 

μm particle size, 10 cm×75 μm i.d.) were used for both chromatographic separation and 

ionization spray. Gradient elution was performed on a Paradigm MG4 micropump system 

(Michrom Biosciences, Auburn, CA) at 300 nL/min with mobile phase A as 2% 

acetonitrile with 1% acetic acid in water and mobile phase B as 5% water with 1% acetic 

acid in acetonitrile. A 70 min gradient was used: (1) 5% B to 60% B in 35 min, (2) 60% B 

to 95% B in 1 min, (3) isocratic at 95% B for 4 min, (4) decrease from 95% B to 5% B in 

0.1 min, (5) isocratic at 5% B for 30 min. 

An LTQ-CID/ETD-MS (Thermo Fisher Scientific, San Jose, CA) operated in 

positive ion mode was used for all LC-MS experiments. The ESI spray voltage was set at 

2.2 kV and capillary voltage at 45 V. The mass spectra were generated in a 

data-dependent manner. After a full scan from m/z 400 to m/z 1800, the three most intense 

ions were selected for ETD and CID fragmentation. For ETD MS/MS, the reactant 

temperature was 145 °C, the ionization energy was 70 V, the emission current was 15 μA, 

and the ion-ion reaction time with the reagent anion fluoranthene was set at 200 ms. For 

CID MS/MS, 35% of the normalized collision energy was used for fragmentation. 

3.2.5 LC-ESI-CID-MS analysis of endo-β-N-acetylglucosaminidase F3 (Endo F3) 

treated chymotryptic glycopeptides 

Chymotryptic glycopeptides of alpha-2-macroglobulin were purified as described in 
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section 2.4 and reconstituted in 50 mM sodium acetate. Ten mU Endo F3 (QAbio, Palm 

Desert, CA) was added and incubated with chymotryptic glycopeptides at 37 °C for 16 h. 

The resulting peptides were purified with 10 μL C18 ZipTips (Millipore, Billerica, MA). 

The tips were pre-wetted with 0.1% trifluoroacetic acid in 50% acetonitrile and 

equilibrated with 0.1% trifluoroacetic acid in water. The peptides were bound to the C18 

medium followed by washes to remove non-specific binding. Ten microliters of 50% 

acetonitrile with 0.1% trifluoroacetic acid were used for elution. The purified two-step 

digested glycopeptides were analyzed with LC-LTQ-CID-MS using the same LC method 

and MS parameters described in 2.4. After the MS survey scan, CID MS/MS was 

performed on the most intense ion, and the most intense fragment ion in MS/MS was 

selected for further MS3 fragmentation. CID MS/MS and MS3 were also performed on the 

second to the fourth most intense ions from the survey MS scan.  

3.2.6 Data analysis 

The MALDI data were acquired and processed in Launchpad software (Kratos, 

Manchester, U.K.), and the ESI data were acquired with Thermo Xcalibur software 

(Arlington, VA). The m/z values and intensities were exported as ASCII files and plotted 

in Sigmaplot (San Jose, CA).  

For chymotryptic glycopeptide analysis, the oxonium ion (m/z 366) extracted ion 

chromatogram (XIC) was re-constructed to locate peptide elution times. CID MS/MS 

spectra were manually examined and only ions which generated both oxonium ions (m/z 

204, 292, 366, 528 and 657) and b, y type glycosidic bond cleavages were considered as 

glycopeptides. Theoretical N-glycopeptide masses were calculated by adding the masses 

of theoretical chymotryptic peptides at N-glycosylation sites and the masses of N-glycans 
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obtained from MALDI MS analysis. Theoretical glycopeptide masses were matched 

against the masses obtained from LTQ-MS experiments. The peptide sequences were 

confirmed by matching the ETD MS/MS peaks with theoretical c, z type fragments listed 

in the Protein Prospector database (version 5.10.1) manually.  

For glycopeptides resulting from Endo F3 partial deglycosylation, all CID MS/MS 

spectra were searched against SWISS-PROT Homo sapiens database (Release 2010_10, 

downloaded on Nov 2, 2010) for identification of glycosylation sites. Proteome 

Discoverer software (version 1.1, Thermo Fisher Scientific, San Jose, CA) incorporated 

with SEQUEST algorithm was used to perform searches. The following search 

parameters were used: (1) fixed modification: cysteine carbamidomethylation (+57.0 Da); 

(2) variable modification: methionine oxidation (+16.0 Da), and addition of 

N-acetylglucosamine (+203.1 Da) or N-acetylglucosamine-fucose (+349.1 Da) to 

asparagine; (3) missed cleavages allowed: three; (4) peptide ion tolerance: 1.4 Da; (5) 

fragmentation ion tolerance: 1.5 Da. All search results containing N-glycosylation sites 

were validated by manual examination of CID MS/MS spectra. 

 

3.3 Results and Discussion 

In our work, we sought to develop an integrated mass spectrometry-based workflow to 

identify site-specific N-glycosylation of human glycoproteins. Alpha-2-macroglobulin 

was selected for workflow development, because of the overall analytical complexity (8 

possible glycosylation sites) and lack of previous studies detailing its glycosylation 

profile. The developed workflow for this study is outlined in Figure 3.1. The workflow 

systematically examines the glycoprotein at the glycan, glycopeptide, and peptide levels 
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to generate data that together provides a detailed description of the glycoprotein’s 

N-glycosylation profile.  

3.3.1 Purification of Alpha-2-macroglobulin from Human Serum 

In this study, alpha-2-macroglobulin was immunoprecipitated from human serum. 

Ten-minute on-plate tryptic digestion followed by MALDI-QIT-TOF MS analysis was 

used to confirm the success of immunoprecipitation by peptide mass fingerprinting and 

MS/MS on the high intensity peaks. The mass spectrum is shown in Figure 3.2a with all 

the major peaks corresponding to alpha-2-macroglobulin tryptic peptides. The spectrum 

was searched against both the Homo sapiens and other mammalia protein database with 

Mascot, and returned alpha-2-macroglobulin as the only significant protein with 23 

matched peptides. Among the 23 peptides, 21 are generated without miscleavages and 2 

have 1 miss cleavage, reflecting the reasonable efficiency of on-plate digestion. On-plate 

fast trypsin digestion has high efficiency because of the high trypsin concentration, and 

the approximate protein-to-trypsin ratio is 1:1 rather than 50:1 which is normally used in 

traditional overnight digestion. The purity of alpha-2-macroglobulin was evaluated with 

SDS-PAGE followed by silver staining (Figure 3.2b). Alpha-2-macroglobulin monomer 

(~180 kDa) and two other cleavage fragments (~120 kDa and ~60 kDa) were observed 

with no other significant bands observed. 

3.3.2 N-glycan Analysis of Alpha-2-macroglobulin 

In-solution permethylation was performed on purified N-glycans to improve 

sensitivity during MS analysis and to stabilize the labile fucose and sialic acids.20 A 

typical alpha-2-macroglobulin N-glycan profile by MALDI MS is shown in Figure 3.3a, 

which is dominated by the four most abundant N-glycans. These include bi-antennary 
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complex type glycans with one or two sialic acids and with or without fucosylation. CID 

MS/MS was performed on the four N-glycans to confirm the oligosaccharide 

compositions. At low energy CID, permethylated glycans typically generate y-ions 

resulting from cleavage of the labile GlcNAc-Gal bond or NeuAc-Gal bond. Fucoses are 

usually attached to the innermost GlcNAc via α1-6 linkage or to subterminal GlcNAc via 

α1-3 or α1-4 linkage. Although CID does not help to determine linkage type, we utilized 

characteristic CID fragment ions to discriminate between terminal fucosylation and core 

fucosylation. The CID MS/MS spectrum of the singly sialylated biantennary fucosylated 

glycan at m/z 2966.44 is shown in Figure 3.3b. The signals at m/z 2230.03 and 2141.96 

are the products after loss of the two terminal NeuAc and terminal GlcNAc-Gal-NeuAc 

from the parent ion, respectively. The core fucosylation was confirmed by the ion at m/z 

1317.38 which corresponds to addition of GlcNAc-Fuc to the trimannosyl-GlcNAc core. 

The core fucosylation was further verified by glycopeptide analysis by 

chymotrypsin-Endo F3 two-step digestion. 

3.3.3 MS/MS analysis of N-glycopeptides 

Trypsin was initially used in our study, but very limited glycopeptide information 

was obtained, possibly because trypsin generated large glycopeptides which did not 

ionize well.4 Chymotrypsin cleaves the amide bonds C-terminal to hydrophobic amino 

acids, such as phenylalanine (F), tryptophan (W) and tyrosine (Y) and sometimes after 

methionine (M) and lysine (L). Chymotrypsin was found to produce more glycopeptides 

when compared to trypsin. While the lower cleavage specificity of chymotrypsin, when 

compared to trypsin, may limit the use of chymotrypsin in strict quantitative studies, the 

cleavage pattern was found to be very reproducible by precisely controlling the 
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incubation time. 

A typical LC-MS base peak chromatogram of a chymotryptic glycopeptide is shown 

in Figure 3.4a. The glycan oxonium ion at m/z 366 (GlcNAc-Gal), which is a typical 

glycopeptide fragment, was used to locate the elution time of the glycopeptides. The 

extracted ion chromatogram of m/z 366 is shown in Figure 3.4b, revealing that most of 

the glycopeptides eluted between 26 min and 42 min. Summed mass spectra within a 1 

min elution window around the peak maxima were obtained for all chromatographic 

peaks (27.15 min, 29.58 min, 37.35 min, 38.27 min and 41.77 min) between 26 min and 

42 min in Figure 3.4a. Most of the mass spectrometric peaks were confirmed to be 

glycopeptides by manually inspecting the fragment ions from CID and ETD as discussed 

below. An example of an integrated mass spectrum between 37.60-38.60 min (Figure 3.4a) 

is shown in Figure 3.4c. It is noted that some peaks in Figure 3.4c were not identified as 

glycopeptides because there were few informative ETD fragments generated for 

determining peptide sequence and/or glycosylation site. 

All glycopeptides were characterized by combining both CID and ETD fragment 

information. Since glycosidic bonds are more fragile than amide bonds and CID in the 

LTQ is a low-energy fragmentation method, the majority of product ions are from 

glycosidic bond cleavage, leaving the peptide backbone intact. A typical CID MS/MS 

spectrum of an N-glycopeptide (ESVRGNRSLF) is shown in Figure 3.5a. The lower 

mass range is dominated by three oxonium ions (m/z 366: GlcNAc-Gal, 528: 

Man-GlcNAc-Gal, and 657: GlcNAc-Gal-NeuAc). The higher mass range is dominated 

by glycan fragments with the intact peptide backbone. The Gal-NeuAc, GlcNAc-Man, 

Gal-GlcNAc, and Man-Man bonds were broken, resulting in ions at m/z 1397.7, 1357.1, 
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1130.7 and 1276.1, respectively. It is interesting to note that there are few glycosidic 

cleavages at the trimannose chitobiose core. Only one Man-Man bond cleavage (m/z 

1276.1) was observed, while most of the glycopeptides fragments retain the core structure. 

Based on the partial glycopeptide fragment information, the glycan composition of 

glycopeptides was deduced.  

It is well known that ETD generally produces c and z ions resulting from cleavage of 

the N-Cα bond and retains the post translational modifications such as glycosylation. The 

ETD spectrum of the same glycopeptide (ESVRGNRSLF) is displayed in Figure 3.5b. 

ETD is believed to be less efficient and sensitive than CID21, and the ETD signals were 

generally lower than their CID counterparts based on our observation. The most abundant 

ion is the charge reduced species of the parent ion (m/z 1540.2, charge 2+). The presence 

of such charge reduced ions can be useful to determine the charge states of glycopeptides 

when using lower resolution instrumentation, such as the LTQ. In this case, 4 out of 9 z 

ions and 6 out of 9 c ions predicted were observed, as annotated in Figure 3.5b. The 

glycosylation site can be determined by the mass difference between c5
+ (m/z 546.3) and 

c6
2+ (m/z 1287.5). The mass difference is 2027.7, which is the addition of a glycan mass 

(1913.7) and the mass of asparagine (114.0). However, the useful signals are often less 

intense in ETD than in CID. It is reported that ETD is more efficient for charge states 

over 3+ and m/z lower than 1400.21 We also observed that for glycopeptides with a 2+ 

charge and m/z higher than 1600 (data not shown) that no ETD fragmentation occurred. A 

summary of all the N-glycopeptides identified for alpha-2-macroglobulin is shown in 

Table 3.1. Glycopeptides with the same peptide sequences, but slightly different glycans, 

eluted at approximately the same time during C18 LC separation.7 Only glycopeptides that 
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met the following criteria are listed: (1) precursor masses must match with theoretical 

glycopeptide masses based on identified glycans and theoretical chymotryptic peptide 

masses, (2) CID spectra must contain both oxonium ions and glycan fragment ions with 

intact peptide backbones, and (3) ETD spectra must have a total of at least four matching 

c or z ions. Three sites (N70, N396 and N1424) were identified to be glycosylated with 

all four N-glycans as shown in Table 3.1. However, it should be noted that the other five 

sites may be glycosylated as well, but were not identified in this ETD/CID approach. This 

could be because the glycopeptides are of low abundance or these unidentified sites were 

associated with less abundant N-glycans which were not identified in the glycan analysis. 

It is also possible that these unidentified glycopeptides have lower ionization efficiencies 

or low ETD efficiencies and did not provide informative fragments. 

3.3.4 MS/MS analysis of partially deglycosylated N-glycopeptides 

 Endoglycosidases have been used for the identification of glycosylation sites by 

partially deglycosylating glycopeptides and was recently used to identify 62 

glycosylation sites from 37 serum glycoproteins.9 Endo-β-N-acetylglucosaminidase 

hydrolyzes the bonds between the two GlcNAc in chitobiose core linked to asparagine, so 

that only the innermost GlcNAc or GlcNAc-Fuc is retained on the asparagine side chain. 

Endo F3 is applicable to complex type biantennary or tri-antennary N-glycans, but is less 

efficient for tetra-antennary glycans. Compared to the ETD/CID combined approach for 

glycopeptides analysis, the endoglycosidase approach does not maintain glycosylation 

site microheterogeneity information. However, the advantage of this method is that 

signals from N-glycopeptides sharing the same peptide backbone are merged into two 

peaks (either core-fucosylated or non-core-fucosylated), so that mass spectral complexity 
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is reduced and overall signal intensity is increased. Furthermore, we found that CID of 

endoglycosidase treated peptides produced more peptide sequence ions22 which could be 

used for peptide sequencing and glycosylation site determination, as a complement to the 

ETD/CID approach.  

A traditional approach for identification of N-glycosylation sites uses PNGase F to 

release N-glycans from proteins and depends on the mass shift (+0.98Da) of deamidation 

(asparagine to aspartic acid) during PNGase F hydrolysis for site determination.14-17, 23 

However, this method requires high mass resolution mass spectrometers, making linear 

ion trap instruments less appropriate. Furthermore, deamidation can occur spontaneously 

as a sample artifact, rather than due to enzymatic action of PNGase F, increasing the 

chance of false positives.24 The confidence of glycosylation site assignment can be 

improved by performing deglycosylation in H2
18O, introducing a mass shift of 2.98 Da.25 

However, partial 18O incorporation in the C-terminus may bring confusion in site 

identification. With the endoglycosidase approach, N-glycosylation site assignment is 

unambiguously confirmed by the residual GlcNAc or GlcNAc-Fuc with greater mass 

increments, which reduces false positive identification rate.  

Based on the N-glycan analysis, most of alpha-2-macroglobulin N-glycans are 

biantennary complex type, thus we chose Endo F3 for partial deglycosylation. The search 

results of the acquired CID MS/MS and MS3 spectra revealed N-glycosylation sites as 

shown in Table 3.2. Ten partial glycopeptides associated with five N-glycosylation sites 

were identified with or without core fucosylation. It is interesting to note that the MS/MS 

spectra of glycopeptides with a GlcNAc-Fuc attached were dominated by the neutral loss 

of the core fucose22 where little peptide fragmentation was achieved. Further 
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fragmentation of the most abundant defucosylated ion (MS3) generated fragment ions 

similar those from the MS/MS of their non-fucosylated counterparts. An example is 

shown in Figure 3.6 where the two glycopeptides selected include fucosylated (m/z 884.6, 

Figure 3.6a) and non-fucosylated (m/z 811.6, Figure 3.6b) with the same peptide 

backbone. The MS/MS spectrum of the fucosylated peptide at m/z 884.6 in Figure 3.6a 

does not provide much peptide backbone fragmentation and the most intense ion at m/z 

811.6 results from neutral loss of the core fucose. MS3 of this neutral loss peak at m/z 

811.6 in Figure 3.6a yields extensive peptide backbone fragments (y2-y11 and b2-b11), 

providing both the peptide sequence and glycosylation site information. The MS3 

spectrum of 884.6->811.6 has great similarity with the MS/MS spectrum of the 

non-fucosylated counterpart (m/z 811.6) which is shown in Figure 3.6c. Thus, by 

combining Endo F3 partial deglycosylation with MS/MS of non-fucosylated 

glycopeptides or MS3 of fucosylated glycopeptides, we can obtain the information on 

peptide sequence, glycosylation sites and attachment sites of core fucosylation. 

Combined with the ETD analysis of N-glycopeptides, six out of eight N-glycosylation 

sites were identified (N70, N396, N410, N869, N991 and N1424). However, site N55 and 

site N247 were not detected with the Endo F3 approach possibly because they were 

occupied by other N-glycans than the four most abundant complex type glycans 

identified in this study, and those less abundant glycans were not cleaved due to the 

substrate specificity of Endo F3. Expected masses of partial glycopeptides associated 

with site N70 were observed with the Endo F3 method, but Xcorr scores were not 

sufficient for confident assignment, even though some expected theoretical MS/MS peaks 

were found by manual inspection. 
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3.4 Conclusion 

In this work, an integrated LC-MS/MS strategy was developed for comprehensive 

identification of both site-specific glycosylation and core fucosylation of glycoproteins. 

Using this workflow, a volume of only 10µL of human serum sufficed for two 

LC-MS/MS analyses on glycopeptides treated with and without Endo F3 treatment. There 

are three major aspects in this assay including N-glycan analysis, CID/ETD MS/MS 

analysis of intact glycopeptides, and CID MS/MS analysis of Endo F3 treated 

glycopeptides. 

Glycopeptide CID/ETD MS/MS analysis identified three N-glycosylation sites, N70, 

N396 and N1424, with four glycoforms found for each site. Endo F3 cleaves the majority 

of glycan moieties with only the core GlcNAc or GlcNAc-Fuc attached to the peptide 

backbones, thus reducing the mass spectra complexity and provides the unique ability to 

identify site-specific core fucosylation. The advantages of Endo F3 assisted mass 

spectrometric analysis were successfully used to reveal five glycosylation sites at N396, 

N410, N869, N991 and N1424. With this combined approach, we identified a total of six 

N-glycosylation sites with site-specific glycosylation or core fucosylation patterns 

revealed. 
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Figure 3. 6. (a) CID MS/MS of the fucosylated glycopeptide 
(SN(+GlcNAc-Fuc)ATTDEHGLVQF) at m/z 884.6. The major fragment at m/z 811.6 is 
the product ion after neutral loss of fucose from the precursor ion. Minimal peptide 
backbone fragmentation was observed. (b) CID MS3 of m/z 811.6 from (a) showed 
extensive fragmentation along the peptide backbone, providing both peptide sequence 
information and the glycosylation site. (c) CID MS/MS of the non-fucosylated 
glycopeptide (SN(+GlcNAc)ATTDEHGLVQF) at m/z 811.6. (c) has great similarity with 
(b), revealing presence of both fucosylation and non-fucosylation at the same site. 
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Table 3. 1. N-glycopeptides identified in LC-CID/ETD-MS/MS analysis. 
 

Site  Peptide sequence  Glycan   m/z  Charge  r.t. (min) 

70  ESVRGNRSLF   1026.7  +3  28.77  

 ESVRGNRSLF  1075.3 +3  29.03  

 ESVRGNRSLF  843.4  +4  30.02  

 ESVRGNRSLF  1172.2 +3  29.03  

 ESVRGNRSLFTDL   852.8  +4  30.51  

396  SNATTDEHGLVQF   1111.1  +3  36.60  

 SNATTDEHGLVQF   1160.8  +3  37.27  

 SNATTDEHGLVQF  870.5  +4  37.43  

 SNATTDEHGLVQF   1208.5  +3  38.82  

 SNATTDEHGLVQF  907.1  +4  37.94  

 SNATTDEHGLVQF   1257.3  +3  38.15  

 SNATTDEHGLVQF  943.3 +4 38.51 

 YSNATTDEHGL  1040.7 +3 38.70 

 SNATTDEHGL   1083.8  +3  29.93  

 YSNATTDEHGLVQF  947.6  +4  38.90  

1424  IYLDKVSNQTL   1069.5  +3  37.09  

 IYLDKVSNQTL  1118.0  +3  36.91  

 IYLDKVSNQTL  1166.9  +3  36.85  

 IYLDKVSNQTL  911.8  +4  37.02  

 LDKVSNQTL  1123.7  +3  37.58  
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Chapter 4 

A Method for Label-free Relative Quantitation of site-specific Core-fucosylation by 

LC-MS/MS 

4.1 Introduction 

Glycosylation is one of the most prevalent protein posttranslational modifications and 

it is estimated that over 50% of proteins are glycosylated.1 Protein glycosylation usually 

reflects the physiological and pathological environment of cells, and its alterations have 

been found to be involved in pathogenesis of multiple diseases including cancers. 2-6 

Given its importance in disease diagnostics, understanding of protein glycosylation has 

lagged behind achievements in genomics and proteomics mostly due to the complexity in 

glycosylation and lack of efficient and sensitive characterization or quantification 

methods. One protein may have several glycosylation sites (glycosylation heterogeneity) 

with multiple possible glycans at each site (glycosylation microheterogeneity), leading to 

an extremely low abundance of a particular glycopeptide. In most glycosylation studies, 

N-glycans are released from the peptide backbone by peptide N-glycosidase (PNGase F), 

followed by separate qualitative and quantitative analysis of glycans7, 8 and 

deglycosylated peptides9, 10. This approach only provides aggregate glycosylation 

information, but cannot identify site-specific glycosylation patterns which may serve as 

potential disease markers. There are relatively few studies on intact glycopeptides and 

even fewer cases of quantification. Label free strategies based on intensities of precursor 

ions have been used often in the literature.11, 12  
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Core-fucosylation, where the fucose attach to innermost GlcNAc via an α-1,6 linkage, 

is a subtype of N-glycosylation which has attracted much research interest due to its 

potential as a cancer biomarker6, 13, 14. Notably, the core-fucosylation level of 

alpha-fetoprotein (AFP-L3) is an FDA-approved diagnostic tool for liver cancer15. To 

overcome the technical difficulty of intact glycopeptide analysis and to target site-specific 

core-fucosylation quantification, we developed a method which utilizes endoglycosidase 

F3 (Endo F3) to partially deglycosylate the glycopeptides and retain only the core 

GlcNAc and fucose. The qualitative aspect of this method has been used to identify 

glycosylation sites on both core-fucosylated individual proteins16 and from complex 

protein mixtures such as human plasma17-19. In terms of the quantitative aspect of this 

approach, analyses on serum protein core-fucosylation level change as potential 

hepatocellular carcinoma markers have been performed using precursor intensity-based 

quantification with differential dimethylation methods20.  

In this study, we developed a label-free LC-MS/MS methodology for relative 

quantification of core-fucosylation at specific glycosylation sites based on precursor ion 

intensities of Endo F3 treated glycopeptides. Using the property that partially 

deglycosylated glycopeptides with the same peptide backbone approximately co-elute by 

reverse phase liquid chromatography, the fucosylation ratio at a particular glycosylation 

site can be calculated through dividing the peak area of fucosylated peptide by the peak 

area of non-core-fucosylated counterpart with the same peptide sequence. This is a 

relative quantification method which eliminates the need of internal standards. We 

applied this assay in the quantitative study of alpha-2-macroglobulin (A2MG) 

site-specific core-fucosylation where A2MG was immunoprecipitated from human serum. 
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The fucosylation ratios at three sites N396, N410 and N1424 of human A2MG were 

calculated from 20 normal controls, 20 pancreatic cancer patients and 20 chronic 

pancreatitis patients. This assay could be utilized to monitor core-fucosylation changes in 

other proteins or protein mixtures and be used to identify aberrations in protein 

core-fucosylation on the onset of diseases. 

4.2. Experimental Section 

4.2.1 Serum samples 

A total of 60 human serum samples (20 normal volunteers, 20 chronic pancreatitis 

patients and 20 pancreatic cancer patients) were included in this study. Demographic 

information and cancer stage information are shown in Table 4.1. All human normal 

serum samples were provided by the University Hospital, Ann Arbor, Michigan, and all 

chronic pancreatitis and pancreatic cancer samples were provided by the University of 

Pittsburgh. All samples were collected according to IRB approved protocols. The samples 

were aliquoted and stored in a -80 °C freezer. All samples were frozen and thawed only 

once. 

4.2.2 Sample preparation 

Sample preparation was detailed in previous work.16 Briefly, alpha-2-macroglobulin 

was immunoprecipitated (antibody from Abcam, Cambridge, MA) from 10 μL human 

serum, reduced with dithiothreitol, alkylated with iodoacetamide, and digested with 

chymotrypsin (Promega, Madison, WI). Glycopeptides were enriched using ZIC-HILIC 

microtips (Protea, Morgantown, WV), and further partially deglycosylated with Endo F3 

(QAbio, Palm Desert, CA). The resulting peptides were desalted with C18 ZipTips 

(Millipore, Billerica, MA) prior to LC-MS/MS analysis.  
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4.2.3 NanoLC-LTQ-MS analysis of partially deglycosylated peptides 

NanoLC-MS/MS conditions were described in previous work.16 In summary, a C18 

capillary column (75 μm i.d. × 10 cm; 5 μm particles) was used for LC separation, and 

gradient elution was performed using a Paradigm MG4 micropump system (Michrom 

Biosciences, Auburn, CA) with a flow rate at 300 nL/min. Mobile phase A was 2% 

acetonitrile with 1% acetic acid in water and mobile phase B was 5% water with 1% 

acetic acid in acetonitrile. The analytical gradient lasted 70 min where composition of 

solvent B rose from 5% to 60% in 35 min, followed by a washing and equilibration step 

where solvent B increased to 95% in 1 min and held for 4 min, finally returned to 5% B 

in 0.1 min and held for 30 min. 

An ESI-LTQ mass spectrometer (Thermo Fisher Scientific, San Jose, CA) operated 

in positive ion mode was used for analysis. The ESI spray voltage and capillary voltage 

were set at 2.2 kV and 45 V respectively. CID fragmentation was performed at 35% of 

the normalized collision energy. The mass spectra were acquired in a data-dependent 

manner. Following a full scan in the mass range of m/z 400 to1800, CID MS/MS was 

performed on the most intense ion, and the most intense fragment ion in MS/MS was 

selected for MS3 fragmentation. CID MS/MS and MS3 were performed on the first to the 

fourth most intense ions from the survey MS scan. 

4.2.4 Quantitative data analysis 

Database search was performed using Proteome Discoverer (version 1.1, Thermo 

Fisher Scientific, San Jose, CA) with SEQUEST using the following search parameters: 

(1) fixed modification: cysteine carbamidomethylation (+57.0 Da); (2) variable 

modification: methionine oxidation (+16.0 Da), addition of N-acetylglucosamine (+203.1 
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Da) or N-acetylglucosamine-fucose (+349.1 Da) to asparagine; (3) missed cleavages 

allowed: three; (4) enzyme specificity: chymotrypsin at F, W, Y, and L; (5) peptide ion 

tolerance (average mass): 1.4 Da; (6) fragmentation ion tolerance (average mass): 0.8 Da. 

The MS/MS data was searched against SWISS-PROT Homo sapiens database (Release 

2010_10, downloaded on Nov 2, 2010). 

The partially deglycosylated glycopeptides identified were quantified using the peak 

areas from the extracted ion chromatogram (XIC). Peak area integration was performed 

manually using XCalibur Qual Browser (version 2.1) with the following parameters: (1) 

precursor peaks were extracted with a 1 Da (±0.5 Da) mass window; (2) scan filter was 

set as full MS; (3) boxcar type of smoothing with 7 points was enabled; (4) peak 

detection algorithm was Genesis; (5) signal-over-noise ratio threshold was set at 3.  

4.2.5 Statistical analysis of fucosylation ratios 

The fucosylation ratio for each glycosylation site was calculated as: 

 Fucosylation ratio= 
AXIC-Fucosylated

AXIC-Non‐core‐fucosylated
 

where AXIC-Fucosylated and AXIC-Non-core-fucosylated are the peak areas of extracted precursor ion 

chromatograms of core-fucosylated peptide and non-core-fucosylated peptide with the 

same sequence respectively.  

Five fucosylation ratios were obtained for each sample and log transformed. Each log 

ratio was compared across samples of different disease states using ANOVA with Prism 5 

(GraphPad, La Jolla, CA). Correlation analysis of core-fucosylation patterns between 

different peptide sequences were performed using R.  
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4.3. Results and Discussion 

In this report, we describe an endoglycosidase F assisted label-free LC-MS/MS assay 

for quantifying protein site-specific core-fucosylation level change. This assay as shown 

in Figure 4.1 is composed of the following steps: (1) identification of the partially 

deglycosylated peptide m/z’s and retention times; (2) peak area integration of the 

extracted ion chromatogram (XIC) of the partially deglycosylated peptides; (3) 

calculation of the core-fucosylation ratio of each peptide sequence (which is defined as 

the peak area of the fucosylated peptide divided by the peak area of the approximately 

coeluting non-core-fucosylated counterpart sharing the same peptide backbone); (4) 

comparison of core-fucosylation ratios between samples. 

4.3.1 Selection of enzyme for proteolysis 

To determine the proteolytic enzyme for this study, we compared the numbers of 

N-glycosylation sites identified using different enzymes including trypsin, chymotrypsin, 

trypsin/GluC and LysC/GluC. As shown in Table 4.2, we were able to identify the most 

glycosylation sites (N396, N410, N869, N991 and N1424) with chymotrypsin, while 

trypsin/GluC and LysC/GluC provided 3 sites respectively and only one site was 

identified with trypsin. In combining all four digestion methods, all eight potential 

N-glycosylation sites of A2MG were identified. It is interesting to note that sites N869 

and N991 were not observed to have core-fucosylation, suggesting variation in the level 

of core-fucosylation between sites. In our study, we chose to use chymotrypsin because 

of the number of sites identified. The focus of this study is developing a LC-MS/MS 

assay for quantification of protein core-fucosylation rather than comprehensively 

quantifying alpha-2-macroglobulin core-fucosylation at every glycosylation site. 
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LTQ-Orbitrap MS, a high-resolution instrument was used for comparison of identification 

results, giving the same results (data not shown).  

4.3.2 Label-free quantitative analysis 

While most studies of site-specific glycosylation quantification are performed on 

intact glycopeptides, the high heterogeneity, the low concentration and low ionization 

efficiency of individual glycopeptides make quantification and data analysis more 

challenging. In this study, we focused on quantifying the extent of protein 

core-fucosylation, which is an important subtype of disease related glycosylation. By 

using endoglycosidase F, most of the glycan is removed, leaving only core GlcNAc or 

GlcNAc-Fuc (if there is core-fucosylation) attached to the peptide backbone. Hence the 

glycopeptides are divided into two categories – core fucosylated and 

non-core-fucosylated – and the proportion of core-fucosylation can be quantified as 

described in section 3.3. This approach has three major advantages compared to intact 

glycopeptide analysis: (1) ionization efficiency of partially deglycopeptides was 

significantly increased; (2) the sensitivity of the assay was improved due to the signal 

stacking effect; (3) data analysis was greatly simplified. 

Label-free quantification strategy based on the area under curve (AUC) of the 

precursor ions has been used in quantification of both the protein abundance and protein 

post-translational modifications including glycosylation12 and phosphorylation21. In this 

study, peak areas of 10 partially deglycosylated peptides (5 pairs, both fucosylated and 

non-core-fucosylated) from each of the 60 samples (20 normal, 20 chronic pancreatitis, 

and 20 pancreatic cancer) were extracted. A low-resolution instrument could be used in 

this case because of the low sample complexity due to effective isolation of a single 



 

92 
 

protein and purification of glycopeptides (only 16 peptides were identified in a typical 

database search). Over 90% of partially deglycosylated peptides quantified were 

identified using database search, and the peak areas of the very few unidentified peptides 

were extracted based on the protein correlation profiling method using match in both 

retention time and precursor mass.  

We also attempted MRM for quantification purpose. There are two folds of technical 

difficulty in the MRM assay development for the core-fucosylation quantification. The 

first obstacle is the lack of standard peptides with core fucosylation. This makes it 

difficult to optimize the collision conditions and selection of transitions, which is crucial 

in the case of core-fucosylated peptides due to their high tendency to generate only 

neutral loss ions in CID MS/MS. Three transitions are normally used for a peptide to 

improve the specificity. However, only the neutral-loss fragment may be used for the 

core-fucosylated peptides, making the assay less specific.  

The second obstacle is the differential isotopic labeling. We tried two isotopic 

labeling strategies, enzyme-catalyzed 18O labeling and Tandem Mass Tag (TMT) labeling. 

Chymostrypsin was used to incorporate two 18O in the C-terminus carboxylic groups. 

Due to the low-specificity of chymotrypsin, the incorporation was not consistently 

successful due to limitation in the kinetics. As shown in Figure 4.2, the labeling was 

efficient for peptides ending with F with most abundant ion species as the 218O labeled 

and very low non-labeled or singly-labeled signals. However, the labeling was not 

efficient for peptides ending with L. The most intense ions were singly labeled or 

nonlabeled. The low 218O incorporation rates of these peptides ending with L made 

quantification implausible. Unlike 218O which preserve the properties of the peptides, 
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TMT labeling which modifies the primary amine (N-terminal or K, R and H) changes 

their chemical physical characteristics. It was observed that the precursor ion intensities 

significantly decreased by around 10 folds after TMT labeling as demonstrated in Figure 

4.3 for unclear reasons, which greatly lowers the sensitivity of the assay. Due to the 

failures in labeling strategies, we decided to use label-free method. 

4.3.3 Fucosylation ratio indices 

Fucosylation degree, the relative abundance of fucosylated glycans in a mixture of 

oligosaccharides, has been used to provide a numerical description of fucosylation 

changes of N-glycans in various disease states6, 22. In this study, core-fucosylation ratios 

were obtained on glycopeptides, and quantification of site-specific core-fucosylation was 

reported for the first time. The prior work quantified only the core-fucosylated peptides 

but not the non-core-fucosylated counterparts,20 hence it was unclear if the quantitative 

change occurred in the protein amount or extent of core-fucosylation. This work 

quantifies the core-fucosylation only without influence of protein amount.  

It was found that the core-fucosylated and non-core-fucosylated peptides with the 

same peptide sequence approximately coelute because the retention behavior was largely 

determined by the peptide backbone as shown in Figure 4.4. Among five pairs of 

deglycosylated peptides detected, the mean absolute differences in retention times of the 

four pairs of peptides (panel1: 811.5/884.4, panel 2: 893.2/966.1, panel 4: 611.1/684.0, 

and panel 5: 749.3/822.3) are 6 seconds, while the mean absolute difference in retention 

times of one pair of peptides (panel 3: 720.9/793.9) is wider at 30 seconds. Similar 

chromatographic behavior is the base for fucosylation ratio construction.  

Although chymotrypsin demonstrated reproducible cleavage in evaluating the 
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reproducibility, missed cleavages are common in chymotrypsin digestion, leading to 

multiple peptide sequences at the same glycosylation site as shown in Table 4.2. To 

compare the fucosylation degree at a particular site, it is important to include all the 

corresponding peptide sequences. It is further demonstrated in Section 3.4 that the 

core-fucosylation patterns of peptides corresponding to the same N-glycosylation site are 

highly correlated. 

Reproducibility, an essential parameter in a quantitative assay is evaluated in order to 

demonstrate the ability of the assay to obtain the fucosylation ratios reproducibly in 

repeated analyses performed on different days. Four aliquots of the same serum sample 

were analyzed on different days and revealed a coefficient of variation (CV) less than 11% 

(Table 4.3). 

4.3.4 Statistical analysis 

Fucosylation ratios of 5 pairs of peptides originating from 3 glycosylation sites were 

compared between 60 samples categorized as three disease states (20 normal, 20 chronic 

pancreatitis, and 20 pancreatic cancer), generating a 5×60 data matrix as shown in. The 

fucosylation ratios range from 0.1 to 20, revealing the high diversity in distribution of 

core-fucosylation. To meet the normality assumption of ANOVA test, a log10 

transformation was performed to correct the deviation from normality for most 

populations  except for the population of chronic pancreatitis with peptide sequence 

YSNATTDEHGLVQF (m/z: 893.0/966.0) due to one extremely low value. This value 

was considered as an outlier and was removed to ensure the normality of the data  

To study the fucosylation ratio changes between disease groups, a one-way ANOVA 

F-test was applied to compare the means of three different populations, and multiple 
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comparisons were performed with Tukey’s test. In general, a statistically significant 

fucosylation decrease was observed in all five pairs of peptides (m/z 811.5/884.5, m/z 

893.0/966.0, m/z 720.9/794.0, m/z 749.2/822.2, and m/z 611.0/684.0) corresponding to 

three sites (site 396, 410 and 1424) of alpha-2-macroglobulin in pancreatic diseases 

(including pancreatic cancer and chronic pancreatitis) compared to normal controls, while 

the pancreatic cancer and chronic pancreatitis were undistinguishable. Scatterplots in 

Figure 4.5 provide a graphical comparison of the log fucosylation ratios at five pairs of 

peptides in the 60 samples, and the brackets show the statistically significant comparison 

(p-value<0.05). It is obvious that core-fucosylation decreases in both chronic pancreatitis 

and pancreatic cancer at all sites. The decrease of core-fucosylation was observed in 

global N-glycan analysis as shown in Figure 4.6 where N-glycans were purified, 

permethylated and analyzed as described in Chapter 2. 

 To quantify the fucosylation decrease between the normal control and the chronic 

pancreatitis, or the normal control and the pancreatic cancer, the effect sizes were 

calculated, and the decrease of fucosylation is demonstrated as the fold change in the unit 

of standard deviation. Cohen’s d was used for effect size calculation: 

21x xd
S
−

=  

where 1x and 2x  are the means of fucosylation ratios at a particular peptide sequence 

for disease groups involved in comparison (normal vs. cancer, or normal vs. pancreatitis). 

As shown in Table 4, alpha-2-macroglobulin shows 1-2 standard deviation decrease in 

fucosylation ratio in chronic pancreatitis and pancreatic cancer patients for all the 3 

glycosylation sites studied. A2MG core-fucosylation ratios of chronic pancreatitis and 

pancreatic cancer decreased to 6% to 65% of the normal volunteer values. 
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Furthermore, Pearson’s r correlation analysis was performed in order to evaluate the 

correlation of core-fucosylation ratios between peptides corresponding to the same 

glycosylation site, and between peptides corresponding to different sites (Figure 4.7). 

Pearson’s r compares the covariance of two populations again with the variances of both 

populations. Its value range from -1 to 1; a value between 0.5 and 1 indicates positive 

correlation, a value between -1 and -0.5 indicates negative correlation, and a value 

between -0.5 and 0.5 indicates low or zero correlation. As we expected, the 

core-fucosylation ratios of peptide sequences corresponding to the same glycosylation 

site are well correlated (r~0.8), indicating high internal consistency of the quantification 

results. Site 396 and Site 1424 are highly correlated in core-fucosylation patterns while 

core-fucosylation ratios of Site 410 are not correlated with other two sites. It is unclear 

how the fucosyltransferrase recognize specific N-glycosylation sites and modify them 

differently. It could recognize the amino sequences around the site or recognize the 

conformational structure of A2MG. 

 

4.4. Conclusion 

In this report, an endoglycosidase-assisted label-free LC-MS/MS assay which 

relatively quantifies site-specific core-fucosylation was developed and applied to human 

serum alpha-2-macroglobulin. The core-fucosylation ratio at each glycosylation site was 

calculated as the peak area of the fucosylated peptide divided by the peak area of the 

non-core-fucosylated peptide with the same peptide sequence. The assay was 

demonstrated to have inter-day reproducibility of less than 15%. The assay was utilized 

in a preliminary study of alpha-2-macroglobulin core-fucosylation changes in pancreatic 
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diseases including pancreatic cancer and chronic pancreatitis. Core-fucosylation levels 

were found to decrease at sites 396, 410 and 1424 in both chronic pancreatitis and 

pancreatic cancer compared to normal controls. Further exploration with larger sample 

cohort is needed for validation. This generic strategy could be effectively applied to 

monitor the aberration in site-specific core-fucosylation of other glycoproteins for cancer 

biomarker studies. 
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Figures 

Figure 4. 1. Workflow of the study 
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Figure 4. 2. Inconsistent labeling efficiency of chymotrypsin-catalyzed 218O labeling. Top 
trace: labeling pattern of peptide SNATTDEHGLVQF. Bottom trace: labeling pattern of 
peptide IYLDKVSNQTL.  
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Figure 4. 4. Extracted ion chromatograms (XIC) of 5 pairs of partially deglycosylated 
peptides. The top chromatogram of each panel is the non-core-fucosylated peptide, and the 
bottom chromatogram in the same panel is the fucosylated counterpart with the same 
peptid e backbone. (RT: retention time, in mins, AA: peak area, SN: signal over noise ratio, 
BP: base peak m/z). 
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Figure 4. 7. Correlation analysis of fucosylation ratios between peptide sequences of the 
same site ( (a) and (b) ), and between peptide sequences of different sites ( (c)-(j) ). 
Pearson’s r higher than 0.5 indicates strong correlation. Fucosylation ratios of pepti de 
sequences corresponding to the same site (site 396: 811.5/884.5 and 893.0/966.0 in (a) and 
site 1424: 611.0/684.0 and 749.2/822.2 in (b)). Fucosylation ratios of site 396 and site 410 
( (c),(d) ), and site 1424 and site 410 ( (e) and (f) ) are not correlated. Fucosylation ratios of 
site 396 and site 1424 are correlated ( (g)-(j)). 

 
(a)                                    (b) 

 
(c)                                    (d)                            

r=0.822r=0.822

r=0.308  r=‐0.062

r=0.866 
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(e)                                  (f) 

 
(g)                                  (h) 

 
(i)                                 (j)  

r=‐0.337  r=‐0.194

r=0.822r=0.945 

r=0.814  r=0.717
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Table 4. 1. Demographic information and cancer stage information of human serum 
samples enrolled in this study. 
 

 Normal Chronic 

pancreatitis

Pancreatic 

cancer 

Average(years)    

<50 5 6 1 

51-60 9 7 5 

61-70 6 6 7 

>71 0 1 7 

Gender    

Male 8 13 13 

Female 12 7 7 

Cancer stage    

IIA   2 

IIB   6 

III   6 

IV   6 
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Table 4. 2. Glycosylation sites identified with different proteolysis enzymes or enzyme 
combinations. Glycosylation site is labeled as N. NF and F indicate fucosylated 
glycopeptide and non-core-fucosylated glycopeptide respectively. NA indicates that no 
fucosylate d peptide was detected. 

 

 

 
  

Enzyme Site Sequence 
Peptide Mass 

(NF/F) 

Trypsin  55 GCVLLSYLNETVTVSASLESVR 867.7/916.2 

Chymotrypsin  
991 

VLDYLNETQQL 770/NA 

  DYLNETQQL 664.1/NA 

  
396 

SNATTDEHGLVQF 811.4/ 884.6 

  YSNATTDEHGLVQF 893.0/966.0 

  410 SINTTNVMGTSL 720.9/794.0 

  869 AVTPKSLGNVNF  725.7/NA 

  
1424 

LDKVSNQTL  611.0/684.0 

  IYLDKVSNQTL  749.2/822.2 

Trypsin/GlucC 247 MNVSVCGLYTYGK  848.2/921.4 

  396 ANYYSNATTDE 726.3/799.6 

  869 SLGNVNFTVSAE 721.1/NA 

LysC/GluC 396 VIFIRGNEANYYSNATTDE 1189.5/1262.6 

  70 SVRGNRSLFTDLEAE 633.5/682.2 

  55 GCVLLSYLNE 685.8/758.8 
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Table 4. 3. Reproducibility test of the assay for four aliquots of the same normal serum 
sample processed on four different days. The values in row 2-5 are fucosylation ratios. 
 
 Site 396 Site 396  Site 410 Site 1424 Site 1424 

 811.5/884.5 893.0/996.0 720.9/794.0 611.0/684.0 749.2/822.2

Replicate1 5.94 4.54 16.42 11.89 14.18 

Replicate2 5.76 5.15 15.09 9.66 14.04 

Replicate3 4.67 4.85 14.70 10.22 11.64 

Replicate4 5.20 4.52 13.27 9.52 12.05 

RSD 10.68% 6.22% 8.71% 10.52% 10.15% 
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Table 4. 4. Statistical summary of core-fucosylation ratios in different disease states. SD 
stands for standard deviation 
 Site 396 Site 396 Site 410 Site 1424 Site 1424 

  811.5/884.5 893.0/996.0 720.9/794.0 611.0/684.0 749.2/822.2

SD(normal) 0.2316 0.2507 0.2529 0.2853 0.2502 
SD(pancreatitis) 0.2531 0.2418 0.3927 0.2483 0.3831 
SD(Cancer) 0.2309 0.1955 0.3639 0.2365 0.2058 
Normal mean 0.5353 0.4484 0.8078 0.7280 0.7694 
Pancreatitis mean 0.0338 0.1447 0.3187 0.2861 0.3406 
Cancer mean 0.1540 0.2468 0.2768 0.4742 0.2843 
Effect size(N-CP) 2.0693 1.2332 1.5152 1.6563 1.3542 
Effect size(N-C) 1.5756 0.9220 1.4036 1.0470 1.6475 
Percentage(CP/N) 6.31% 32.27% 39.45% 39.30% 44.27% 
Percentage(C/N) 28.77% 55.04% 34.27% 65.14% 36.95% 
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Chapter 5 

A Strategy for Profiling of Core-fucosylation in Human Serum Using Lectin Peptide 

Enrichment and HCD-MS/MS 

 

5.1 Introduction 

 Protein N-glycosylation, where N-glycans attach to Asn in the sequon of 

Asn-Xaa-Ser/Thr (Xaa cannot be Pro) via an amide bond, is one of the most prevalent 

post-translational modifications. It is estimated that over 60% of human proteins are 

N-glycosylated1. N-glycosylation regulates a variety of protein and cell functions 

including protein folding, signal transduction, cell recognition, cell metastasis and 

immunogenicity2-4. Aberrations of protein N-glycosylation have been found to associate 

with various types of cancer5-9, which may be used as cancer biomarkers or target for 

cancer immunotherapy. Such cancer-specific aberrations include increased branching of 

glycans6, increased or decreased fucosylation10, sialylation11, and mannosylation12. In this 

study, we focused on protein core-fucosylation, where the fucose attaches to the 

innermost N-acetylglucosamine (GlcNAc) via an α 1,6 linkage. Core-fucosylation has 

been found to be altered in different cancers11, 13-15, and more notably, core-fucosylation 

level of alpha fetoprotein (AFP-L3 fraction) is an established FDA-approved liver cancer 

clinical diagnosis16, 17, which demonstrates higher sensitivity and specificity compared to 

the level of total AFP. While the systematic studies on core-fucosylation are relatively 

few at present, a highly sensitive method for large-scale profiling and quantifying of 
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serum protein core-fucosylation is urgently desired for cancer biomarker discovery.  

 The first challenge in large-scale serum glycosylation study is the wide dynamic 

range of serum proteins. The 14 most abundant proteins such as albumin, 

immunoglobulin, transferrin and fibrinogen comprise approximately 95% of the protein 

mass, and many of them are glycoproteins which greatly mask the signals of the mid-low 

abundance glycoproteins. Hence, it is essential to remove these background proteins and 

focus the efforts on glycosylation analysis of mid-low abundance proteins where the 

studies are lacking. The second challenge is the low concentrations of glycopeptides 

relative to the nonglycopeptides, which leads to the necessity of efficient fractionation 

strategy. Hydrazide chemistry has been commonly used to enrich the glycoproteins or 

glycopeptides by converting the cis-diol groups of glycans to aldehydes and reacting with 

the hydrazide groups on a solid support. The immobilized glycopeptides or glycoproteins 

may be released by peptide N-glycosidase F digestion (PNGase F) which breaks the 

linkage between glycan moieties and peptide/protein backbones and subject to 

LC-MS/MS analysis18. However, this strategy is not specific for core-fucosylation, and 

furthermore irreversibly destroys the glycans, including the core fucose, making the 

site-specific core-fucosylation identification impossible. Another common strategy 

utilizes the lectins, a family of glycan binding proteins (GBP) which specifically 

recognize and bind to different carbohydrate epitopes19, 20. The lectin Lens culinaris 

(LCA) which binds to Fuc α 1,6 GlcNAc, α-Man and α-Glc21 is the choice for selective 

isolation of core-fucosylated glycopeptides or glycoproteins. Due to the high 

heterogeneity of glycoforms per glycosylation site, deglycosylation is usually performed 

for profiling of glycosylation sites. However, the general strategy using PNGase F 
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removes the glycan moieties entirely from the peptides, leaving the core-fucosylation 

sites undistinguishable from the non-core-fucosylation sites. In this work, we performed 

partial deglycosylation with endoglycosidase F, which breaks the linkage between 

innermost GlcNAc, leaving a recognizable core fucose tag at the glycosylation sites that 

are core-fucosylated.  

 The recent developments of mass spectrometry have allowed more efficient and 

confident identification of glycosylation sites in intact glycopeptides. The new generation 

of Orbitrap mass analyzers has ultrahigh resolution over 240,000 FWHM and low-ppm 

mass accuracy. The Higher Energy C-trap Dissociation (HCD) has been implemented in 

recent glycopeptide analysis. HCD fragment measurement occurs in the Orbitrap, and 

overcomes the 1/3 cutoff rule in the traditional Collision Induced Dissociation (CID) 

method, which enables the detection of glycan oxonium ions in the low mass range for 

direct evidence of glycosylation22-25. In the particular field of core-fucosylation studies, 

researchers have reported CID MS3 method triggered by neutral loss of core fucose14, 26 

for identification of core-fucosylation sites. However, the CID fragments are measured in 

a low-resolution manner, and no oxonium ions were detected, lowering the confidence of 

identification. In this work, we compared the performances of neutral loss-triggered CID 

MS3, HCD-only, and neutral-loss-triggered HCD, and identified HCD-only as the best 

strategy. Another merit of HCD is that quantitative analysis by iTRAQ labeling is made 

possible for relative quantification of the core-fucosylation changes in the onset of 

diseases. 

 In this study, we developed a workflow for profiling of serum protein 

core-fucosylation which combines removal of serum high-abundance proteins, LCA 
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lectin enrichment of glycopeptides, endoglycosidase partial deglycosylation, and 

LC-HCD-MS/MS analysis. The efficacy of this workflow was evaluated in 250 μg of 

serum proteins (~50 μL serum) with 14 most abundant proteins removed. 135 unique 

core-fucosylation sites were identified in 92 proteins. The quantitative aspect of this 

workflow was evaluated by 4-plex iTRAQ labeling which identified 81 core-fucosylation 

sites in 55 proteins and suggested satisfying quantification results 

 

5.2 Materials and methods 

All chemical reagents, if not noted, were purchased from Sigma Aldrich (St. Louis, 

MO). 

5. 2.1 Serum immunoaffinity depletion 

Human serum samples of healthy people were obtained from the University Hospital, 

Ann Arbor, Michigan according to IRB approval. The samples were aliquoted and stored 

in a -80 °C freezer until use, with only one freeze/thaw cycle. Fourteen of the most 

abundant proteins were depleted from 250 μL of the serum sample using the Seppro® 

IgY-14 LC 10 column (Sigma Aldrich, St. Louis, MO) according to the manufacturer’s 

protocol. The flow-through fraction was collected between 0-30 min of an LC run. The 

depleted serum was buffer-exchanged using Amicon® Ultra 15 mL (3 kDa MWCO) filter 

units (Millipore, Bradford, MA) by centrifugation at 7,500×g and washing three times 

with 4 mL of HPLC grade water before being concentrated to a final volume of 

approximately 250 μL. The final protein concentration was measured by Bradford protein 

assay (Bio-Rad, Hercules, CA) using bovine serum albumin as the protein standard, and 

aliquoted to 250 μg (for label-free) or 100 μg (for iTRAQ labeling) protein amount per 
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vial. 

5. 2.2 Peptide level LCA enrichment 

Two hundred and fifty microgram of serum protein was reduced with 10 mM 

dithiothreitol at 50 °C, alkylated with 22 mM iodoacetamide at room temperature in dark, 

digested with trypsin (Promega, Madison, WI) with protein/trypsin ratio of 50/1 at 37 °C 

overnight, dried down using SpeedVac (Thermo Scientific, San Jose, CA), and 

reconstituted in 500 μL lectin binding buffer (20mM Tris, 150 mM NaCl, 100 mM CaCl2 

and 100 mM MnCl2, pH=7.6). Lectin affinity chromatography was performed in a 2 mL 

centrifugal column (Pierce, Rockford, IL). Prior to use, 400 μL of agarose-bond Lens 

culinaris agglutinin LCA (50% slurry, 3 mg/mL lectin/gel volume) purchased from 

Vector Labs (Burlingame, CA) was added to the centrifugal column, spun down, and 

prepared by rinsing with 500 μL binding buffer three times.  

The peptide samples were incubated with LCA at room temperature with gentle 

agitation for 1 hour. Following five washes with binding buffer to remove nonspecific 

binding, the core-fucosylated proteins were eluted with 500 μL of elution buffer (200 mM 

α-methyl mannoside and 200 mM α-methyl glucoside in the binding buffer) for three 

times. Two strategies were compared for the following removal of the salts and 

monosaccharides in enriched glycopeptides. The first strategy used C18 spin column 

(Pierce Scientific, Rockford, IL) where the glycopeptide samples were reconstituted in 5% 

acetonitrile (ACN) with 0.1% trifluoroacetic acid (TFA), loaded on the spin column, 

eluted with 70% ACN with 0.1% TFA, and dried down. The second strategy used 

Amicon® Ultra 4 mL (3 KDa MWCO) filter units to exchange the lectin elution buffer 

by centrifugation at 5,000×g and washing three times with 4 mL of 250 mM sodium 
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acetate. One microliter (5mU) of Endoglycosidase F3 (QAbio, Palm Desert, CA) was 

added and incubated for 20h at 37 °C. The partially deglycosylated peptides obtained 

from both methods were dried down, reconstituted in 10 μL of water with 0.1% TFA , and 

subsequently desalted using C18 ZipTip (Millipore, Bradford, MA). 

5. 2.3 Protein level LCA enrichment 

 Two hundred and fifty microgram of serum protein was reconstituted in 500 μL 

lectin binding buffer, and the lectin enrichment was performed as described in Section 2.2. 

The enriched core-fucosylated proteins were buffer-exchanged to 50 mM ammonium 

bicarbonate using Amicon® Ultra 4 mL (3 kDa MWCO) filter units by centrifugation at 

5,000×g and washing three times with 4 mL of 50 mM ammonium bicarbonate. The 

protein digestion was performed using the aforementioned protocol. Molecular weight 

cut-off was used for removal of the eluting monosaccharides and salts. N-glycopeptides 

were concentrated with Amicon® Ultra 4 mL (3 kDa MWCO) filter units by 

centrifugation at 5,000×g and washing three times with 4 mL of 250 mM sodium acetate. 

Subsequent Endo F3 deglycosylation and desalting were described as in Section 2.2. 

5. 2.4 Isobaric iTRAQ labeling 

 Four aliquots of 100 μg depleted serum sample were digested with trypsin in 50 mM 

triethylammonium bicarbonate (TEAB) and dried down as previously described. The four 

peptide samples were labeled with iTRAQ isobaric 4-plex reagents (AB Sciex, Foster 

City, CA) according to the manufacturer’s protocol. Briefly, 20 μL of 50 mM TEAB was 

added to each of the peptide sample, and 50 μL of ethanol was added to each of the 

iTRAQ reagent vial. The reconstituted iTRAQ reagents were transfer to respective 

peptide samples, mixed, and incubated at room temperature for 1 h. A volume of 5 μL 5% 
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hydroxylamine was added to react with excessive iTRAQ reagents and quench the 

reaction for 15 min. The four differentially labeled samples were combined and 

core-fucosylated peptides were enriched using LCA lectin affinity chromatography as 

described in Section 2.2. The following workflow was similar to non-labeled strategy. 

5. 2.5 LC-ESI-MS/MS analysis 

Orbitrap Elite (Thermo Scientific) coupled with Proxeon EASY nLC II system 

(Thermo Scientific) was used for LC-ESI-MS/MS analysis. The samples were 

reconstituted in 0.1% formic acid and loaded to in a 25 cm self-packed LC column (75 

μm i.d., Magic C18 AQ, 5 μm particle size). A 71-min linear gradient from 5% solvent B 

to 35% solvent B was used at flow rate 400 nL/min where the solvent A is 2% ACN in 

water with 0.1% FA and the solvent B is 2% water in ACN with 0.1% FA. The gradient 

was then ramped to 95% B in 2 min and stayed isocratic for 5 min, and returned to 5% B 

in 1 min and equilibrated for 9 min. 

For HCD analysis, a top 15 method was used. The mass spectrometer performed a 

FT-MS full scan (m/z range 400-1800, resolution 120,000), followed by HCD MS/MS 

activation of the 15 most abundant ions with ion signal intensity above 5000. The 

normalized collision energy (NCE) for HCD was set at 35%, the resolution was set at 

15,000, the isolation window was ±1.5 Da, and the activation time was 10 ms. 

For neutral loss-triggered HCD analysis, FT-MS full scan was first acquired (m/z 

range 400-1800, resolution 120,000), followed by a CID MS/MS (ion intensity threshold 

5000, resolution 5000, isolation width ±2Da, NCE 35%, activation time 10 ms) of the 

most abundant precursor ion. Upon observation of neutral loss corresponding to core 

fucose loss (m/z 36.51 for +4 charge, m/z 48.69 for +3 charge and m/z 73.02 for +2 
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charge), an additional HCD fragmentation was triggered on the original precursor 

(precursor of CID MS2) with the aforementioned conditions. The CID and HCD scans 

were repeated for the 15 most abundant precursor ions. 

For neutral loss-triggered CID analysis, the full scan and the first CID were set in the 

same way as the neutral loss-triggered HCD top-15 method. The only difference is 

neutral loss triggered CID MS3 was performed on the neutral-loss fragment in CID MS2 

(precursor ion of MS2-fucose) (ion intensity threshold 5000, resolution 5000, isolation 

width ±4 Da, NCE 35%, activation time 10 ms). CID MS3 fragments were measured in 

the ion trap. 

For all the three mass spectrometric methods, the ESI spray voltage was 2.25 kV, the 

capillary temperature was 300 °C. Dynamic exclusion was enabled at 1 repeat count over 

30 s within a 10 ppm exclusion window. The automatic gain control (AGC) was used to 

accumulate sufficient ions for analysis. For full MS scan, AGC target was set at 1×106, 

the AGC target for MSn in the Orbitrap was 5×104, and 2×103 for MSn in the ion trap. 

The maximum ion injection time was 250 ms for both full MS and MSn in the Orbitrap, 

and 150 ms for MSn in the ion trap. Only +1 charge state was rejected. All data 

acquisition was controlled by XCalibur 2.1. 

5. 2.6 Data analysis 

 All MS/MS data was searched against a Homo Sapiens database from SwissProt 

(Release 2010_10, downloaded on Nov 2, 2010) for core-fucosylation site identification. 

Proteome Discoverer 1.1 (Thermo Scientific) with Sequest algorithm was used for 

database search. The following search parameters were used: (1) fixed modification: 

cysteine carbamidomethylation (+57.022 Da); (2) variable modification: methionine 
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oxidation (+15.996 Da), and addition of N-acetylglucosamine (+203.080 Da) or 

N-acetylglucosamine-fucose (+349.138 Da) to asparagines. For iTRAQ labeled sample 

search, an additional iTRAQ modification of +144.102 Da at N-terminus or Lys; (3) 

missed cleavages allowed: three; (4) precusor ion tolerance: 10 ppm; (5) fragmentation 

ion tolerance: 0.03 Da for HCD data, and 0.8 Da for CID data; and (6) precursor ion 

order is MS(n-1). All search results containing core-fucosylation sites were verified using 

the oxonium ions (m/z 204.08 Da and 126.06 Da) by manual examination of HCD 

spectra. 

 

5. 3 Results and Discussion 

5.3.1 Analytical strategy 

Both the solid phase extraction (SPE) method for enrichment of core-fucosylated 

peptides and MS/MS method were optimized in this study for comprehensive profiling of 

serum core-fucosylation. Figure 5.1 shows the overall SPE enrichment workflows 

compared in this study. All experiments were performed in triplicates to assess the 

performance of the protocols. Top-14 proteins were removed from human serum using an 

IgY-14 column to focus the effort on analysis of mid-low abundance glycoproteins. An 

aliquot of 250 μg (~50 μL of starting serum) or 100 μg (~20 μL of starting serum for each 

iTRAQ channel) was used for label-free or iTRAQ labeling strategy respectively. 

Compared to prior reports on serum core-fucosylation which used larger volumes of 

serum (200 μL14 or 800 μL26) but obtained fewer core-fucosylation sites, part of the 

improvement of this assay lies in the high abundance protein depletion which reduces the 

complexity and dynamic range of the analytes, allowing deeper interrogation of 
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low-abundance proteins.  

Both peptide (Strategy A and B) and protein level (Strategy C) lectin enrichment 

protocols have been applied and compared. Lectin enrichment at the protein level is 

believed to be more efficient because proteins usually carry multiple glycan epitopes at 

different sites that can be captured by the lectin, generating a stronger binding, but the 

binding is weaker for individual glycopeptides which normally have only one glycan. 

However, the specificity of peptide level enrichment is much higher than protein level 

enrichment. While the LCA enriched peptides yield relatively pure core-fucosylated 

glycopeptides, the LCA enriched proteins yield a mixture of core-fucosylated 

glycopeptides, non-core-fucosylated glycopeptides and nonglycopeptides after trypsin 

digestion, which requires further fractionation. Some studies used an additional lectin 

enrichment at the peptide level, but it was not successful (data not shown) in this study 

due to the low starting amount of proteins and further sample loss in the extra cleaning 

steps. As shown in Figure 5.2, peptide level enrichment (strategy A and B) is superior to 

protein level enrichment (strategy C) with significantly increased number of 

core-fucosylated peptides (Figure 5.2(a)) and core-fucosylated proteins (Figure 5.2(b)) 

identified, mainly due to the higher concentrating effect of lectin enrichment. 

 Following peptide level lectin enrichment, two methods were compared to remove 

the high concentration of monosaccharides used in the elution step of lectin affinity 

chromatography. Strategy A used a cellulose membrane at molecular weight cut-off of 

3000 Da based on the fact that the glycopeptides normally have higher molecular weights 

than nonglycopeptides26, 27. Strategy B used C18 spin column based on the approximate 

non-retention of monosaccharides on the reverse phase28. It is shown in Figure 5.2 that 
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the C18 SPE (strategy B) provided worse performance than molecular weight cut-off 

(strate A) probably owing to the sample loss during multiple steps of drying, and the low 

retention of some glycopeptides with hydrophilic peptide backbone. Comparatively, the 

molecular weight cut-off is more efficient by incorporating enrichment, buffer exchange 

and concentration in one step. In summary, strategy A which integrates peptide level LCA 

enrichment, molecular weight cut-off for desalting and concentration was chosen as the 

workflow prior to LC-MS/MS analysis. 

5.3.2 MS/MS methods 

 A sample prepared with strategy A was divided to nine aliquots and analyzed in 

triplicates with three MS/MS methods namely HCD, neutral loss-triggered HCD and 

neutral loss-triggered CID-MS3. In the previous reports of core-fucosylation mapping, 

people used neutral loss-triggered CID-MS3 14, 26, 29 based on the fact that ion trap type 

CID-MS2 of core-fucosylated peptides almost only generates neutral loss of core fucose 

(Figure 5.3 (a)) and an additional CID-MS3 on the neutral loss product provides further 

fragmentation on the peptide backbone (Figure 5.3 (b)). Recently, a novel MS/MS 

method HCD is used in post-translational modification studies. HCD is a more energetic 

beam-type CID performed in an octapole collision cell in a LTQ-Orbitrap instrument, 

which keeps the high sensitivity merit of the ion trap, but overcomes the limitation of low 

mass cut-off, enabling full-mass-range fragmentation acquisition. Furthermore, the 

fragment ions of HCD are measured in the Orbitrap with high resolution and high mass 

accuracy30. In glycopeptide analysis, these properties are very useful in the unambiguous 

assignment of glycan oxonium ions (eg. [HexNAc+H]+ m/z 204.087, or 

[Hex-HexNAc+H]+ m/z 366.138)31 for location of glycopeptides or distinct Y1 ions 
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[peptide+HexNAc+H]+ for peptide sequence identification22, 31. The oxonium ions are 

considered as diagnostic ions for glycopeptides and can be employed to further trigger 

ETD for peptide backbone fragmentation. This HCD product ion triggered ETD has been 

used in multiple studies for streamline analysis with significant reduction in duty cycle23, 

24.  

 In this study, we evaluated the performance of HCD in analysis of the partially 

deglycosylated core-fucosylated glycopeptides. As shown in Figure 5.3 (c), HCD MS/MS 

generates b and y ions similar to the neutral loss-triggered CID MS3 (Figure 5.3 (b)) but 

with significantly higher mass accuracy (data not shown), and enables detection of 

low-mass range sequence ions (y1
+) and glycan oxonium ions (m/z 204.09 and 126.05). 

Furthermore, the neutral loss-triggered HCD was tested where a CID was used followed 

by HCD performed on the original precursor ion rather than the neutral loss product. 

HCD-only method provided the best performance among the three MS/MS method in the 

number of unique core-fucosylated peptides and core-fucosylated proteins as shown in 

Figure 5.4. HCD method is superior to CID method mainly due to the high mass accuracy 

and wide mass range, and also likely due to the more efficient fragmentation. Neutral 

loss-triggered HCD is theoretically more productive and specific than HCD because only 

ions which generate neutral loss equivalent to m/z’s of fucose loss would be further 

fragmented by HCD, and thus reduces the interference of irrelevant signals. However, the 

number of ID’s was slightly lower in neutral loss-triggered HCD compared to HCD 

probably because some core-fucosylated peptides generate low-intensity neutral-loss 

peaks which were not selected for HCD analysis. It is obvious in Figure 5.4 that HCD is 

the most effective MS/MS method for core-fucosylated peptide analysis and was used 
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throughout this study. 

5.3.3 Assignment of core-fucosylation sites 

By using Strategy A as shown in Figure 5.1, a total of 140 unique core-fucosylated 

peptides corresponding to 138 unique core-fucosylated sites and 92 proteins were 

identified with high mass accuracy. A histogram of mass errors is shown in Figure 5.5, 

where over 90% of the peptides were identified within ±1 ppm mass error. The 

utilization of mass analyzer with high resolution and high mass accuracy significantly 

enhances the confidence of identification. Among the 92 proteins, 67% carry only one 

core-fucosylation site, 21.3% carry two core-fucosylation sites, and 11.7% carry three or 

more core fucosylation sites as illustrated in Figure 5.6 (a). Among the 140 

core-fucosylated peptides identified, approximately 98% contain the motif of N-X-S/T as 

shown in Figure 5.6 (b), which is consistent with other glycosylation site profiling 

studies32, 33, and suggests the high confidence of site identification. Among the three 

non-sequon peptides, two of them contain N-X-C motif, which is atypical but scatterly 

reported in various studies33-35. Due to rigidness consideration, only peptides containing 

N-X-S/T sequon were reported in this study. Table 5.1 shows 137 peptides corresponding 

to 135 unique core-fucosylation sites and 90 proteins. All identifications were manually 

validated by observation of both oxonium ions (m/z 204.08 Da and 126.06 Da). Notably, 

25 novel glycosylation sites were reported in this study. An example of HCD-MS/MS 

spectrum of the newly identified core-fucosylation sites in Sushi, nidogen and EGF-like 

domain-containing protein 1 is shown in Figure 5.7. This study is by far the most 

comprehensive serum core-fucosylation profiling, which complements the understanding 

of serum glycoproteomics. Furthermore, this assay could be performed in a quantitative 
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manner using iTRAQ labeling for futher interrogation of core-fucosylation as potential 

cancer biomarker as detailed in Section 5.3.5. 

5.3.4 Bioinformatic concerns due to neutral loss 

There are three ion series in the HCD-MS/MS analysis of core-fucosylated peptides, 

the oxonium ions, the b, y ions, and the b, y ions with neutral loss of GlcNAc-Fuc as 

illustrated in Figure 5.7. It should be noted that the peptide-GlcNAc bond cleavage 

occurs readily in HCD analysis so that the b, y ions with neutral loss are the most intense 

peaks in most cases. However, current implementation of Sequest algorithm in Proteome 

Discoverer has troubles in assigning these fragments with neutral loss to the original 

core-fucosylated peptides, which lowers the number of matched ions and therefore lowers 

the score of identification. This problem is more severe for peptides with glycosylation 

sites toward the C terminus. It is known that y ions are usually more intense than b ions 

due to the guaranteed basicity of the C-terminal Lys and Arg. For the peptides with 

core-fucosylation sites toward the C terminus, approximately half or more y ions would 

suffer from the neutral loss problems and will not be correctly identified. As shown in 

Figure 5.7, only half of the y ions present as labeled blue were identified by Proteome 

Discoverer in the newly identified glycopeptide, while the other half y ions containing the 

core fucosylation as labeled red were not assigned due to the neutral loss. Comparatively, 

the missed assignment is not that severe for peptides with glycosylation site toward the C 

terminus as shown in Figure 5.3 (c) with almost all y ions correctly assigned.  

It is speculated that the number of core-fucosylation sites will increase if the neutral 

loss assignment problem can be solved, and more bioinformatic work is underway. 
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5.3.5 Quantitative study of the assay by iTRAQ labeling 

 The promise of using this assay for quantitative analysis was evaluated. While it is 

obvious that the label-free quantification based on the extracted peak area of the peptide 

precursor ions can be used to quantify the change of site-specific core-fucosylation, the 

HCD-MS/MS employed in this work enables isobaric chemical labeling methods such as 

iTRAQ labeling. Four-plex iTRAQ labeling reagents were used in this study which 

allowed simultaneous comparison of three samples (one iTRAQ channel is the internal 

standard which remains constant) in a single LC-MS/MS run. iTRAQ reagents contain 

three functional groups: the reporter ion group which is labeled with isotopic variants, the 

amine reaction group which links to the free amine at the N-terminus or lysine, and the 

mass normalization group which balances the mass differences of the reporter ion group 

to ensure the same mass for the different isotopic variants of the iTRAQ tag.  

For implementation of the iTRAQ labeling in discovery of site-specific 

core-fucosylation as potential cancer biomarkers, four samples with different disease 

states (eg, one normal control sample, one pancreatic cancer sample, one chronic 

pancreatitis sample and one internal standard sample) are digested, labeled with four 

isotopic iTRAQ variants respectively, and combined for following LCA enrichment etc. 

In the precursor scan, due to the isobaric nature of iTRAQ reagent, the same peptides 

labeled with different iTRAQ variants have the same mass hence the complexity of full 

scan remain the same. The HCD method enables the detection of reporter ions in the low 

mass range for quantification purpose. The HCD-only configuration allows both 

core-fucosylation identification and quantification with lower duty-cycle compared to 

CID-HCD dual run.  
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For proof of principle, four identical serum samples with 100 μg protein amounts 

were labeled with 4-plex iTRAQ reagents respectively and the quantification results are 

shown in Figure 5.8. The ratios of three reporter ions relative to one reporter ions average 

at 1 with little spread as expected. Over 95% of identified peptides were correctly labeled 

(data not shown). However, the number of unique core-fucosylated peptide identified is 

reasonable but lower than the label-free strategy (81 versus 140) for unclear reasons. It is 

expected that the iTRAQ labeling strategy combining with the described workflow will 

be valuable in future study of quantifying core-fucosylation change in different cancers. 

 

5.4 Conclusion 

 In this report, an LC-MS/MS assay was developed and optimized to identify and 

quantify large-scale core-fucosylation in serum proteins with high confidence. This 

workflow integrates high-abundance protein removal, peptide level lectin enrichment, 

partial deglycosylation and HCD-MS/MS analysis. 135 core-fucosylation sites 

corresponding to 90 proteins were reported in this study, where 25 sites were novel 

identifications of glycosylation. All the reported sites were verified by the presence of 

consensus N-X-S/T sequon and oxonium ions. This study is the most comprehensive 

mapping of serum core-fucome up to now, and represents a significant improvement over 

the prior studies that utilized conventional CID which is less efficient in identification 

and less compatible for quantification. The quantitative aspect of this assay was 

successfully evaluated by iTRAQ labeling, which proves promising in the future 

discovery of core-fucosylation as cancer biomarker. 

  



 

128 
 

Figures 
Figure 5. 1. Enrichment workflow comparisons for protocol optimization. (a) label-free 
strategies, where Strategy A and B are peptide level LCA enrichment, and Strategy C is 
protein level LCA enrichment. Two hundred and fifty micrograms of serum proteins were 
used.. (b) iTRAQ labeling strategy, where four aliquots of 100 μg serum proteins tryptic 
digests were differentially labeled and combined for LCA enrichment 
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Figure 5. 2. Comparison of numbers of identified unique core-fucosylated peptides (a) and 
core-fucosylated proteins (b) using different workflows as shown in Figure 5.1(a). 
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Figure 5. 3. Comparison of neutral loss-triggered CID-MS3 and HCD MS/MS of the same 
core-fucosylated peptide. (a) CID MS/MS of the core-fucosylated peptide which is 
dominated by the neutral loss of core fucose (m/z 934.81). (b) Neutral loss triggered-CID 
MS3 of fra gment m/z 934.81. (c) HCD MS/MS of the same core-fucosyated peptide 
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Figure 5. 4. Comparison of numbers of identified unique core-fucosylated peptides (a) and 
core-fucosylated proteins (b) using HCD, neutral loss-triggered HCD and neutral 
loss-triggered CID. 
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Figure 5. 5. Histogram of mass accuracy distribution of identified core-fucosylated 
peptides by HCD-MS/MS. 
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Figure 5. 6. (a) Distribution of singly and multiply core-fucosylated proteins identified and 
(b) proportion of novel identifications, reported identifications and non-motif 
identifications. 
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Figure 5. 7. HCD-MS/MS spectrum of a newly identified glycosylation site of Sushi, 
nidogen and EGF-like domain-containing protein 1. The blue annotations show identified 
fragments, and the red annotations show unidentified but manually assigned fragments. 
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Figure 5. 8. Summary of ratios of reporter ion abundances in an isobaric iTRAQ 
experiment where four aliquots of 100 μg of serum protein digests were labeled with 4-plex 
reagents (reporter ion masses 114, 115, 116 and 117) and mixed for subsequent analysis as 
shown in Figure 5.1 (b). Ratios were constructed against the abundances of reporter ions 
114 
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Table 5. 1. List of core-fucosylated peptide containing the N-X-S/T motif in this study. 
 
Protein and Gene Accessions Protein name Sequence Charge m/z [Da] ΔM 

[ppm] 

P0C0L5 (CO4B_HUMAN) Complement C4-B NTTCQDLQIEVTVK 2 999.48138 -1.46 

P23142 (FBLN1_HUMAN) Fibulin-1 CATPHGDNASLEATFVK 3 723.00024 0.07 

P17936 (IBP3_HUMAN) Insulin-like growth factor binding 

protein 3 

GLCVNASAVSR 2 741.85822 -0.91 

  YKVDYESQSTDTQNFSSESK 3 898.05811 -1.29 

P05155 (IC1_HUMAN) Plasma protease C1 inhibitor GVTSVSQIFHSPDLAIRDTFVNASR 3 1022.84967 -1.14 

  VLSNNSDANLELINTWVAKNTNNK 3 1007.83868 0.09 

Q14515 (SPRL1_HUMAN) SPARC-like protein 1 NYSHHQLNR 3 506.56992 -1.8 

Q9NZK5 (CECR1_HUMAN) Adenosine deaminase CECR1 VQNVTEFDDSLLR 2 942.95667 -0.69 

Q6UX71 (PXDC2_HUMAN) Plexin domain-containing protein 2  VNLSFDFPFYGHFLR 3 736.69214 -1.36 

P55290 (CAD13_HUMAN) Cadherin-13 DPAGWLNINPINGTVDTTAVLDR 2 1401.19592 0.17 

  NLSVVILGASDK 2 782.91858 -1.14 

P43251 (BTD_HUMAN) Biotinidase FNDTEVLQR 2 735.85083 -1.03 

P05090 (APOD_HUMAN) Apolipoprotein D ADGTVNQIEGEATPVNLTEPAKLEVK 3 1024.85278 -1.11 

P49908 (SEPP1_HUMAN) Selenoprotein P  CGNCSLTTLKDEDFCK 3 766.32483 -0.84 

  EGYSNISYIVVNHQGISSR 3 824.73358 -1.11 

P06681 (CO2_HUMAN) C2 protein LGSYPVGGNVSFECEDGFILR 2 1333.12268 1.57 

P24821 (TENA_HUMAN) Tenascin GPNCSEPECPGNCHLR 3 744.96967 -0.48 

  LNWTAADQAYEHFIIQVQEANK 3 980.14044 -1.3 

  NTTSYVLR 2 651.82336 -2.24 

  VEAAQNLTLPGSLR 2 909.47699 -1.36 

P00734 (THRB_HUMAN) Thrombin light chain  YYNQSEAGSHIIQR 3 672.31635 -0.39 

  YPHKPEINSTTHPGADLQENFCR 4 765.85486 -0.93 

Q8IZF2 (GP116_HUMAN) Probable G-protein-coupled receptor 

116 

LNLVPGENITCQDPVIGVGEPGK 2 1378.19019 0.85 

Q13740 (CD166_HUMAN) CD166 antigen LNLSENYTLSISNAR 2 1022.50787 0.17 

Q99784 (NOE1_HUMAN) Noelin VQNMSQSIEVLDR 2 934.44928 -2.22 

Q86VB7 (C163A_HUMAN) Scavenger receptor cysteine-rich 

type 1 protein M130 

APGWANSSAGSGR 2 783.85388 -1.68 

  CKGNESSLWDCPAR 3 676.95929 -0.24 

  GNESALWDCK 2 764.82672 -0.7 

  GNESSLWDCPAR 2 870.87201 -0.83 

Q9UGM5 (FETUB_HUMAN) Fetuin-B GCNDSDVLAVAGFALR 2 1007.47449 -0.87 

Q12884 (SEPR_HUMAN) Seprase SVNASNYGLSPDR 2 864.89905 -0.86 

P05156 (CFAI_HUMAN) Complement factor I light chain  FKLSDLSINSTECLHVHCR 4 667.06976 -0.93 

  FLNNGTCTAEGK 2 830.87115 -1.25 

  LSDLSINSTECLHVHCR 4 598.27911 -0.71 

  NGTAVCATNR 2 706.81866 -1.55 

P49747 (COMP_HUMAN) Cartilage oligomeric matrix protein CGPCPAGFTGNGSHCTDVNECNAHP

CFPR 

4 907.11292 0.08 

P13473 (LAMP2_HUMAN) Lysosome-associated membrane 

glycoprotein 2 

VASVININPNTTHSTGSCR 3 793.04846 0.32 

P00736 (C1R_HUMAN) Complement C1r subcomponent EHEAQSNASLDVFLGHTNVEELMK 3 1016.47559 -0.96 

P11597 (CETP_HUMAN) Cholesteryl ester transfer protein SIDVSIQNVSVVFK 2 942.49469 -1.48 

Q9H4A9 (DPEP2_HUMAN) Dipeptidase 2 NFSYGQTSLDR 2 818.86975 -0.91 

P36955 (PEDF_HUMAN) Pigment epithelium-derived factor VTQNLTLIEESLTSEFIHDIDR 3 974.82007 -0.37 

P04278 (SHBG_HUMAN) Sex hormone-binding globulin SHEIWTHSCPQSPGNGTDASH 3 885.37274 -0.89 

P13598 (ICAM2_HUMAN) Intercellular adhesion molecule 2 QESMNSNVSVYQPPR 2 1042.97485 -0.83 

O00391 (QSOX1_HUMAN) Sulfhydryl oxidase 1 NGSGAVFPVAGADVQTLR 2 1054.52795 -0.98 

O14498 (ISLR_HUMAN) Immunoglobulin superfamily 

containing leucine-rich repeat 

protein 

FQAFANGSLLIPDFGK 2 1037.52209 -0.53 

O15204 (ADEC1_HUMAN) ADAM DEC1 EHAVFTSNQEEQDPANHTCGVK 4 712.56519 0.51 
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P00450 (CERU_HUMAN) Ceruloplasmin EHEGAIYPDNTTDFQR 3 747.99756 -0.08 

  ELHHLQEQNVSNAFLDK 3 791.05109 -1.09 

  ELHHLQEQNVSNAFLDKGEFYIGSK 4 813.89655 -1.62 

P00748 (FA12_HUMAN) Coagulation factor XII NHSCEPCQTLAVR 3 640.95142 -1.54 

  RNHSCEPCQTLAVR 3 692.9856 -0.74 

P00751 (CFAB_HUMAN) Complement factor B SPYYNVSDEISFHCYDGYTLR 3 979.09088 -1.16 

P01008 (ANT3_HUMAN) Antithrombin-III AAINKWVSNKTEGR 4 481.50049 -0.91 

P01009 (A1AT_HUMAN) Alpha-1-antitrypsin YLGNATAIFFLPDEGK 2 1053.01917 -0.72 

P01011 (AACT_HUMAN) Alpha-1-antichymotrypsin FNLTETSEAEIHQSFQHLLR 4 688.08728 -1.57 

  YTGNASALFILPDQDK 2 1051.51172 -0.7 

P01023 (A2MG_HUMAN) Alpha-2-macroglobulin GCVLLSYLNETVTVSASLESVR 3 916.12732 -1.08 

  VSNQTLSLFFTVLQDVPVR 2 1256.66028 -1.96 

P01042 (KNG1_HUMAN) Kininogen-1 LNAENNATFYFK 2 890.91663 -0.93 

  YNSQNQSNNQFVLYR 2 1112.51025 -0.94 

P01833 (PIGR_HUMAN) Polymeric immunoglobulin receptor VPGNVTAVLGETLK 2 873.9715 -0.86 

P01857 (IGHG1_HUMAN) Ig gamma-1 chain C region EEQYNSTYR 2 769.82758 -0.93 

P01859 (IGHG2_HUMAN) Ig gamma-2 chain C region GLTFQQNASSMCVPDQDTAIR 2 1352.60571 -1.34 

P01871 (IGHM_HUMAN) Ig mu chain C region YKNNSDISSTR 3 545.25562 -1.77 

P01877 (IGHA2_HUMAN) Ig alpha-2 chain C region TPLTANITK 2 654.34979 -1.36 

P02671 (FIBA_HUMAN) Fibrinogen alpha chain GLIDEVNQDFTNRINK 3 810.05865 -2.63 

P02745 (C1QA_HUMAN) Complement C1q subcomponent 

subunit A 

RNPPMGGNVVIFDTVITNQEEPYQN

HSGR 

3 1206.90515 -3.36 

P02749 (APOH_HUMAN) Beta-2-glycoprotein 1 LGNWSAMPSCK 2 800.354 -1.41 

  VYKPSAGNNSLYR 2 909.44855 -0.99 

P02765 (FETUA_HUMAN) Alpha-2-HS-glycoprotein AALAAFNAQNNGSNFQLEEISR 2 1357.64709 -1.32 

  KVCQDCPLLAPLNDTR 3 750.36334 -1.52 

P02787 (TRFE_HUMAN) Serotransferrin QQQHLFGSNVTDCSGNFCLFR 3 955.42505 -0.32 

P02790 (HEMO_HUMAN) Hemopexin ALPQPQNVTSLLGCTH 2 1043.01135 -0.72 

  NGTGHGNSTHHGPEYMR 4 601.75702 -1.84 

  SWPAVGNCSSALR 2 877.40692 0.21 

P04004 (VTNC_HUMAN)  Vitronectin NGSLFAFR 2 630.80817 -1.31 

  NISDGFDGIPDNVDAALALPAHSYSG

R 

3 1041.15723 -0.85 

  NNATVHEQVGGPSLTSDLQAQSK 3 910.77271 -1.09 

P04196 (HRG_HUMAN) Histidine-rich glycoprotein HSHNNNSSDLHPHK 4 493.97345 -1.23 

  VENTTVYYLVLDVQESDCSVLSR 3 1013.48505 0.22 

P04220 (MUCB_HUMAN) Ig mu heavy chain disease protein GLTFQQNASSMCGPDQDTAIR 2 1331.58264 -1.05 

P04275 (VWF_HUMAN)  von Willebrand factor GLQPTLTNPGECRPNFTCACR 3 933.42133 -1.75 

  HCDGNVSSCGDHPSEGCFCPPDK 3 990.04144 -0.94 

  MEACMLNGTVIGPGK 2 971.94257 -1.48 

  TTCNPCPLGYKEENNTGECCGR 3 989.40027 -1.53 

P05362 (ICAM1_HUMAN) Intercellular adhesion molecule 1 ANLTVVLLR 2 674.38959 -0.83 

  LNPTVTYGNDSFSAK 2 981.96198 -0.63 

P05543 (THBG_HUMAN) Thyroxine-binding globulin VTACHSSQPNATLYK 3 675.98578 -0.31 

P07602 (SAP_HUMAN) Proactivator polypeptide TNSTFVQALVEHVK 3 641.32916 -1.27 

P08603 (CFAH_HUMAN) Complement factor H ISEENETTCYMGK 2 955.89624 -1.58 

  MDGASNVTCINSR 2 887.38361 -1.74 

  SPDVINGSPISQK 2 845.92181 -1.1 

P10909 (CLUS_HUMAN) Clusterin LANLTQGEDQYYLR 2 1016.98761 -1.5 

  MLNTSSLLEQLNEQFNWVSR 2 1379.66248 -2.33 

P12259 (FA5_HUMAN) Coagulation factor V EDNAVQPNSSYTYVWHATER 3 906.07233 0.54 

P12821 (ACE_HUMAN) Angiotensin-converting enzyme VTNDTESDINYLLK 2 987.47559 0.05 

P20851 (C4BPB_HUMAN) C4b-binding protein beta chain LGHCPDPVLVNGEFSSSGPVNVSDK 3 987.4646 -1.3 

P22105 (TENX_HUMAN) Tenascin-X GPNLTSPASITFTTGLEAPR 2 1190.09937 -0.51 

P22897 (MRC1_HUMAN) Macrophage mannose receptor 1 TAHCNESFYFLCK 3 675.95636 -1.17 

P25311 (ZA2G_HUMAN) Zinc-alpha-2-glycoprotein AREDIFMETLKDIVEYYNDSNGSHV

LQGR 

4 937.9458 -0.92 
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  DIVEYYNDSNGSHVLQGR 2 1208.05029 -0.58 

P29622 (KAIN_HUMAN) Kallistatin FLNDTMAVYEAK 2 875.9071 -1.31 

P33151 (CADH5_HUMAN) Cadherin-5 EVYPWYNLTVEAK 2 980.97449 -0.49 

  LDRENISEYHLTAVIVDK 4 616.81628 -0.86 

P36980 (FHR2_HUMAN Complement factor H-related protein 

2 

LQNNENNISCVER 2 969.93781 -1.37 

P43121 (MUC18_HUMAN) Cell surface glycoprotein MUC18 CGLSQSQGNLSHVDWFSVHK 4 659.55792 0.18 

P43652 (AFAM_HUMAN) Afamin YAEDKFNETTEK 2 912.40637 -0.82 

P51884 (LUM_HUMAN) Lumican AFENVTDLQWLILDHNLLENSK 3 987.82745 -1.71 

  KLHINHNNLTESVGPLPK 2 1180.625 -1.26 

  LGSFEGLVNLTFIHLQHNR 4 636.83252 -0.44 

  LHINHNNLTESVGPLPK 3 744.72113 -0.84 

P55058 (PLTP_HUMAN) Phospholipid transfer protein EGHFYYNISEVK 3 612.28394 -0.51 

  VSNVSCQASVSR 2 821.88141 -2.05 

Q06033 (ITIH3_HUMAN) Inter-alpha-trypsin inhibitor heavy 

chain H3 

NAHGEEKENLTAR 3 606.62115 -1.28 

Q07954 (LRP1_HUMAN) Prolow-density lipoprotein 

receptor-related protein 1 

LTSCATNASICGDEAR 2 1037.94812 -0.7 

  TCVSNCTASQFVCK 2 1005.92548 -0.84 

  WTGHNVTVVQR 3 549.27698 -1.03 

Q08380 (LG3BP_HUMAN) Galectin-3-binding protein ALGFENATQALGR 2 848.92206 -1.21 

Q12860 (CNTN1_HUMAN) Contactin-1 ANSTGTLVITDPTR 2 897.95062 -1.57 

Q13201 (MMRN1_HUMAN) Multimerin-1 FNPGAESVVLSNSTLK 2 1006.50555 -1.62 

Q16610 (ECM1_HUMAN) Extracellular matrix protein 1 QGNNHTCTWK 3 532.23114 -0.86 

Q92859 (NEO1_HUMAN) Neogenin  TPASDPHGDNLTYSVFYTK 3 821.37988 0.2 

P01033 (TIMP1_HUMAN) Metalloproteinase inhibitor 1 FVGTPEVNQTTLYQR 2 1051.51794 -0.12 

P09172 (DOPO_HUMAN) Dopamine beta-hydroxylase SLEAINGSGLQMGLQR 2 1020.00049 -1.23 

O14786 (NRP1_HUMAN) Neuropilin-1 GPECSQNYTTPSGVIK 2 1043.97766 -0.25 

  RGPECSQNYTTPSGVIK 3 748.35339 -1.81 

Q6YHK3 (CD109_HUMAN) CD109 antigen INYTVPQSGTFK 2 852.42139 -1.15 

Q76LX8 (ATS13_HUMAN) A disintegrin and metalloproteinase 

with thrombospondin motifs 13 

IAIHALATNMGAGTEGANASYILIR 3 959.82507 -1.98 

Q7Z7M0 (MEGF8_HUMAN) Multiple epidermal growth 

factor-like domains protein 8 

ALLTNVSSVALGSR 2 868.96649 -1.15 

Q8TER0(SNED1_HUMAN) Sushi, nidogen and EGF-like 

domain-containing protein 1 

GYCLASNGSHSCTCK 3 684.27612 -0.63 

Q9BXJ4 (C1QT3_HUMAN) Complement C1q tumor necrosis 

factor-related protein 3 

TGTVDNNTSTDLK 2 857.89722 0.35 

Q9H8L6 (MMRN2_HUMAN) Multimerin-2 FNTTYINIGSSYFPEHGYFR 3 921.42493 -0.68 

Q9HDC9 (APMAP_HUMAN) Adipocyte plasma 

membrane-associated protein 

AGPNGTLFVADAYK 2 886.93152 -1.8 

Q9ULI3 (HEG1_HUMAN) Protein HEG homolog 1 LNNSTGLQSSSVSQTK 2 1000.48065 -0.31 

  NSSGPDLSWLHFYR 3 676.64954 -0.25 

  SHAASDAPENLTLLAETADAR 3 834.73163 -1.59 

Q9Y6R7 (FCGBP_HUMAN) IgGFc-binding protein YLPVNSSLLTSDCSER 2 1095.50769 -1.73 
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Chapter 6 

Conclusion 

Due to the non-template nature of protein N-glycosylation, changes of the 

physiological and pathological environment of cells usually induce aberrations in 

N-glycosylation, making N-glycosylation a promising disease biomarker. In particular, 

alterations of N-glycosylation have been acknowledged to correlate with various types of 

cancers. There have been a plethora of studies on development and application of new 

mass spectrometric methods for improved understanding of protein N-glycosylation. 

Protein N-glycosylation is highly complex in that one protein may have several 

N-glycosylation sites, and multiple glycoforms at each site. Efforts at characterizing 

protein N-glycosylation involve identification of N-glycan structures, illustration of 

N-glycosylation sites and the associated glycoproteins, and elucidation of glycans 

expressed at specific sites. Quantitative analysis of protein N-glycosylation includes 

quantification of specific glycoforms both globally and site-specifically, measurement of 

glycoprotein expression level, and determination of glycosylation occupancy at each site.  

Particularly, serum glycoproteomics has attracted tremendous interest due to the 

promise of minimally invasive methods for monitoring cancer biomarkers. This 

dissertation aims at development and application of multiple mass spectrometric assays 

for identification of pancreatic cancer-related N-glycosylation aberrations, which 

encompasses qualitative and quantitative analysis of N-glycosylation at the glycan, 

glycopeptide and partially deglycosylated peptide levels on both individual proteins and 
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complex protein mixtures namely human serum, with emphasis on fucosylation, a 

subtype of N-glycosylation. 

The global glycosylation analysis normally utilizes enzymes or chemical reactions to 

release N-glycans from the peptides followed by separate profiling of N-glycans and 

N-glycosylation sites. A MALDI-MS/MS method was utilized for identification and 

relative quantification of haptoglobin N-glycans in pancreatic cancer as described in 

Chapter 2. This workflow incorporates N-glycan purification, desialylation, and 

permethylation, which significantly improves the ionization efficiency of N-glycans and 

sensitivity of the assay, leading to the new discovery of a bifucosylated triantennary 

glycan in haptoglobin. Moreover, a fucosylation index based on label-free quantification 

of glycans was constructed for a straightforward representation and comparison of 

fucosylation level of haptoglobin N-glycans in various samples. The change of 

haptoglobin fucose contents indicates a possible means for discriminating pancreatic 

cancer from other noncancer conditions, and further validation is needed to evaluate its 

usefulness for diagnostic purposes. 

For global mapping of N-glycosylation sites, more specifically core-fucosylation 

sites, a novel endoglycosidase-assisted strategy was implemented in both individual 

proteins (Chapter 3) and complex protein mixtures (Chapter 5). In Chapter 3, human 

alpha-2-macroglobulin was chosen as the model protein, and all eight potential 

N-glycosylation sites were unambiguously assigned by CID-MS2 (non-core-fucosylated 

sites) or CID-MS3 on neutral loss product (core-fucosylated sites). The extent of 

core-fucosylation of alpha-2-macroglobulin was examined at individual sites using a 

label-free strategy as detailed in Chapter 4, where core-fucosylation of Site N396, N 410 
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and N1424 were found to decrease in both pancreatic cancer and chronic pancreatitis 

relative to normal conditions. Aberrations of alpha-2-macroglobulin core-fucosylation 

may be useful in improving the accuracy of the pancreatic cancer diagnostics. 

Furthermore, this assay can be utilized to study site-specific core-fucosylation changes in 

other proteins for new biomarker discovery. 

Chapter 5 is an extension of the study in Chapter 3 to a large-scale core-fucosylation 

profiling in human serum which optimizes lectin affinity strategy for glycopeptide 

enrichment followed by endoglycosidase digestion. An HCD-MS/MS method was 

utilized for profiling of core-fucosylation for the first time and provides significantly 

improved performance compared to the prior site-mapping work. This study is the most 

comprehensive profiling of the serum core-fucome to date. Furthermore, the quantitative 

aspect of this workflow was evaluated by incorporating a chemical isobaric labeling 

method iTRAQ, which is believed to be useful in high-throughput screening of 

core-fucosylation aberrations as potential cancer biomarkers.  

Overall, this dissertation focuses on development and application of mass 

spectrometric assays for characterization and quantification of protein N-glycosylation, 

and the assays were applied in preliminary studies of pancreatic cancer biomarkers. The 

results are envisioned as potentially valuable for development of pancreatic cancer 

diagnostics. Future work to improve the assays include: (1) improvement of separation of 

proteins/glycopeptides/glycans prior to LC-MS/MS analysis; (2) validation of the 

glycosylation sites identified in Chapter 5; (3) implementing the assay developed in 

Chapter 5 for pancreatic cancer biomarker discovery; (4) increasing the sample cohort for 

biomarker discovery purposes; and (5) increase the throughput of the studies on 
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individual proteins using facilitated enzyme digestion and multiplexing solid phase 

extraction.  
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