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CHAPTER I 

1. Background and Significance 

 

The substantial increase in esthetic consciousness and patient demand for esthetic 

dental restoration has led to a rapid development in the art and science of restorative 

dental materials. Superior esthetic requirements are no longer a luxury. It is the everyday 

basic need that has pushed dental materials to the edge of its limitations. Newer materials 

must be developed to accommodate the ever demanding self-conscious patients that 

expect restorative work to mimic or quite often exceed the natural look of the 

combination of enamel and dentin found within human teeth.       

 

Increased application of ceramic restorations has led to development of a variety of 

ceramic systems. Demand for improved clinical performance pressured the dental 

material industry to introduce several ceramic materials that are classified by porcelain 

type (feldspathic porcelain, leucite reinforced, aluminous, glass-infiltrated, glass-

infiltrated spinell, glass-infiltrated zirconia and glass-ceramic), by porcelain use (denture 

teeth, metal ceramics, veneers, onlays, inlays, crowns, permanent prosthetic restorations), 

by porcelain processing method (casting, sintering, machining), by temperature fusion 

(high fusing - from 1315 ºC  to 1370ºC, medium fusing - from 1090 ºC to 1260 ºC, low 

fusing - from 870 ºC to 1065 ºC) and by porcelain substructure material (cast metal, 

glass-ceramic, CAD/CAM (computer assisted design/computer assisted machining), 

sintered ceramic core).1 Ceramic porcelain is essentially composed of silica, feldspar, 
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kaolin and metallic pigments like opacifiers and color modifiers. Only the purest 

ingredients used in the dental field provide biocompatibility, low thermal expansion, 

insolubility, durability due to fracture and abrasion resistance as well as color stability 

and optical quality.  

 

In many situations where the use of alloy or gold supported restorations was 

previously indicated, they are replaced today by tooth-colored materials. Any dental 

material requires sufficient physical properties to achieve good esthetic results, marginal 

integrity and high strength to withstand occlusal load. However, elimination of the metal 

substructure has raised concerns in resistance to fracture.   

 

In an effort to improve strength, various core substrates were developed such as 

spinell (In-Ceram Spinell), alumina (eg. In-Ceram Alumina) and zirconia cores. These 

materials are becoming increasingly popular due to improved biocompatibility, physical, 

mechanical and esthetic properties.  

 

Zirconium ceramics have current application in fabrication of endodontic posts, 

implant abutments, crowns, fixed partial dentures and orthodontic brackets as well as in 

other medical fields. Zirconia is composed of fine particles of ZrO2 (zirconium oxide) 

and Y2O3 (yttrium oxide), having at room temperature monoclonic symmetry, forming, 

after the process of sintering ( in the 1000-1100°C) a tetragonal structure that later 

transforms to a cubic phase that is characterized by high strength. Pure zirconia 
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(unstabilized) is monoclinic at room temperature and transforms to a denser tetragonal 

form. This process promotes volume changes, and thereafter fractures.   

 

The evolution of ceramics changed not only chemical and physical properties of 

materials but also quality and method of preparation and luting. Manufacturers have 

suggested different concepts of tooth preparation as well as specifications regarding 

coping design.  The aim of these guidelines is stability and resistance to any occlusal 

stress and good esthetic results.   

 

Currently the recommended width of zirconium coping supporting the veneered 

ceramic restoration is dependent on the manufacturer and ranges from 0.5-0.8 mm, with 

the shoulder covering the margins of the tooth preparation. Unfortunately the application 

of the recommended coping design contributes to an opaque and unnatural appearance, 

particularly at the cervical third of the restoration contour.  
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2. Purpose and Hypotheses 

 

2.1. Purpose 

 

The purpose of this study was to determine the effect of modified zirconium 

copings on the fracture resistance of Procera® All-Zircon. 

 

The main features of the preparation design that will be evaluated in the research are: 

 

Design 1 (control group) the coping material was fabricated according to the 

manufacturer recommendations - zirconia coping, extended to cover the 

complete shoulder. 

Design 2 the zirconia coping was cut back to the axial wall of the preparation so that 

only veneering porcelain is on the shoulder. 

Design 3  the zirconia coping on the lingual was fabricated according to the 

manufacturer recommendations, while the coping on the facial will be cut-

back to the middle of the axial wall.  
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2.2 Hypotheses 

 

2.2.1 Primary Hypothesis 

 

Ho: The modification of the coping design does not significantly affect the fracture 

resistance of the zirconia core ceramic crowns. 

Ha: The modification of the coping design significantly affects the fracture resistance of 

the zirconia core ceramic crowns. 

 

2.2.2 Secondary Hypothesis 

 

Ho: The modification of the coping design is not associated with the fracture location in 

the zirconia core ceramic crowns. 

Ha: The modification of the coping design is associated with the fracture location in the 

zirconia core ceramic crowns. 

 

2.3  Specific Aims 

 

 To evaluate the effect of a shoulder-free zirconia coping design on the fracture 

strength of ceramic restorations. 

 To evaluate the effect of shoulder-free zirconia coping design on the fracture 

location.   
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3. Literature Review 

 

3.1 History of Ceramics 

 

Porcelain history, named keramos meaning pottery in Greek started in early human 

civilization. About 100 B.C. China developed stoneware that was fired at higher 

temperatures improving its characteristics of strength and ability to withstand water 

penetration. It took another thousand years for porcelain to evolve to its current 

characteristics of high strength and translucency. Porcelain was introduced to dentistry in 

1774 when Alexis Duchateau and Nicholas Dubois de Chemant fabricated the first 

successful all-porcelain dentures. In 1808, in Paris, Giuseppangelo Fonzi introduced 

individually-formed porcelain teeth containing embedded pins.2 Early porcelain crowns 

were developed by Elias Wildman in 1838 and later improved by Richmond and Logan 

that made Davis crowns, and further, Land developed porcelain jacket crowns.3  Initially, 

porcelain use was restricted to anterior dentition until recent advances modified the 

material to endure occlusal forces observed in posterior dentition. Various components 

were combined in precise proportions and a controlled firing process was developed to 

achieve biocompatibility, durability, stability, appropriate thermal expansion as well as 

translucency. A high-strength alumina coping, introduced in 1985 by Sadoun, contained 

over 85 % alumina and was intended for anterior and posterior single crowns as well as 

anterior three-unit bridges.4 In 1993 Andersson manufactured a densely sintered alumina 

core for porcelain restorations, currently known as Procera All-Ceram Alumina.5 Both of 
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these exemplify the possible modifications that porcelain materials have undergone. In 

the 1988, Duret introduced CAD/CAM, an industrial machining process, into dentistry 

where numerous modifications over the following ten years brought about the Cerec 

system.6, 7 The system unites computer technology, die-cutting tools and a prepable 

porcelain block. Further improvement in the strength of ceramic materials was achieved 

utilizing the zirconium particles. The terminology zircon, as the literature reports, comes 

from Arabic word zargon (golden in color) which in turn comes from the two Persian 

words zar (gold) and gun (color) that express the color of one of the gemstones. In the 

1789 German chemist Martin Klaproth analyzed the gemstone named jargon and 

identified the metal dioxide in the reaction product obtained after heating some gems.8  

Zirconia is an alloy having numerous applications in daily basis in industry. The 

properties of the zirconia are extensively utilized in manufacturing vacuum tubes, 

surgical appliances, thermal isolation and many other daily used items. 

 

3.2 Composition 

 

Ceramics, from the finest porcelain to china composed of metallic oxides, have 

been used for centuries due to their stability, durability, biocompatibility as well as low 

thermal conductivity and good optical properties. Conventional dental porcelain is a 

vitreous ceramic based on silica (quartz (SiO2)) and kaolin (clay) (Al2O3 ٠2SiO2 

٠2H2O), metallic pigments, potash feldspar (K2O٠ Al2O3  ٠ 6SiO2), soda feldspar (Na2O٠ 

Al2O3  ٠ 6SiO2) or both. The principal quality and difference is dependant on correct 

proportion of primary elements and proper firing procedure. The manufacture of the 
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dental ceramics utilizes the purest ingredients to meet the requirements of abrasion and 

physical and mechanical properties in adjunct to color stability and translucency. Two 

phases are being distinguished during the procedure of blending the porcelain. 9 The 

vitreous phase (glass), formed during the firing process, presents typical glass properties 

as brittleness, high surface tension and non-directional fracture pattern. The crystalline 

phase (mineral) often named feldspar includes quartz or silica and metallic oxides. 

Chemically composed of potassium, aluminum silicate feldspar provides opaque color 

ranging from gray to pink. When heated, it retains the form and contours of the 

restorations and at 1290°C it fuses and becomes glassy. The form stability provides an 

important property for the fabrication of porcelain restorations. In the process of creation 

of fine particles for dental porcelain, feldspar undergoes several intricate processes that 

give homogenous light-colored pieces of the feldspar. Further grinding of the particles in 

a ball mill ultimately formats fine powder followed by the process of coarse particle 

elimination. To improve the color it is important to remove the iron, commonly found in 

feldspar. During that final step of slow vibration of the powder iron is picked up by 

narrow ledges formed by induction magnets.10 

 

Pure quartz is ground to finer than feldspar powder particles and remains 

unchanged during the process of porcelain firing which contributes stability to the mass 

during heating by providing a framework for the other ingredients.1 The pigments called 

“color frits” are added in small quantities to obtain slight shades for natural tooth color 

imitation. The process involves grinding together metallic oxides with fine glass and 

feldspar, fusing the mixture in a furnace, and regrinding to a powder. The metallic 
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pigments used in that process are titanium oxide  (yellow-brown), manganese oxide 

(lavender), iron or nickel oxide (brown), cobalt oxide (blue), copper or chromium oxide 

(green), tin oxide to obtain  opacity and uranium oxide to increase  fluorescence.10 The 

exact composition of porcelain is commonly not provided by manufacturers while the 

published literature states that porcelain is a mixture of 75-85% feldspar, 12-22% quartz, 

3-5% kaolin and a small percentage of pigments.10 Progressive compositional changes 

have been made to bring firing temperature from 1290°C to current level of 900-980°C as 

well as to provide the higher strength and resistance to oral environment.     

 

3.3 Classification of High-Strength All-Ceramics 

 

 High strength core ceramics is classified based upon chemical structure into main 

three groups; glass ceramics, glass-infiltrated ceramics and polycrystalline ceramics. 11 

 

3.3.1 Glass Ceramics 

 

Glass ceramics are partially crystallized, amorphous glasses that are produced by 

enucleation and growth of crystals in the glass matrix phase.12  

 

Albakry et al. tested the fracture toughness and hardness of three pressable all-

ceramic materials: IPS-Empress, Empress 2 and an experimental ceramic material. 

Fifteen discs and 15 bars per material were prepared and fracture toughness was 

measured with two different techniques: indentation fracture and indentation strength. 
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During the indentation fracture tests the hardness of each material was also measured. 

The results in MPa showed mean fracture toughness using the indentation strength 

technique (with three-point bending and biaxial flexure tests): IPS-Empress (1.39 ± 0.3 

and 1.32 ± 0.3); Empress 2 (3.14 ± 0.5 and 2.50 ± 0.3) MPa x m1/2; and the experimental 

glass-ceramic (3.32 ± 0.6 and 2.43 ± 0.3) MPa x m1/2. The indentation fracture technique 

generated orthogonal cracks of different lengths for Empress 2 and the experimental 

ceramic, whether perpendicular or parallel to the lithium disilicate elongated crystals. 

Thus, two values were reported: Empress 2 (1.5 ± 0.2 and 1.16 ± 0.2) MPa x m1/2 and the 

experimental ceramic (1.67 ± 0.3 and 1.15 ± 0.15) MPa x m1/2. The IPS-Empress 

indentation fracture result was 1.26 ± 0.1 MPa x m1/2. The hardness results were: 6.6, 5.3 

and 5.5 GPa for IPS-Empress, Empress 2 and the experimental ceramic, respectively. 

They concluded that there was no significant differences in fracture toughness and 

hardness between Empress 2 and the experimental ceramic (P<0.05 ANOVA). Both 

materials exhibited fracture toughness anisotropy following pressing and demonstrated 

improved fracture toughness and reduced hardness compared with IPS-Empress.13 

 

3.3.1.1 Lithium Disilicate Glass Ceramics 

 

The framework of lithium disilicate ceramics can be made by either lost-wax, heat-

pressed technique, or milled out from prefabricated blanks. One of the ceramic materials 

belonging to that category is Empress II (Ivoclar) and it’s fracture toughness was 

evaluated in the study done by Quinn as 2.8 MPa 14  
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In another study, Taskonak evaluated the site of crack initiation and the causes of 

fracture of clinically failed ceramic fixed partial dentures. Six Empress 2 lithium-

disilicate veneered bridges and 7 lithium-disilicate non-veneered ceramic bridges were 

retrieved and analyzed using fractography and fracture mechanics methods.  The analysis 

included failure in 6 bridges (50%) whose fracture initiated from the occlusal surface of 

the connectors and fracture of 1 non-veneered bridge (8%) initiated within the gingival 

surface of the connector. Three veneered bridges fractured within the veneer layers. 

Failure stresses of the all-core fixed partial dentures ranged from 107 to 161 MPa. Failure 

stresses of the veneered fixed partial dentures ranged from 19 to 68 MPa. It has been 

stated that fracture initiation sites were controlled primarily by contact damage.15 

The application of lithium disilicate material includes not only single unit restorations but 

also short span three-unit fixed partial dentures extending up to the second premolar.12 

 

In a two-year clinical evaluation Taskonak fabricated twenty anterior or posterior 

all-ceramic (Empress 2) crowns and twenty anterior or posterior, three-unit fixed partial 

dentures for 15 patients. Evaluations of the restorations were performed at baseline and 

once a year during the 2-year follow-up period that examined the marginal adaptation, 

color match, secondary caries and visible fractures in the restorations. Criteria showed 

100% Alpha scores concerning recurrent caries for both crowns and FPDs and no crown 

fractures were observed during the 2-year follow-up, however, 10 (50%) catastrophic 

failures of FPDs occurred. Five (25%) failures occurred within the 1-year clinical period 

and the others (25%) within the second year.16 
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3.3.1.2 Leucite Reinforced Glass Ceramics 

 

The IPS-Empress was introduced in the United States in 1991 and is a fine grained 

pressed ceramic material where leucite crystals are formed through various temperature 

cycles. These core materials can be fabricated by either heat-pressing procedure or via 

CAD/CAM technology. In heat-press method the system requires the restoration to be 

waxed to full contour invested and burnt-out in furnace at 800ºC. A ceramic ingot 

plunger is used in different shades that is heated at 1100ºC and pressed into the 

investment mold under 0.3-0.4 MPa pressure. The temperature is maintained for 20 

minutes in a designed automatic press furnace.17 The final IPS Empress microstructure 

contains 40% volume of 1-5µm leucite crystals dispersed in a glassy matrix.17 Two 

finishing techniques can be applied including a staining or layering technique that lead 

both to comparable mean flexure strength values for the final restoration.18 Dong et.al 

reported that flexural strength values range between 160 and 182 MPa and was found to 

be significantly improved after additional firings.17 The reasonable strength and superior 

light transmission made IPS Empress a successful ceramic system for inlays, veneers and 

anterior crowns.17 

 

3.3.2 Glass Infiltrated Ceramics 

 

Glass infiltrated core ceramics is porcelain consisting of glass infiltrated to partially 

sintered oxides. That group is mainly represented by In-Ceram Alumina, In-Ceram 

Spinell and In-Ceram Zirconia.  In-Ceram Spinell was marketed more recently to 
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improve the esthetic potential. In vivo evaluation of specific esthetic parameters inherent 

to different types of cores was made and revealed the relative opacity of alumina while 

spinell was found to have the ability to blend in with the underlying substrate. 

Nevertheless both materials demonstrated a general lack of fluorescence.19 

 

3.3.2.1 In-Ceram Spinell 

 

The In-Ceram Spinell (Vita, D-Bad Sackingen) is glass infiltrated MgAl2O4. This 

ceramic is characterized with lower fracture and flexural strength (687.90 ± 90.26 N) 

than In-Ceram Alumina (876.19 ± 92.2 N), yet the translucency is higher therefore this  

type of ceramic is recommended in anterior areas, where higher esthetic result is 

required.20, 21 The strength of that particular material depends on a successful restoration 

treatment and bond to the tooth structure and the survival rate in anterior region was 

shown to be 95% after 11 years.22 

 

 

3.3.2.2 In-Ceram Alumina 

 

The original In-Ceram material (In-Ceram Alumina) composed of sintered 

aluminum oxide subsequently infused with a glass, features interesting mechanical 

properties. Pure aluminum is a silvery-white metal possessing nonmagnetic, nonsparking 

property and has multiple applications: kitchen utensils, building décor, and other 

industrial purposes. A high purity alumina (85%) requires a firing temperature of 1750ºC, 

while 60% alumina may be fused at 1300 ºC. In 1964 Sandhaus first used alumina 
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materials for tooth replacement and since then alumina has been proposed as a 

biomaterial and applied for socket and ball in hip replacement as well as used in the 

dental field. In-Ceram Alumina is a highly sintered alumina core ceramic, glass infiltrated 

and layered with veneering porcelain. Unfortunately, the alumina has limited esthetics 

due to semiopaque core therefore application is restricted and needs to be considered 

accordingly. 23  

 

3.3.2.3 In-Ceram Zirconia 

 

In-Ceram Zirconia contains 35 % partially sintered stabilized zirconia with glass-

infiltrated alumina. Its strength, according to Guazzato study, is much higher than In-

Ceram Alumina. In-Ceram Zirconia mean flexural strength and fracture toughness are 

580 ± 60 MPa and 4.0 MPa x m1/2 respectively. In-Ceram Alumina characterized with  

values 520 ± 55 MPa and 3.2 MPa x m1/2. 24 The process of fabrication is achieved either 

by milling or slip-cast technique. Due to higher material strength and fracture toughness 

the material is recommended in anterior, posterior single replacement as well as FPDs.20, 

25, 26 

 

Evaluation of  biaxial flexural strength (piston on three ball), Weibull modulus, 

hardness, and fracture toughness of In-Ceram Zirconia and In-Ceram Alumina using 

indentation fracture and indentation strength methodology revealed that mean biaxial 

flexure strengths of In-Ceram Alumina and In-Ceram Zirconia were 600 MPa (SD 60) 

and 620 MPa (SD 61), respectively. Ninety-four disks and six bars were prepared with 
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the slip-casting technique. The disks were used to assess biaxial flexural strength (piston 

on three balls), Weibull modulus, hardness, and fracture toughness with two methods: 

indentation fracture and indentation strength. The bars were used to measure elastic 

moduli (Young's modulus and Poisson's ratio). Mean fracture toughness measured 

according to indentation strength was 3.2 MPa.m1/2 (SD 0.34) for in-Ceram Alumina 

and 4.0 MPa.m1/2 (SD 0.43) for In-Ceram Zirconia, while mean fracture toughnesses of 

In-Ceram Alumina and In-Ceram Zirconia measured according to indentation fracture 

were 2.7 MPa.m1/2 (SD 0.34) and 3.0 MPa.m1/2 (SD 0.48), respectively. 25  

 

A study where Guzzato tested the strength, fracture toughness and microstructure of 

DC Zirkon, In-Ceram Zirconia slip, an experimental yttria partially stabilized zirconia, 

and In-Ceram Zirconia dry-pressed presented means of strength (MPa) and fracture 

toughness (MPa m(1/2)) values and their standard deviation: In-Ceram Zirconia dry-

pressed 476 (50)1, 4.9 (0.36)1; In-Ceram Zirconia slip 630 (58)2, 4.8 (0.50)1; the 

experimental yttria partially stabilized zirconia 680 (130)2, 5.5 (0.34)2; DC-Zirkon 840 

(140)3, 7.4 (0.62)3. Strength was appraised on ten bar-shaped specimens for each 

material (20 x 4 x 1.2 mm) with the three-point bending method. The fracture toughness 

(Indentation Strength) was measured on twenty specimens (20 x 4 x 2 mm) for each 

ceramic. The volume fraction of each phase, the dimensions and shapes of the grains and 

the crack pattern were investigated with SEM. The author postulated that the zirconia-

based dental ceramics are stronger and tougher materials than the conventional glass-

ceramics and better properties can have positive influence on the clinical performance of 

all-ceramic restorations. 27 
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The purpose of Suarez’s study was to evaluate the clinical performance of In-Ceram 

Zirconia posterior fixed partial dentures (FPD) after 3 years in service. He fabricated 

eighteen In-Ceram Zirconia FPDs for sixteen patients. The CDA quality evaluation 

system was used for assessment of surface and color, anatomic form, and marginal 

integrity and bleeding on probing was also recorded. The results report that only one of 

the 18 posterior FPDs was lost because of a root fracture and all remaining FPDs were 

rated as either excellent or acceptable after the observation period.28 

 

3.3.3 Polycrystalline Ceramics 

 

Polycrystalline ceramic material is composed of densely sintered particles with no 

glassy components and is solely processed by CAD/CAM technology. CAD/CAM stands 

for “Computer-Aided-Design/Computer-Aided-Manufacturing”, and designates the three-

dimensional planning of a workpiece on the screen of a computer with subsequent 

automated production by a computer controlled machine tool. 29 CAD/CAM processing 

was introduced to dentistry by Francois Duret in 1971 and has received considerable 

clinical and research interest from modern dental practices as a means of delivering all-

ceramic restorations. Up to now the CAD/CAM system with zirconia has the highest 

fracture strength of all all-ceramic materials, and consistently produced the most esthetic, 

lifelike reproduction of natural dentition. They have been widely received by both 

dentists and patients.30, 31 The contemporary CAD/CAM systems consist of three 

components: the scanner, software, and hardware. The material used in fabrication of 
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restorations can be different: silicate ceramics; glass-infiltrated aluminum oxide; densely 

sintered aluminum oxide; densely sintered zirconium dioxide, manufactured at green 

stage, presintered stage and completely sintered stage; hipped zirconium dioxide; 

titanium; precious alloys; nonprecious alloys. 32 

 

Procera All-Ceram (Nobel Biocare, S-Goteborg) is a polycrystalline ceramic made 

of densely sintered high-purity (99.9%) aluminum oxide core with 500ppm MgO and was 

developed in 1993 by Matts Andersson and colleagues. 33, 34 With the Procera milling 

machine changes to the configuration of the preparation can be made, copies with a 

positive or negative offset of the surface can be produced, and the stone die can be 

replicated in a suitable material. During the coping fabrication linear expansion ranging 

between 12 to 20% occurs allowing the gap width between the crown and prepared tooth 

to be controlled and compensate for the shrinkage during the sintering process. 5 The 

milling process is started with alumina powder compaction using the industrial pressing 

technique against the enlarged replica. The compacted alumina is pre-sintered to a “green 

stage” and subjected to sintering process at 1550ºC followed by cooling and grinding 

procedure to achieve predetermined dimension. Procera All-Ceram has flexural strength 

between 500 and 650 MPa,  fracture toughness of 4.48-6MPa x m 1/2 and mean grain size 

4µm.35, 36 

 

Yttrium tetragonal zirconia polycrystals (Y-TZP) is a glass-free, high 

polycrystalline ceramic material containing about 3% mol Y2O3 with a flexural strength 

from 900 to 1200MPa and fracture toughness of 9 to 10MPa x m 1/2. 37  
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Castellon in his case report tested in vitro ceramic copings for fatigue and 

compression of six tooth shaped copings and several luting agents and found out that 

crown endurance limits for fatigue compression were 70% higher and 46% higher, 

respectively, than the established minimum fatigue endurance limits in those categories, 

The study confirms that the material performs well and produced excellent results.38  

 

The majority of the Y-TZP –based CAD/CAM systems use CAM of partially 

sintered Y-TZP blanks: Lava (3M ESPE Dental AG, Seefeld); Cercon (DeguDent, 

Hanau); Cerec InLab (Sirona Dental Systems, Bensheim); Procera All-Zircon (Nobel 

Biocare, S-Goteborg). The milling of these blanks is faster and results in less wear and 

tear to the hardware .39 With fully sintered blanks, such as DC-Zircon (DCS-Precident, 

DCS Dental AG, CH-Allschwill), there is no shrinkage involved in the milling process, 

but microcracks may be introduced to the infrastructure. 40 

 

According to Razzoog et al. zirconia coping can be fabricated by either waxing the 

crown to full contour and then cutting back to the desired thickness or by creating a 

suitable resin pattern. After the abutment is placed on an analog that is secured in a 

holder a sapphire probe contacts the abutment and records the data. The probe ascends 

200 µm per revolution until the highest point of the abutment is reached. After the image 

is created by merging abutment and coping files together, the files are sent to a 

manufacturing center to have the coping finalized.41 
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3.4 Fracture Resistance Studies 

 

The physical properties of any new dental ceramic must be tested in-vitro prior any 

clinical application. Numerous studies have been carried out to evaluate the fracture 

resistance of different dental ceramic materials by using various testing methods, sample 

dimensions, and testing conditions. Ceramic hardness similar to that of enamel is 

desirable to minimize the abrasiveness and the wear of resulting ceramic restorations, and 

reduce the wear damage that can be produced on enamel by ceramic restoration.  

Porcelain demonstrates excellent insulating properties, such as low thermal conductivity, 

low electrical conductivity and low thermal diffusivity.1 On the other hand, the 

brittleness, particularly when flaws and tensile stresses coexist in the same region of the 

restoration, is a commonly known drawback. When tensile stress is applied, small flaws 

tend to open up and propagate cracks. The flaw could be a microcrack on the surface that 

is created by a diamond bur while adjusting the ceramic, corrosion and surface 

diversification or it can be a subsurface porosity from the processing flaw and error 

during firing cycles.42 

 

Discontinuities or any irregularities in the body of the porcelain, or abrupt changes 

in the shape of the restoration promote stress and serve as a stress inducer. The amount of 

that increased stress depends on the shape of the irregularity. The main cause of such 

flaws, according to Griffith’s fracture theory, are stress concentrations formed around 

small flaws and are high around cracks since the ceramics lack the ductility to deform 

and reduce sharp angles.43 The stress concentration as surface defects results in ceramics 
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that fails at stress levels much lower than theoretical. While the metal yields the stress by 

deformation due to plasticity of the material, ceramics lacks that property and results with 

a fracture.42    

 

Stress is termed as the reaction to externally applied forces and is equal to intensity, 

but opposite in direction, to the external force. Stress may occur with compression, 

tension, or shearing forces and are dispersed over a given area. Ceramics have weaker 

properties in tension or transverse loading than in compression. Furthermore, the largely 

covalent and/or ionic bonded structure of ceramics results in their resistance to chemical 

degradation in the oral environment, but also imparts brittleness. Dental porcelain also 

has a limited capacity to withstand the stress at a nominal temperatures.44 Tensile or 

bending stresses promote the crack extension whereas compressive stress tends to inhibit 

crack propagation.45 Porcelain failure intraorally occurs by a combination of tension and 

bending forces on the crown. These involve tensile stresses, upon light occlusal loading 

on the intaglio surfaces of the restoration mainly at the cervical third.46  

 

A wide range of ceramic materials have a critical strain fracture that ranges from 

0.05 to 0.2%, therefore to improve the strength of ceramics the elastic modulus needs to 

be ameliorated. 47  Batchelor and Dinsdale and Binns demonstrated that after introduction 

into glass of the crystalline grains of high strength and elasticity, the strength and 

modulus of elasticity of the mixtures increased gradually with the proportion of the 

crystalline phase.48, 49  Studies also demonstrated that in that type of system, crack 
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propagation was present through both glass and crystal phases, therefore the energy 

evolving the crack had to be higher than one required to fracture the glass phase alone.   

The strength of dental ceramics may also be influenced by the presence of residual 

stresses existing in the porcelain as a result of uneven cooling of the fused porcelain or 

difference in coefficients of thermal expansion among different layers of porcelain fused 

together. Residual stresses existing on either the outer layer of porcelain or in the 

porcelain along the ceramic/metal interface will inhibit crack initiation and increase 

strength.50 

 

While evaluating the strength of ceramics it is important to consider the mechanical 

fatigue of the material.  Mechanical fatigue has been defined by the American Society of 

Testing Materials (1979) as “The process of progressive localized permanent structural 

change occurring in a material to conditions which produce fluctuating stresses and 

strains at some point or points and which may culminate in cracks or complete fracture 

after sufficient number of fluctuation”.51 

 

Fracture strength can be described as a stress at which material tends to fracture. 

The most critical factors restricting the resistance to fracture are size and distribution of 

load and fracture toughness.  Nevertheless, fracture strength is a helpful parameter in 

evaluation of the fracture resistance of ceramic materials. 

 

The methods which have been used for the measurements of strength of dental 

ceramics are varied and diverse.  Different test pieces, including bars, discs, rods, 
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cylinders and crown-shaped specimens have been utilized.  The following tests are the 

methods which have been described in the dental literature for strength measurements of 

ceramic materials. 

 

3.4.1 Three-point Bending Test 

 

Three-point bending test is most commonly used strength test due to the fact that it 

is the most sensitive and reliable laboratory test for dental ceramic materials.  The results 

of the fracture strength are described as the transverse strength, modulus of rupture or 

flexure strength and are presented using MPa. 52, 53 

 

Shimizu et al. tested 2.5-3.0 mol % Y2O3 partially stabilized zirconia by implanting 

them in seventy-eight rabbits. The study was conducted to examine time dependent 

changes in the phase-transformation rate and bending strength of new zirconia ceramics 

in vivo as well as in various in vitro environments.  The material was obtained by 

sintering at 1300-1400°C using a material with an addition of 2.5-3.0 mol % Y2O3 to 

stabilize the tetragonal phase. The bulk density and average grain size range was from 

5.95-6.0 and from 0.6-0.25, respectively. Four pieces of ceramic were placed in 

medullary cavity of the upper end of the bilateral tibia, two on each side separately by 

making a drill hole. Four other pieces of each ceramic were placed subcutaneously in the 

backs of rabbits by stable incisions. Three zirconia test pieces were obtained from a rabbit 

30 months after the operation and subjected to mechanical tests series. Three-point 

flexion method was used to measure the bending strength of an 8 mm span at a cross-
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head speed of 0.5 mm/s.  The initial strength was above 1000 MPa in vitro and values of 

more than 700 MPa were determined for all probes after a period of 3 years in vivo.54 

 

In the same bending test, Ichikawa et al. demonstrated measured values of 

approximately 1300 MPa 12 months after implanting cylindrical zirconia ceramics 

subcutaneously in rats. Zirconia was made from 97 mol% of zirconium oxide and 3 

mol% of yttrium oxide and a small amount of alumina and silicon dioxide and molded 

into a cylinder shape at 1500º C by casting. Its crystal size was 0.4 µm, and crystallinity 

was approximately 100 %. Alumina was used as a control group. Each specimen of 

zirconia and polycrystalline alumina was cylinder shaped, 2.0 mm in diameter, and 10.0 

mm in length, without any sharp edges. Zirconia ceramic cylinder was implanted in each 

of the right subcutaneously prepared pockets, and a polycrystalline alumina cylinder as a 

control was implanted in each of the left pockets. The site of incision was sutured. Some 

specimens were kept in the physiologic solution of sodium chloride (pH 5.0 to 7.0, 5.0 

ml) without periodic changes (37º C) and in the air as a control in the room at a 

controlled 37º C during the experiment to evaluate the change of weight and mechanical 

properties in vivo.  Animals were sacrificed at 3, 6 and 12 months after implantation; 

excised specimens were stained and examined under the light microscopy. Five blocks 

without fixation at 12 months after implantation were used for evaluation using three-

point flexion using a bending strength of a 7.0 mm span at a cross-head speed of 1.0 

mm/s. The results suggested that zirconia ceramic specimens are tissue compatible and 

no signs of degradation were observed and which was shown to be twice that of 

polycrystalline alumina.55 
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3.4.2 Four-point Bending Test 

 

Similarly to three-point test transverse testing is performed using a four-point 

loading jig.  Due to the lack of the shear stresses in the central position of the beam the 

latter test is generally preferable.56 

 

A study by Tinschert et al., featuring different industry and laboratory-developed 

ceramic materials, demonstrated that zirconium TZP achieved the best results in the four-

point flexural strength with 913.0 ± 50.2 MPa. The study material consisted of eight 

ceramic materials, six core materials and two veneering ceramics (Cerec Mark II, Dicor, 

In-Ceram Alumina, IPS Empress, Vitadur Alpha Core, Vitadur Alpha Dentin, Vita VMK 

68, Zirconia-TZP). Thirty bar specimens per material were prepared and tested. All bar-

shaped specimens were fabricated to predetermined dimensions, polished using abrasive 

papers and flexure strength was determined using four-point bending test. For each type 

of ceramic material, the fracture stress was evaluated for a total of 30 specimens per 

group. A computer program was used to calculate the Weibull modulus and the strength 

at failure probabilities of 1 and 5%. Two-parameter Weibull distribution was used to 

analyze the fracture stress values of the ceramic materials. The mean strength and 

standard deviation values for these ceramics (MPa+/-SD) were as follows: Cerec Mark II, 

86.3+/-4.3; Dicor, 70.3+/-12.2; In-Ceram Alumina, 429. 3+/-87.2; IPS Empress, 83.9+/-

11.3; Vitadur Alpha Core, 131.0+/-9.5; Vitadur Alpha Dentin, 60.7+/-6.8; Vita VMK 68, 

82.7+/-10.0; and Zirconia-TZP, 913.0+/-50.2. There was no statistically significant 

difference among the flexure strength of Cerec Mark II, Dicor, IPS Empress, Vitadur 
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Alpha Dentin, and Vita VMK 68 ceramics (p>0.05). The highest Weibull moduli were 

associated with Cerec Mark II and Zirconia-TZP ceramics (23.6 and 18.4). Dicor glass-

ceramic and In-Ceram Alumina had the lowest Weibull modulus m values (5.5 and 5.7), 

whereas intermediate values were observed for IPS-Empress, Vita VMK 68, Vitadur 

Alpha Dentin and Vitadur Alpha Core ceramics (8.6, 8.9, 10.0 and 13.0, respectively). It 

has been affirmed that except for In-Ceram Alumina, Vitadur Alpha and Zirconia-TZP 

core ceramics, most of the investigated ceramic materials fabricated under the condition 

of a dental laboratory were not stronger or more structurally reliable than Vita VMK 68 

veneering porcelain. Only Cerec Mark II and Zirconia-TZP specimens, which were 

prepared from an industrially optimized ceramic material, exhibited m values greater than 

18. 57 

 

Jung et al. evaluated the decrease in strength and fatigue properties in water of a 

feldspathic ceramic, a glass-infiltrated aluminum oxide ceramic and a tetragonal zirconia 

ceramic stabilized with approximately 3 mol% yttrium. Loaded to fracture in a four-point 

bending test, yttrium-stabilized zirconia yielded the best results.  Bar specimens 3 x 4 x 

25 mm of different ceramic materials (Vita Mark II, MGC, Vita Celay In-Ceram, Y-TZP) 

were cut from blocks and polished with diamond paste. Samples were centrally aligned 

along the load axis and subjected to indentation test with a tungsten carbide sphere with a 

radius of r=3.18 mm mounted to a universal testing machine. Cyclic test was carried out 

at frequency ƒ= 10 Hz, in haversinusoidal wave form. The load was cycled between a 

specified maximum (200N to 3000N) and small but non-zero minimum (<20 N). Some 

static tests over a prescribed hold time at maximum load P-500N were conducted for 
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comparative purposes. A minimum of five specimens were indented at each given load 

and number of cycles. Selected porcelain, MGC, and alumina specimens were sectioned 

from the back surface to a final thickness = 0.5 mm with a 10-µm-grit diamond wheel 

followed by 1-µm diamond paste. The thinned, translucent specimens were then viewed 

in transmission optical microscopy, which highlighted any subsurface cracks. The latter, 

observational procedure was not useful for the Y-TZP, owing to the relatively high 

opacity of this material. Indented specimens were then placed in a four-point bend fixture 

(inner span, 10 mm; outer span, 20 mm) with the damage site centrally located on the 

tensile side. Indentation sites were dried and covered with a drop of silicone oil and the 

specimens were then broken in fast fracture (time to fracture < 40 ms). Optical 

microscopy revealed that multi-cycle-sphere contact loading on the surface promotes the 

cumulative damage even at loads considerably lower than those needed to produce 

single-cycle degradation thus limiting the useful life of the structure. Described 

deterioration occurs in all tested materials, most rapidly at lower contact loads in the 

esthetic ceramics (porcelain and MGC) but even to some degree in stronger materials like 

glass-infiltrated alumina and Y-TZP.  Comparative fatigue tests on the porcelain confirm 

that cyclic loading is much more deleterious than static loading under conditions of 

equivalent hold time at the same maximum load.  Degradation occurs in the porcelain and 

MGC after 104 cycles at loads as low as 200 N; comparable degradation in the alumina 

and Y-TZP requires loads higher than 500 N, well above the clinically significant 

range.58  
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3.4.3 Shell Test 

 

The shell test is a modified bending test, first introduced by Sced et al. in 1977.On 

prepared platinum foils adapted to an end of metal cylinders Sced used disc-shaped 

specimens resting on a circular knife-edge support that were tested to failure by center 

loading with a spherical indenter.59 Disc samples that are tested can possess a surface to 

volume ratio which is closer to that of actual crowns than conventional three-point 

bending test, therefore a shell test is sensitive to surface conditions. 60 

 

3.4.4 “C” Test 

 

The “C” test, a standard test used for metallic materials was utilized by Tan in 

testing of industrial ceramics as well.61 Edward and Jacobsen evaluated the effect of 

surface treatments on the strength of porcelain made of aluminum and found that the 

specimens constructed using tin-oxide-coated foil did not demonstrate greater strength 

that those not coated with platinum.62   

 

 

3.4.5 Brittle Ring Test 

 

The pioneers of the brittle test were Bortz and Lund who used that test for testing 

engineering ceramics. The cylindrical test pieces were constructed on metal master die 
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with a minimal taper to facilitate removal, and after sintering specimens were loaded 

diametrally. 63  

 

3.4.6 Fracture Resistance of Crown-shaped Specimens Stressed 

Diametrally 

 

Diametric compression test on crown samples were first invented by Hondrum 

when he machined a stainless steel die to dimensions of a porcelain crown preparation on 

a maxillary bicuspid. The study was divided into two experiments.  In the first one, 

crown-shaped specimens of uniform dimensions were constructed and then loaded to 

fracture in a diametral fashion.The second experiment involved constructing crown 

specimens of uniform dimensions, but then cementing the crowns onto dies and axially 

loading them to fracture in a manner similar to that in oral cavity. He used sixty crown-

shaped specimens and for each of them platinum foil was adapted to the die after 

standard technique.  All foils were annealed in a flame both before and after adaptation to 

the die. The study tested magnesium oxide core porcelain with Ceramco Vacuum 

veneering porcelain, and aluminum oxide core with Vitadur veneering porcelain. Six 

tested groups were as follows: aluminum oxide/magnesium oxide  core with foil removed 

before test, aluminum oxide/magnesium oxide  core with foil remaining in crown during 

test, aluminum oxide/magnesium oxide  core internally glazed. All crowns were tested 

for fracture strength by being compressed diametrally at a crosshead speed of 0.5 

mm/min on an Instron Universal Testing Machine until fracture. Analysis of data 

revealed that loading crown –shaped samples had similar values to modulus of rapture 
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test and the crown specimens glazed with magnesium oxide core were 50% more 

resistant to fracture stress than conventional porcelain restorations with either alumina or 

magnesia core alone.64 

 

Due to the fact that dental porcelain is brittle and has limited tensile strength, it is 

subjected to time dependent stress failure. The lifetime of the ceramics may be attributed 

to the presence of microdefects within the material and to degradation in oral 

environment that results in crack propagation. Therefore, it is of increasing interest to 

investigate fracture resistance of dental ceramics. 

 

In a two-year clinical study Genho et al. evaluated Procera All-Ceram crown 

performance. Fifty-nine single unit full coverage Procera/All-Ceram crowns were 

cemented with RelyX (3M) on vital molars in 54 patients by 19 practicing clinicians 

using standardized procedures for preparation design and cementation according to 

manufacturer's directions. Standardized evaluations were performed using modified Ryge 

scales at initial placement, 6 months, 1 year, and 2 years. Criteria graded in-vivo were: 

color match, interproximal contact, caries, post-operative sensitivity, and gingival health. 

Criteria graded in-vitro were: surface smoothness, presence of pitting, presence of 

occlusal adjustments, breakage, and quantitative wear (CRA Measurement System. JDR 

69:126 #140 ‘90). Analyzed across time, significant criteria were: breakage and pitting, 

while non-significant criteria were: sensitivity, caries, surface smoothness, gingival 

health, color match, interproximal contacts and occlusal adjustment. The results showed 

that 3% of Procera/All-Ceram exhibited bulk fractures; 23% exhibited small chips and 
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the majority of small chips were found on marginal ridges and 85% exhibited surface 

pitting. At the 2-year recall, 100% of the copings were intact and 100% of the crowns 

remained cemented. The analysis revealed that 86% required occlusal adjustments after 

cementation, which affected surface smoothness adversely. Mean 2-year cumulative wear 

was 45 mm. These data indicated Procera/All-Ceram full crowns cemented with RelyX 

can provide a viable treatment option for patients with metal allergies and/or concerned 

with metal use in their treatment. 65 

 

Neiva et al. compared in vitro the load to fracture using three bonded all-ceramic 

systems: IPS-Empress, In-Ceram and Procera All-Ceram. Thirty dies were replicated 

from a master die, simulating the preparation on a maxillary premolar, using high filler 

resin with a modulus of elasticity similar to dentin. Ten cores each of In-Ceram and 

Procera were fabricated to a thickness of 0.5 mm. The remaining porcelain was applied 

using a sculpting device to produce a crown with a final thickness of 1.0 mm axially and 

2.5 mm occlusally. Ten IPS Empress crowns were made to the same dimensions and 

pressed by the manufacturer. The internal surfaces of all the crowns were subjected to 

etching and silanization procedure followed by cementation with resin cement (Panavia 

21). The cemented samples were stored in 100% humidity for 24 hours and then loaded 

in an Instron machine at a crosshead speed of 0.5 mm/minute until fracture occurred.  A 

hard stainless steel ball bearing, 4mm in diameter, was centered on the occlusal surface of 

each specimen and stabilized with utility wax. The mean fracture loads were: IPS 

Empress, 222.45 (+/- 49) kg; In-Ceram, 218.8 (+/- 36) kg; Procera AllCeram, 194.20 (+/- 

37) kg.  The optical microscope verifying the thickness of the crowns demonstrated larger 
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gap size for Procera AllCeram, especially at the marginal opening and axial wall. The 

statistical analysis of fracture strength showed no differences among the three all-ceramic 

systems at p < 0.05. 66 

 

Quinn et al. measured fracture toughness for several dental ceramic groups to 

determine if chemistry and microstructure affects ceramic properties. A fully-articulating 

four-point flexure fixture, self-aligning in three dimensions, was used with a 40 mm outer 

(support) span and 20 mm inner (loading) span for the 3 mm×4 mm×50 mm machinable 

glass ceramic (MGC) specimens. The broken, 3 mm×4 mm×25 mm MGC specimen 

pieces were then precracked and retested using shorter spans. The same fixture was used 

with blocks positioned behind the roller stops to decrease the outer span size to 20 mm 

and the inner span to 10 mm. These shorter spans (20 mm outer, 10 mm inner) were also 

used to test the 3 mm×4 mm×25 mm zirconia, glass-infused alumina, and Mark II 

porcelain specimens. KIc was calculated from the fracture load, specimen size and 

measured precrack size. The data revealed that large increases to fracture toughness were 

largely associated with material crystallinity, large grain size and high aspect ratios. 

Fracture toughness (KIc) values were obtained using Single Edge Precracked Beam 

(SEPB) and Single Edge V-Notch Beam (SEVNB) methods.  Dynamic Young's modulus, 

which often scales with strength and has been used in explaining the 

microstructure/toughness relationship on a theoretical basis, was also obtained for the 

three groups of materials comprising this study. The first group, consisting of micaceous 

glass ceramics, included model materials that varied systematically in microstructure but 

not in chemistry. The second group, the feldspathic porcelains, varied significantly in 
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microstructure, but little in chemistry. The ceramics comprising the third group were 

significantly different in both chemistry and microstructure. Upper toughness limits for 

the micaceous glass-ceramics and feldspathic porcelains were significantly raised 

compared to the base glasses, but remained under 2 MPa m(1/2). The highest toughnesses 

were associated with high percent crystallinity, large grains and high aspect ratios. The 

third group KIc values were 2.8 MPa m 1/2 for a lithium disilicate glass-ceramic, 3.1 MPa 

m (1/2) for a glass-infused alumina, and 4.9 MPa m 1/2 for zirconia. From a practical 

standpoint, microstructure effects were found to be important, but only within a limited 

range; the chemistry apparently defined a band of achievable property values. This 

suggests very large increases in fracture toughness are unlikely to be attained by changes 

in microstructure alone. A functional relationship determined for the micaceous glass-

ceramics enables quantitative predictions of fracture toughness based on the 

microstructure. 14 

 

Webber et al. conducted research investigating the effect of different thicknesses of 

veneer porcelain on the compressive load at fracture of Procera AllCeram crowns.  They 

fabricated sixty brass dies with a crown-like preparation and a chamfer margin. Sixty 

crowns were made for prepared dies with a 0.6-mm-thick core: Procera crowns with 

either a 0.4 mm- or 0.9 mm-thick veneers of AllCeram (Groups 1 and 2 respectively) and 

In-Ceram crowns with a 0.9 mm-thick veneer of Vitadur Alpha porcelain (Group 3).  

Each group consisted of 20 crowns. In-Ceram crowns were used as the control group. All 

crowns were measured at 4 axial and 1 occlusal random locations before autoglazing, air 

abrading and adhesively bonding onto the appropriate brass die using Clearfil Newbond 
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Bonding Agent, Clearfil Porcelain Bond Activator, and Panavia 21 TC Dental Adhesive 

as the luting agent. After storage in distilled water at 37°C for 24 hours, the specimens 

were placed in a compressive test rig within an Instron universal testing machine and 

loaded in the center of the occlusal surface with a 4-mm diameter stainless steel ball. An 

axial preload of 20 N was applied before compressive testing at a crosshead speed of 0.1 

mm/minute until fracture occurred and an analysis of variance revealed no significant 

difference in the load at fracture between the 3 groups (P < 0 .05). The mean load at 

fracture for Group 1 was 2197.6 N (SD = 776.4); Group 2, 2401.4 N (SD = 699.1); and 

Group 3, 2581.0 N (SD = 715.6). The authors concluded that the axial thickness of 

veneer porcelain did not have a significant effect on the compressive load at fracture of 

tested Procera AllCeram crowns. 67 

 

3.5 Preparation Design 

 

Although there is no standard preparation design for all-ceramic restorations due to 

the variety of materials available on the market, there is a necessity of occlusal reduction 

of 2 mm and finish line with deep rounded chamfer ranging in thickness from 1.0 to 1.5 

mm. Nevertheless, smoothed tooth preparation margins seem to be mandatory and 

recommended in all-ceramic FPD. The classic ideal convergence angle as described by 

Shillingburg is very hard to achieve and, if achieved, parallel walls make it difficult to 

seat the restoration. 
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 Sato studied the preparation performed by students in Tokyo Medical and Dental 

University who were trained to prepare teeth with a wall taper of 2º to 5º. He examined 

the abutment taper of final-year students and traced shadowgraphs of 63 working study 

dies. The results show that 12.7 % fell within the ideal range, and that the average 

convergence taper was 9.5º which means that they had a convergence angle of up to 19º. 

However, it was concluded that the taper was clinically acceptable due to the high 

difficulty in intra-oral environment to accomplish the ideal taper.68 

 

Christensen suggested that crown preparations should have minimal divergence 

from parallelism, approximately 10º, while Dodge at al. concluded that a 16º convergence 

angle is acceptable.69, 70 

 

3.6 Bonding Veneering Porcelain to Ceramic Core 

 

A ceramic-metal bond may fail in several locations: metal-metal oxide, metal-oxide 

ceramic or ceramic-ceramic surface. Good adhesion of porcelain to metal depends on 

proper wetting, adherent oxide and mechanical retention. For metal-ceramic restorations 

a technique where a thin layer of opaque porcelain is applied allowing creating a glass 

surface that bonds with a metal. The fracture mechanism of ceramics and metals are 

different due to diverse structure and bonding. Ceramic restorations present with covalent 

and ionic bonds hence resistant to plastic deformation.71 In core ceramic techniques, the 

core is lightly abraded using aluminum oxide air to break the glaze followed by 

application of porcelain that will wet the abraded surface.72 Due to the fact that both core 
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and veneering porcelain are brittle materials it is inevitable to match both in mechanical 

and physical properties to prevent from delamination. Strength, coefficient of thermal 

expansion, and oxidation time play an important role in fracture behavior of prosthesis. 73 

 

An increasing demand for esthetic restorations has resulted in the development of 

new ceramic systems, but the fracture of veneering ceramics still remains the primary 

cause of failure. 

 

The aim of the Aboushelib et al. study was evaluation of the core-veneer bond 

strength and the cohesive strength of the components of Cercon, Vita Mark II and 

Empress 2 ceramics as well as the effect of an optional liner material between the core 

and veneer where applicable. Bilayered zirconia veneer discs were fabricated from five 

layering and two pressable veneer ceramics and additionally, discs from each veneer 

ceramic were prepared. The discs were cut into microbars of 6mm in length and 1mm in 

cross-section followed by the microtensile bond strength test in a universal testing 

machine. The fracture surfaces of the microbars were examined with scanning electron 

microscopy (SEM) and EDAX. The microtensile strength of Rondo Dentine and Lava 

Dentine veneer ceramics were significantly higher than the other tested veneer ceramics. 

Furthermore, the layered systems Rondo Dentine and Ceram Express were significantly 

stronger than the other tested core-veneer ceramics. The application of liner material 

dramatically affected the bond strength and failure mode, which was also material 

dependent. SEM analysis showed that two pressable veneers and one type of layering 

veneer ceramic failed entirely cohesively in the veneer while the remaining test groups 
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had higher percentage of interfacial failure. It has been concluded that selection of 

stronger veneer ceramics which have good bond strength with zirconia can reduce the 

chances of chipping and delamination under function. It was also stated that the liner 

material should only be used with some layering veneers but not in combination with 

pressable veneers as it will result in weakening of the microtensile bond strength. 

Scanning Electron Microscopy and finite element analysis demonstrated that the core 

materials were significantly stronger than veneering materials and the core-veneer bond 

strength is one of the weakest links of layered all-ceramic restorations hence having a 

critical role in their success.74    

 

Al-Dohan et al. investigated the strength of the core-veneer interface in bi-layered 

all ceramic systems (IPS-Empress2, Procera AllCeram, Procera All-Zircon, and DC-

Zircon) and porcelain fused to metal as a control group, using the shear bond testing 

methodology. A sixth group was included where DC-Zircon coping was bonded with Eris 

veneering porcelain. A total of seventy-two samples, twelve of each system were made 

from one master die. A 2.378 mm diameter cylinder of the veneering porcelain was 

applied using a specially designed aluminum split mold and after firing, all specimens 

were placed in a mounting jig and subjected to a shear load using an Instron Testing 

Machine at a crosshead speed of 0.5 mm/min until failure. Microscopic examination at 

20x showed that complete adhesive failure did not occur between compatible ceramic 

core and veneer materials. The mean values for shear strengths in MPa were: porcelain 

fused to metal 30.16 ± 5.88; IPS-Empress2 bonded to Eris 30.86 ± 6.47; Procera All-

Zircon bonded to Cerabien CZR 28.03 ± 5.03; DC-Zircon bonded to Vita D 27.90 ± 4.79; 
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Procera AllCeram bonded to AllCeram veneering porcelain 22.40 ± 2.40; DC-Zircon 

bonded to Eris 2.028 ± 3.12. The study concluded that the bond of veneering porcelain to 

a ceramic core was similar to the bond of porcelain fused to metal.75 

 

3.7 Fracture Location Analysis 

 

The design of the restorations and the actual distribution of the tensile stresses must 

be taken into account; otherwise, the significant contribution of stronger and tougher core 

materials to the performance of all-ceramic restorations may be offset by the weaker 

veneering porcelain. 24  

 

An investigation conducted by Kelly et al. on clinically failed all-ceramic FPDs 

with a glass-infiltrated alumina core and porcelain veneer have shown that fractures 

originated at the area of the connector (where the thick core material was veneered with a 

thin layer of porcelain) and at the interface between the core ceramic and the veneering 

porcelain.76 They explained the fracture at the connector showing with FEA the tensile 

stress concentration in this area, as also shown by Proos et al. 77 The fracture at the 

interface commonly has been associated with a stress enhancement arising from large 

differences in elastic modulus between the veneer and the core ceramic. Other 

investigators have shown that the fracture origin and the fracture mode are greatly 

influenced by the test methodology and by the core thickness/veneer thickness ratio. 78  

In a recent study, conducted by Guazzato, the mode of failure of disks with either In-

Ceram Alumina or In-Ceram Zirconia and porcelain (on the bottom surface) has been 
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described as cracks with a star like configuration initiated on the bottom surface and 

propagating laterally and radially across the bottom tensile surface and towards the 

interface. 24 

 

Microscopic observations conducted in Guazzato’s investigation did not allow 

drawing a definitive conclusion on which site the strength-controlling crack was initiated, 

since two clearly distinguishable origins were always seen. However, on the basis of the 

results of the mechanical strength tests, FEA and microscopy, it was surmised that the 

critical crack initiated on the bottom surface of the porcelain (where there is a peak of 

tensile stress) and propagated radially and laterally. In vicinity of the interface, the crack 

was deflected and propagated along the interface until another crack initiated from a flaw 

on the bottom surface of the core material.79 Eighty discs 14mm in diameter were made 

from conventional dental porcelain and DC-Zircon core ceramic, and equally divided into 

four groups of twenty specimens in each as follows: (VD) monolithic specimens of 

porcelain; (DZ) monolithic specimens of core material; (VD/DZ) bilayered specimens 

with the porcelain on top (facing the loading piston during testing); (DZ/VD) bilayered 

specimens with core material on top. The load was applied (crosshead speed of 

0.5mm/min) at the center of the surface through the flat tip of a piston (1.5mm of 

diameter) mounted on a universal testing machine. The maximum load at fracture was 

calculated with a biaxial flexural test, finite element analysis was used to estimate the 

maximum tensile stress at fracture and results were analyzed with one-way Anova and 

Tukey HSD tests. The statistical analysis showed that monolithic core specimens and the 

bilayered sample with the core material on the bottom were significantly stronger than 
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monolithic porcelain disks and bilayered samples with the porcelain on the bottom. SEM 

was utilized to identify the initial crack and characterize the fracture mode. The present 

study supports this hypothesis by showing not only crushing of the porcelain without 

fracture of the core material, but also that the strength and strength variability of VD/DZ 

specimens were dictated by the stronger Y-TZP core material. Since Y-TZP is stronger 

than any other ceramic core material previously investigated, an improvement of the 

resistance of the crown and therefore its clinical performance is expected when this 

ceramic is used as core material. Ultimately, it was observed that when cracks met the 

core normal to the interface, they generally propagated through the whole specimen 

without any delamination. Some of the other star cracks did not approach the core normal 

to the interface and were deflected to run along the porcelain/core interface. This 

behavior has been related to the elastic modulus and fracture toughness mismatch 

between core and porcelain. In the paper delamination was consistently seen even for 

those cracks that apparently approached the core perpendicularly to the interface. 79 

 

Potiket in his study examined fracture mode of the crown and classified them 

according to a classification proposed by Burke; Class I, minimal fracture or crack in 

crown; Class II, less than half of crown lost; Class III, crown fracture through midline, 

half of crown displaced or lost; Class IV, more than half of crown lost; Class V, severe 

fracture of tooth and/or crown. Visual analysis of the fractured specimens showed that all 

the specimens (100%) in every group exhibited a Class V mode of fracture. On forty 

intact, extracted maxillary central incisors, prepared with 1.0-mm deep shoulder finish 

line with a rounded internal line angle, restorations were fabricated and subdivided into 4 



40 
 

groups (n=10): Group MCC (control), metal-ceramic crown (JRVT High Noble Alloy); 

Group AC4, crown with 0.4-mm aluminum oxide coping (Procera AllCeram); Group 

AC6, crown with 0.6-mm aluminum oxide coping (Procera AllCeram); and Group ZC6, 

crown with 0.6-mm zirconia ceramic coping (Procera AllZirkon). All restorations were 

treated with bonding agent and cemented with Panavia 21. Restorations were stored in 

100% relative humidity of a normal saline solution for 7 days and fracture strength was 

assessed with a universal testing machine at a crosshead speed of 2 mm per minute with 

an angle of 30 degrees to the long axis of the tooth. Visual examination revealed that 

mode of failure for all specimens was fracture of the natural tooth, no crowns dislodged 

from the prepared tooth, and there were no fractures of the all-ceramic or metal-ceramic 

crowns.80 

 

         Pallis et al. evaluated the fracture resistance and origin of failure of simulated first 

molar crowns fabricated using 3 all-ceramic systems, IPS Empress 2, Procera AllCeram, 

and In-Ceram Zirconia. IPS Empress, Procera All Ceram and In-Ceram Zirconia and 

loaded with universal testing machine. A stainless steel definitive die was machined to be 

axisymmetric with a profile identical to an all-ceramic crown preparation on a maxillary 

first molar with a1-mm modified shoulder and 1.5- to 2.0-mm occlusal reduction (1.5-

mm reduction at the center of the occlusal table and 2.0-mm reduction at the cusps). Sixty 

duplicate dies were fabricated in a high filler content resin material (Viade Products Inc) 

to replicate the definitive die.  The Procera AllCeram cores were presintered, milled, and 

sintered by the manufacturer and twenty In-Ceram Zirconia cores were fabricated using a 

CAD-CAM system. All 40 cores were fabricated to a target thickness of 0.5 mm on all 
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surfaces. Twenty IPS Empress 2 cores (Ivoclar Vivadent) were fabricated to a target 

thickness of 0.7 mm on the axial wall and 1.0 mm on the occlusal table using vacuum 

forming sheets. Vitadur Alpha porcelain (Vident, Brea Calif) was used to complete 

Procera AllCeram and In-Ceram Zirconia crowns, while Eris porcelain (Ivoclar 

Vivadent) was used to complete the IPS Empress 2 crowns with centrifugal sculpturing 

device to provide contour at a consistent thickness followed by firing cycles. The Procera 

AllCeram and In-Ceram Zirconia crowns were prepared for luting by airborne-particle 

abrasion of the internal surfaces with 50 µm aluminum oxide at 80 psi. The internal 

surfaces of the IPS Empress 2 crowns were acid-etched with 9.5% hydrofluoric acid for 

2.5 minutes in preparation for luting. The surfaces of all 60 dies were airborne-particle 

abraded with 50 µm aluminum oxide at 40 psi for 5 seconds. The surfaces of all 60 

crowns were cleaned in distilled water for 10 minutes and air dried. All crowns were 

silanated (Clearfil Porcelain Bond Activator), luted to the dies with a RelyX resin luting 

agent and immediately placed under a static load of 20 N for 5 minutes. The center of the 

occlusal surface on each of 15 specimens per ceramic system was axially loaded to 

fracture in a universal testing machine using a stainless steel ball bearing (6.35 mm in 

diameter) at a crosshead speed of 5 mm/min, and the maximum load (N) was recorded. 

Fractured surfaces were examined using optical and electron microscopy to determine the 

most prevalent origin of failure in each ceramic system. Five crowns per system were 

sectioned, and thickness of the luting agent, core material, and veneer porcelain layers 

were measured. The 95% confidence intervals of the Weibull modulus was used to 

compare failure load between the 3 systems. Two-way multivariate analysis of variance 

was used to analyze the thickness of the luting agent, ceramic core, and veneer porcelain 
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layers (α=.05). The 95% confidence intervals for Weibull modulus were 1.8 to 2.3 (IPS 

Empress 2), 2.8 to 3.6 (Procera AllCeram), and 3.9 to 4.9 (In-Ceram Zirconia). The 95% 

confidence intervals for characteristic failure load were 771 to 1115 N (IPS Empress 2), 

859 to 1086 N (Procera AllCeram), and 998 to 1183 (In-Ceram Zirconia). The 

microscopy examination revealed that the origin of failure was most commonly found at 

the interface between the ceramic core and veneer porcelain for IPS Empress 2 and 

between the ceramic core and luting agent layer for the other systems.  According to data, 

failure loads of all-ceramic crowns were influenced not only by the fracture resistance of 

the component materials but also by prosthesis geometry and size and location of flaws.81  

 

3.8 Marginal Adaptation 

 

The accuracy of fit of all-ceramic restorations is important for the integrity of dental 

and periodontal tissues, dissolution of luting agents and the fracture resistance of the 

restorations. Poorly fitted dental prostheses are believed to be associated with the 

development of secondary caries and periodontitis.82, 83  The aspect determining the 

accuracy of restorations, marginal fit, has been evaluated in numerous studies using 

various systems and materials. American Dental Association specification no.8 states that 

the luting agent film thickness for a crown restoration should be no more than 25 µm 

when using a Type I luting agent, or 40 µm with Type II cement. Marginal fit of 

cemented prostheses in the 25 to 40 µm range has been suggested as a clinical goal. 84  
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Neiva at al. in her study evaluated three ceramic systems (IPS Empress, Procera 

AllCeram and InCeram) in the aspects of their fracture and marginal fit. The study 

reported that the largest gap size, especially at the marginal opening and axial wall was 

evident in Procera AllCeram (225 and 105 respectively) ceramics compared to IPS 

Empress (90, 60) and In-Ceram (135, 445) ceramic systems. The presence of marginal 

discrepancy was explained by the scanning error, the diameter of sapphire probe was 

slightly larger than the rounded internal angle of the preparation. The second possibility 

was that the presenter original coping is 20% larger than the die, and after sintering it 

shrinks about 20%. However, variations that compromise the fit of the crown to the 

original die may occur. 66 

 

The clinical success of the CAD/CAM restorations highly depends on the 

mechanical properties as well as design of the restoration and accuracy of the CAD/CAM 

process.   

 

Hertlein et al. performed a study to assess marginal fit of zirconia restorations with 

three/four abutment teeth.  Restorations of five different clinical situations of 4-unit 

bridges and four splinted crowns, respectively, were manufactured from Lava™ Zirconia 

by means of the Lava System (3M ESPE AG). After manufacturing, each framework was 

cemented on the scanned dies, embedded into acrylic and subsequently sectioned 

faciolingually and mesiodistally. A stereomicroscope and a special analyzing software 

(analysis, Soft Imaging -System GmbH) were used for the determination of marginal 

opening (MO) and absolute marginal opening (AMO) of the cross-sections. The data 
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were compared to previous results of 3-unit bridges with two abutments.   There was a 

significant difference of the MO values between the three indications with a higher MO 

of four splinted crowns (One-way ANOVA, p<0.05 Tukey Test). The results indicated 

that marginal opening was higher in sites with four crowns and no pontics while no 

difference in absolute marginal opening was observed among the five studied 

prostheses.85 

   

In a study, on marginal adaptation of a single anterior restoration, Yeo et al. 

compared three ceramic systems: Celay In-Ceram, conventional In-Ceram and IPS 

Empress 2 with metal ceramic restoration as a control group. The in vitro marginal 

discrepancies of 3 different all-ceramic crown systems (Celay In-Ceram, conventional In-

Ceram, and IPS Empress 2 layering technique), and a control group of metal ceramic 

restorations were evaluated and compared by measuring the gap dimension between the 

crowns and the prepared tooth at the marginal opening. The crowns were made for 1 

extracted maxillary central incisor prepared with a 1-mm shoulder margin and 6-degree 

tapered walls by milling. Thirty crowns per system were fabricated and crown 

measurements were recorded with an optical microscope, with an accuracy of +/-0.1 

micron, at 50 points spaced approximately 400 microns along the circumferential margin. 

The criterion of 120 micron was used as the maximum clinically acceptable marginal 

gap. Mean gap dimensions and standard deviations were calculated for marginal opening. 

The authors found that mean gap dimensions and standard deviations at the marginal 

opening for the incisor crowns were 87 +/- 34 µm for control, 83 +/- 33 µm for Celay In-

Ceram, 112 +/- 55 µm for conventional In-Ceram, and 46 +/- 16 µm for the IPS Empress 
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2 layering technique. Compared with the control group, the IPS Empress 2 group had 

significantly smaller marginal discrepancies (P<.05), and the conventional In-Ceram 

group exhibited significantly greater marginal discrepancies (P<.05). There was no 

significant difference between the Celay In-Ceram and the control group, and marginal 

discrepancies were all within the clinically acceptable standard set at 120 µm. As a 

standard criterion for the marginal discrepancy the maximum 120 µm gap of acceptance 

was used where the IPS Empress 2 system showed the smallest (46 ± 16 µm) and most 

homogenous gap dimension, whereas the conventional In-Ceram system presented the 

largest (112 ± 55 µm) and most variable gap dimension  compared with the metal 

ceramic (control) restoration. 86 

 

Different research performed by Hilgert et al. evaluated the marginal adaptation of 

ceramic crowns (In-Ceram, Vita) by varying two cervical endings of copings which 

received one ceramic (Vitadur Alfa, Vita).  Two master steel dies were milled with all-

ceramic crowns preparation, one with a round shoulder margin design, and the other with 

a deep chamfer. Fifteen copings were made of each die, and the marginal adaptation 

evaluated in measuring microscope. The ceramic addition was accomplished with the aid 

of a silicon matrix for standardization of the samples and was baked in three firing 

cycles: building of the crown, correction and glazing. The data were submitted to the 

analysis of variance (ANOVA). Mean marginal discrepancy observed was 44.0 µm for 

deep chamfer and 24.0 µm for round shoulder in the initial measures. Marginal gaps of 

53.3 µm for deep chamfer and 27.4 µm for the round shoulder were observed after 

addition of ceramic. Statistical differences were observed between the two types of 
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margin designs, as well as before and after the addition of ceramic. The data analysis 

reported that round shoulder margin design presents smaller values of marginal gaps and 

that the addition of ceramic influences the final values of marginal adaptation. 87 

 

Highly important factor affecting the marginal adaptation hence the longevity of the 

restoration is a coping thickness.  The study undertaken by Al-Ghazzawi et al. evaluated 

the effect of various coping thicknesses and laboratory processes on marginal adaptation 

of alumina and zirconia crown copings utilizing CAD-CAM technology. A metal 

abutment was fabricated with a 1 mm marginal width, 4 mm abutment height, and 12° 

convergence angle. A Cerec inLab system (Sirona) was used to scan the abutment, 

design, and mill the test samples. Alumina and zirconia copings were fabricated with 

thicknesses of 0.6 and 0.8 mm using Cerec inLab system and cement space thickness of 

20, 30, and 40µm.  Epoxy resin replicas of the abutment and copings were fabricated and 

the vertical interfacial gaps were measured with a Micro-Vu optical microscope at three 

stages: post milling (PM), post trimming (PT), and post infiltration with the glass phase 

(PI). Statistical analysis (Anova, p< 0.05) showed no significant difference among the 3 

groups except for the zirconia PM and PI groups. The marginal gap was not affected by 

different coping thickness (n=156-180): 0.6 mm coping measured 38.3 µm whereas 

0.8mm coping had 38.8 µm, and cement space thickness (n=56-120): 20 µm = 36.5, 30 

µm = 39.5, 40 µm = 39.9.  It has been suggested that glass infiltration significantly 

improved marginal adaptation of CAD/CAM zirconia copings allowing these restorations 

to meet the clinical standards. 88 
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Rosentritt et al.  compared the fracture strength and marginal adaptation of all-

ceramic three-unit fixed partial dentures (FPDs) in computer aided manufactured zirconia 

(Cercon Base/Cercon Ceram Kiss, DeguDent, G), an electro-layered chip-bridge-system 

(Inceram Alumina- Wolceram, G). Human molars were inserted in resin to create a three-

unit (10mm) oral situation. Eight bridges of each series were made and a veneered with 

Al2O3 (Inceram Alumina, Vita, G; - control). All FPDs were fixed with an adhesive 

bonding system (Syntac classic/Variolink2; Ivoclar-Vivadent, FL) and subjected to 

thermocycling and mechanical loading (6000 thermal cycles [5°C/55°C] and 1.2x106 

mastication cycles [50N]). Fracture strength (at speed of 1mm/min) was determined. 

Failure detection was set to 10% of the maximum force. Marginal adaptation was 

evaluated at both transitions cement-tooth (CT) and cement-FPD (CF) using scanning 

electron microscopy before and after thermocycling. The criteria "perfect margin" was 

ranked as a smooth transition without interruptions of continuity. Statistical analysis 

showed that zirconia CAM FPD’s had statistically significant higher fracture resistance 

than Al2O3 FPD’s or electro-layered FPD’s. 89 

 

Another study presenting the clinically acceptable adaptation of CAD/CAM 

ceramics was carried out by Komine at al. where the marginal and internal adaptations of 

partially sintered zirconium dioxide ceramic copings with three different finish line 

designs were evaluated. Three steel dies were prepared for maxillary central incisor 

crowns with the following finish line designs: a shoulder (S), a rounded shoulder (RS), 

and a chamfer (C) preparation. Twenty-four standardized partially sintered zirconia 

ceramic copings were fabricated using a CAD/CAM system (Cercon smart ceramics) for 
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the three tested groups (n=8). The marginal adaptation was assessed by measuring the 

vertical discrepancy, which measured parallel to the abutment axis the distance between 

the outer restoration margin and the preparation line. The measurements were performed 

at 60 different points across the entire circumference of each coping. Internal adaptation 

was measured with the cement space replica technique using two different silicone 

pastes, while marginal and internal discrepancy was measured in a laser microscope at a 

magnification of x250. The data presented the following median values obtained from 

marginal/internal adaptation: S, 84.8/116.8; RS, 61.2/71.8; and C, 64.0/49.4 (µm). There 

were no significant differences among the three groups for marginal adaptation. On the 

other hand, significant differences in the internal adaptation were found among all 

groups. They concluded that internal adaptation of partially sintered zirconia ceramic 

copings is affected by finish line design. 90 

 

3.9 Bond Strength 

 

 The clinical application or resin-bonded fixed partial restorations require a strong 

and stable bond to the ceramic. The luting agent and conditioning methods, as well as the 

proper treatment of the prosthodontic application under the conditions of oral cavity, play 

significant roles in obtaining the successful clinical outcome for non-etchable ceramics, 

unless a retentive type of tooth preparation is used. There are reports on bond strengths of 

various types of ceramics and composites tested with a variety of adhesive systems.  
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A very important aspect having an influence on the ceramic restoration longevity is 

the bonding cement. A strong, durable resin bond provides high retention, improves 

marginal adaptation preventing microleakage and increases fracture resistance of ceramic 

restorations. Adhesive bonding techniques currently available offer a range of highly 

esthetic options yielding to a predictable and durable final result.  The compositions and 

properties of zirconia and alumina-based ceramic restorations differ significantly from 

silica-based ceramics and therefore require substantially different treatment procedures.  

Various articles contemplating that subject were published and one written by Markus 

Blatz et al. presents a literature review on the resin bond to dental ceramics.  According 

to Blatz preferable treatment for the glass-infiltrated aluminum oxide ceramic are either 

Al2O3 abrasion and phosphate-modified resin cement, or tribochemical surface treatment 

with Rocatec system in combination with Bis-GMA resin cement. 91   

 

Successful ceramic-resin bonding is achieved by the chemical bond and 

micromechanical lock between the interface of ceramic and luting agent.  Conventional 

silica-based ceramic materials achieve the bond strength by applying acid-etching and 

silane coupling solution. However, high strength alumina and zirconia ceramics have 

more unique physical properties hence requiring different treatments. A few studies 

demonstrated the superior bonding properties of adhesive phosphate monomer cement 

providing long-term durability of zirconia-based ceramic restorations.92-94 The few 

available studies on the resin bond to zirconium-oxide ceramic recommend airborne-

particle abrasion and modified resin luting agents containing adhesive monomers for 

superior and long-term durable bond strengths.95 It is uncertain whether this regimen can 
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also be successfully applied to the intaglio surface of a commercial zirconia-based all-

ceramic system. 

 

Blatz et al. evaluated and compared bond strengths of different bonding/silane 

coupling agents and resin luting agents to zirconia ceramic before and after artificial 

aging. Composite cylinders (2.9 mm x 3.0 mm) were bonded to air-borne –abraded 

internal surface of Procera AllZirkon specimens (n=80) with either Panavia F (PAN) or 

RelyX ARC (REL) luting cements after placement of the bonding agent Clearfil SE 

Bond/ Porcelain Bond Activator (Group SE). Other groups of specimens were cemented 

with RelyX ARC and pretreated with bonding/silane coupling agent (Single 

Bond/Ceramic Primer, Group SB). Panavia with no bonding at all was used a control 

group (Group NO). Subgroups of 10 specimens were stored in distilled water for either 3 

or 180 days before shear bond strength testing. One hundred eighty-day-old specimens 

were repeatedly thermal cycled for 12,000 cycles between 5 and 60 degrees C with a 15-

second dwell time. Data were analyzed with 1- and 2-way analysis of variance and the 

Tukey multiple comparisons test (α=.05) and failure modes were examined under 25x 

magnification. After 3 days, SE-REL (25.15 +/- 3.48 MPa) and SE-PAN (20.14 +/- 2.59 

MPa) groups had significantly superior mean shear bond strengths (P=.0007) compared 

with either NO-PAN (17.36 +/- 3.05 MPa) or SB-REL (16.90 +/- 7.22 MPa). SE-PAN, 

NO-PAN, and SB-REL groups were not significantly different. Artificial aging 

significantly reduced bond strengths. After 180-day storage, SE-PAN (16.85 +/- 3.72 

MPa), and SE-REL (15.45 +/- 3.79 MPa) groups demonstrated significantly higher shear 

bond strengths than NO-PAN (9.45 +/- 5.06 MPa) or SB-REL (1.08 +/- 1.85 MPa) 
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groups. The modes of failure varied among 3-day groups but were 100% adhesive at the 

ceramic surfaces after artificial aging. It has been confirmed that artificial aging 

significantly reduced bond strength and bonding/silane coupling agent containing an 

adhesive phosphate monomer achieved superior long-term shear bond strength to 

airborne-particle- abraded Procera AllZirkon restorations with either one of the 2 resin 

luting agents tested. 96 

 

CAD/CAM systems using zirconium-oxide ceramics for the fabrication of copings 

and frameworks (e.g., Procera AllZirkon, Nobel Biocare) became very popular and the 

quest for adequate bonding techniques, material selection, and the compatibility of 

different bonding systems is of high interest. The phosphate-containing resin cement 

Panavia is the preferred cement for a strong resin bond to zirconia. However, research on 

the influence of silanization on the resin bond of this cement and the performance of 

conventional resin cements is controversial.  

 

A study on comparative shear bond strength to Procera AllZirkon was carried out to 

inspect shear bond strength of the resin cements Panavia F (Kuraray) and RelyX ARC 

(3M ESPE) in combination with their corresponding ceramic primers/bonding agents 

Clearfil SE Bond/Clearfil Porcleain Bond Activator(CSB/PBA, Kuraray) and Ceramic 

Primer/Single Bond (CP/SB, 3M ESPE) to sandblasted Procera AllZirkon intaglio 

surface. Forty Procera AllZirkon specimens were sandblasted and composite-resin 

cylinders were bonded to the ceramic surface with the following material combinations: 

Group A (Panavia/no bond), Group B (Panavia/CSB/PBA), Group C (RelyX 
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ARC/CP/SB), and Group D (RelyX ARC/CSB/PBA). Shear bond strength was 

performed in an Instron universal testing machine after storage of the specimens in 

distilled water for 3 days. One-way ANOVA and Tukey's HSD post-hoc tests were used 

to compare and separate the groups with respect to mean shear bond strength (=0.05) 

and the mean shear bond strengths were shown to be different significantly among the 

four groups. Group D (25.1 MPa) was superior to groups C (16.9 MPa) and A (17.4 

MPa). Group B (20.1 MPa) ranked just below Group D but produced bond strengths that 

were not statistically different from the other groups. The bonding agent/ceramic primer 

Clearfil SE Bond/Clearfil Porcelain Bond Activator seemed to provide a superior bond 

with the resin cements Panavia and especially RelyX ARC.97  

 

Luthy in his research tested shear bond strength of several cements (Ketac-Cem, 

Nexus, RelyX Unicem, Superbond C&B, Panavia F, and Panavia 21) to densely sintered 

tetragonal zirconia. Groups of thirty test specimens were prepared by bonding stainless 

steel cylinders tribochemically silica-coated with the Rocatec-system to sandblasted 

ZrO2-TZP ceramic disks (Cercon smart ceramics). Prior to testing all bonded specimens 

were stored in distilled water at 37ºC for 48 h and half of them (n=15) were additionally 

aged by thermocycling (10,000 times). The analysis illustrated that none of the fractures 

occurred at the interface of the metallic rods and furthermore the assemblies failed either 

at the interface between the ceramic surface and the cements or within the cements. It 

was shown that thermocycling affected the bond strength of all luting cements studied 

except for both Panavia materials and RelyX Unicem. Nexus in combination with 

tribochemical silica-coating of ceramic surface produced higher bond strength.. Superior 
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results were achieved with RelyX Unicem, Superbond C&B, Panavia F, and Panavia 21, 

and the strongest bond to zirconia was obtained with Panavia 21.92 

 

In the study where Lava system was tested with different luting agents, Ernst et al. 

demonstrated the superior retentive strength of Superbond C&B, Panavia F, Dyract Cem 

Plus, RelyX Luting and RelyX Unicem. The aim of this in vitro study was to determine 

the retentive strength of four resin-cement systems: a compomer, a glass-ionomer 

cement, a resin-modified glass-ionomer cement, and a self-adhesive resin for luting 

zirconium oxide ceramic crowns. One-hundred-twenty extracted human teeth were 

randomly divided into 12 groups (n = 10) and prepared in a standardized manner (5-

degree taper, 3-mm occlusogingival height) followed by fabrication of all-ceramic 

crowns and cementation with: CO, Compolute/EBS Multi; CO/RT, Compolute/EBS 

Multi/Rocatec; CB, Superbond C and B; CB/RT, Superbond C and B/Rocatec; CB/PL, 

Superbond C&B/Porcelain Liner M; PA, Panavia F; DC, Dyract Cem Plus/Xeno III; 

CH/PL, Chemiace II/Porcelain Liner M; RL, RelyX Luting, K/C, Ketac Cem/Ketac 

Conditioner; K, Ketac Cem; and RU, RelyX Unicem. After thermal cycling (5000 cycles, 

5 degrees C-55 degrees C), the outer surfaces of the cemented zirconium oxide ceramic 

crowns were treated (Rocatec) to improve bonding and then placed into a low-shrinkage 

epoxy resin block (Paladur). The block/crown and tooth components for each specimen 

were connected to opposing ends of a universal testing machine so that crown retention 

could be measured. Crowns were removed from teeth along their path of insertion and the 

retentive surface area of 2 mm was determined individually for each tooth. Statistical 

analyses were performed using the Wilcoxon exact test (α=.05) and a Bonferroni 
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correction (µ =.001). The median retentive strength values (MPa) were as follows: CO, 

1.7 (0.6/4.3); CO/RT, 3.0 (1.3/5.4); CB, 4.8 (3.7/7.9); CB/RT, 8.1 (4.2/12.7); CB/PL, 5.3 

(3.7/10.2); PA, 4.0 (3.3/5.1); DC, 3.3 (2.1/5.6); CH/PL, 4.0 (1.3/6.3); RL, 4.7 (2.8/6.6); 

K/C, 1.8 (0.6/2.3); K, 1.9 (0.2/4.5); and RU, 4.8 (2.5/6.7). Superbond C&B + Rocatec 

specimens showed the highest median retentive strength, but were not significantly 

different from Superbond C&B without Rocatec pretreatment. Compolute specimens also 

did not benefit significantly from the Rocatec pretreatment, whereas Superbond C&B, 

Panavia, Dyract Cem Plus, RelyX Luting, and RelyX Unicem showed the highest median 

retentive strength values and were not significantly different. The study gave evidence 

that Rocatec pretreatment of the ceramic surface did not improve the retentive strengths 

of Compolute and Superbond C&B.94 

 

 Escribano et al. study tested microtensile bond strength of self-adhesive luting 

cements to ceramic IPS Empress II discs and dentin of perfused teeth. In that study 

Panavia F obtained the highest bonding values, followed by Multilink System. RelyX 

Unicem., the only material that does not require pretreatment of dentin, achieved the 

lowest microtensile bond strength. Occlusal enamel and the roots of 9 human third molars 

were removed and crown segments connected to a perfusion system (30 cm H2O). Nine 

ceramic disks made of IPS Empress II were prepared, conditioned with 5% HF (20 s), 

rinsed with water, and air dried. A primer silane agent was applied (Monobond-S) and 

teeth were bonded to disks using one of three materials: Multilink System, RelyX 

Unicem, or Panavia F light. Specimens were vertically sectioned to obtain square bars 

and each bar was fixed to a rigid custom-made tensile device and subjected to tensile 
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force until debonding. Microtensile bond strength was given in MPa. ANOVA was 

performed to examine the statistical significance of differences between means of the 

groups, and the Tamhane's post hoc test was used to locate eventual differences. ANOVA 

showed statistically significant differences between the groups' means (p < 0.00001), 

while Tamhane's post hoc test (p < 0.05) showed that different group means were RelyX 

< Multilink < Panavia F. Materials showed different tensile bond strengths where Panavia 

F obtained highest bonding values, followed by Multilink System and RelyX Unicem. 

The only material that does not require pretreatment of dentin, achieved the lowest 

TBS.93 

 

The coupling agent or more precisely triakoxysilanes that are hybrid inorganic-

organic bifunctional molecules have an influence on bonding. Typical silane coupling 

agent contains an organofuncional part and three hydrolyzable aloxy groups. Prior to 

becoming adhesion promoters and activated, the hydrolyzation reaction is promoted in 

slightly acidic ethanol-water solvent to transform trialkoxy groups to silanols. The 

methacrylate group can then be polymerized with the monomers of resin composite 

systems. The presence of coupling agent lowers the surface tension of a substrate, wet it 

and make its surface energy higher thus accessible for effective bonding. The market 

offers two ways of application. Tribochemical silica-coating, Rocatec system, used in 

laboratories contains the silica-coated alumina particles that are blasted onto intaglio 

surface of the porcelain. CoJet, having similar properties, is applied intra-orally. The 

studies confirmed that silane coupling agents improved the bond of resin composite to 

ceramics by 25%. 98 The study comparing the retention of ceramics treated with both air-
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borne particle abrasion and silane solution with retention of ceramics treated solely with 

abrasion showed that air-borne particle conditioning did not yield enough retention 

without silane solution.99 

 

The fact that zirconia is different than alumina has an influence on bonding the 

surface to the tooth by cement. The adhesive performance of air-borne alumina particle 

treated and silica-coated zirconia was tested in the study with commercially used resin 

cement RelyX ARC and Bis-GMA resin. Samples made of Procera AllZircon were 

sandblasted with 110 µm Al2O3, silica-coated with Rocatec Plus and treated with three 

different silane agents followed by cementation with either Bis-GMA resin or RelyX 

ARC.  Two of  the tested silane agents performed well for both cements.100 

 

Kim at al evaluated, in-vitro, the tensile bond strength of composite resin to all-

ceramic coping materials made of lithium-disilicate (Empress2), alumina ceramic (In-

Ceram Alumina), zirconia ceramic (Zi-Ceram) and feldspathic ceramic (Duceram Plus 

[F]) as the control.  Ceramic specimens of each coping material were fabricated at 

dimensions of 10 x 10 x 2 mm and grouped into three different surface treatments: 

airborne-particle abrasion with 50 µm alumina particles (Ab); airborne-particle abrasion 

with 50 µm alumina particles and acid etching with 4% hydrofluoric acid (Ae); or 

airborne-particle abrasion with 30 µm alumina particles modified with silica acid (Si). 

After surface treatment of ceramic specimens, composite resin cylinders (5 mm diameter 

x 10 mm height) were light polymerized onto the ceramic specimens. Each specimen was 

subjected to a tensile load at a crosshead speed of 2 mm/min until fracture and fracture 
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sites were examined with scanning electron microscopy to determine the location of 

failure during debonding and to evaluate the surface treatment effects. Two-way analysis 

of variance and the Duncan multiple comparison test (α=.05) were used to analyze the 

bond strength values. Significant differences were found in the bond strengths for both 

ceramics (P<.001) and surface treatments (P<.001) and the interaction (P<.001). The 

Duncan analysis yielded the following statistical subsets of the bond strength values: 

(FAe, ISi, EAe, ZSi) > FAb > (FSi, EAb, ESi) (IAb, IAe) > (ZAe, ZAb). The results 

illustrated no differences within the parentheses but statistically significant differences 

among the groups.  Alumina and zirconia ceramic specimens treated with a silica coating 

technique, and lithium disilicate ceramic specimens treated with airborne-particle 

abrasion and acid etching yielded the highest tensile bond strength values to a composite 

resin for the materials tested.95 

 

Derand at al assessed in-vitro bond strength of dental resin agent to zirconia 

ceramic after surface pre-treatment with different techniques.  Blocks made of yttrium-

oxide-partially-stabilized zirconia (ZF) (Procera All-Zircon) were compared to glossy 

dense zirconia blocks (ZG). Four groups of specimens with different surface treatment 

were prepared. Group I: ZF (n = 5) and ZG (n = 5) without any pre-treatment, Group II: 

ZF-s (n = 5) and ZG-s (n = 5) treated with silane solution, Group III: ZF-P (n = 10) and 

ZG-P (n = 10) treated with RF plasma spraying (hexamethyldisiloxane) using a reactor 

(Plasma Electronic, Germany), Group IV: ZF-p (n = 10) and ZG-p (n = 10) treated with 

micro pearls of low fusing porcelain (720 degrees C) on the surfaces. Composite 

cylinders (Charisma, Heraeus Kulzer, Dormagen, Germany) were luted with Variolink II 
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(Ivoclar-Vivadent, Schaan, Liechtenstein) to the test specimens. After 1 h storage in the 

air the specimens were subjected to shear load in a universal testing machine (LRX, 

Lloyd Instruments, Farnham, England) until failure. No statistical difference was found 

between the untreated ZF and ZG specimens (Group I) nor between the specimens treated 

with silane (Group II), yet plasma spraying treatment improved bond strength by a factor 

of three (p < 0.001). Treatment with low fusing porcelain micro pearls increased the bond 

strength by a factor of 10 compared to untreated surfaces (p < 0.001), while no significant 

difference was seen between the surfaces treated ZF-p and ZG-p specimens. The 

thickness of the glass pearls layer did not exceed 5 µm and SEM showed dense grain 

borders of ZF and a flat glossy texture of ZG. It was concluded that treatment of zirconia 

ceramic surfaces with plasma spraying or a low fusing porcelain pearl layer significantly 

increased the bond strength of resin cement to the ceramic surface. 101   

 

3.10 Esthetics 

 

Ceramics have been advocated as a material of choice for matching the natural 

dentition. The structure of the tooth influences its color: dentin is more opaque than 

enamel and reflects light, whereas enamel is a crystalline layer over the dentin, composed 

of many prisms or rods implemented together in an organic structure. The light ray is 

scattered by reflection and refraction to produce a translucent effect, and as it reaches the 

tooth structure, part of it is reflected, while the remainder penetrates the enamel and is 

scattered. Any light contacting the dentin is either absorbed or reflected and further 

scattered within enamel. In the absence of dentin, the area of that particular tooth 



59 
 

structure appears to be translucent, where the light is transmitted and absorbed in the oral 

cavity. Metamerism is a common phenomenon that occurs as an effect of different optical 

tooth appearance based upon the light. Dental ceramic materials are pigmented by the 

inclusion of oxides. The color of pigment is determined by absorption and reflection of 

light.1 All ceramic restorations offer improved esthetic results, compared to metal-

ceramic restorations, due to the natural translucent and reflection effect.21, 23 Natural 

translucency is needed to achieve an appearance similar to that of human teeth. 

Fabrication of all-ceramic dental crowns is challenging because exceptional skills of a 

technician are required to provide minimal stress concentration areas using proper 

occlusal design and accurate marginal fit. In addition, ceramic crowns must be 

translucent and resistant to fracture even in clinical situations where inadequate thickness 

precludes optimal design. The ability to blend a porcelain crown with its natural 

counterpart involves consideration of size, shape, surface texture, translucency, and color. 

The light reflection can be affected by many factors, including ceramic thickness21, 

crystalline structure, and number of firings.102 Increased crystalline content results in 

greater opacity. The ceramic core of ceramic restorations may be fabricated from 

feldspathic porcelain, aluminous porcelain, lithia-disilicate-based ceramic, glass 

infiltrated magnesia aluminate spinel, glass-infiltrated alumina, glass-infiltrated zirconia 

and mica-based glass–ceramics. However, poor resistance to fracture has been a limiting 

factor in their use, especially for multi-unit fixed partial dentures. 
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Certain all-ceramic restorative materials have been recommended based on the 

translucency of the teeth to be matched. The coping design, its crystalline structure, and 

length or thickness influences the strength, adaptation but more importantly the esthetics.    

 

Haffernan et al. compared the translucency of six all-ceramic materials where  

specimens (n = 5 per group) of Empress dentin, Empress 2 dentin, In-Ceram Alumina, In-

Ceram Spinell, In-Ceram Zirconia, and Procera AllCeram were fabricated and veneered 

with their corresponding dentin porcelain to a final thickness of 1.47 +/- 0.01 mm. These 

specimens were compared with veneered Vitadur Alpha opaque dentin (as a standard), a 

clear glass disc and a high-noble metal-ceramic alloy veneered with Vitadur Omega 

dentin. Specimen reflectance was measured with an integrating sphere attached to a 

spectrophotometer across the visible spectrum (380 to 700 nm); 0-degree illumination 

and diffuse viewing geometry were used. Measurements were repeated after a glazing 

cycle and contrast ratios were calculated. One-way analysis of variance and Tukey's 

multiple-comparison test showed a significant differences in contrast ratios among 

ceramic systems tested when they were veneered (P<.0001) and after the glazing cycle 

(P<.0001). Significant changes in contrast ratios (P<.0001) also were identified when the 

veneered specimens were glazed. The glazing cycle resulted in decreased opacity for all 

test materials except the completely opaque In-Ceram Zirconia and metal-ceramic 

specimens.21  

 

Haffernan et al. in another study disputed whether translucency differs when all-

ceramic materials are fabricated similarly to the clinical restoration with a veneered core 
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material. He compared the translucency of all-ceramic materials veneered and glazed at 

clinically appropriate thicknesses. Core specimens (n = 5 per group) of Empress dentin, 

Empress 2 dentin, In-Ceram Alumina, In-Ceram Spinell, In-Ceram Zirconia, and Procera 

AllCeram were fabricated and veneered with their corresponding dentin porcelain to a 

final thickness of 1.47 +/- 0.01 mm and compared with veneered Vitadur Alpha opaque 

dentin (as a standard), a clear glass disc (positive control), and a high-noble metal-

ceramic alloy (Porc. 52 SF) veneered with Vitadur Omega dentin (negative control). 

Specimen reflectance was measured with an integrating sphere attached to a 

spectrophotometer across the visible spectrum (380 to 700 nm); 0-degree illumination 

and diffuse viewing geometry were used and all measurements were repeated after a 

glazing cycle. Contrast ratios were calculated from the luminous reflectance (Y) of the 

specimens with a black (Yb) and a white backing (Yw) to give Yb/Yw with CIE 

illuminant D65 and a 2-degree observer function (0.0 = transparent, 1.0 = opaque). One-

way analysis of variance and Tukey's multiple-comparison test (P<.05 affirmed 

significant differences in contrast ratios among the ceramic systems tested when they 

were veneered (P<.0001) and after the glazing cycle (P<.0001). Significant changes in 

contrast ratios (P<.0001) also were identified when the veneered specimens were glazed. 

The presented work illustrated that glazing cycle resulted in decreased opacity for all test 

materials except the completely opaque In-Ceram Zirconia and metal-ceramic 

specimens.23 
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3.11 Zirconia Porcelain 

 

3.11.1 Historical Perspective and Applications 

 

A new method for fabrication of crowns and fixed partial dentures was developed 

involving the combination of computerized machining and copy milling. A pioneer 

Procera All-Ceram was developed by Andersson and Oden through cooperative effort 

between Nobel Biocare AB, Gothenburg, and Sandvik Hard Material AB, Stockholm, 

Sweden. The Procera system provides industrial sintering of an alumina coping using 

highly purified alumina. That system requires the following steps for fabrication of the 

restoration: magnification of the die, sintering of high-purity aluminous oxide powder at 

1550°C on a die to form the coping, and addition of the overlay, low-fusing porcelain to 

achieve natural anatomy and shade of the tooth. For the past years extensive research has 

focused on improving the physical strength of dental ceramics. Among the various 

procedures, the mechanism of addition of zirconia and the process of addition of yttrium 

oxide particles have demonstrated the potential interest in the stabilized zirconia as a 

candidate biomaterial. The biocompatibility and high strength has led the zirconia 

material to be utilized in many potentially suitable situations by chemical industry where 

corrosive agents are employed, medical field in hip replacement or as an alloying agent in 

surgical appliances. The impure oxide of zirconia is utilized for laboratory crucibles that 

will withstand heat shock, for linings of metallurgical furnaces, and by the glass and 

ceramic industries as a refractory material.75  
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 The name zircon probably originates from the Persian word zargun, which 

describes the color of the gemstone now known as zircon, jargon, hyacinth, or ligure.  

German chemist, Martin Heinrich Klaproth in 1789 identified zirconia as a reaction 

product in the process after heating some gems. The impure metal was first isolated by 

Berzelius in 1824 by heating a mixture of potassium and potassium zirconium fluoride.  

Zirconium is found in S-type stars, and has been identified in the sun and meteorites.103  

The implementation in biomedical field was started by Helmer and Driskell in 1969, 

while the first use of zirconia in orthopedics was initiated by Christel to manufacture ball 

heads for total hip replacements..104, 105  Further expansion in dentistry led the zirconia be 

applicable in orthodontics, post and core systems, all-ceramic restorations, and ceramic 

implant/implant abutments offering improved esthetic alternatives.106-110 

 

3.11.2 Chemical and Mechanical Properties 

 

The preparation of zirconia starts from zircon (ZrSiO4) which due to the process of 

melting and adding HCl (hydrochloric acid) produces zirconyl chloride.  The next step is 

to produce zirconia powder ZrO2 from zirconyl chloride by either precipitation or thermal 

decomposition. The final product is achieved through the addition of stabilizers 

(magnesium, calcium and yttria oxides) followed by sintering to allow conversion phase 

to occur. Three forms of zirconium can be distinguished: pure zirconia, partially 

stabilized zirconia (PSZ) and fully stabilized zirconia. Zirconia is a polymorph that 

occurs in three crystal phases: monoclinic (M), tetragonal (T) and cubic (C) (Figure 1).  

Pure zirconia in a room temperature presents in monoclinic phase. This phase is stable up 
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to 1170ºC, while above that temperature zirconia  transforms to tetragonal and then into 

cubic phase at 2370 ºC. The transformation of monoclinic into tetragonal phase causes 

5% volumetric shrinkage. Reversible transformation is associated with 3% volume 

expansion. These phase transformations, however, induce stresses and propagate crack 

formation.37, 111 When stress develops in the tetragonal structure causing a crack to occur, 

the tetragonal grains transform to monoclinic grains. That process is associated with 

volumetric changes thus results in compressive stresses at the edge of the crack front and 

additional energy is required for the crack to propagate further (Figure 2). The 

phenomenon of phase transition of zirconia is known as stress-inducing. Several 

approaches that are based on impeding the propagation of flaws have been used to 

strengthen dental porcelains, including bonding to metals, adding microcrystalline 

phases, and surface treatments (i.e., polishing, ion exchange and hydration).112 The 

inhibition of negative transformations can be achieved by addition of stabilizing oxides 

(CaO, MgO, Y2O3), which allows the existence of tetragonal structure at room 

temperature. During the process of adding small particles of stabilizer (yttrium oxide) the 

tetragonal phase is produced along with a mixture of monoclonic and cubic phase. The 

process allows the formation of partially stabilized zirconia (PSZ), maintained in 

tetragonal phase (TZP), and is most commonly used in dental systems. The addition of a 

greater percentage of oxide particles promotes, during heating and cooling, a 

transformation to fully stabilized zirconia (fully yttria stabilized zirconia) which is 

characterized by solid cubic solution. Through that transformation, zirconia has been 

shown to have relatively high mechanical strength and the mechanism is called 

transformation toughness. 113 
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Figure 1. Zirconia phase transformation113 

 

                                                                                              

                                                   

 

 

Figure 2. Crack propagation113 

 

 

 Yttrium stabilized tetragonal zirconia (YSTZ) is known to be the strongest 

porcelain available to the dental field. Physical properties of the zirconia depend on 

particle size, surface area, crystallite size and the presence of impurities.114  The 

polycrystalline zirconia is characterized by high flexural strength of over 1000 MPa.  

Takagi and co-workers investigated the properties of densely sintered zirconia with 

medium-sized grains of approximately 0.8 µm. The zirconia was partially stabilized with 
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3.5 mol-percent Y2O3 and exhibited a fracture toughness KIC of 8.4 MPa * m1/2, an 

average elastic modulus of 200 GPa and flexural strength of 1000 MPa, which is twice as 

high as pure Al2O3. Measured values for the flexural strength with a content of 5 mol-

percent Y2O3 were lower than that of 3 mol-percent, since with an yttria content of more 

than 3-4%, the transformation toughening loses its effectiveness.115 

 

To fabricate denser sintered zirconium restorations different methods of 

manufacture have been developed. In-Ceram advertises zirconia-infiltrated glass as the 

material of choice for posterior bridges, and claims having the flexural strength of 

700MPa as opposed to In-Ceram alumina with a flexural strength 500MPa. Different 

systems presently are available on the market that mills the tetragonal stabilized zirconia 

from either a partially (eg. Cercon Dentsply Ceramco; LAVA, 3MESPE,; Procera All-

Zircon, Noble Biocare) or a fully sintered blank (DC-Zirkon, President). The 

phenomenon called transformation toughening is induced by stress exerted by grinding, 

impact, or fracture. While various systems have the capability to use a scanner to provide 

a copy of a die image and use computer assisted design to provide an optimal framework 

and marginal fit, the use of the conventional waxing technique can also be successful in 

designing the framework. 

 

Studies have demonstrated that zirconia-based industrially optimized ceramic 

materials are more structurally reliable for dental application, comparatively superior in 

terms of mechanical properties 14, 116, 117 and can be used not only for prosthodontic 

purposes but also as endodontic posts or orthodontic brackets.118  Guazzato et al. 
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investigated the strength, fracture toughness and microstructure of ceramic materials, 

demonstrated that zirconia-based dental porcelain is a stronger and tougher material 

compared to a conventional glass-ceramic.27  

 

Tinschert et al. were tested the fracture resistance of three-unit fixed partial dentures 

(FPD) made of core ceramics. He used base metal three-unit master FPD model with a 

maxillary premolar and molar abutment. Tooth preparation showed 0.8-mm 

circumferential and 1.5-mm occlusal reduction and a chamfer margin design. FPDs were 

constructed with a uniform 0.8-mm-thick core ceramic and a porcelain veneer layer. In-

Ceram Alumina, In-Ceram Zirconia, and DC-Zirkon core ceramics were machined by a 

computer-aided design/manufacturing system, whereas IPS Empress 2 core ceramic was 

indirectly built up using the fabrication technology of waxing and heat pressing. FPDs of 

IPS Empress were heat pressed as complete restorations without core material.  All FPDs 

were cemented with ZnPO4 on the master model and loaded on a universal testing 

machine until failure. They found that the highest failure loads, exceeding 2,000 N, were 

associated with FPDs of DC-Zirkon. FPDs of IPS Empress and In-Ceram Alumina 

showed the lowest failure loads, below 1000 N, whereas intermediate values were 

observed for FPDs of IPS Empress 2 and In-Ceram Zirconia. 116 

 

Investigation of the load to fracture of different all-ceramic crown systems was 

carried out by Hogg et al. were five different coping systems were used such as: Group A 

- IPS Eris®, group B - Cerec® In-lab Alumina coping, group C - Cerec® In-lab Zirconia 

coping, Group D - Procera® AllCeram Alumina coping and group E - Procera® Zirconia 
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coping.  Ten crowns from each of the systems were fabricated, luted using G.C. Link 

Max resin adhesive cement to standardized, grade 2, pre-milled titanium dies, and placed 

under static load of 5 kg for 10 minutes followed by 100% humidity storage for one 

week. The samples were then loaded to fracture at the rate of 0.5mm/min. using a 

universal testing machine. The load to fracture (kgF) for each group was as follows; 

Group A=321.49 ± 113.69, Group B=288.63± 102.82, Group C=266.58± 69.17, Group 

D=295.49± 80.54, Group E=420.37± 82.45. The data was analyzed using an unpaired t-

test which indicated that there was a statistical difference between group E and all of the 

others (P-value >0.039). It was concluded that the Procera Zirconia crown system had a 

significantly higher load to fracture value (420.37 ± 82.45 kgF) than several other all-

ceramic crown systems. 119 

 

Pallis et al. evaluated the fracture resistance and origin of failure of simulated first 

molar crowns fabricated using 3 all-ceramic systems, IPS Empress 2, Procera AllCeram, 

and In-Ceram Zirconia. A stainless steel definitive die was machined to be axisymmetric 

with a profile identical to an all-ceramic crown preparation on a maxillary first molar 

with a1-mm modified shoulder and 1.5 to 2.0 mm occlusal reduction (1.5 mm reduction 

at the center of the occlusal table and 2.0 mm reduction at the cusps). Sixty duplicate dies 

were fabricated in a high filler content resin material (Viade Products Inc) to replicate the 

definitive die. The Procera AllCeram cores were presintered, milled, and sintered by the 

manufacturer and twenty In-Ceram Zirconia cores were fabricated using a CAD-CAM 

system. All forty cores were fabricated to a target thickness of 0.5 mm on all surfaces. 

Twenty IPS Empress 2 cores (Ivoclar Vivadent) were fabricated to a target thickness of 
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0.7 mm on the axial wall and 1.0 mm on the occlusal table using vacuum forming sheets. 

Vitadur Alpha porcelain (Vident, Brea Calif) was used to complete Procera AllCeram 

and In-Ceram Zirconia crowns, while Eris porcelain (Ivoclar Vivadent) was used to 

complete the IPS Empress 2 crowns with centrifugal sculpturing device to provide 

contour at a consistent thickness followed by firing cycles. The Procera AllCeram and In-

Ceram Zirconia crowns were prepared for luting by airborne-particle abrasion of the 

internal surfaces with 50 µm aluminum oxide at 80 psi. The internal surfaces of the IPS 

Empress 2 crowns were acid-etched with 9.5% hydrofluoric acid for 2.5 minutes in 

preparation for luting. The surfaces of all 60 dies were airborne-particle abraded with 50 

µm aluminum oxide at 40 psi for 5 seconds. The surfaces of all 60 crowns were cleaned 

in distilled water for 10 minutes and air dried. All crowns were silanated (Clearfil 

Porcelain Bond Activator), luted to the dies with RelyX resin luting agent and 

immediately placed under a static load of 20 N for 5 minutes. The center of the occlusal 

surface on each of 15 specimens per ceramic system was axially loaded to fracture in a 

universal testing machine using a stainless steel ball bearing (6.35 mm in diameter) at a 

crosshead speed of 5 mm/min, and the maximum load (N) was recorded. Fractured 

surfaces were examined using optical and electron microscopy to determine the most 

prevalent origin of failure in each ceramic system. Five crowns per system were 

sectioned, and thickness of the luting agent, core material, and veneer porcelain layers 

were measured. The 95% confidence intervals of the Weibull modulus was used to 

compare failure load between the 3 systems. Two-way multivariate analysis of variance 

was used to analyze the thickness of the luting agent, ceramic core, and veneer porcelain 

layers (α=.05). The 95% confidence intervals for Weibull modulus were 1.8 to 2.3 (IPS 
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Empress 2), 2.8 to 3.6 (Procera AllCeram), and 3.9 to 4.9 (In-Ceram Zirconia). The 95% 

confidence intervals for characteristic failure load were 771 to 1115 N (IPS Empress 2), 

859 to 1086 N (Procera AllCeram), and 998 to 1183 (In-Ceram Zirconia). The 

microscopy examination revealed that the origin of failure was most commonly found at 

the interface between the ceramic core and veneer porcelain for IPS Empress 2 and 

between the ceramic core and luting agent layer for the other systems.  According to data, 

failure loads of all-ceramic crowns were influenced not only by the fracture resistance of 

the component materials but also by prosthesis geometry and size and location of flaws.81  

 

In 2004, Guazzato at al. investigated the biaxial flexural strength, reliability and the 

mode of fracture of eighty discs (diameter of 14 mm) made of monolithic and bilayered 

DC-Zirkon, an isostatically hot-pressed and fully sintered 5 wt% Y2O3 TZP, (DCS Dental 

AG, Allschwil, Switzerland) and Vita D, a feldspathic porcelain  specifically developed 

to veneer dental zirconia. The specimens were prepared and divided in four groups of 20 

specimens as follows: (VD) monolithic samples of Vita D; (DZ) monolithic samples of 

DC-Zirkon; (VD/DZ) bilayered samples of Vita D (top surface, facing the loading piston 

during testing) and DC-Zirkon (bottom surface, facing the supporting jig during testing); 

(DZ/VD) bilayered samples of DC-Zirkon (top surface, facing the loading piston during 

testing) and Vita D (bottom surface, facing the supporting jig during testing). After firing 

and sintering, all specimen surfaces were ground using diamond discs to the thickness of 

approximately 1.6 mm (±0.02) and then fired at the temperature of 920°C×1 min. The 

DZ, VD/DZ and DZ/VD specimens were prepared by initially cutting a number of 

cylinders from a block of DC-Zirkon with a 600 grit size diamond wheel.  After cutting, 
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20 disks (for DZ) were ground and polished using a diamond wheel up to the nominal grit 

size of 1 μm and to the thickness of approximately 1.6 mm (±0.01). For the bilayered 

specimens (VD/DZ and DZ/VD), 40 discs were cut, as mentioned above, and ground to 

thickness of approximately 0.90 mm. The disks were then mounted on a silicon mold and 

slurry of Vita D porcelain was packed on top of the mold and fired as described above for 

the VD specimens. After sintering both surfaces were polished with diamond discs to the 

final thickness of 1.6 mm (±0.02), where the thickness of each layer was approximately 

0.8 mm. Finally all specimens were glazed and biaxial flexural test (piston on three-ball) 

was used to calculate the maximum load at failure in the center of the other surface 

through the flat tip of a piston (diameter 1.5 mm) mounted on a universal testing machine 

at crosshead speed of 0.5 mm/min.  One-way ANOVA was used to appraise whether 

there was any statistical difference among groups and a series of Tukey HSD post hoc 

tests were used to identify which pairs of groups were different. The variability of 

strength was estimated by calculating the Weibull modulus (m) from the Weibull 

distribution. Upon fracture, all specimens were gold coated and observed with an SEM to 

identify the initial crack and characterize the fracture mode. Finite Element Analysis was 

executed in order to examine the stresses that resulted from biaxial loading. The VD and 

DZ/VD specimens showed to be significantly weaker (p value < 0.000) than those groups 

where the core material was facing the jig (DZ and VD/DZ). Furthermore, there was no 

statistical significant difference between VD and DZ/VD (p 0.641), while VD/DZ 

specimens were significantly stronger that DZ (p<0000). The majority of the VD/DZ 

samples (80%) show multiple peaks and crushing of the porcelain. Only those that broke 

at lower loads did not show this behavior. Flexural strength has been recalculated by 
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considering the load at fracture of those specimens where bulk fracture occurred without 

crushing of the porcelain and, for the other specimens, the load which caused crushing of 

the porcelain rather than bulk fracture of the sample. This group is indicated as VD/DZ 

and shows no significant statistical difference with DZ (p 0.873). Monolithic core 

specimens and bilayered sample with the core material on the bottom were statistically 

significantly stronger than monolithic porcelain disks and bilayered samples with the 

porcelain on the bottom.79 

 

In his other study, Guazatto et al. demonstrated significantly higher strength of 

dense zirconia based ceramics, where DC Zirkon, an experimental yttria partially 

stabilized zirconia, In-Ceram Zirconia slip and In-Ceram Zirconia dry-pressed were 

compared.  Means of strength (MPa) and fracture toughness (MPa m(1/2)) values and 

their standard deviation were: In-Ceram Zirconia dry-pressed 476 (50)1, 4.9 (0.36)1; In-

Ceram Zirconia slip 630 (58)2, 4.8 (0.50)1; the experimental yttria partially stabilized 

zirconia 680 (130)2, 5.5 (0.34)2; DC-Zirkon 840 (140)3, 7.4 (0.62)3. Consequently the 

study reported that zirconia-based dental ceramics were stronger and tougher materials 

than the conventional glass-ceramics. 27  

 

The investigation was conducted by Snyder et al. to assess the ultimate compressive 

strength of Procera sintered Zirconia Y-TZP copings using Procera Aluminum Oxide 

copings as a control. The study consisted of four groups, two contained six samples and 

two contained five samples: Group A was Aluminum Oxide copings luted with 3M 

Vitremer cement, Group B was Aluminum Oxide copings luted with G.C. Fuji Plus 
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cement, Group C was Zirconium copings luted with 3M Vitremer cement, Group D was 

Zirconium copings luted with G.C Fuji Plus cement. All copings were luted to 

standardized, grade 2, pre-milled titanium dies and stored in 100% humidity for 10 weeks 

and inspected prior to testing for any detectable fractures. The samples were then loaded 

to fracture at the rate of 0.5mm/min. using a universal testing machine providing the 

following results. Group A=78.99 +23.32Kg (S.D.), Group B=105.70 +21.01Kg (S.D.), 

Group C=89.97 +34.92Kg (S.D.), Group D=111.26 +13.38Kg (S.D.). According to the 

authors, the ultimate compressive strength of the experimental Procera sintered Zirconia 

Y-TZP copings were not significantly different from that of Procera Aluminum oxide 

copings (p= 0.6066). 120 

 

The normal physiological chewing forces on posterior teeth range between 2-150N, 

while maximum biting forces can increase up to the range between 300 to 880 N. It has 

been shown that female biting forces are lighter than in males.121 When bruxing occurs 

the biting forces are significantly higher and can rise up to 500N. 122 Due to crack growth, 

when dental ceramics is subjected to cyclic load it displays only 50% of initial fracture 

resistance. That process needs to be considered when decision is made on the material 

selection.123  

 

In 2005, Curtis at al conducted an in-vitro investigation of the effect of simulated 

masticatory loading regimes on 5 mol% Y-TZP ceramic (LAVA).  Ten sets of 30 Y-TZP 

ceramic discs measured  13 mm diameter where  six groups were loaded for 2000 cycles 

at 500N (383-420MPa), 700N (536-588MPa) and 800N (613-672MPa) with three groups 
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maintained dry and the remaining three groups loaded while immersed in water at 

37±1ºC. A further two groups underwent extended simulated masticatory loading regimes 

at 80N (61-67MPa) for 10(4) and 10(5) cycles under dry conditions. The latter group 

presented with the significant increase in Weibull moduli (8.6±1.6, 8.5±1.6 and 10.3±1.9, 

respectively), compared with the unloaded specimens (7.1±1.3). The increased Weibull 

moduli were attributed to the formation of a localized layer of compressive stressed or 

crushing and densification of the material beneath the indentor counteracting with the 

material.  In contrast, extending the simulated masticatory regime to 105 cycles at 80 N 

reduced the Weibull moduli of the specimens as a result of the combined influence of the 

accumulation of microfracture damage from crushing and densification of the material.124 

 

The objective of the study done by Fischer was to evaluate the strength of zirconia 

single anterior crowns related to coping design modification. A model of upper canine 

was circumferentially prepared with a shoulder margin, the CoCr alloy was made 

followed by fabrication of cast die that was scanned. Eighty-eight Zirconia frameworks 

were made using Lava system: half of the fabricated copings had a constant wall 

thickness, the other half presented with anatomical shape of the framework similar to 

metal-ceramic substructure. Specimens were divided into subgroups with twenty-two 

frameworks veneered with Lava Ceram or Cerabien ZR, subjected to thermal shock test 

and examined for fractures. Remaining ten samples were cemented to metal master dies 

with Ketac Cem and subjected to the static 45º-angled load. According to the author Lava 

Ceram and Cerabien ZR demonstrated similar fracture toughness, however the strength 

increased by 30% in specimens with anatomical design of the zirconia coping.125 
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An in vitro study, conducted by Potiket et al. tested the fracture strength of teeth 

restored with a variety of ceramic systems. Forty intact, human maxillary central incisors 

were divided into 4 groups (n=10): Group MCC (control), metal-ceramic crown (JRVT 

High Noble Alloy); Group AC4, crown with 0.4-mm aluminum oxide coping (Procera 

AllCeram); Group AC6, crown with 0.6-mm aluminum oxide coping (Procera 

AllCeram); and Group ZC6, crown with 0.6-mm zirconia ceramic coping (Procera 

AllZirkon). Teeth were prepared for complete-coverage all-ceramic crowns so that a final 

dimension of 5.5 ± 0.5 mm was achieved incisocervically, mesiodistally, and 

faciolingually with a 1.0-mm deep shoulder finish line. All restorations were treated with 

bonding agent (Clearfil SE Bond) and luted with phosphate-monomer–modified adhesive 

cement (Panavia 21). After storage  in 100% relative humidity of a normal saline solution 

for 7 days all specimens were subjected to fracture strength with a universal testing 

machine at a crosshead speed of 2 mm per minute with an angle of 30 degrees to the long 

axis of the tooth. The mode of fracture was examined visually. Statistical analysis 

revealed that there was no significant difference in fracture toughness of teeth prepared 

for all-ceramic crowns with 0.4mm and 0.6mm aluminum oxide copings or zirconia 

ceramic copings and teeth prepared for metal-ceramic restorations. The means of fracture 

strength were: Group MCC, 405 ± 130 N; Group AC4, 447 ± 123 N; Group AC6, 476 ± 

174 N; and Group ZC6, 381 ± 166 N. There was no significant difference in the fracture 

strength of the teeth restored with all-ceramic crowns with 0.4- and 0.6-mm aluminum 

oxide copings, 0.6-mm zirconia ceramic copings, and metal ceramic crowns. Fracture 

mode of the crown was classified according to a classification proposed by Burke; Class 

I, minimal fracture or crack in crown; Class II, less than half of crown lost; Class III, 
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crown fracture through midline, half of crown displaced or lost; Class IV, more than half 

of crown lost; Class V, severe fracture of tooth and/or crown. Visual analysis of the 

fractured specimens showed that all the specimens (100%) in every group exhibited a 

Class V mode of fracture.  No crowns were dislodged from the prepared tooth, and there 

were no fractures of the all-ceramic or metal-ceramic crowns. All fractures occurred 

through the natural tooth.80 

 

The objective of the study performed by Behrens et al. was to assess the fracture 

strength of colored zirconia copings with reduced wall thickness to 0.3 mm compared to 

a control group of 0.5 mm. Chamfer preparations for anterior teeth were made followed 

by the fabrication of the copings employing the Lava Y-TZP (3M ESPE) system.  A total 

of 48 copings were produced out of colored Y-TZP-ZrO2. Twenty-four copings were 

prepared from a tangential and twenty-four from a chamfer preparation and each of these 

were further divided in subgroups of 12 for the fabrication of wall thicknesses of 0.3 mm 

and 0.5 mm. Copings were cemented with Ketac-Cem on brass dies and loaded via 

universal testing machine until fracture occurred and fractography with SEM was 

performed.  No significant difference was discovered (p<0.05) for the fracture strength of 

copings fabricated with tangential or chamfer preparation but with the same wall 

thickness. However, there was significant strength reduction between wall thickness of 

0.5 and 0.3 mm (Kruskal-Wallis test, Dunn's post test, p<0.001) (Table 1). Therefore, it 

has been concluded that the fracture strength of Y-TZP-ZrO2 copings with a wall 

thickness of 0.3 mm is three times lower compared to the expected chewing forces in the 

anterior region.126 
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Table 1. Fracture strength (N)126  

 

 

Reich et al. studied zirconia copings manufactured with Lava CAD/CAM system.  

Different coping thickness between 0.5mm to 0.3mm as well as tangential versus chamfer 

preparation design was utilized.  Four groups of ten copings each made of Y-ZrO2 were 

produced with the Lava™ CAD/CAM system on respective standardized dies made of 

brass. The copings were fixed on the dies with Ketac™ Cem, stored for 24 hours in water 

of 37°C and fracture strength was tested in a universal testing with a crosshead speed of 

0.5 mm/min. The data were statistically compared by One-way Anova and the Student-

Newman-Keuls post hoc routine at p≤ .05. The result of the fracture toughness test 

performed by Universal testing presented that tangential preparation had significantly 

highest fracture forces for 0.5mm (1110 N) and 0.3mm (730 N) thickness of copings. 127 

 

In the study done by Van Der Zel et al. the effect of shoulder design on the failure 

load of zirconia crowns was assessed. Two groups of zirconia coping for anterior 

restorations were studied: overpressed crowns with a zirconia free PTC shoulder (CS) 

and overpressed crowns with zirconia up to the margin (CC). The zirconia-free shoulder 

extended 0.8 mm over the finishing line of the coping. Eight zirconia copings per group 

of first maxillary anteriors were fabricated with CerconBrain CAM system (DeguDent) 

with standard thickness of 0.6 mm. After milling, the copings were sintered at 1350°C to 

Wall thickness Tangential preparation Chamfer preparation 

Mean (SD) Min Max Mean (SD) Min Max 
0,3 mm 908 (115) 714 1185 913 (106) 729 1095 
0,5 mm 1476 (192) 1075 1672 1333 (107) 1180 1527 
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final density, coping was waxed-up to a standard contour, sprued and invested. The PTC 

Ceramic was pressed at 940°C over the zirconia coping and after devesting and 

separation from the sprues the crowns were veneered with two layers CerconCeramS 

porcelain. Crowns were cemented on a CoCr die with zinc phosphate cement and held 

under constant load of 5 kg. Failure loads were measured after vertical compression 

loading at 0.5 mm/min followed by SEM inspection for surface fracture. Failure loads 

[kN (SD)] were as follows: Group CS: 4228(515) and group CC: 5408(806). The study 

presented a significant (p<0.05) decrease of 22 % in breaking strength with the 

overhanging shoulder as compared to fully supported PTC crowns. Furthermore, surface 

fracture analysis revealed crack initiation typically located on the glass-zirconia interface. 

128 

 

Unfortunately, none of the studies implemented the modification of the zirconia-

based coping design in posterior area application.         
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CHAPTER II	

	

1. Abstract 
 
 

Statement of problem: The recommended thickness of zirconium coping supporting 

veneered ceramic restorations is dependent on the manufacturer, ranging from 0.5-0.8 

mm and extending to the cavosurface margins of the tooth preparation. This coping 

design contributes to an opaque and unnatural appearance, particularly at the cervical 

third of the restoration. 

Purpose: The purpose of this study was to investigate the effect of zirconium oxide 

coping modification on the fracture resistance and fracture location of all-ceramic 

restorations using an axial load testing methodology.  Fracture analysis was conducted on 

all samples using a new fracture classification. 

Materials and methods: A stainless steel block was milled to simulate a preparation on 

a maxillary premolar: 1.0 mm wide cervical chamfer, round internal line angles, 1.5 mm 

axial reduction and 2.0 mm rounded occlusal reduction. Thirty-six high-filler content 

resin dies were fabricated to replicate the model. Thirty-six zirconium oxide copings 

(Procera AllZircon) were fabricated according to three different coping designs (n=12) 

using CAD/CAM technology: Design 1) coping extending to cavosurface finish line of 

the preparation, Design 2) coping cut back to the axial cervical line angle, Design 3) 

coping with a lingual full shoulder and cut-back to the middle of the facial axial wall. All 

cores were air abraded (50µm Al2O3), steam cleaned and covered with veneering 

porcelain to predetermined dimensions of 1.5 mm axial and 2.0 mm occlusal thickness. 
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After firing, the samples were air-abraded (50µm Al2O3) at 80 psi, cleaned and dried. All 

crowns were treated with silane coupling agent and cemented with Panavia 21 (J. Morita 

Inc., Tustin, CA, USA) resin cement. Specimens were placed under a 5-kg uniform static 

load for 5 minutes and stored in 100 % humidity at 37ºC for 24 h. Compressive load was 

applied  to the specimen long axis 2 mm from the external occlusal edge in a universal 

load-testing machine at a cross head speed of 0.5 mm/min until failure. One-Way 

ANOVA test was used to determine the significance of the failure loads between groups 

(p<0.01). Failure modes were classified into rating scales for veneering porcelain (P), 

core (C) and die (D). One specimen of each design was examined microscopically at 7.5, 

8.5, 10 and 20X to evaluate the cement space. 

Results: The mean maximum loads in Newtons were similar for Design 1 (1773.13 ± 

235.05), and Design 2 (1653.08 ± 380.63), but significantly lower for Design 3 (1256.71 

± 190.78) at ANOVA p0.01. Pearson Chi-Square showed significant differences in 

fracture modes in porcelain between Design 1 and 2 (0.034) and Design 1 and 3 (0.03), 

while no difference was found between Design 2 and 3 (0.819) at p<0.05. Comparison of 

fracture mode in core material and design revealed significant differences in Design 1 

and 2 (0.018) and Design 1 and 3 (0.007), while no difference was found between Design 

2 and 3 (0.165) at p<0.05. 

Conclusion: No difference was found within mean maximum loads between Designs 1 

and 2 while Design 3 showed decreased maximum load resistance. Porcelain fracture was 

more catastrophic in Design 2 and 3 than Design 1. 
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Clinical relevance: This in-vitro study provides a basis for clinicians to select the 

appropriate all-ceramic zirconia core design that would offer superior esthetics without 

compromising the strength of the restoration. 
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2. Introduction 

 

Patients have become increasingly concerned about the biocompatibility and 

esthetic properties of the materials used in dentistry. The conventional porcelain-fused to 

metal restoration is the most popular treatment option for most dentists due to their long 

term clinical application, well known fabrication technique, high strength with a superior 

metal accuracy and physical properties. Metal ceramic fixed partial dentures have proven 

to be successful 80% after 15 years, and 53% after 30 years and recognized as a gold 

standard in terms of success rate and restoration predictability.1, 2 Porcelain fused to metal 

restorations are composed of a metal casting or coping that is covered with a layer of 

ceramics. The metal coping may be designed to extend all the way to the shoulder margin 

or cut back and replaced with a porcelain shoulder to hide the metal substructure. The 

thickness of the metal or the coping design has an important effect on the success or 

failure as well as on esthetics of the restoration. Maximum coping strength and 

restoration longevity is accomplished by using a rigid coping that will withstand the 

occlusal forces. For adequate strength and rigidity, a thickness of 0.3 to 0.5 mm of metal 

substructure is required.3 According to Kuwata, the 50 degree critical margin angle 

allows the thickness of sufficient amount of metal, 0.3 mm, opaque layer of 0.25 mm and 

porcelain of 0.216 mm.4  The superior marginal seal of 50 µm or less is achieved with a 

featheredge  margin, while occlusal seat of less than 85 µm occurs when a 90º shoulder is 

implemented.5 Metal-ceramic materials possess adequate mechanical properties, but often 

lack the superior esthetics. Gingival discoloration surrounding the margins or even metal 

exposure due to gingival recession have been a common unesthetic and undesirable 
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outcome.6 The modification of the coping has been developed where the framework 

shoulder is cut back 1 to 3 mm to enhance the esthetics, reduce the facial metal margin 

exposure and to allow the higher translucency and natural appearance to occur.7, 8 That 

modification introduced a controversy regarding the framework’s ability to adequately 

resist masticatory forces and maintain the physical properties. It was concluded that 

collarless metal-ceramic restorations were able to withstand the forces when a 90 degree 

shoulder preparation was employed with a metal substructure cut back up to 2 mm.9, 10  In 

many situations where the use of alloy or gold supported restorations was previously 

indicated, they are replaced today by all-ceramic restorations. Ahnlide et al. have 

demonstrated an association between gold allergy and the presence of dental gold 

restorations and indicated that “gold is released from dental restorations and taken up into 

the circulation”.11 It was assumed that well known gingival reactions and eventual tissue 

biological incompatibility to metal often observed in all-metal or porcelain fused to metal 

restorations will be completely eliminated with all-ceramic crown replacement.12  

 

Any dental material requires sufficient physical properties to achieve good esthetic 

results, marginal integrity and high strength to withstand an occlusal load. However, 

elimination of the metal substructure has raised concerns about the resistance to fracture 

of some of the all ceramic restorations.  

 

 The high mechanical properties of the all ceramic restorations has been maintained 

by developing high strength core ceramics that are classified according to chemical 

content: glass ceramics, glass-infiltrated ceramics and polycrystalline ceramics.13 Glass 
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ceramics are partially crystallized, amorphous glasses that are produced by enucleation 

and growth of crystals in the glass matrix phase.14 Glass infiltrated core ceramics are 

glass infiltrated to partially sintered oxides. That group is mainly represented by In-

Ceram Alumina, In-Ceram Spinell and In-Ceram Zirconia. In-Ceram Spinell was 

marketed more recently to improve the esthetic potential. All ceramic restorations offer 

improved esthetic results, compared to metal-ceramic restorations, due to the natural 

translucent and reflection effect.15, 16  Certain all-ceramic restorative materials have been 

recommended based on the translucency of the teeth to be matched. In vivo evaluation of 

specific esthetic parameters inherent to different types of cores was made and revealed 

the relative opacity of alumina while spinell was found to have the ability to blend in with 

the underlying substrate. Nevertheless both materials demonstrated a general lack of 

fluorescence.17  

 

Polycrystalline ceramic material is composed of densely sintered particles with no 

glassy components and is solely processed by CAD/CAM technology. Studies have 

demonstrated that zirconia-based industrially optimized ceramic materials are more 

structurally reliable for dental application and comparatively superior in terms of 

mechanical properties.18-22 Yttrium tetragonal zirconia polycrystals (Y-TZP) is a glass-

free ceramic material containing about 3% mol Y2O3 with high flexural strength and 

fracture toughness. Guazzato et al. investigated the strength, fracture toughness and 

microstructure of ceramic materials, and demonstrated that zirconia-based dental 

porcelain is a stronger and tougher material compared to a conventional glass-ceramic, 

having fracture toughness values ranging from 680-840 MPa and 476-630 MPa, 
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respectively.21  According to Christel et al. yttrium tetragonal zirconia material has a 

flexural strength of 900-1200 MPa and a fracture toughness of 9-10 MPa x m½.23  Other 

studies demonstrated that zirconia-YTZ material has a fracture strength of 420 ± 82.45 

kgF, 913.0 ± 50.2 MPa or 2000 N.22, 24, 25 High physical strength allows the zirconia core 

to withstand normal physiologic occlusal values ranging from 2-150 N as well as extreme 

masticatory forces of 880 N exhibited in bruxism.26-29  

 

In an effort to improve strength, various core substrates were developed that are 

becoming increasingly popular due to improved biocompatibility, physical, mechanical 

and esthetic properties. Significant research has been done to develop materials that 

would combine good strength and better translucency and overall esthetics.15, 16, 30-32  

 

The coping design, its crystalline structure, and length or thickness influences the 

strength, adaptation and, more importantly, the esthetics. Potiket reported that there was 

no significant difference in the fracture strength of teeth restored with all-ceramic crowns 

with 0.4 mm and 0.6 mm aluminum oxide copings, 0.6 mm zirconia ceramic copings, and 

metal ceramic crowns.31 Studies on Procera CAD/CAM using alumina all-ceramic 

copings of 0.4 mm thickness demonstrated clinically acceptable fit at the margin ranging 

from 44 to 59 µm in the premolar to central incisor area respectively.33 Behrens assessed 

the fracture strength of colored zirconia copings with reduced wall thickness to 0.3 mm 

and concluded that the copings demonstrated three times higher fracture strength 

compared to the expected chewing forces in the anterior region.30 Another study affirmed 
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that fracture forces of the coping with reduced wall thickness of 0.3 mm were 

significantly lower (730 N) compared to 0.5 mm thick copings (1110 N).34 

 

Currently the recommended width of zirconium coping supporting the veneered 

ceramic restoration is dependent on the manufacturer and ranges from 0.5-0.8 mm, with 

the coping shoulder covering the margins of the tooth preparation. Unfortunately the 

application of the recommended coping design contributes to an opaque and unnatural 

appearance, particularly at the cervical third of the restoration contour. The purpose of 

this study was to determine the effect of modified zirconium copings on the fracture 

resistance of Procera® All-Zircon. Additionally, the effect of the coping design 

modification on the fracture location was investigated.  
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3. Research Design and Methods 

3.1. Specimen Preparation 

  

A stainless steel master die was machined to simulate the dimensions and contours 

of a crown preparation for all-ceramic crowns with a zirconium core on a maxillary 

premolar: 1.0 mm deep chamfer, round internal line angles, 1.5 mm axial reduction, 2.0 

mm rounded occlusal reduction (Figure 3). Thirty-nine duplicate dies were poured in a 

high-filler content resin (Viade Products Inc., Camarillo, CA, USA) (Figure 3). The 

bottom surfaces of dies were trimmed to achieve an occlusal plane perpendicular to the 

long axis of the tooth. The purpose of using the resin material was to closely mimic a 

natural tooth’s physical properties where the resin’s modulus of elasticity (12.9 MPa) 

resembles that of human dentin (14.7 MPa).35, 36   

 

Thirty-six replicated dies were divided into three groups of 12 each within the three 

coping designs (Table 2). The control group had ceramic copings extended to the 

finishing line of the preparation as recommended by manufacturer (Figure 4). In the 

second group the entire zirconia ceramic coping was cut back to the axial cervical line 

angle (Figure 5). The third group was designed to have a full coping shoulder on the 

lingual and a cut-back to the middle of the axial wall on the facial (Figure 6).  
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Figure 4. Control group - zirconia coping  

a - crown die 
b - zirconia coping 
c - veneering porcelain 

 
 

 
 

a - crown die 
b - modified zirconia coping  
c - veneering porcelain 
d - shoulder cut back 

 

 

 

 

 

 

 

  Figure 6. Facial half cut-back coping 

    a - crown die 
   b - modified zirconia coping  
    c - veneering porcelain 
       d - facial shoulder cut back 

 
 

The bases of two epoxy dies were modified to facilitate the scanning procedure for 

variations in coping Designs 2 and 3 (Figure 3). The three final dies were then scanned using a 

Procera Scanner (Piccolo, Nobel Biocare AB, Goteborg, Sweden) with a 1.25 mm diameter 

d 

d

Figure 5. Shoulder - free zirconia coping 

a 

c 
b 
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scanning probe. The probe contacted the die at a 45-degree angle and moved from the cervical 

margin to the occlusal surface as the die rotated 360 degrees. Once the scanning process was 

completed the electronic order was placed to have zirconia copings fabricated at Nobel Biocare 

Procera production facility (Nobel Biocare, Mahwah, NJ, USA). Thirty-six Procera ® All-Zircon 

copings (12 of each design) were pre-sintered, milled and sintered to a thickness of 0.5-0.7 mm 

following manufacturer’s guidelines. The manufactured coping thicknesses were measured at 

specific locations using a dial caliper (Kori Dial Caliper, Pfingst &Company, Inc., Tokyo, Japan) 

(Figure 7).  

 

 

 

 

The surface of the zirconia cores were air abraded for 10 seconds with 50 µm Al2O3 at 80 

psi (Pure Blast, Macro Cab, Danville Engineering Inc., USA) at a distance of approximately 50 

mm and steam cleaned (Steaman II, Bar Instruments, CA, USA). Low-fusing veneering body 

porcelain (color - A2B Cerabien ZR, Noritake Dental Supply Co., Nagoya, Japan) was mixed 

with wetting agent (Sta-Wet Liquid, Ceramco, Burlington, NJ, USA) and applied to the cores 

using a traditional condensation technique to cover the zirconia coping. The sculpting device 

developed by Philip and Brukl was used to produce constant specified thickness of the veneering 

Figure 7. Coping measuring points 

3 2 1 
F L
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porcelain and flat occlusal surface (Figure 8).37  The dimensions of the finished specimens were 

an axial thickness of 1.5 mm and an occlusal thickness of 2.0 mm. All specimens had two layers 

of body porcelain (A2B) and one glazing layer applied. Additionally, specimens in Design 2 had 

2 layers of body porcelain applied on the shoulder while Design 3 specimens had 4 layers of body 

porcelain applied on the exposed shoulder. The ceramic specimens within Design 2 and 3 that 

required repair had additional veneering porcelain or glazing applied after Custom-Peg Putty 

(Hankins Laboratories, Cupertino, CA, USA) was placed on the internal surface of the specimens 

to maintain internal and margin integrity and to prevent distortion. Each porcelain and glazing 

layer was individually fired (VITA Vacumat 40®T Vident, CA, USA) according to the 

manufacturer’s firing schedule (Table 3). 

  

 

 

 

 

 

 

 

 

    

 

 

 

  

Figure 8. Sculpting device 
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Table 3.  Firing Schedules 

All-
ceramic 
system 

Time (min.) Temp (ºC) Vacuum (ºC)  
Heat Rate 

ºC/min 
 Dry Hold Low High Start Stop 

Cerabien 
CZR Body 

 
7 

 
1 

 
600 

 
930 

 
600 

 
930 

 
45 

Cerabien 
CZR 

Glazing 
powder 

5 - 600 920 - - 50 

  

 

All measurements were performed using a dial caliper and any excessive thickness was 

adjusted with a porcelain bur (#H79DF, Brasseler, GA, USA).  All specimens had a glazing 

powder applied (Cerabien ZR, Noritake Dental Supply Co., Nagoya, Japan) and were fired (Table 

3). After the glazing procedure, the specimens were remeasured to confirm the required 

thickness. The internal surface was air abraded for 10 seconds with 50 µm aluminum oxide at 80 

psi (Pure Blast, Macro Cab, Danville Engineering Inc., USA) at a distance of approximately 10 

mm, ultrasonically cleaned in distilled water for 10 minutes and air dried. Mixed primer and bond 

activator (ED Primer liquid A and ED Primer liquid B, J Morita Inc., Tustin, CA, USA) were 

mixed for 3 seconds and applied to the surface of the duplicate dies. After 60 seconds, dies were 

gently air dried until the glossy surface appeared. The internal ceramic surface was etched with 

37% phosphoric acid (Panavia Etching Agent V, J. Morita Inc., Tustin, CA, USA),  rinsed with 

distilled water and air dried followed by the application of silane coupling agent (Calibra 

Dentsply Caulk, York, PA, USA) that was allowed to air dry. Universal paste and catalyst 

(Panavia 21 OP, J. Morita Inc., Tustin, CA, USA) were mixed for 20 seconds creating a uniform 
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paste and applied to the internal ceramic surface of the individual specimens. All restorations 

were luted with firm finger pressure to the tooth replica. Immediately after cementation the 

specimens were placed under a 5-kg uniform static load for 5 minutes and cement excess was 

removed. To accomplish complete polymerization of the resin cement, Oxyguard II (J. Morita 

Inc., Tustin, CA, USA) was placed around the restoration margins. Following removal of residual 

cement, the specimens were stored in 100% humidity at a temperature of 37˚C for 24 hours.        

           

                            

2.2 Strength and Fracture Location Test Measurement 

 

A stainless steel rod 1.0 mm in diameter was placed 2 mm from the external edge of the 

restoration over the occlusal surface of each specimen. Each bonded specimen was held with a 

metal device and axially loaded using a screw-driven Instron Universal Testing Machine (Model 

5560, Instron Corp., Canton, MA, USA) at a cross head speed of 0.5 mm/min until fracture 

occurred. Fracture initiation was determined by the appearance of a dip on the computerized chart 

and the sound of the fracture. The maximum and fracture loads were quantified for each group of 

12 specimens to obtain a range, mean value and standard deviation. All samples were visually 

evaluated and the mode of fracture was classified according to a classification proposed by Fotek 

(Table 4). A rating greater than 0 in any of the 3 parameters tested was recognized as clinically 

unacceptable. To examine the space and cement thickness one sample was selected from each of 

the designs (Design 1- #2, Design 2- #10, and Design 3- #12) in order to represent an average of 

fracture mode frequencies and maximum load values. Each of those specimens was reassembled 

with cyanoacrylate cement (Super Glue, Super Glue Corp., Hollis, NY, USA) and embedded in 
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self-curing methacrylate based resin (Koldmount, Vernon-Benshoff Co., Albany, NY, USA). All 

three samples were sectioned parallel to the facial-lingual long axis of the die and through the 

center using a low-speed diamond saw (SBT model 650, South Bay Technology Inc., San 

Clemente, CA, USA) under distilled water cooling (Figure 9). Each of the sectioned samples was 

polished under water cooling with 400 grit silicon carbide paper (Forcimat, Micro Star 2000, Inc., 

Concord, Canada) (Figure 10). Photographs were taken with a 35 mm Nikon camera (Nikon 

SMZ1500, Nikon Inc., Japan) and the Spot Advanced Software (Diagnostic Instruments, Sterling 

Heights, MI, USA) at 7.5, 8.5, 10 and 20X magnification. To evaluate the fracture resistance of 

the epoxy die, twelve samples were tested using universal testing machine where the stainless 

steel rod 1.0 mm in diameter was placed in the center of the occlusal surface of each die. Each 

specimen was held with a metal device and axially loaded at a cross head speed of 0.5 mm/min 

until fracture occurred. The maximum and fracture loads were quantified for each of the twelve 

specimens to obtain a range, mean value and standard deviation. 
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     Table 4. Fracture Classification 

P (porcelain) C (coping) D (die) 

0 - no evidence of fracture 0 - no evidence of fracture 0 - no evidence of fracture 

1 - fracture line 1 - crack line (closed) 1 - horizontal fracture 

2 - chip not extending more 
than ½ of the crown 
circumference 

2 - fracture line (open) 2 - vertical fracture 

3 - chip extending more 
than ½ of the crown 
circumference 

3 - chip 3 - combination fracture 

4 - chip infringing the 
shoulder 

 
 

 

        

 

 

                       

 

 

 

 

 

                                                                                                                                                           

 

  

                                                

Figure 9. Diamond saw 
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4. Statistical Analysis of Data 
 

Mean fracture strength values were analyzed using independent student t-test. A one-way 

analysis of variance (ANOVA) was carried out to determine the presence of statistical difference 

in maximum load and fracture load among the three coping designs. Tukey multiple comparison 

test was used to determine statistical significance among the three coping designs. Pearson Chi-

square test was used to determine whether or not paired observations on both variables (substrate 

and design) were independent of each other. All statistical analysis was carried out using 

statistical software (SYSTAT Software Inc., Evanston, IL, USA) at  α=0.05. 

 

 

Figure 10. Polisher 
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5. Results 

 

Table 5 shows the coping thickness values (Figure 7) ranging on the cervical (locations 1 

and 2) from 0.4-0.6 mm, axial (location 3) from 0.6-0.7 mm, occluso-axial line angle (location 4) 

from 0.8-0.9 mm, and mid-occlusal (location 5) from 1.1-1.3 mm. Means and standard deviations 

for maximum load (N) for the three experimental groups are as follows: Design 1, 1773.13 (± 

235.05); Design 2, 1653.08 (± 380.63); Design 3, 1256.71 (± 190.78) (Tables 6, 7). Means and 

standard deviations for fracture load (N) for the three experimental groups are as follows: Design 

1, 1612.87 (± 469.92); Design 2, 1621.86 (± 419.62); Design 3, 1222.62 (± 191.94) (Table 6, 7). 

The one-way ANOVA test showed that there was a statistically significant difference for the 

fracture strengths of maximum (Max. Load) and fracture loads (Fx. Load) within the three 

designs at α=0.05. There was a highly significant difference for maximum load (p<0.001) and 

fracture load (p=0.02) (Table 7). Tukey test for maximum load comparison revealed: no 

statistically significant difference between Design 1 and Design 2 (p=0.553), a highly significant 

difference between Design 1 and Design 3 (p<0.001) and a significant difference between Design 

2 and Design 3 (p=0.004) (Table 7). Tukey test for fracture load comparison revealed: no 

significant difference between Design 1 and Design 2 (p=0.998), a significant difference between 

Design 1 and Design 3 (p=0.044) and a significant difference between Design 2 and Design 3 

(p=0.038) (Table 7). The mean value of maximum load for Design 3 was 30% lower than mean 

value of maximum load for Design 1 and 24% lower when compared to Design 2. 
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Coping Thickness 

Design Sample 1 2 3 4 5 6 
1 1 0.4 0.6 0.7 0.9 1.2 - 
1 2 0.5 0.5 0.7 0.9 1.2 - 
1 3 0.5 0.6 0.7 0.9 1.2 - 
1 4 0.5 0.6 0.7 0.9 1.2 - 
1 5 0.4 0.6 0.7 0.9 1.1 - 
1 6 0.4 0.5 0.7 0.9 1.2 - 
1 7 0.4 0.6 0.7 0.9 1.1 - 
1 8 0.4 0.6 0.7 0.9 1.2 - 
1 9 0.5 0.6 0.7 0.9 1.2 - 
1 10 0.5 0.6 0.6 0.9 1.2 - 
1 11 0.5 0.6 0.7 0.9 1.2 - 
1 12 0.4 0.5 0.7 0.9 1.2 - 
2 1 - 0.4 0.7 0.8 1.2 - 
2 2 - 0.4 0.7 0.8 1.3 - 
2 3 - 0.4 0.7 0.8 1.2 - 
2 4 - 0.4 0.7 0.8 1.1 - 
2 5 - 0.4 0.7 0.8 1.2 - 
2 6 - 0.5 0.7 0.8 1.2 - 
2 7 - 0.4 0.7 0.8 1.2 - 
2 8 - 0.4 0.7 0.8 1.2 - 
2 9 - 0.4 0.7 0.8 1.2 - 
2 10 - 0.4 0.7 0.8 1.2 - 
2 11 - 0.4 0.6 0.8 1.2 - 
2 12 - 0.4 0.7 0.8 1.2 - 
3 1 0.4 0.5 0.7 0.9 1.1 0.4 
3 2 0.4 0.5 0.6 0.9 1.1 0.4 
3 3 0.5 0.6 0.7 0.9 1.1 0.4 
3 4 0.5 0.6 0.7 0.9 1.1 0.4 
3 5 0.4 0.5 0.7 0.9 1.2 0.5 
3 6 0.4 0.5 0.7 0.8 1.2 0.5 
3 7 0.5 0.6 0.7 0.9 1.1 0.4 
3 8 0.5 0.6 0.7 0.9 1.1 0.4 
3 9 0.5 0.5 0.7 0.9 1.2 0.4 
3 10 0.4 0.5 0.7 0.9 1.2 0.4 
3 11 0.4 0.5 0.7 0.9 1.1 0.4 
3 12 0.4 0.5 0.7 0.9 1.1 0.4 

 

Table 5. Coping Thickness Values for Design 1, 2, 3 (Figure 7, page 99) 
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Max Load (N) Fx  Load (N) 

Design 1 2 3 1 2 3 

# of 
samples 

12 12 12 12 12 12 

Minimum 1464.98 1042.74 1011.14 667.47 884.90 991.09 

Maximum 2129.32 2195.19 1706.22 2096.16 2195.19 1663.95 

Mean 1773.13 1653.08 1256.71 1612.87 1621.86 1222.62 

Variance 55248.10 144875.96 36394.58 220821.33 176083.28 36840.64 

Std Dev 235.05 380.63 190.78 469.92 419.62 191.94 

 
 

 

 

Design Mean Max Load (N) Mean Fx Load (N) 

1 1773.13 ± 235.05 a 1612.87 ± 469.92 a 

2 1653.08 ± 380.63 a 1621.86 ± 419.62 a 

3 1256.71 ± 190.78 1222.62 ± 191.94 

 

 

 

Table 6. Maximum Load and Fracture Load Values for Design 1, 2, 3 

Table 7. Mean Values and Standard Deviations for Maximum Load and Fracture Load 
(Design 1, 2, 3) 

 Values with the same letter (a) are not significantly different at α<0.05 
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Fracture mode distribution within the porcelain, coping and die is presented in Table 8, 9, 

and 10 respectively. None of the samples fractured at porcelain mode (P) 0 and 1 (according to 

the classification in Table 4, page 104); therefore for statistical analysis fracture mode rating of 

porcelain 2, 3 and 4 was used.  

 

 

PORCELAIN 

Rating 
 2  

chip<50% 
3 

chip>50% 

4 
chip to 

shoulder 
Total 

Design 1 5 6 1 12 

Design 2 2 3 7 12 

Design 3 3 2 7 12 

Total 10 11 15 36 

 

 

Due to the porcelain fragility, the fracture line in some of the samples transformed to a chip. 

Therefore, for statistical analysis fracture mode rating of 2 and 3 within the coping (C) were 

combined and called 2. 

 

 

COPING 

Rating 
0 

no fracture 
1 

crack line 

2 
fracture line / 

chip 
Total 

Design 1 12 0 0 12 

Design 2 6 3 3 12 

Design 3 5 6 1 12 

Total 23 9 4 36 

Table 9. Fracture Mode Rating in Coping within Design 1, 2, 3 

Table 8. Fracture Mode Rating in Porcelain within Design 1, 2, 3 
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For statistical analysis the fracture mode rating of 2 within the die (D) was disregarded 

since none of the dies fractured vertically, therefore 0, 1 and 3 were used.  

 

 

DIE 

Rating 
0 

no fracture 
1 

horizontal 
3 

horizontal/vertical 
Total 

Design 1 8 4 0 12 

Design 2 7 3 2 12 

Design 3 12 0 0 12 

Total 27 7 2 36 

 

 

Pearson Chi-Square tests were used to assess statistical significance between each substrate 

and different coping designs. A significant difference was found for porcelain fracture mode 

between the Designs 1 and 2 (p=0.034), as well as Designs 1 and 3 (p=0.03), whereas no 

significance was found between Designs 2 and 3 (Table 11). Statistical analysis of coping 

fracture mode within designs using Pearson Chi-Square test revealed a significant difference 

between Designs 1 and 2 (p=0.018), as well as between Designs 1 and 3 (p=0.007). No 

significance was found between Designs 2 and 3 (Table 12). The same test was used to 

investigate the significance of the fracture mode in the dies between designs (Table 13). Designs 

1 and 2 were significantly different from Design 3 but were similar to each other. All samples in 

Design 1, 2, and 3 had fracture propagating from the point where the load was applied.  

 

 

Table 10. Fracture Mode Rating in Die within Design 1, 2, 3 
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 Pearson Chi-Square - Design - Porcelain 

Comparisons p value Significance 

Design 1: Design 2 0.034 significant 

Design 1: Design 3 0.03 significant 

Design 2: Design 3 0.819 nonsignificant 
 

 

 Pearson Chi-Square - Design - Coping  

Comparisons p value Significance 

Design 1: Design 2 0.018 significant 

Design 1: Design 3 0.007 significant 

Design 2: Design 3 0.165 nonsignificant 
 

 

Pearson Chi-Square - Design - Die 

Comparisons p value Significance 

Design 1: Design 2 0.331 nonsignificant 

Design 1: Design 3 0.028 significant 

Design 2: Design 3 0.043 significant 
 

 

Figures 20-29 are representative of the three selected samples from each of the three 

designs examined under an optical microscope. Visually the largest gap between the coping and 

the die was seen in Design 1 and Design 3, where the thickest cement film was noticed on 

occlusal surfaces, while the axial wall cement film was thinner. Design 3 had the largest cement 

space within the occlusal surface and facial axial wall. All of the designs had a thick cement 

Table 12. Coping Pearson Chi-Square Test  

Table 11. Porcelain Pearson Chi-Square Test  

Table 13. Die Pearson Chi-Square Test  
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space at the cervical margin. Figures 23-26 show the marginal gap in each selected sample at 20X 

magnification. Figures 27-29 demonstrate the occluso-axial surfaces and coping adaptation to the 

cemented dies at magnification of 20X. It is clearly observed that the axio-cervical line angle had 

the poorest coping adaptation to the die, whereas the axial surface of the coping is well adapted 

and further cement space appears to be significantly thinner. The cement space on the facial axial 

surface of the Design 3 is more evident than on the lingual axial surface (Figures 25, 26). 
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Figure 20. Sectioned crown (Design 1) at 10X 
magnification 

Figure 21. Sectioned crown (Design 2) at 10X 
magnification 

Figure 22 Sectioned crown (Design 3) at 10X 
magnification 
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Figure 23. Sectioned crown (Design 1) at 20X 
magnification 

Figure 24. Sectioned crown (Design 2) at 20X 
magnification 

Figure 25. Sectioned crown (Design 3 - facial  
surface) at 20X magnification 

 

Figure 26. Sectioned crown (Design 3 - lingual    
surface) at 20X magnification 
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Figure 27. Sectioned crown (Design 1 - axio-
occlusal surface) at 20X magnification

Figure 28. Sectioned crown (Design 2 - axio-
occlusal surface) at 20X magnification 

 

Figure 29. Sectioned crown (Design 3 - axio-
occlusal surface) at 20X magnification 
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6. Discussion 

 
The high flexural and fracture strengths, biocompatibility and esthetic appearance of all-

ceramic zirconia core restorations potentiates their ability to replace porcelain fused to metal 

restorations. Nevertheless, the zirconia coping material is characterized by an opaque line at the 

cervical margin.  In order to improve the diminished esthetic appearance and mask this inherent 

flaw, clinicians attempt to modify the coping by reducing its margin thickness. The effect of the 

coping’s modification on the success or failure of the restoration has not been investigated.  

 

The aim of the present study was to determine and compare the fracture strength and 

fracture mode of three different zirconia coping designs. The three investigated Procera All-

Zircon coping designs were as follows: 1) coping extended to cavosurface margin; 2) coping cut 

back to axial wall; 3) coping cut back 3mm from the facial cervical margin. Fracture strength 

values were obtained by axially loading the crowns to fracture using an Instron Testing Machine. 

 

Fracture strength test is defined as a test where samples are loaded axially, in this case at 90 

degree angle, using a stainless steel rod of a set diameter and specific load rate until fracture of 

the specimens occurs. This type of test is relatively easy to perform and produces rapid and 

predictable results. Nevertheless, load to fracture testing does not mimic the intraoral 

environment where saliva and intermittent masticatory occlusal forces are present. Although the 

specimens were kept in humidity using distilled water for 24 hours, this did not reliably mimic 

salivary ionic content that might possess detrimental effect on the long-term success of the 

restoration.  Aging, the mechanical property of zirconia degradation, is referred to as progressive 
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spontaneous material transformation from the tetragonal phase to a monoclinic phase at 

temperatures above 200 ºC and in the presence of water or vapor. This process reduces material 

toughness and density through the formation of micro and macro porosities that further propagate 

crack formation.38 Zirconia performance and its stability were reported in numerous studies that 

gave evidence of multifactorial parameters acting on the zirconia properties, such as yttria grain 

size, residual stress, environment moisture content, distribution of flaws as well as oxides and 

their concentration.38, 39 

 

The normal physiologic masticatory forces within the anterior dentition are maintained at 

about 108 Newtons while within the posterior dentition, a greater force was observed with a 

range between 2-150 N.26-29 It has also been shown that masticatory forces are highly gender 

dependant where females expressed a smaller occlusal load than their male counterparts.29  When 

bruxism occurs, the biting forces can significantly increase up to 500-880 N.40, 41  

 

From a clinical point of view, the primary role in determining long-term restoration success 

is ability to withstand dynamic material fatigue. In the case where material fatigue occurs, crack 

initiation and slow progression will lead to eventual material failure. In vitro restorative material 

evaluation is definitely a valid method for preliminary testing of material fracture resistance, but 

undoubtedly does not reliably provide a true clinical model. 

 

 The present study does not replicate the physiological tooth mobility which has been 

demonstrated to possess a decisive role in the evaluation of fracture resistance. The chewing 

simulation tests implemented for alumina fixed restorations with and without the artificial 

periodontium showed the fracture resistance values of 676 N and 256 N respectively.42  
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Therefore, if nearly a threefold force increase was necessary for failure to occur within a 

periodontally supported dentition as shown by Rosentritt et al., we could make an assumption 

that the fracture resistance values of 1256-1773 N observed within this study should translate to 

intraoral forces of over 3000 N.  

 

Literature evidence provides abundant support to state that zirconia-based ceramics are 

stronger and tougher than conventional glass ceramics.21 Since all of the tested specimens 

exceeded the normal physiologic as well as habitual biting force values, it can be presumed that 

all tested zirconia coping modifications have the potential to withstand both physiologic and 

pathologic occlusal forces and remain intact during load.  

 

The cementing medium and surface treatment of the restorations has an influence on 

material strength. The methodology included etching and sandblasting with 50 µm aluminum 

oxide. According to Zhang et al., aluminum oxide abrasion may propagate crack formation and 

decrease fracture toughness.43 Due to the methodology in this study, the inherent crack flaws may 

have had a detrimental and hidden impact on the test results. However, silanization and 

phosphate containing cement (Panavia 21/F) have been shown to significantly increase the bond 

strength of the restoration.44-46 This particular luting agent has a low film thickness of 19 µm that 

allows it to flow into microscopic porosities, including microcracks, improving the 

micromechanical retention and the fracture resistance of the restoration.47 The intimate bonding 

provides a “die-crown” unit effect, which reduces the chance of the stress creating failure of the 

restoration by allowing partial stress factors to be transferred to the die. All the dies, tested for the 

fracture resistance, exhibited similar strength values (541.66 ± 20.10 N) which show consistency 

within the epoxy specimens. Lower fracture values of the epoxy dies compared to values of the 
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A critical aspect in fracture prevention is the precision of fit between the copings and their 

respective dies. The clinical success of the CAD/CAM restorations depends on their mechanical 

properties as well as restoration design and accuracy of the CAD/CAM process. Marginal fit of 

cemented prostheses in the 25 to 40 µm range has been suggested as a clinical goal.48 Within the 

present study, visual inspection of selected samples under 20X magnification revealed a lack of 

cement space uniformity. A noticeably larger cement space was observed on the occlusal surfaces 

and cervical margins of all specimens. The cervical internal line angle showed decreased 

adaptation of the coping that could be explained by an inadequate intimate contact of the 

scanning probe which was larger in diameter than the axial-cervical line angle of the shoulder 

preparation. This results in a larger cement space and possibly in a weak area, thereby 

contributing to coping fracture. A second assumption could be made from the manner the coping 

is fabricated whereby it is designed to be 20% larger than the final coping to accommodate the 

shrinkage during the sintering process. Also, coping without shoulder support may seat deeper on 

the preparation and adapt more accurately to occlusal and axial walls of the preparation. Lastly, 

the potentially compromised fit of the coping could also occur due to die variations between the 

scanned dies and those being used for cementation. The two types of dies used should be 

identical; nevertheless, microscopic variations may occur and influence the coping to die 

adaptation. The selected specimen within Design 2 had a thicker cement space at the marginal 

gap which could be explained by the condensation technique of the veneering porcelain, and/or 

additional shrinkage of the unsupported porcelain during the firing process even though the peg-

putty was used with the intent to prevent such marginal discrepancy. A larger cement space was 

also found on the facial wall of the coping which was cut back 3 mm from the facial margin 

(Design 3). This again could be an inherent flaw of the fabrication and firing process compared to 

fabrication and firing of the other 2 coping designs. The increased cement space could be 
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detrimental to the specimen’s fracture resistance due to the presence of a larger gap between the 

restorations and dies. Additionally, it is possible that the substantial area of overlaid porcelain 

that remained unsupported in Design 3 could have a detrimental effect on the fracture values 

observed. This was previously described by Van Der Zel et al., where unsupported crowns with 

shoulder free zirconia copings had 22% lower breaking strength than those with supported 

margins.49 An interesting speculation was made by Tuntiprawon et al. who stated that the greater 

the cement space the less force is needed to fracture the ceramic. 50 Therefore, if we could control 

the processing, scanning and cementation errors, we would in consequence improve fracture 

resistance of all 3 coping designs.      

  

 The zirconia material has an inherent strength but in the fabrication process of the desired 

restoration its strength may increase or decrease resulting from improper handling techniques. 

The process begins when the coping is designed to produce proper fit, then it may be altered by 

sintering, aluminum oxide abrasion, the number and temperature of firings, finishing techniques, 

bonding agents used and lastly by the constant onslaught of saliva and mastication. Other factors 

that could affect fracture resistance could be a mismatching of coefficient of thermal expansion 

between the coping and veneering porcelain. In this study both materials had similar coefficients 

of thermal expansion (coping had slightly higher expansion than veneering porcelain) therefore 

coefficient of thermal expansion discrepancy did not play a crucial role. Comparison of the 

individual specimens revealed significant variation in fracture strengths (N); 1464-2129 for 

Design 1, 1042-2195 for Design 2, and 1011-1706 for Design 3. The wide range in failure values 

within each design could be a result of different number of firings required to accommodate the 

margin veneering porcelain shrinkage and to build up the shoulder porcelain not supported by the 
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coping as well as operator inexperience. These two factors may have inadvertently introduced 

flaws into the veneering ceramic that would remain hidden and undetected.  

 

The results of the fracture tests on three coping designs clearly present evidence that the 

coping modification within the shoulder of the preparation (Design 2) had approximately 7 % 

lower strength than the original coping model (Design 1). However, the stress resistance of the 

restoration with the coping cut back 3 mm on the facial surface (Design 3) was significantly 

reduced by 30 % compared to the original design (Design 1).  

 

It is controversial whether the variable of anatomical morphology or constant coping 

thickness should be considered. However, Fisher’s study demonstrated that fracture strength 

increased by 30% in specimens with an anatomical design of the framework.32 The presented 

research used a concave occlusal surface on both coping and veneering porcelain. Therefore, it 

can be speculated that the fracture strengths could have been lower with constant coping 

thicknesses. Wakabayashi, on the other hand, related the core/veneer thickness ratio of the 

specimens to crack formation in bilayered ceramics and determined that crack initiation starts 

more readily within a thin veneer.  The study also showed that as the veneer thickness increases, 

concomitantly increasing the veneer to the core ratio, the crack initiation changes its origin from 

the veneer to core.51 The standard coping thickness recommended for the Procera All-Zircon 

system is 0.6 mm. The present study was designed to standardize the absolute restoration 

thickness while maximizing final fracture results by maintaining coping thickness uniformity. 

The measurements of each individual coping at different surfaces were consistent and ranged 

from 1.1-1.3 mm on occlusal surfaces, 0.6-0.7 mm on axial surfaces and 0.4-0.5 mm at the 

margin. With the veneering porcelain in place, a total restoration thickness of 1.5 mm was 
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maintained for the axial wall and 2.0 mm for the occlusal surface, thereby the core/porcelain ratio 

was approximately 1:2.3 for axial and 1:1.7 for occlusal surfaces. Contradicting Wakabayashi’s 

data, fracture load values did not seem to be affected by the coping margin thickness having a 

low core/veneer ratio. This study also did not provide any evidence of the difference in the crown 

strength that would result from a minimal change of coping thickness that was again suggested by 

Wakabayashi. Although the research data shows that there was not any difference between the 

frequency of material fracture at the axial (1:1.7) versus occlusal (1:2.3) position, a general trend 

was observed whereby the fractures most frequently occurred at the junction of the two.  

Possibly, there may be a detrimental effect of a sharp core/veneer ratio shift or the manner stress 

is distributed at the veneering edge. Additionally, a frequent porcelain chip extending to the 

shoulder was observed in Design 2 and Design 3 where the coping margin thickness was thinned 

out, increasing the core/porcelain ratio.  

  

Ceramics have been a material of choice advocated to fulfill the principles of esthetics and 

where a natural look is desired. However, clinicians have been struggling with white pigment and 

an opaque appearance at the margin area of the zirconia supported restorations. As the light 

enters the zirconia supported ceramic restoration, part of it is reflected, while the remaining light 

penetrating enamel is scattered and possibly gives an effect of shadowing the tooth structure 

adjacent to the restoration. The light reflection is commonly affected by ceramic thickness and 

the  reduction of the coping at the cervical margin improves esthetics but leaves the veneering 

porcelain with a surface area that is not supported by the coping.15, 52  As a result, the veneering 

porcelain has a lower load bearing capacity and greater probability of fracture. Visual inspection 

of the tested specimens revealed that in cases where the coping was modified, the veneering 
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porcelain usually fractured to the cervical margin in addition to the occluso-axial load bearing 

point.  

 

In addition to discussing fracture resistance values, it is important to analyze the fracture 

modes in each experimental group. Fractures observed at the interface between the ceramic core 

material and the veneering porcelain, have been commonly related to the stress that is introduced 

by differences in elastic modulus between the core and veneering porcelain, prosthesis geometry 

and size and location of flaws in the material. 53 The present study, where the load was applied 2 

mm from the external edge of the restoration, closely reproduced clinical function where the 

occlusal load is applied at certain shearing location onto the tooth structure. The effect of the 

forces during the fracture test exceeded the mechanical capacity of the veneering porcelain, 

resulting in catastrophic failure. For the purpose of standardization and clear visual explanation 

of the fracture location a new classification was developed. In all groups, fractures appeared first 

on the restoration surface prior to the die fracture, which was affirmed by Burke.54 Microscopic 

examination performed in one of the studies found the origin of failure at the interface between 

ceramic coping and luting agent.53 Another common finding in the literature is delamination. 

Nevertheless, in this study, only one specimen from Design 3 had a core delaminated from the 

die and cement and that could be attributed to a technique flaw or improper cement flow. Another 

factor, previously mentioned in the discussion that influences the failure location is the 

core/porcelain ratio. Cracks initiated within the porcelain surface approached the core but were 

arrested at the interface between the veneer and the core. These results were in agreement with 

the study done by Wakabayashi. 51 All of the specimens demonstrated chipped porcelain in the 

area where load was applied and in cases where the veneering porcelain was not supported by 

coping, the fracture occurred additionally at the cervical area. Design 2 (p=0.034) and Design 3 
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(p=0.03) had significantly higher rating values of the porcelain fractures than Design 1. The 

porcelain delamination has been commonly attributed to the elastic modulus and fracture 

toughness mismatch between core and porcelain.55 From the clinical perspective, the fracture of 

the coping, either crack, chip or fracture line, catastrophically affects the success of the 

restoration, yet the suggested fracture mode categories help determine the severity of the fracture 

within the different coping designs. Specimens in Design 2 (p=0.018) and 3 (p=0.007) had 

significantly higher rating values of coping fracture locations than samples in Design 1. 

 

It is up to the practitioner to become familiar with the correct protocol during all procedures 

for the fabrication of ceramic crowns, beginning from the treatment plan, preparation and 

restoration design, and finishing with the cementation process. Failure to do so can significantly 

diminish the success of the restoration. 

 

The study was designed to closely reproduce the clinical and laboratory situation, knowing 

that in-vitro experimental conditions do not accurately replicate those found in the oral cavity (in-

vivo). The results of this study, where the coping modification improves the esthetics by 

diminishing the margin opaque line without compromising the strength, introduce a promising 

outcome. Nevertheless, clinical trials need to be implemented to determine the effects of cyclic 

loading, saliva and function on the proposed coping design modifications. 
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7. Conclusions 
 

 
Within the limitations of this study, the following conclusions can be drawn: 

 

1. Cutting back the coping shoulder to the axial wall did not significantly decrease the 

fracture resistance of zirconia ceramic crowns.  

2. Cutting back the coping shoulder 3mm from the cervical margin significantly decreased 

the fracture resistance of zirconia ceramic crowns. 

3. The fracture mode of veneering porcelain was more catastrophic in the modified zirconia 

coping restorations. 

4. The fracture mode of the zirconia coping was more catastrophic in the modified zirconia 

coping restorations. 

5. All three tested zirconia coping modifications have the potential to withstand 

physiological occlusal forces.  
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8. Clinical Significance 
 

The finding of this in vitro study allows clinicians to select with confidence the appropriate 

all-ceramic zirconia restoration design that would offer superior esthetics without compromising 

the strength.  
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10. Appendix 

Experimental Flow Chart 

  

Die modification for individual design 

Impressions 

High-filler resin replicas 

Coping with full shoulder  Facial cut-back coping 

Porcelain veneering (sculpted) 

Crown cementation 

Static load - 5kg for 5min 

24h Storage in 100% humidity 

Strength test and fracture location analysis

Data analysis  

Shoulder free coping 

Die scanning for individual design 

Stainless steel die fabrication 

Coping milling for individual design 
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Fracture Mode 

Design Sample P C D 
1 1 3 0 0 
1 2 3 0 0 
1 3 2 0 0 
1 4 3 0 0 
1 5 2 0 0 
1 6 2 0 0 
1 7 3 0 0 
1 8 3 0 1 
1 9 2 0 1 
1 10 2 0 1 
1 11 3 0 0 
1 12 4 0 1 
2 1 2 0 0 
2 2 2 0 0 
2 3 4 2 3 
2 4 3 1 0 
2 5 4 2 0 
2 6 4 2 3 
2 7 4 1 0 
2 8 4 0 1 
2 9 3 1 0 
2 10 4 0 1 
2 11 4 0 1 
2 12 3 0 0 
3 1 2 0 0 
3 2 2 0 0 
3 3 4 1 0 
3 4 4 0 0 
3 5 4 3 0 
3 6 2 1 0 
3 7 4 0 0 
3 8 3 1 0 
3 9 3 1 0 
3 10 4 0 0 
3 11 4 1 0 
3 12 4 1 0 

Table 14. Fracture Mode (FM) of Porcelain (P), Coping (C) 
and Die (D) for Design 1, 2, 3 (Table 4,  page 104) 
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