Probing the temperature sensitivity of induction time in latent cure epoxy resins

Amy M Yousefia and Brian J Loveb,c,d,*

Abstract

Two dynamic viscosity datasets for epoxy resins cured at temperatures between 100 and 150 °C were re-analyzed to compare the interpretation of gel times and activation energies using two mathematical models.

© 2012 Society of Chemical Industry

Keywords: epoxy resin; cure; viscosity; mathematical modeling; Arrhenius

INTRODUCTION

Efforts to tie dynamic viscosity data associated with polymerization have led to an array of molecular, kinetic and purely empirical models used to predict flow in a range of reactive systems including epoxy resins, acrylates and proteins. These viscosity correlations are important in adhesives and coatings, resin transfer molding and composite resin infiltration, where mold filling and void formation are optimized.1 Correlating viscosity and other measures with increasing conversion is also of fundamental importance.2–5

The evolving network structure is a key feature in regulating continued flow. There is interest in defining the structure of the gel point in terms of both physical structure and rate of viscosity advancement.6,7

Separately, there have been several different viscosity advancement models for both reactive thermosets and other polymerizing resins.7–10 Those systems advancing in viscosity and conversion can be characterized based on nth-order kinetics where small-molecule behavior is governed by one exponent and larger structures by larger ones identified at higher conversion.11–17 The gel point is fundamentally linked with a critical extent of reaction at which the formation of macromolecular clusters extends across the sample dimension.18 It is also correlated with inflection points in the log $\eta(t)$ curve16 or the maximum rate of viscosity increase.1 There are other interpretations of the gel point using other analyses including the crossover point between G' and G'',19,20 the inflection point of G'',21 or the point where the loss tangent is frequency invariant22–25 using dynamic mechanical spectroscopy or rheology.

Other nonlinear rheological models have been advanced based on parameters indicative of resin reactivity,26,27 thermodynamic models similar to the WLF model8 and other semi-empirical models to describe time-dependent viscosity including our work on the log-Boltzmann sigmoidal model shown in Eqn (1).8,17,28–30

$$\log \eta(t) = \log \eta_{\infty} + \frac{\log (\eta_0) - \log (\eta_{\infty})}{1 + e^{(t-t_0)/\Delta t}}$$

In this equation, η_0 corresponds to the initial viscosity of the formulated resin, η_{∞} is linked with the viscosity approaching the torque limit in the rheometer as network formation evolves and t_0 is an induction time, corresponding to the 50% traversal between $\log \eta_0$ and $\log \eta_{\infty}$, and most closely associates with the gel time. The value $4 \times \Delta t$ corresponds to the period associated with the sigmoidal transition region as viscosity changes from the initial condition to the final gel condition. Thus, it is these two time constants that define how long the induction period is before gel formation and how fast one toggles between the initial and terminal viscosities.

Among the most predominant phenomenological models to represent dynamic viscosity is the first-order isothermal model31

$$\log \eta(t) = \log \eta_0 + kt$$

where $\eta(t)$ is the time-dependent viscosity, η_0 is some starting viscosity at which crosslinking occurs, k is related to the rapidity of the viscosity increase and t is the time. Equation (2) can be extended by assuming an Arrhenius temperature dependence for η_0 and k as follows.32

$$\ln \eta(t) = \ln \eta_0 + \frac{\Delta E_0}{RT} + t_0 k_0 \exp \left(\frac{\Delta E_k}{RT} \right)$$

In this equation, T is the temperature, η_0 is the reference viscosity, ΔE_0 is the Arrhenius activation energy for viscosity, R is the universal gas constant, k_0 is the kinetic analogue of η_0 and ΔE_k is the kinetic analogue of ΔE_0. All the presented models

* Correspondence to: Brian J Love, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48104, USA.
E-mail: bjlove@umich.edu
a Bioengineering, Chemical and Paper Engineering Department, Miami University, Oxford, OH, 45056, USA
b Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48104, USA
c Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48104, USA
d Department of Biologic and Materials Sciences (Dentistry), University of Michigan, Ann Arbor, MI, 48104, USA
capture the viscosity increase within a certain range of processing conditions. There are others that have also been developed (see Halley and Mackay\(^8\)), but in this work we chose to probe these models based on both their simplicity and their reported accuracy in representing dynamic viscosity at different cure temperatures. These analyses enabled us to predict the viscosity advancement in order to effectively represent the different stages of functional crosslinking.

It is perceived that with latent cure systems, the deviation in the initial viscosity, \(\eta_0\), with time is quite small in the pre-gel state. Mounif \textit{et al.} point to a time–temperature equivalence during the initial viscosity advancement stages that may be a predictor of network growth, although their primary focus was very early in conversion with viscosities below 10 Pa s\(^2\).\(^25\) Depending on the network being formed, there are theoretical determinations of what conversion is necessary to form the gel. We chose to evaluate whether this same dataset had a similar Boltzmann-like sigmoidal behavior and how well the sigmoidal model and first-order models matched up over the wider conversion curve. The sigmoidal chemorheological model has resolved epoxy conversion in filled systems such as for chip underfill.\(^30,33\) Our interest was whether it could also predict dynamic viscosity in more latent cure resin infiltrators such as that used by Mounif \textit{et al.}\(^25\) and Naffakh \textit{et al.}\(^34\).

Figure 1. Data from (a) Mounif \textit{et al.}\(^25\) and (b) Naffakh \textit{et al.}\(^34\) analyzed using the first-order model. The inflection in viscosity with time is identified as the gel point.

Figure 2. Arrhenius plots representing the gel time as a function of temperature based on the first-order analysis: (a) Mounif \textit{et al.}\(^25\) and (b) Naffakh \textit{et al.}\(^34\).

in slopes is identified as the gel point. The Boltzmann analysis yields three parameters, two time constants associated with the shape of the curve and a plateau viscosity associated with either the torque limit of the rheometer or the hindered motion of the resin in the glassy state. The first-order model yielded slopes in both the resin and gel states and a separate gel time. Interpretations of the Boltzmann and first-order models allow alternative determinations of the gel times that yield similar activation energies to those identified in the original analyses. Pragmatically, creation of dynamic viscosity models allows their incorporation into predictive flow models based on other extensive property changes with temperature and pressure.

EXPERIMENTAL

The original experiments re-analyzed here used diglycidyl ether of bisphenol A (DGEBA), with an epoxy equivalent weight of 178 g mol\(^{-1}\), mixed with diethyltoluenediamine, with an amine equivalent weight of 45 g mol\(^{-1}\). For both protocols, the hardener was added to DGEBA in a stoichiometric ratio and mixed. Mounif \textit{et al.} mention their formulations were mixed at 55 °C while Naffakh \textit{et al.}\(^25\) used an RDAII. There are probably some minor differences in detail as to how these experiments were executed but essentially the resins were conveyed to the plate surfaces and a
time sweep was started for each isothermal experiment. They both used a time ramp at a multi-frequency mode to determine the gel time considering the independence of the loss factor on frequency as a criterion of gel point. Dynamic DSC experiments were also performed to determine the glass transition temperature, \(T_g \), before and after crosslinking. \(T_g \) was interpreted by Mounif et al. as the inflection point of the second-order endothermic transition.25

RESULTS

We obtained the datasets from Mounif et al. that were imported into Origin8 (OriginLab, Northampton, MA), a mathematical analysis package equipped with a series of curve analysis subroutines. We extracted the Naffakh et al. work independently. While Mounif et al. focused on the initial changes in viscosity, we used the entire datasets for both studies to resolve whether other models might represent a wider time spectrum of the cure temperature regime.35 The corresponding exponent for the sigmoidal model ranges between 0.03 and 0.23 min\(^{-1}\) when the cure temperature is raised from 100 to 150 °C. The time associated with slope inflection was also extracted to identify the gel time. An Arrhenius determination relating the gel time as a function of 1/\(T \) shown in Fig. 2 resolves an activation energy to trigger gelation of 57 kJ mol\(^{-1}\) (Mounif et al.) and 52 kJ mol\(^{-1}\) (Naffakh et al.) based on the first-order isothermal model analysis.

First-order isothermal model analysis

The data were fitted using a first-order-type model as shown in Eqn (2). Conceptually, when the data are plotted in the form of \(\log \eta(t) \) versus \(t \) as shown in Fig. 1, it seems evident that above 10 Pa s there is a slope inflection corresponding to the increase in fluid resistance with continued thermoset advancement. This inflection occurs at all temperatures. Although the discrepancy between the experimental data and the fits at lower viscosities is negligible, given the logarithmic scale of these graphs, it is clear that the first-order model is not able to capture the viscosity plateau at the end of the cure reactions.

Sigmoidal analysis

We also used the sigmoidal analysis function to fit these datasets, as shown in Eqn (1). The analysis allowed for any one parameter to be fixed while optimizing the other variables. Given that another dataset using DGEBA resin shows a lower initial viscosity of 0.01 Pa s at 155 °C,34 we fixed the initial viscosity at each temperature, weakly depending on temperature based on an Arrhenius activation energy for flow. Final gel viscosities in the plateau region were also fixed at 1 \times 10^5 Pa s based on the work by Naffakh et al. for the same resin. Example analyses fixing \(\eta_0 \) are shown in Fig. 3 for sigmoidal analyses at 130, 140 and 150 °C reported by Mounif et al. as well as at 100, 120, 140 and 150 °C reported by Naffakh et al.

It is apparent that the sigmoidal model effectively represents the temperature-dependent dynamic viscosity response of the advancing resin. It is also evident that the interval of viscosity increase is shorter at elevated temperature. The dynamic viscosity

Table 1. Gel time determinations (Mounif et al. dataset)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Mounif et al.</th>
<th>Sigmoidal model ((\text{constant } \eta_\infty))</th>
<th>Sigmoidal model, ((\text{variable } \eta_\infty))</th>
<th>First-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>3780</td>
<td>2190</td>
<td>2190</td>
<td>3640</td>
</tr>
<tr>
<td>140</td>
<td>2520</td>
<td>1600</td>
<td>1830</td>
<td>2480</td>
</tr>
<tr>
<td>150</td>
<td>1740</td>
<td>1320</td>
<td>1190</td>
<td>1630</td>
</tr>
</tbody>
</table>

Figure 3. Sigmoidal determination including the raw data from (a) Mounif et al. and (b) Naffakh et al.

Figure 2. The data were fitted using a first-order-type model as shown in Eqn (1). The analysis allowed for any one parameter to be fixed while optimizing the other variables. Given that another dataset using DGEBA resin shows a lower initial viscosity of 0.01 Pa s at 155 °C, we fixed the initial viscosity at each temperature, weakly depending on temperature based on an Arrhenius activation energy for flow. Final gel viscosities in the plateau region were also fixed at 1 \times 10^5 Pa s based on the work by Naffakh et al. for the same resin. Example analyses fixing \(\eta_0 \) are shown in Fig. 3 for sigmoidal analyses at 130, 140 and 150 °C reported by Mounif et al. as well as at 100, 120, 140 and 150 °C reported by Naffakh et al.

Table 1. Gel time determinations (Mounif et al. dataset)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Mounif et al.</th>
<th>Sigmoidal model ((\text{constant } \eta_\infty))</th>
<th>Sigmoidal model, ((\text{variable } \eta_\infty))</th>
<th>First-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>3780</td>
<td>2190</td>
<td>2190</td>
<td>3640</td>
</tr>
<tr>
<td>140</td>
<td>2520</td>
<td>1600</td>
<td>1830</td>
<td>2480</td>
</tr>
<tr>
<td>150</td>
<td>1740</td>
<td>1320</td>
<td>1190</td>
<td>1630</td>
</tr>
</tbody>
</table>
corresponding Arrhenius dependence of gel time (Fig. 6) results in numerical extractions from both analyses are given in Tables 1–4.

In Fig. 4, identifying an activation energy of 36 kJ mol$^{-1}$ based on the sigmoidal model using a fixed plateau viscosity of 1 × 105 Pa s. The Arrhenius plots based on the sigmoidal model using a fixed plateau viscosity of 1 × 105 Pa s is much broader between 100 and 130 °C as opposed to 150 °C. The numerical extractions from both analyses are given in Tables 1–4.

An objective determination of a gel time can be resolved by taking the slope of the dynamic viscosity curve and identifying the time at which this intersects the initial viscosity. This occurs at a time on the sigmoidal curve associated with the midpoint of the log $\eta(t)$ curve less two times the quantity Δt. The Arrhenius dependence of gel time based on the sigmoidal model is shown in Fig. 4, identifying an activation energy of 36 kJ mol$^{-1}$ (Mounif et al.) and 40 kJ mol$^{-1}$ (Naffakh et al.).

Alternatively, fixing η_0 and allowing a variable η_∞ leads to minor differences in t_0 and Δt with a better fit shown in Fig. 5 for sigmoidal analyses at the four temperatures reported by Naffakh et al. The corresponding Arrhenius dependence of gel time (Fig. 6) results in a determination of an activation energy of 43 kJ mol$^{-1}$ (Mounif et al.) and 40 kJ mol$^{-1}$ (Naffakh et al.).

Table 2. Model parameters extracted from the various analyses (Mounif et al.25 dataset)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Sigmoidal model (constant η_∞)</th>
<th>Sigmoidal model (variable η_∞)</th>
<th>First-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\eta_\infty = 1 \times 10^5$ Pa s</td>
<td>$\eta_\infty = 1 \times 10^5$ Pa s</td>
<td>$\eta_0 = 1.67 \times 10^{-12}$ Pa s</td>
</tr>
<tr>
<td></td>
<td>$\eta_0 = 1.78 \times 10^{-2}$ Pa s</td>
<td>$\eta_0 = 1.78 \times 10^{-2}$ Pa s</td>
<td>$k = 0.21$ min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$t_0 = 3800$ s</td>
<td>$t_0 = 3800$ s</td>
<td>$t_0 = 1800$ s</td>
</tr>
<tr>
<td></td>
<td>$\Delta t = 804$ s</td>
<td>$\Delta t = 804$ s</td>
<td>$\Delta t = 273$ s</td>
</tr>
<tr>
<td></td>
<td>$\eta_0 = 1 \times 10^5$ Pa s</td>
<td>$\eta_0 = 1 \times 10^5$ Pa s</td>
<td>$\eta_0 = 1.13 \times 10^{-13}$ Pa s</td>
</tr>
<tr>
<td></td>
<td>$\eta_0 = 1.58 \times 10^{-2}$ Pa s</td>
<td>$\eta_0 = 1.58 \times 10^{-2}$ Pa s</td>
<td>$k = 0.33$ min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$t_0 = 2630$ s</td>
<td>$t_0 = 2680$ s</td>
<td>$t_0 = 1800$ s</td>
</tr>
<tr>
<td></td>
<td>$\Delta t = 515$ s</td>
<td>$\Delta t = 427$ s</td>
<td>$\Delta t = 306$ s</td>
</tr>
<tr>
<td></td>
<td>$\eta_0 = 1 \times 10^5$ Pa s</td>
<td>$\eta_0 = 1 \times 10^5$ Pa s</td>
<td>$\eta_0 = 1.19 \times 10^{-10}$ Pa s</td>
</tr>
<tr>
<td></td>
<td>$\eta_0 = 1.41 \times 10^{-2}$ Pa s</td>
<td>$\eta_0 = 1.41 \times 10^{-2}$ Pa s</td>
<td>$k = 0.37$ min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$t_0 = 1870$ s</td>
<td>$t_0 = 804$ s</td>
<td>$t_0 = 306$ s</td>
</tr>
<tr>
<td></td>
<td>$\Delta t = 273$ s</td>
<td>$\Delta t = 804$ s</td>
<td>$\Delta t = 306$ s</td>
</tr>
</tbody>
</table>

Table 3. Gel time determinations (Naffakh et al.34 dataset)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Sigmoidal model (constant η_∞)</th>
<th>Sigmoidal model (variable η_∞)</th>
<th>First-order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gel time (s)</td>
<td>Gel time (s)</td>
<td>Gel time (s)</td>
</tr>
<tr>
<td>100</td>
<td>6820</td>
<td>3310</td>
<td>10800</td>
</tr>
<tr>
<td>120</td>
<td>4150</td>
<td>1660</td>
<td>6720</td>
</tr>
<tr>
<td>140</td>
<td>2050</td>
<td>390</td>
<td>2310</td>
</tr>
<tr>
<td>150</td>
<td>1490</td>
<td>321</td>
<td>1560</td>
</tr>
</tbody>
</table>

DISCUSSION

The interpretation of a gel time extracted using the first-order and sigmoidal models reinforces the original analysis by Mounif et al. who resolved the invariance in $\tan \delta$ as a function of frequency during isothermal curing. Based on the re-analysis of the Mounif et al.25 data, we determine an activation energy for gelation of 57 kJ mol$^{-1}$ using the first-order model, only slightly smaller than the 60 kJ mol$^{-1}$ resolved by Mounif et al. Naffakh et al.34 using a larger cure temperature range found an activation energy of 55 kJ mol$^{-1}$. We determine an activation energy of 52 kJ mol$^{-1}$ for the data published by Naffakh et al. There are countless studies to evaluate the relative activation energy for a combination of resins + aromatic amine hardeners, typically in the range 50–70 kJ mol$^{-1}$ based on comments by Ishii and Ryan.37 Perhaps focusing on the initial stages of the viscosity increase and a lower cure temperature biases the interpretation of activation energy to discount the autocatalytic contribution from the exothermic epoxide reaction leading to a larger perceived barrier for advancement.

The sigmoidal analysis emphasizes the distinctions in the early phases of conversion, and leads to a more diverse advancement profile depending on isothermal cure temperature. When extracted from the initial viscosity regime of the resin, we resolve a lower activation energy of between 36 and 43 kJ mol$^{-1}$. We observe the expected decrease in η_∞, η_0, and allowing a variable η_∞ leads to minor differences in t_0 and Δt with a better fit shown in Fig. 5 for sigmoidal analyses at the four temperatures reported by Naffakh et al.34 The corresponding Arrhenius dependence of gel time (Fig. 6) results in a determination of an activation energy of 43 kJ mol$^{-1}$ (Mounif et al.) and 40 kJ mol$^{-1}$ (Naffakh et al.).

![Graph of Ln(η_gel) vs 1/T](image-url)
Brownian motion at elevated temperature increases the number of hardener–resin interactions and increases the rate of conversion with the number of encounters.

These re-analyses are subject to the constraint of rheometer accuracy in this low-viscosity regime. The sigmoidal model has an added constraint requiring some sort of determination of an upper limit for viscosity to be included. There are published studies of resin mixtures reporting initial viscosities in the region of 1×10^{-3} Pa s. Applying fixed constraints based on the physical significance of the initial and gel viscosity leads to a larger physical significance of the time constants associated with gel formation and dynamic changes in the network structure.

CONCLUSIONS

Previously published dynamic rheology data have been reanalyzed using both the first-order isothermal and sigmoidal models. Refinements of the sigmoidal four-parameter model to fix both the initial viscosity condition and the upper limit for the gel viscosity yielded two time constants while the first-order model yielded both a gel time and a conversion ratio.

The first-order model interpretation of the viscosity advancement data shows a clear slope change leading to an unambiguous interpretation of the gel time. We interpret a lower activation energy for gelation of $52–57$ kJ mol$^{-1}$ when considering the full datasets of Mounif et al. and Naffakh et al., smaller than that identified by Mounif et al., and more representative of that of Naffakh et al. using the same resin system.

The sigmoidal model also yielded an objective determination of a time when the viscosity deviates from the initial viscosity condition. Based on this analysis, we determine an activation energy of between 36 and 43 kJ mol$^{-1}$ depending on whether the plateau viscosity is a fixed parameter or a floating variable as a function of temperature. Supporting evidence for these lower activation energies of cure advancement is included.

Both analyses effectively represent the data and allow for the construction of relevant kinetic models of viscosity advancement with time constants that can help represent the latency and the corresponding periods of functional crosslinking.

ACKNOWLEDGEMENTS

The authors acknowledge Eskandar Mounif and Veronique Bellenger for graciously providing us access to the original datasets, Miami University for Amy Yousefi’s sabbatical, and Caroline Dove and Thibaut Savart for completing some of the initial data analysis.
Figure 6. Arrhenius plots based on the sigmoidal model using a variable plateau viscosity: (a) Mounif et al.25 and (b) Naffakh et al.34

REFERENCES