Eur. J. Inorg. Chem. 2013 • © WILEY-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2013 • ISSN 1099-0682

SUPPORTING INFORMATION

DOI: 10.1002/ejic. 201300802
Title: Isolation and Characterization of Single and Sulfide-Bridged Double [4Fe-4S] Cubane Clusters with 4Pyridinethiolato Ligands
Author(s): Deidra L. Gerlach, Dimitri Coucouvanis,* Jeff Kampf, Nicolai Lehnert*

Figure S1. Mid- (left) and Far-IR (right) spectra of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SMePy})_{4}\right]$.

Figure S2. Cyclovoltammetry of $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SMePy})_{4}\right]$ in MeCN at scan rates: $200 \mathrm{mV} / \mathrm{s}$ (solid) and $50 \mathrm{mV} / \mathrm{s}$ (dotted).

Figure S3. ${ }^{1} \mathrm{H}$-NMR spectrum of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SMePy})_{4}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S4. Mid- (left) and Far-IR (right) spectra of $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]\right.$.

Figure S5. Cyclovoltammetry of $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]$ in MeCN at scan rates: $200 \mathrm{mV} / \mathrm{s}$ (solid), 100 mV / s (dashed), and $50 \mathrm{mV} / \mathrm{s}$ (dotted).

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S7. Mid- (left) and Far-IR (right) spectra of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$.
$\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$

Figure S8. Cyclovoltammetry of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$ in MeCN at scan rates: $200 \mathrm{mV} / \mathrm{s}$ (solid), 100 mV / s (dashed), and $50 \mathrm{mV} / \mathrm{s}$ (dotted).

Figure S9. ${ }^{1} \mathrm{H}$-NMR spectrum of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S11. Mid- (left) and Far-IR (right) spectra of solid isolated after $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]\right.$ was dissolved in 1,2 dichloroethane for several days and recollected by precipitation. The boxes in green indicate signals assigned to $\left(\mathrm{Bu}_{4} \mathrm{~N}_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]\right.$ and boxes in teal indicate signals assigned to $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4} \mathrm{Cl}_{4}\right]$.

Statement for structure determination of $\left(\mathrm{Bu}_{4} \mathbf{N}\right)_{2}\left[\mathrm{Fe}_{4} \mathbf{S}_{4}(\mathbf{S P y})_{4}\right]$.

Although the GooF and R-factors are high but not severe for the preliminary structure for $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]$, the connectivity and chemical identity of the crystal components are readily confirmed for the anion and the two ammonium counter ions. Unfortunately, even though sharp diffraction signals were collected, some unresolved problem (possibly twinning or pseudosymmetry in the crystal) exists which prevents the determination of a final model and is evident in the number of A - and B -alerts in the checkcif file seen in the excerpt included here:

Figure S12. Wireframe overlay of the two symmetry unique anions in the crystal structure of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]$ (hydrogen atoms, disordered ligands, and counter-ions are omitted for clarity).

Figure S13. Wireframe crystal packing of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{4}\right]$ (hydrogen atoms and disordered ligands are omitted for clarity).

Figure S14. Wireframe stereo view of the crystal packing of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$ with hydrogen atoms and disordered ligands omitted for clarity (top) and counter-ions, hydrogen atoms and disordered ligands omitted for clarity (bottom).

Figure S15. EPR spectra for the one electron reduced cluster $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{5}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$ at varying temperatures.

Table S1. Crystal data and structure refinement for $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{4}\left[\left(\mathrm{Fe}_{4} \mathrm{~S}_{4}(\mathrm{SPy})_{3}\right)_{2} \mathrm{~S}\right]$.

Empirical formula	$\mathrm{C}_{94} \mathrm{H}_{168} \mathrm{Fe}_{8} \mathrm{~N}_{10} \mathrm{~S}_{15}$
Formula weight	2366.08
Temperature	$85(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group Monoclinic, $\mathrm{P} 2(1) / \mathrm{n}$	
Unit cell dimensions	$\mathrm{a}=19.807(2) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=23.032(3) \AA \quad \beta=97.860(2)^{\circ}$
	$\mathrm{c}=25.315(3) \AA \gamma=90^{\circ}$

Volume	$11440(2) \AA^{3}$
Z, Calculated density	$4,1.374 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.304 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	5000

Crystal size	$0.47 \times 0.22 \times 0.01 \mathrm{~mm}$
Theta range for data collection	1.85 to 24.39°
Limiting indices	$-22 \leq \mathrm{h} \leq 22,-26 \leq \mathrm{k} \leq 26,-29 \leq 1 \leq 29$
Reflections collected / unique	$164432 / 18681[\mathrm{R}($ int $)=0.1135]$
Completeness to theta $=24.39$	99.4%

Absorption correction Semi-empirical from equivalents
Max. and min. transmission
Refinement method
0.9935 and 0.5794

Full-matrix least-squares on F^{2}
Data / restraints / parameters
18681/266 / 1244
Goodness-of-fit on F^{2}
1.055

Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
$\mathrm{R} 1=0.0562, \mathrm{wR} 2=0.1280$
R indices (all data)
$\mathrm{R} 1=0.1009, \mathrm{wR} 2=0.1476$
Largest diff. peak and hole
1.333 and -0.843 e. \AA^{-3}

