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1. INTRODUCTION.

In modeling economies with differentially informed traders it is crucial to recognize that each

trader will attempt to infer the private information of other traders from observable market statis-

tics. This idea appears in the concept of rational expectations equilibrium. This equilibrium concept

couples the usual market clearing condition with the requirement that each trader's inferences from

market prices be correct. Unfortunately it is not obvious that the information transmission in the

market required by the rational expectations equilibrium concept is feasible given the market insti-

tutions.1 As Radner [1979] points out: "A thorough theoretical analysis of this situation probably

requires a more detailed specification of the trading mechanism than is usual in general equilibrium

analysis."

One approach to a more detailed study of trading mechanisms is to search for a message process

that will implement the desired equilibrium. Reiter [1976] and Jordan [1982a] have developed

message processes which, in virtual time, evolve recursively to a limit point which is a rational

expectations equilibrium. A problem with this analysis is that it ignores all aspects of strategic play,

especially with respect to information revelation. These are important, for example, in describing

the actions of a securities trader with inside information.

An alternative approach to the implementation question is to ask when is there a game whose

Bayes-Nash equilibria coincide with (or at least contain) the desired allocation. Postlewaite and

Schmeidler [1986] and Palfrey and Srivastava [1986] take this approach. Postlewaite and Schmeidler

show that conditions called monotonicity and nonexclusivity in information are sufficient for the

implementability of a social welfare correspondence. Palfrey and Srivastava show that a condition

on information structures, which is essentially equivalent to nonexclusivity, is sufficient for the

implementability of any allocation which would be implementable with full information. They also

show that if an asymptotic version of nonexclusivity is satisfied such allocations are asymptotically

implementable.

Our approach to the study of trading mechanisms is similarly game theoretic in nature. We ask,

when do there exist market institutions-when is there a game-some of whose Bayes-Nash equilibria

are in some sense Walrasian. We addressed this question in Blume and Easley [1983a] for Revealing

Rational Expectation Equilibria. In that paper we showed that nonexclusivity of information is

i This criticism also bears on other expectations equilibrium concepts. See Blume and Jordan'

(1984].
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necessary and sufficient for the implementability of Revealing Rational Expectations Equilibria.

Here we address the implementation question for general Walrasian allocation correspondences.

We find that nonexclusivity in information is a necessary condition in the sense that for a market

economy whose distribution of private information does not have this structure, Walrasian analysis

cannot be used to characterize market outcomes. Our necessary condition for the implementability

of Walrasian allocations is a portion of the sufficient conditions for implementability of arbitrary

allocations. It is, of course, not necessary for the implementability of all social welfare correspon-

dences. In general, as Postlewaite and Schmeidler point out, self selection constraints alone are

both necessary and sufficient for implementability. All of the sufficiency results mentioned above

suffer from the potential lack of economic interest in the implementing mechanism.2

Our research differs both in spirit and in results from the papers cited above. Postlewaite

and Schmeidler and Palfrey and Srivastava look for sufficiency results. The conditions they find,

especially the nonexclusivity condition, are strong. It is easy to think of markets in which this con-

dition would not be satisfied. Thus knowing whether this condition is necessary is very important.

Furthermore, they provide conditions which involve joint restrictions on the economy (preferences

and endowments), information structure, and social welfare correspondence which are sufficient for

implementability. We fix a social welfare correspondence, the Walrasian correspondence, and ask

under what conditions on the information structure is this social welfare correspondence imple-

mentable for all well behaved economies.

In this paper we approach Walrasian equilibrium from a point of view which differs from the

traditional way of talking about rational expectations, but which is close in spirit to the way we

prove theorems about rational expectations equilibrium. We propose an equilibrium information

structure; an equilibrium distribution of information among the traders in the economy. We then

study the properties of all equilibrium allocations which might arise in an economy with the pro-

posed distribution of information. These allocations are said to be Walrasian with respect to the

proposed information structure.

In the usual existence proofs for rational expectations equilibria in the case of finite signal

spaces, we begin with a proposed equilibrium information structure - full information. The ex-

istence proofs answer two questions. First, do markets clear in the generic economy with this

equilibrium information structure? This is trivial for full information, but is not, as we shall see,

2 In our paper we actually construct a mechanism which implements equilibrium allocations,

and indeed, this mechanism is completely uninteresting.
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for other information structures. Second, is this equilibrium information structure realizable in the

generic economy by having the traders observe just equilibrium prices? By "realizable," we mean

that, if traders observe just their own private information and the equilibrium price vector, they

will be fully informed. This second question, of course, is the only issue which needs to be resolved

in the proof of the existence of fully revealing rational expectations equilibria. If, on the other

hand, we were to apply the usual proof technique to the case of non-revealing equilibria, we would

have to answer the first question as well.

Non-revealing equilibrium information structures arise in rational expectations equilibrium

models with high dimensional signal spaces (Jordan [1982b]), models of noisy rational expectations

equilibria (Allen [1985]) and in models with statistically manipulated data (Anderson and Sonnen-

schein [1982]). These papers proceed differently from the fully revealing literature. They identify

the statistic that will be used to realize the equilibrium information structure, and ask if a market

clearing equilibrium exists when traders condition on this statistic and their private information.

Since we will be proving theorems about economies with arbitrary equilibrium information struc-

tures, our implementation results address the models mentioned above, and many other conceivable

expectations equilibrium models as well.3

Walrasian analysis when all traders are identically informed is justified by the belief that the

Walrasian model describes the outcome of some market process. We believe that most of the

trades which occur in the market are transacted at a price at or near the Walrasian market-clearing

price. When we consider markets where differential information is important and apply a rational

expectations equilibrium notion, a further degree of belief is required. We must also believe that

the information most traders have at the time they trade is summarized by the appropriate market

statistic - price, a noisy observation of price, etc. Most of us are more skeptical about this last

dogma than we are about the first. The out-of-equilibrium behavior which drives the market towards

equilibrium will reveal information to any observer, and it would be providential (and therefore

unlikely) that this information would prove to be redundant. Our approach to modeling Walrasian

equilibrium avoids this problem by allowing us to consider any information structure which will

support an equilibrium, without concern for whether it can be realized by some particular market

statistic. If one were to carry out a Walrasian analysis of markets with differentially informed

traders, one should probably consider the broader equilibrium concept we propose. However, the

a Strictly speaking, our results do not address the equilibria found in the last two papers, since

their equilibria are not market clearing.
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results of this paper suggest that we should be reluctant to carry out such an analysis. Only when

private information is distributed in a particular way will there be a set of trading institutions -

a trading process - which will implement the equilibrium for most economies.

The necessary condition for implementability, nonexclusivity in information, requires that each

trader's private information be perfectly predictable by an outside observer who could observe the

private information of all the other traders. Put slightly differently, if the information observed by

all other traders was perfectly transmitted by the market, then the contribution to social knowledge

of any one trader's private information is nil. His information is redundant. When this condition

is false, some trader has truly private information which he may choose to exploit. His ability to

exploit this information destroys the incentive compatibility of any equilibrium allocation.

The necessity of a condition like this in the finite trader case is not surprising, because we know

that traders may have residual market power. More important, then, is our asymptotic analysis for

sequences of economies with ever larger numbers of traders. We demonstrate the necessity of the

straightforward asymptotic version of public predictability in the following sense: If this condition

fails, then the gains to exploiting private information do not disappear as the number of traders

grows.

Our model is presented in section 2. Implementation of expectations equilibria is considered

in section 3. Section 4 contains the asymptotic analysis, and the deeper significance of our results

is discussed in section 5.

2. THE MODEL.

Basic Definitions.

We consider the class of pure exchange economies usually studied in the rational expectations

literature. Let I = {1,. . . ,I} denote the set of traders. Traders must consume non-negative

amounts of L goods. Trader i has a strictly positive endowment wt. The endowment allocation for

the economy is w = (w 1 ,. . . ,wr) E R .. The feasible allocations for the economy are those in the

set
r

i=1

Trader i observes privately a signal whose value is drawn from the set S;. The set of possible values

for the joint signal is S = S1 x - -x Sr. We assume that each S; is finite. The power sets of Si
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and S are denoted by 3, and S, respectively. The set S...; is the set of possible values for the joint

signal of all players other than i. If a is a joint signal, s.; is the vector of signals observed by all

traders other than i.

The random selection of joint signals is described by a probability measure y on S. Let P(S)

denote the set of all probability measures on S. We refer to J E P(S) as an information structure

for the economy.

Each trader i has a utility function u, : R+ x S - R. The number ui(z, s) is the utility

received by trader i when he consumes the consumption bundle z and the realization of the joint

signal is s. We assume:

UJ. For each a E S, u;(z,s) is twice continuously differentiable, strictly differentially concave and

strictly differentiably monotone.

Let U(S) = {(ui,.. . , uI): each u, satisfies U1.}. An economy with joint signal space S

is specified by an endowment allocation, a utility function for each trader and an information

structure. The set of economies with joint signal space S is E(S) = R++ x U(S) x P(S).

We are interested both in the actual outcomes of a trading mechanism and in the predictions

made by an equilibrium concept. These allocations are assumed to depend only upon those vari-

ables specified in the description of the economy.4 The outcome of a trading mechanism and the

prediction of an equilibrium concept are both summarized by an allocation correspondence.

An allocation correspondence is a correspondence F : E(S) x S 1-4 A such that, for each e E E,

F(e, -, -) has measurable graph.

Most generally, we are interested in finding allocation correspondences which are simulta-

neously a description of the outcomes of a trading mechanism and the predictions of a useful

equilibrium concept. In this paper we shall give a condition on information structures which is sat-

isfied whenever, for all economies with that information structure, there is a Walrasian equilibrium

concept whose predictions are satisfied by some trading mechanism.

4' Allowing for random outcomes, such as those that arise in noisy rational expectations models

and approximate rational expectations models, does not change our results. See Blume and Easley

[1985].
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Wairasian Equilibrium Concepts.

In the usual extension of competitive equilibrium concepts to economies with differentially

informed consumers, each trader will choose a consumption bundle to maximize expected utility

on some budget set. These equilibrium concepts are distinguished only by the random variables

upon which each trader conditions his beliefs. We will consider equilibrium concepts wherein each

trader conditions on a private signal and also on some "market-generated" statistic.

The range of the market statistic is taken to be a. Borel subset Y of a complete separable

metric space. Let o(Y) denote the Borel a-field of Y. A statistic is a measurable map 0: S - Y.

Definition. Let 4, be a statistic and let D C E(S) be a set of economies. An allocation

correspondence F is Walrasian with respect to 4 on D if for each e E D there exists a

measurable selection f(e,.) from F such that f;(e,.) is Si-measurable; and for each such f there is

a function p : S -0 ! , the non-negative unit simplex in RL, and I functions f; : S '- R such

that for each i and p-almost all s,

f=(s) E argmax{E{u(z, s)|Isi, } : z > 0, p(s) -(x - w;) = 0}. (1)

Any selection- satisfying these properties is said to be a Walrasian selection. An allocation

correspondence F is Walrasian on D if there is a statistic 0 such that F is Walrasian with

respect to 4 on D.

The function p in the definition is a price function, and is said to support the allocation

correspondence F. Equation (1) in the definition is the usual maximization condition, requiring,

in equilibrium, that every trader is maximizing utility on his budget set. The measurability re-

quirement is that the trader use only information available to him. One might argue that if price

is not the market statistic, demand should still depend upon price. We do not dispute this, and

the effect of this assumption will be to constrain the information contained in the market price.5

Each trader's demand can depend only on what he has observed. Revealing rational expectations

s It is dear that one cannot hope to find equilibria which are Walrasian with respect to any

arbitrarily chosen statistic. The characterization of those statistics which admit Walrasian equi-

libria for some reasonably large class of economies is an important question. It is another way of

asking what ex post information structures are consistent with rational expectations equilibrium.

Important though it is, it shall not concern us here.
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equilibria, the most familiar equilibria to the reader of the rational expectations literature, give rise

to allocations which are Walrasian with respect to the statistic &(s) = s.

Trading Mechanisms.

A trading mechanism is a set of rules for an extensive-form game with incomplete informa-

tion, whose payoffs and information structure are given by the data specified in e. The data in e

is assumed to be common knowledge for all traders in the game. Let Q denote the Bayes-Nash

equilibrium allocation correspondence for the game.

A trading mechanism implements an Walrasian allocation correspondence F on D C E(S)

if, for each e E D, Q(e,.) fl F(e, -) contains a Walrasian selection. This is weaker than the usual

definition of implementability, but nonetheless acceptable in any search for necessary conditions.

A direct mechanism is described by a map m : E(S) x S - A which assigns to each vector

of announced signals an allocation vector. This map assigns payoffs for the following game: Players

observe their private signal si, and then announce a signal ti to the "center". The announced signal

t; may or may not equal the true signal si. The center then chooses the final allocation m(e, t),

which is then distributed to the players. A direct mechanism is said to be incentive-compatible

for the economy e if, when traders from economy e play the game, announcing t; = s; is a Bayes-

Nash equilibrium. A direct mechanism truthfully implements the allocation correspondence F on

D if, for each e E D, the truth-telling equilibrium allocations m(e, s) E F(e, s) p-almost surely.

The importance of direct mechanisms is due to the revelation principle which says in our language

that if any trading mechanism implements the allocation correspondence F on D, then there is a

direct mechanism m which truthfully implements F on D.J

3. IMPLEMENTATION OF EXPECTATIONS EQUILIBRIUM.

Let D(ps) be the set of all economies in E(S) with information structure t. In this section

we identify a necessary condition which must be satisfied by p if some Walrasian correspondence

can be implemented on D(ps). The necessary condition requires that there be no "truly private"

6 It is tempting to say that it is Walrasian with respect to p. But our analytical scheme treats

the statistic as exogenously specified, which the variable p is certainly not.
7 See Myerson [1979] and Harris and Townsend [1981].
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information.'

Definition. An information structure p on S has nonexclusivity in information (NEI) if for

all iEZ and almost all sE S,p(sIs;)iseither0or 1.

Nonexclusivity in information requires that the observation of any one trader be perfectly

predictable from the joint observation of all the remaining traders. As we mentioned in the intro-

duction, versions of this condition have appeared previously in the literature on sufficient conditions

for implementability; and previously we have shown this condition to be necessary for the imple-

mentation of fully revealing rational expectations equilibrium. Here we show that it is necessary

for the implementation of a much larger class of equilibrium concepts.

Theorem 1. If there exists a Walrasian allocation correspondence which can be implemented on

D(p), then y satisfies NEI.

Proof. Our proof of Theorem 1 relies upon the construction of a counter-example. Choose p

which does not satisfy NEI, and let F be an allocation correspondence defined on D(p) x S. The

revelation principle implies that if F is implementable by any mechanism, then it is truthfully

implementable by a direct mechanism. We construct an economy e in D(p) for which truthful

implementation fails. To keep things simple we build a two-good counter-example, but it is clear

that the number of goods is not critical for our construction.

Since NEI fails, there exists a trader, whom we shall identify as trader 1, a signal t1 E S1 and

a set A- 1 C S-1 of positive measure such that, for all s-1 E A- 1, p(t 1 ,s-1) > 0 and there exists

r1 # t1 in Si such that p(ri,s-1))> 0. Let A = suppp fl {s E S :.-1 E A- 1}.

Each trader other than trader 2 has initial endowment w; = (1,1). Trader 2 has endowment

(b,6), 6 > 0. A consumption bundle for trader i is a vector (za, X2). Prices are normalized to sum

to 1, and p is the price of good 1. Trader l's preferences are described by the utility function:

ui x S ) = zi"( ) ~1- 1(s)
U1(,j 11 12

where

8 The name for this COnCept COmes from Postlewaite and Schmeidler [1986]. Palfrey and Sri-

vastava [1986] and Blume and Easley [1983a] have similar definitions, but use the names "public

information" and "publicly predictable information" respectively.
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t j1- fle, if s 1 5=h

where el ~e2. Trader 2's preferences are described by the utility function:

u2 (x, 3) = a2 (3) log x21-+ 32 (3) logzX22 ,

where

1 1 f sl #ti;
1E2,ifs1=t 1 .

and

32 (3)=- El, ifs3 6t;61i 1 = t1.

For traders i> 2,

u,(x, s) = a log zt + (1 -a)og xt2, 0<0~< 1
for all s E S. Let b& be any statistic such that F is Wairasian with respect to i&.

First we will show that 0b and 82 together must reveal trader 1's signal to trader 2. Suppose

not. Then there exists r_.1, t_.1 such that r2 = t2 and

= i(t 17 t_.1) = Y
From the measurability hypothesis, f2(3) depends only on the values of s2 and 10. Thus

f 2(r1,r..i) = f 2(t1,t...1) = (121,x22).

Since F is Wairasian with respect to 0 on p)

(121, x22) E argma~x{E{uL2(x, s) 132,'1.} :x?0 ().( 2

for s = (r1 , r...) and s = (t1,L 1~i). Let E{a 2(s) 132, y} = a2. Calculations show that

C126

p(t1 , TL1)

aa2d
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1-e2+&a26+(I- 2)a
=-I-1+b.

P

But this is impossible since el f 62.

Having shown that trader l's signal must be revealed to trader 2 in equilibrium, we will now

compute equilibrium consumption bundles for trader 1. Again, simple calculations show that for

all s-1,

ti(1 -E2)(I-- 1+6)
1--E2 + 62 +a(I- 2)

12(I- 1+6)
= E2 +6b(1 -e 2 )-+(1 - a)(I -2)'

(1- 1)(I -. 1+b)
zni(ri.,s.1)= 

E~(-l)aI 
2

E1(I - 1+6)
,- +6e 1 +(1-a)(I-2)

For small ei and c 2 , trader 1 prefers the bundle awarded to him when he announces t1 to the bundle

he receives when he announces ri, regardless of the value of s-1.

If trader 1 reports t1 when in fact he has observed r1, two possibilities arise. First, s...1

may be such that the joint realization (t1, s- 1 ) has p-positive probability. In this case, any direct

mechanism which would truthfully implement the Walrasian equilibrium allocation correspondence

F is constrained to award consumption bundle zi(ti,s..1) to trader 1. Second, s..1 may be such

that (t 1, s...1) has p-probability 0. In this case we do not know a priori what the direct mechanism

truthfully implementing F will assign to trader 1, but we know that 0 is a lower bound for the

utility that trader 1 can achieve in this case. We also know that the probability of this happening

is no more than q = Prob{s...1 A1 I t 1}. Since NEI is violated, we know that q < 1. Thus trader

1's expected utility of announcing t1 when he observes r1 is

(1 1-EleE

V(t1|Ir1) > (1 - g)(b + I - 1) - 2

1 -E2 + e2 + a(I -2) ( 2 + 6(1 - 2)+ (1 - a)(I 2)

Similarly, trader l's expected utility from reporting r1 when he observes r1 is

For EiE2 sufficiently small, V(t1|ri) > V(r 1 jri) if

1+ a(I -2)
1q > 1+c(If-2)+6'

Given the information structure p&, from which we can calculate q, we can satisfy this inequality by
choosing 6 large enough. U
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This proof depends upon two ideas. First, there are some economies for which any statistic

must induce full information in a Walrasian equilibrium. Second, this set of economies is suffi-

ciently rich that it includes economies for which truth-telling does not pay. For these economies

a counterexample to implementability is constructed. Similar counterexamples have appeared in

Blume and Easley [1983a] and Palfrey and Srivastava [1986].

Remark. If we topologize E(S) in the usual way (product topology, where utility functions

u;(-, s) are topologized with the topology of C2 uniform convergence on compact subsets of R+) it

can be seen that non-implementability of Walrasian allocation correspondences is robust to small

perturbations in the specification of the counter-example.

Remark. The proof of Theorem 1 contains the proof of another important result. Let us

fix the equilibrium distribution of information and ask, can this distribution arise in a Walrasian

equilibrium? We have shown that there is an open set of economies for which the answer is

"yes" only if each trader is fully informed. This result follows from the measurability condition

in the definition of a Walrasian selection together with the assumption that markets clear. This

issue never arises in most of the rational expectations literature because, when equilibrium is fully

revealing, the measurability assumption has no force. To achieve the kinds of equilibrium discussed,

for example, by Anderson and Sonnenschein [19821 and by Allen (19851, the market-clearing or

preference maximization hypothesis must be dropped. The approximation to market clearing in

these results is not simply an analytical convenience. It is a crucial assumption which is necessary

for any generic (or stronger) existence result.

Remark. Theorem 1 can be trivially extended to economies with a joint signal space that is not

finite by making a finite partition of each Si and setting up the example so that each trader cares

only about which element in the finite product partition occurs.

Remark. NEI is sufficient for implementation (in our sense) of any allocation correspondence

which is ex-post individually rational (individually rational with respect to each player's ex-post in-

formation 0 and si). This includes some Pareto and all Walrasian allocation correspondences. The

key to understanding NEI is to see that in any direct revelation game, misrepresentation can be

detected with probability 1. A mechanism which will implement either such correspondence is the

"punishment mechanism", described in Blume and Easley [1983a]. This mechanism implements a

11



selection f from the allocation correspondence F by assigning f(e, t) if the joint signal t is reported

and t E supp pt, and the endowment allocation otherwise. Since f; is individually rational for each

trader given his information si and 0, it is ex-ante individually rational (individually rational with

respect to s;), and so truth-telling is equilibrium play. Of course this mechanism is completely de-

void of any economic interest. Implementation in our sense requires that each measurable selection

from the prescribed allocation correspondence also be a selection from the Bayes Nash equilib-

rium allocation correspondence from some trading mechanism. The additional assumptions found

in Palfrey and Srivastava's [1986] and Postlewaite and Schmeidler's [1986] sufficiency analysis are

needed to get from implementation in our weak sense to implementation in their stronger sense.

4. INFORMATIONAL SMALLNESS.

Increasing the number of traders does not necessarily cause the implementation problem to

disappear. For the class of examples considered in Section 2, increasing the number of traders

who have imperfectly correlated signals need not shrink to zero the gains from misrepresentation.

Suppose, for example, that traders observe i.i.d. signals with unknown mean. Suppose first that

each trader's preferences depend only on his signal and trader l's signal. It is easy to construct

preferences such that trader l's gains to misrepresentation cannot entirely disappear. The collective

information of traders 2 through I can give an increasingly accurate estimate of the mean of the

distribution from which trader l's signal is drawn, but says nothing about the deviation of trader l's

observation from the mean. Thus NEI, or an appropriate asymptotic version, is violated. If instead

each trader's preferences depend only on his observation and the average of all the observations,

the ability of any one trader to affect the social forecast shrinks as the number of traders grows.

Thus the gains to misrepresentation ultimately vanish. In this section we show that an asymptotic

version of NEI is necessary if the gains from misrepresenting information are to shrink to 0 as the

number of traders grows. Our asymptotic version of NEI is a necessary condition for any version

of approximate implementation in large economies.

We assume that the set of potential traders is countable, and indexed by the positive integers.

All traders have identical finite signal sets: S; = Si for all i and j. Let S = ffi S;. An economy is

specified by identifying the set I = (1,... ,I} of traders who will participate. The joint signal space

for this economy is S' = fls S;. A typical joint signal is denoted by s' E S'. The joint signal of

all traders but trader i is denoted by sig. An information structure is a probability distribution on

S. Let P(S) denote the set of all information structures on S. The information structure for the

economy consisting of players in I is the marginal distribution p1 on S

12



Each potential trader i has a utility function u, : R+ x S P-. R. The number u1(x, s) is the

utility received by trader i when he consumes the bundle x and the realization of the joint signal is

s. The utility function of trader i is assumed to satisfy U1. Let U(S) denote the set of all countable

sequences of utility functions satisfying U1. Let W denote the set of all strictly positive endowment

sequences.

Definition. A sequence of economies is competitive if

a) The endowment sequence is bounded, and

b) The set of all functions {u,(s,.) : R+ '-+ R : s E S, i > 1} is compact in the topology of

C2-uniform convergence on compact sets.

The sequence of economies which we will construct for our counterexample is not a replica

economy, but nearly so. It does satisfy conditions a) and b).

The set of all competitive sequences of economies can be represented by the set E(S) C

U(S) x W x P(S). For any particular element e E E(S), the sequence of economies {e} 1 is

constructed by taking the first I utility functions and endowments, and the information structure p&'

on SV. The set of economies of size I is denoted by E'(S). The set D(p) is the set of all economies

e E E(S) with information structure p. The definitions of the set A' of feasible allocations,

allocation correspondences FI, statistics 0-1, and so forth, are as in section 2. For example, a

sequence {*/} of statistics is a sequence of functions 01 ;' g-+ Y such that O1 is measurable with

respect to the a-field S.

The next definition gives the appropriate asymptotic generalization of NEI.

Definition. An information structure ys has asymptotically nonexclusive information

(ANI) if for all i = 1,..., oo and almost all s E S, limr.... p'(s;|si;) is either 0 or 1.

Asymptotic nonexclusivity requires that the estimate of any one trader's signal from the in-

formation of the other traders approaches perfection as the number of other traders becomes large.

Another way of posing this definition is to say that NEI is satisfied for the entire infinite sequence

of joint signals. A martingale convergence theorem then implies the statement of our definition.

A direct mechanism for E(S) is a sequence of maps {m'}7?., where m' E'(g) x Sr '-- A'

assigns to each vector s' of announced signals an allocation vector. The mechanism is asymptot-

13



ically incentive compatible if for each trader i observing signal si, the gains from announcing

signal ti # s; shrink to 0 as I gets large when every other trader j announces his true observation

s3. This says that truth-telling is an -equilibrium of the direct revelation game described by mi,

and that e can be made arbitrarily small by choosing I sufficiently large. This is weaker than

requiring that a sequence of equilibrium strategies in the direct revelation games converges to a

truth-telling equilibrium.

Definition. A direct mechanism {mr}0 1 truthfully implements an allocation correspondence

{F'}?..on a set of economies D C E(S) if, for each e1 E DI, m'(e', sI) E FI(el, sI) almost surely

with respect to the measure p1i.

Our goal is to demonstrate that the gains from misrepresentation shrink to 0 as the number

of traders increases only if ANIis satisfied. This idea is easily stated by referring to Bayes-Nash

E-equilibria.

Definition. A Bayes-Nash e-equilibrium is a vector of players' strategies for which the payoff

vector is within distance E of some Bayes-Nash equilibrium payoff vector.

Let QI denote the Bayes-Nash E-equilibrium allocation correspondence for the direct mech-

anism MI. We say that a mechanism mi -implements an. allocation correspondence F' if

Q (e',.) fl FI(e', -) #$ i-almost surely. A trivial modification of the revelation principle shows

that if any trading mechanism E-implements an allocation correspondence, then there is a direct

mechanism which truthfully implements the allocation correspondence and for which truth-telling

play is an e-equilibrium.

Put formally, our goal is to prove the following Theorem:

Theorem 1. If there exists a Walrasian allocation correspondence {F'}. 1 which can be E'-

implemented on D(p) with lim .co E' = 0, then j satisfies ANI.

Theorem 1 follows from the following Lemma:

Lemma 1. Let ps violate A NI and let {mr}%1 be a direct mechanism which truthfully implements
a Wairasian allocation correspondence {F'}%.1 on D(p). Then there exists an economy in D(ps)
such that {m 1}g.1 is not asymptotically incentive-compatible.
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The Lemma shows that if y violates ANI, then we can find an economy for which it is impossible

to make truth-telling a Bayes-Nash E-equilibrium of the direct revelation game for large I with

arbitrarily small E. This is the Theorem.

The rest of this section will be devoted to the -construction of a counter-example which will

prove the Lemma. Similar counterexamples have appeared in Blume and Easley [1983a] and Palfrey

and Srivastava [1986].

We will construct a sequence of economies e E E(S) with the property that, if the information

structure does not satisfy ANI, then the gains from misrepresentation do not shrink to 0. In

other words, there is no direct mechanism which truthfully implements any Walrasian allocation

correspondence for the economy e and which is asymptotically incentive compatible. This example

would have great force if it were a replica example - finite numbers of types of utility functions

and endowments, so that only information changed as the economy grows large. Our example is not

quite that. But it is dose. There will be a finite number of endowment types, and all preferences

will be small perturbations from one of a finite number of types. Thus we can be sure that the

source of incentive incompatibility is not a large endowment share or unusual preferences.

Assume that there are two types of traders. The i'th trader of type 1 receives signal s1; and

has utility function

ui(zi, X2) = z "2

where

(i) 1 - E; ifs 1 ; = r1 ;
1 - 2E1if s1 j#r 1 =

and E1; is a member of the set [0,E]. Traders of type 1 are endowed with 1 unit of each commodity.

Let C denote the set fl[0, E] of all sequences (E1, E2, .. ).

The i'th trader of type 2 observes private signal 82j and has utility function

u;(zi, z2) = a2(su)log zl + (1 - a2(su1))logz2,

where

Traders of type 2 are endowed with 6 units of each commodity. Prices are normalized so that they

sum to 1.
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Assume that ANIis violated, and that 0 < h'mr. sI(su = ru1s2,... ,S21) < 1 for some set

of signals A C S with p(A) > 0.

We will proceed exactly as we did in section 3. First we will show that there exist sequences

{Ei}% 1 in E such that each finite economy has only fully revealing equilibria. Then we will show

that for some of these sequences, the gains from false representation for the first type 1 trader do

not shrink to 0.

Let pl(s, y) denote the price of good z1 in the economy of size 21. For traders of type 1,

demand for good z1 is:
a(sui)

fui(s) = .
p1 (a,,4g(s))

For traders of type 2, let a2(s) = E{a2(siu)|s,92i, (s)} denote the conditional expectation of the

state dependent parameter in the type 2 utility function given trader 2i's private observation and

the value of the signal 0. Demand by trader i of type 2 for good x1 is

f2(s) = .(s)
=pl s, I (s))"

Consider the economy consisting of I players of each type, and suppose there exist two signal

vectors sI and r' such that for some trader li, s1o = ru, -I ,I)k (.) = y and pl(s',y)

p'(r, y). Then
a(sli) a(s)

P -1) p I(sI, y)'

which contradicts the assumption that trader li's demand is a measurable function of just his

information and the public signal. Thus p1(s, y) # p'(r, y) implies that, for all i, su # r. Hence

price can be determined by knowing the value of y and any one s1=. The same argument applies to

traders of type 2. Thus price can be written as a function of y and any one private signal.

Now consider the aggregate feasibility constraint:

I I

a1(sii)+ 2(si, y) = I(1 + S)p'(2j, y)'
i=1 i=1

where trader 2j is chosen arbitrarily. It is now easy to see that for almost all Er, au must be revealed

to trader 2j in equilibrium. The aggregate feasibility constraint can be rewritten the following way:

Za1(su)+ (1- 27)ZProb{su = rl se,iy} = 1(1 +6)p(2,t) -1/7.
i=1 i=1
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Let
I I

z(sr) = Za1(s)+ (1- 27y)Z Prob{sul = rls2i,V}.
i=2 i=1

Since the set SI has only finitely many elements and since Or is a function of sg, z(sI) can take on

only finitely many values. Consider the condition

{z(s) + al.(ri.) : . g E SI, si = ru} fl {z(s) + ai(t ) - s EI, sii = tu1 6 rul} = 0.

Falsifying this condition requires that, given e2,... , eI, a number of equalities linear in e must be

satisfied - namely, those of the form:

a+1 = b+ 1 - 2c1

where a and b are values of z(s'). Clearly there can be at most one el which solves any one of

these equations. Thus it is dear that the set GI C of all (El,...) which satisfy the condition for

economies with I traders of each type has full product lebesgue measure. Then G = fl* 1 GI also

has full measure. Any sequence (£i,...) in G has the property that any Walrasian equilibrium is

revealing. This completes the first step.

Now we will show that if el is sufficiently small, it pays the first type 1 trader to announce

ru when he observes su $ ru. Here we abuse notation to write pa(j) - p'r(s,4?(s)). Since the

variable su1 is revealed to all players who care, in equilibrium,

r p 5+76 if r1 1 is revealed,
1i-m0 (s) 1+ (1 - 7)6 iftu # ru is revealed,

where a1 is the average of a1(s1=) over the entire type 1 population. In the limit, a1 is independent

of the announcement of su.

Suppose that the first trader of type 1 observes lu # ru, and suppose he announces ru.

Suppose too that all other traders reveal their true signal. Then asymptotically the first trader of

type 1 consumes the bundle

d i 7'1-Ei-l T

His utility is at least

where q is the asymptotic probability of the lie not being detected. Because ANis assumed to be

false, q > 0. Should he reveal the truth, he gets

17



and his utility converges to

1 - 1 - 2-l ) EI

di1 + 6(1 - )) \-1-6(1 - -7)) '

In these two expressions for asymptotic utility, 61 is a number between 0 and 1 whose precise value

will depend on the joint signal actually drawn. The gains that accrue to our trader by revealing

r1 1 when he does not observe it are greater than 0 so long as

a1 + 1-2e 1 -1 - 57 2f1

( 1 +6 t1 - 7 )1( ( 1- -7

For 6 sufficiently large, and el sufficiently small, the right hand side is approximately

1-7

For 7 sufficiently small, then, the inequality will be satisfied. Since G has full product lebesgue mea-

sure in E, we can choose {E;} 1 in G with arbitrarily small El. This completes the demonstration

of the second step.

5. CONCLUSION.

In this paper we have studied the implementation of Walrasian equilibria in economies with

differentially informed traders. We have shown that unless the economy's information structure

satisfies a distribution condition called nonezclusivity, no Walrasian equilibrium is implementable

by any trading mechanism. Nonexclusivity in information is sufficiently stringent that we view this

Theorem as a negative result. But our analysis takes the distribution of information as exogenous

when in fact the acquisition of information can be determined by market forces. The validity of our

negative interpretation of the results presented here depends on whether nonexciusivity is satisfied

in economies with endogenous determined information structures. We have not addressed this

question here because much preliminary work needs to be done addressing the technological and

incentive issues concerning the production, dissemination and acquisition of information.

At least two further questions about implementing equilibria arise in economies with differential

information. First, if one does not choose to view our results as negative findings, one needs to

go further and ask under what conditions are Walrasian equilibria implementable by reasonable,

economically interesting mechanisms. We know in the case of fully revealing rational expectations

equilibrium that nonexclusivity is sufficient (Blume and Easley [1983a]), but the mechanism that

18



has been shown to work is unreasonable. It looks nothing like any conceivable set of market

institutions and so is devoid of any economic interest. We believe that the search for sufficient

conditions guaranteeing implementability should be done with constraints on the allowable class

of mechanisms. Second, we do not ask what actually happens in market games whose Bayes-Nash

equilibria are not Walrasian allocations. The mechanism design approach of this paper is not useful

for this kind of positive question. We address this question in Blume and Easley [1983b], but our

analysis necessarily depends on the specific market game we choose to analyze. General statements

about this question have yet to be discovered.
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