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We examine the effects that political institutions, i.e., electoral systems and legisla-

tive processes, have on income taxation and public good allocation. We characterize

the equilibrium income tax schedules and the optimality conditions under two types of

political institutions, a two party plurality system with a single district, and one with

multiple districts where the tax policy is determined through a legislature. It is shown

that the exogenous social welfare functions in the optimal taxation literature can be

endogenously determined by explicitly modelling the political institutions, which put

different welfare weights on different subsets of the population.
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1 Introduction

The goal of this paper is to understand the effect of political institutions on income

tax structures and the level of public goods provided and, in doing so, to merge the

economics of the optimal income taxation approach with political science models of

voting and legislative choice.

The optimal income taxation literature, starting from Mirrlees (1971), studies the

features of income tax schedules, which arise when a social planner maximizes an ex-

ogenously given social welfare function, subject to incentive compatibility constraints

and an exogenously given revenue requirement. These models have some good fea-

tures: (1) they recognize that individuals have different productivity, or wage rates;

(2) individual labor supply depends on the tax schedule, so incentive effects are taken

into consideration; (3) most of them start with unrestricted tax schedules, without a

priori limitations. The main shortcomings to these models are the neglect of institu-

tional constraints and the exogeneity of the social welfare function. In practice, most

public policies concerning income taxation and public goods provision are determined

through political institutions, such as direct democracy or legislative processes. We will

see that by incorporating these institutional features, social welfare functions can be

endogenously determined.

There exists a relatively small literature (Roberts 1977, Kramer and Snyder 1988,

Cukierman and Meltzer 1991, Berliant and Gouveia 1991, etc.) that models income

tax schedules as the outcome of political processes. But all of these researchers only

model simple majority rule. And nearly all results focus on the median voter. Due to

the nonexistence of majority rule equilibrium when the dimension of the issue space

exceeds one1 , these models either start with a restricted set of tax schedules, such as a

linear tax, or put restrictions on the environment. And most of them abstract from the

economics and incentive problems inherent in the income tax problem.

This paper tries to combine the more realistic features of both literatures. Individ-

uals in the economy have different productivity/wage rates; their labor supply depends

on the tax schedule, and therefore incentive effects are incorporated. We do not restrict

the class of tax schedules so that the tax schedule is the result of the forces caused by

political institutions. We compare two types of political institutions: a two-party plu-

rality system under single district, i.e., simple majority rule, and a two-party plurality

system under multiple districts with a legislature deciding the final policy outcome.

By explicitly modelling the political institutions, we can characterize the equilibrium

tax schedules and conditions under which they are optimal, and thereby endogenously

determine the social welfare function. Under plurality rule, the equilibrium tax sched-

ule of two candidate competition (the single district scenario) is compared with the

equilibrium outcome from a legislative process when there are multiple districts. We

establish that each equilibrium is equivalent to an optimal tax schedule for some wel-

fare weights. Furthermore, we show the equilibrium which arises in a two-candidate,

single-district competition puts equal welfare weight over the whole population, while

the equilibrium tax schedule of the legislative process puts more weight on those subsets

of the population whose legislators are in the majority coalition.

In Section 2 we construct a general equilibrium model where the amount of public

'See McKelvey 1979.
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good level is endogenously determined. Section 3 includes a survey of voting models,

with special emphasis on the probabilistic voting model and an extension of the equi-

librium result to a general functional space. Section 4 presents a characterization of the

equilibrium income tax schedules under two party plurality system for a single district,

and that of a stochastic legislative game when there are multiple districts. Optimality

conditions for these equilibria are also determined, thus establishing the relationship

between these positive models and traditional optimal income taxation models. In Sec-

tion 5 we present a numerical example of the equilibrium income tax under the two

political systems. Section 6 concludes the paper.

that w ~F(.), and that w has a density function f(w), and f(w) > 0 a.s. on no.
Call an individual whose ability-parameter is w a w-person. The individual parameter,

w, is private information, but its distribution is common knowledge. There are three

commodities: a consumption good, x E R+, labor, 1 E [0,1), and a public good, y E 1.

Let I(w) = wl be the income of the w-person. The utility function, u(z,1, y) satisfies

the following assumptions.

Assumption 1 u(z,L, y) = x + v(l, y), where v(-, -) is concave, C
3

, u2 = vi < 0,

u3 = P3 > 0, and satisfes the Inada conditions:

limu2(z,1, y) = -oo; limua(z,1, y) = co.
1-41

2 The Model

A general equilibrium model is constructed in which the amount of public good level is

endogenously determined. The general problem analysed in this section uses a frame-

work similar to that of Mirrlees (1971), but includes a public good, financed by the tax

revenue instead of having an exogenous revenue requirement". This model serves as a

building block for the latter part when we introduce the political institutions. It turns

out that the two political institutions we consider will be special cases of the optimal

tax model, in the sense that the equilibrium tax schedules from political processes are

as if some social welfare functions are maximized.

Suppose individuals are identified by a single parameter, w E Ao = [wo, J C R++,
which can be interpreted as the wage rate or ability level of an individual. Assume

2
Brito and Oakland (1977) also model a public good in their optimal income taxation model, but it

is not explicitly financed by the tax revenue.

Assumption 2 The marginal utility for private good consumption decreases with an

increase of labor; the marginal utility of leisure is convex.

u211 0; um <0.

Assumption 2 is introduced to avoid bunching of individuals when using the first order

approach to solve the optimal taxation problem.

Let I(w) = wl be the income of the w-person. Then I : 11 - I is defined as the

income function, where I C R is the set of all possible incomes. Let T C R be the set

of all possible taxes. Define T : Z Tas the income tax function.

Assumption 3 The income tax function, T(1), is lower semicontinuous.
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We use the revelation principle to analyse the general equilibrium optimal taxation

problem3.

Define a revenue requirement function, r : 0 -+ T. The problem of taxation of

income (the indirect mechanism) is transformed to the direct mechanism: an agent

reports his type, w, based on which he is required to have income, I(w), and pay

taxes, r(w). We want to find a tax function T that implements r in the sense that

T(I(w; T)) = r(w). The revenue requirement function satisfies the following assumption:

Assumption 4 The revenue requirement function, T(1 0-+T, is lower semicontinu-

ous, and bounded below, i.e.,

r(w) > - J wdF(w).
Jn

In order to implement the revenue requirement function, r(w), by means of an income

tax, T(I), we need a monotonicity condition.

Lemma 1 (Monotonicity) Assumption 1 is sufficient to ensure I(w) an increasing

function, and therefore to implement r(w) by means of an income taz.

Prof: From Assumption 1, u(z, y,1) is C3
, and

u(z, y,1) = v(1, y) + wl - r = V(w,l, y) - r.

Therefore the Spence-Mirrlees Condition is satisfied, i.e.,

82V a
V(w,l) = (w+vt) = 1>0.

'I thank Miguel Gouveia for pointing out this approach to me. See Berliant and Gouveis (1992).

From Proposition 1 of Rochet '87, l(-) is rationalizable, i.e., (L(.),T(.)) is truthfully

implementable in dominant strategies, if and only if l(-) is nondecreasing.

Since I(w) = wl(w), and 1(w) E [0,1), I(w) is increasing except possibly in the

interval [wo, g], where I(w) = 0. In this model, we treat the flat interval as one point,

i.e., r(w) is the same for all w E [wo, g]. Therefore we can concentrate on the interval

[g, Ei] 0, where 1(w) is increasing. Then we can invert the income function, I(w), and

get w = i(I), and therefore, T(I) = r(s(I)), so we can implement a revenue requirement

function by an income tax function. U

Lemma 1 shows that, in equilibrium, after all behavioral adjustments, income must be

an increasing function of ability.

Given a revenue requirement function, r(w), and an income function, I(w), a w-

person chooses to report his type, w', to maximize his utility,

maxu(1(w') - r(w'), -- ,y).

Solving this problem gives us an individual's optimal reported type, w, and thus, his

optimal amount of income, I(w), his optimal supply of labor, 1(w), and the individual's

private good consumption, x(w) = 1(w) - r(w). The total supply of labor adjusted

for quality is L' = f wl(w)dF(w), the aggregate demand for the private good is Xd =

fn z(w)dF(w), and the total tax revenue is fn r(w)dF(w).

On the production side, assume that firms are price-takers. The input for the produc-

tion of the private good is labor which, adjusted for quality, equals L = fnwl(w)dF(w).

The public good is produced from the private good.

Assume that all firms are identical and that they maximize profit by choosing the
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optimal amount of labor input in the production of the private good and the public

good. The production functions of the private good and the public good are assumed

to be linear. The total amount of private good produced is XT = aL, and the total

amount of public good produced from the private good is y = b(XT - X). Normalize

the price of the private good to 1, and let the price of the public good be p. The firm's

problem can be expressed as the following,

max X'+pyJ-Ld

s.. XT = aLd

y=b(XT-X*).

In equilibrium, the firm's profit is zero, and demand equals supply in all markets.

So we have

a(X'+py) = X' + ,

and hence

a=1, p .

The government uses the tax revenue to purchase the public good. Therefore, we have

a balanced budget constraint, py = fa T(w))dF(w).

3 Properties of Voting Equilibria

We want to study the equilibria of two types of political institutions. This section lay

a foundation for studying these political equilibria. We start with a survey of voting

models for those who may be unfamiliar with that literature. Then we extend a result

from the probabilistic voting models to cover the case in which the policy belongs to a

functional space, which is used later in characterizing the equilibrium tax policies.

3.1 Voting Models

In our problem of voting over the income tax schedules, we do not want to restrict the

tax schedule a priori to one dimension. Existing voting models have different results

when the issue space exceeds one dimension.

There are mainly three types of voting models, based on different behavioral as-

sumptions. The first kind, used in most of the voting literature, is the deterministic

voting model, which assumes no uncertainty. A voter votes for an alternative, T, if

u(T,) 2 u(T ), for any Ti # T. When the policy space is more than one dimension, a

majority cycle usually prevails
4
. Equilibrium does not usually exist.

When we introduce uncertainty into voters' decision processes, which maybe a de-

scriptively more accurate representation of the real decision processes, we can establish

the existence of a voting equilibrium.

One approach in Ledyard (1984) uses the Bayesian voting model, where Bayesian

equilibrium analysis is used, and voters can abstain. In the resulting equilibrium, both

candidates adopt the same platform that maximizes a social welfare function. The

analysis is based on an individual being pivotal in an election, which is not applicable

when we have a continuum of voters/consumers.

An alternative way of modeling voting is the probabalistic voting models. We

4
See, e.g., McKelvey 1979.

"For a comprehensive treatment of this subject, see Coughlin 1992.
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will briefly go over the underlying rationale for this approach. This approach can be

understood as reflecting candidates' uncertainty about whom the individual voters will

vote for. Assume that an individual's choice probabilities are "proportional to his

strength of preferences" (Coughlin and Nitzan 1981).

Consider an electorate where everyone votes. In the two candidate case, this means

that the probability with which an individual w chooses candidate i, P'(Ti, T2 , w), sat-

isfies

Pl(T1,T2,w)+ P2(Ti,T2 ,w) = 1.

The individual-w's utility from candidate i's platform is

p(T;, w) = u(T., w) exp(e,),i = 1,2.

and the expected plurality for party 2 as EPI2 = -EPIi.

Notice that this game is two-person, symmetric and zero-sum. It satisfies the equiv-

alence and interchangeability conditions, i.e., if Tj 9 T in equilibrium, then both

(Ti, Ti) and (T, T) are pure strategy equilibria as well.

Coughlin and Nitzan (1981) characterized an equilibrium when the policy set lies in

Euclidean space.

Theorem 1 (Coughlin, 1992, Theorem 6.3) If the policy space X C R"' is compact, if

voters vote probabilistically, and if u(T) is concave in T, an alternative, T* 6 X C R'",

is an outcome of the electoral competition, if and only if T* E argmaz fn l nu(T,w)dF(w).

We call W = fa Inu(T,w)dF(w) the Nash social welfare function. In two party

competition under plurality rule, the equilibrium policy outcome is the maximand of

the Nash social welfare function.

3.2 Extension of Probabilistic Voting Results

Since we want to study the equilibrium tax structure, we need to extend the result to

cover the case in which the policy belongs to a functional space. In this section we

extend Theorem 1 to a functional space.

Lemma 2 After tax consumption, z(w, wt), is nondecreasing in w, where w is his true

type, and w is his reported type.

Assuming that the error term, e, is distributed logistically, we get the individual choice

probabilities on any pair of platforms ash

P'(Ti,T2,w) = u(Tw)
u(Ti, w) +u(T2, w)

Therefore, a candidate's expected vote equals

Ev,(T |T-i) = ( Ut(T,w) dF(w).
J u(Ti,w) + u(T2, u)

Assume that each party's objective function is to maximize expected plurality, which

is equivalent to maximizing the probability of winning in a large electorate
7
. Define the

expected plurality for party 1 as

EPl = Ev-Evaa=wdP v,

'See, e.g., Amemiya (1985), Chapter 9.

'See Ledyard (1984).
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Proof. An individual's after tax consumption is z(w, we) = wel(w) - r(w). He reports an

optimal w such that

z(w,wt) + v(l(w), y) > z(w',wg) + lv(I(w'), y), Vw' E0.

Truthful revelation requires the above inequality holds for w = we, i.e.,

z(we,w,) +v(L(wg),y) > z(w',w,) + v(l(w'),y), Vw' EO.

That is,

z(wtw,) - z(w',wt) V(l(w'),y) - v(l(w,), y).

If we > w', by Lemma 1, we have 1(wt) 1(w'), and therefore, v(l(w'), y)-v((wg), y) > 0.

So

(we, wt) - z(w',wt) ? 0.

I

Lemma 4 The policy space X is compact.

Proof. Since I E [0,1), we have I E [0,r). We know that I is nondecreasing. Therefore,

I is of bounded variation, and variation norm bounded.

From Lemma 3, r is of bounded variation. The feasibility constraint gives us r < I.

From Assumption 4,

r(w) > - wdF(w).

Therefore, r is also variation norm bounded.

Let M[a, bJ be the set of all countably additive signed Borel measures on [a, bJ.

From Theorem 4.1 (Border 1991), the a(BV, M) topology and the topology of pointwise

convergence coincide on the set {(I E X 1 ,r E X,): I - r > 0}.

Next, we show that adding the incentive compatibility constraint does not change

pointwise convergence. The incentive compatibility constraint says

In(w) - ra(w) + v(II(w)/w, y) 2In(w') - i.(w') + v(In(w')/w, y), Yw' E 0.

As I.(w) -+ 1(w), and ra(w) -+ r(w), we have

I(w) - r(w) + v(I(w)/w, y) > I(w') - r(w') + v(I(w')/w, y),Vw' E 0.

So X is variation norm bounded and pointwise closed subset of BV, and therefore, from

Theorem 4.1 (Border 1991), is a(BV, M)-compact. U

Corollary 1 In the policy space X, if voters vote probabilistically, and if u(-) is concave

in (I, r), then an equilibrium of the two party electoral competition ezists; furthermore,

(1*, r*) is an equilibrium to the electoral competition if and only if

I*, r* E argmaz jlnu(I - r, 1/w, y)dF(w).

Lemma 2 is used to put more structure on the revenue requirement function, as is shown

in the following lemma.

Lemma 3 r(w) is of bounded variation.

Proof r(w) = I(M) - z(w,w,). From Lemma 1 and 2, we know that both I(w) and

z(w, we) are nondecreasing in w. So r(w) is of bounded variation. U

Let BV[a, b] denote the space of functions of bounded variation on [a, b]. Define X, =

{r : lower semicontinuous and of BV), and Xg = {I : nondecreasing}. The policy

space is therefore X = {(I E X1, r E X,) : I - r 0; I.C.}, where I.C. stands for the

incentive compatibility constraint. To prove the existence of the electoral equilibrium,

we need to show that X is compact.

11 12



Proof: Since u(I - r, I/w, y) is concave in (I, r), it follows that

EPI- = '-u(/ - ri, I/w, y) - t(L, - r.., L,/w, y)
' Ja u(I; - r,, I;/w,y)+ u(L; - r_;, L;w, y)

is concave in (I;, r;), convex in (L;,,r...), and continuous in both (Ii, r-) and (Li, r..).

From Lemma 4, X is compact. Therefore, an electoral equilibrium exists.

Next, we show that (I, r) E X is an electoral equilibrium to the electoral game, if

and only if it is a global maximum of EPl;((I;, r;), (I, r)), given that (I;, r-;) = (I, r).

This follows from the interchangeability condition for two-person, zero-sum games.

Let W(I, r) = faI n u(I-r, I/w, y)dF(w). We then show that I*, r* E argmazW(I, r)

is equivalent to *, r* E argmazEPl, ((I;, r), (I,,r)), for i = 1, 2. SinceIntu(I-r, I/w, y)

is a strictly monotone increasing concave function of u(I - r, I/w, y), then W(I, r) is

concave in (I, r). Therefore, every local maximum of W(I, r) is also a global maxi-

mum. Similarly, since EPL,((I;, r,), (I, r)) is concave in (I;, r;), it follows that any of its

local maxima are also a global maximum. So the first order conditions for the maxi-

mization problems are both necessary and sufficient. It suffices to show that the first

order conditions of the two functions are equivalent. We prove this by using calculus of

variation.

W(r + eh) = j In u(I - r - eh, 1/w, j(r + eh)dF)dF(w).

Then,

6W(r; h) = dW(r + eh)Io

= J[-!+ jf!u3dF]hdF(w)

= 0,for all h.

Therefore,

- +udF = 0.
U Jfu

Similarly,

de6EPli (ri; h)|n*,;g, =1 = -d~ir+e)<onI=

= j2u[-h+ujnhdF]
= n (2u)2

= u+ -J-dF]hdF(w)n 2u n 2

= 0,for all h.

Therefore,

-1 + dF =0.
inu

It follows that

6W(r; h) = 2 .5EPIi(rn; h)r=T1, =i,

so that JW(r; h) < 0 if and only if .EP (ri; h),, ,i 0. Similarly, we can prove

that 6W(I; h) < 0 if and only if 6EPIj(I1; h)|. r,;i=I 0. U

Remark (Concavity): Notice that one of the critical assumptions for the character-

ization of the equilibrium in probabilistic voting is the concavity of the indirect utility

function in the policy proposal which, in this case, is the tax function, r. Let V(r)

denote the indirect utility function, then V(r) is concave in r, if and only if

V(arl + (1 - a)) > aV(r 1) + (1 - a)V(T),

for a E [0,1]. An example of a utility function whose indirect utility function is concave

in r is a quasilinear utility function, u(z,L, y) = I - r(I) +#31n(1 - I/w) + (1 -#/3)In y

1413



where /3 E [0,1]. For a general utility function where the indirect utility function cannot

be solved explicitly, the sufficiency proof of Proposition 1 checks the concavity of the

indirect utility function in r, i.e., Assumption 2 guarantees the concavity of the indirect

utility function in r.

Corollary 1 establishes that the equilibrium tax schedule under a two party plurality

system with a single district can be obtained as if we are solving an optimal tax problem,

with the exogenously given social welfare function taking the form of the Nash social

welfare function.

So far, we have not assumed differentiability of the revenue requirement function or

the income function. The next corollary establishes that we can restrict our attention

to the subset of differentiable functions.

Corollary 2 If one party's equilibrium policy proposals are differentiable functions,

(r;, I,), then it isan equilibrium for the other party to propose the same differentiable

functions.

Proof: It follows from the interchangeability conditions of the symmetric, two-person,

zero-sum game. U

From here on, we can restrict ourselves to differentiable revenue requirement functions,

r, income functions, I, and income tax functions, T(I).

4 Characterization of Equilibrium Tax Functions and the

Optimality Conditions

The results of Section 3 suggests that in equilibrium the outcome of political processes

is as if some particular social welfare function is maximized. In the case of two party

plurality system under a single district, the equilibrium tax policy maximizes a Nash

social welfare function. In this section, we start with a general optimal taxation model,

and then characterize the equilibria of the two political institutions and the optimality

conditions of these equilibria, which suggest that they are special cases of the optimal

taxation model. The first type is a two party plurality system under a single district,

which can be viewed as a simplified version of implementing the platform from a presi-

dential election or the outcome of a simple majority rule/referendum. For comparison,

we study the equilibrium policy outcome of a legislative game under a two party plurality

system with multiple districts.

4.1 The General Case: Optimal Taxation with Public Good

We use the revelation principle to analyse the general equilibrium optimal taxation

problem. The following analysis uses the first order approach to solve the optimization

problem.

Given a revenue requirement function, r(w), and an income function, 1(w), a w-

person chooses to report his type, w', to maximize his utility,

maxu(I(w') - r(w'), -- ,y).Wi

15 16



The first order condition for this problem is

du dI(w') dr(w')+ u2 dI 0.'

dw' dw' w dw'

Truthful revelation requires L1== 0, i.e.,

du dI(w) dr(w)+ u2 dI(w) =_0

Using the shorthand, I'(w), to stand ford L and similarly for other variables, the

incentive compatibility constraint becomes

I'(w) - r'(w) + !'I'(w) = 0.

The optimal income tax problem is thus defined ass

Then,

J(Tr + eh) =_ {~uIw - r(w) - eh, I (), b6j(r(w) + Eh~dF(w)) f (w)

+()I()- i'(w) - eh' + I()

+9(w)(I(w) - r(w) - eh))dw

So,

"U a x fn~ A(u(I(w) - r(w), - , b f 0 r(w)dF(w))dF(w) (lOp)

8.t. I'(w) - r'(w) + 3 I'(w) - 0 (IC)

I (w) -r(w) >0 (F)

where A(u(w)) is some exogenously given, strictly increasing, concave and differentiable

welfare function. Equation (IC) is the incentive compatibility constraint. Equation (F)

is the feasibility constraint.

Proposition 1 The optimal tax schedule, T(I), satisfles Equation (1), (IC) and (F).

Proot This is a calculus of variations problem. Define the function J as

J = j{A[u(I(cw) - r(w) , I W )1bji r(w)dF(w) f (w)

+()I( - r'(w) + ±'iI'(w)J + (w)(I (w) - -r(w)))dw.

17

6J(rr, h) = d ( + Eh) 11=o

= {Ih+ u3bj h f (w)dwJ f(w) + (w)(-h') - 6(w'[hhdw

=J {[-A' + J bA'u3 f(w)dw f (w) + t- 6)hdw

= 0, for all h,

it follows that

[-A' + J bA'u3f (w)dw~f (w) + - 9(w) = 0, or

bf jn A'u3 dF(w) - (A'! - 9)- (w) = 0.

Define the function G as

G = A[u(I (w) - r(w), !I±', bJr(w)dF(w)ir (w)

+f()I()- i'(w) + ! !I'(w)J + 9(w)(I (w) - T(w)).

The Euler equation for I is

80 d(f)

(1 + !f!)(A'f -(C) + -(-u2 + 2)+ 6(w) = 0.

Combining the two necessary conditions, we have

bfJA'u3 dF(J) +-(AJf-4f) + e~_ -0,

18



where e = 1 + lufl/u2. From the inverse function theorem, we have T' = r= 1 + .

Then we have

(1 - T')(A'f - t') = bfij Atu3 dF(w) + e*(w)/w2. (1)

Notice that T is also on the righthand side of Equation (1). Equation (1), (IC) and

(F) are the necessary conditions for a solution of the optimal income tax problem. To

prove sufficiency, we need to check the concavity of G. Since G is linear in I' and r', the

Legendre and Weierstrass conditions are trivially satisfied. We only need to check the

concavity of G in I and r, which requires the matrix of the second partial derivatives

with respect to I and r to be negative semi-definite. Since both A() and u are concave

in I and r, we can decompose the matrix as a sum of two matrices where one of them is

negative definite. Then the sufficient conditions are verified if the other matrix, derived

from the incentive compatibility and feasibility constraint, is concave in I and r. Using

Assumption 1 that u() is C3
, we require the matrix

I (U211 + -211

-u211 U211

to be negative semi-definite.

We get I' > 0 from Lemma 1. Thus the sufficiency condition is reduced to requiring

u211 < 0 and urn 0, which are satisfied from Assumption 2. Thus, the first order

approach used in obtaining the necessary conditions for the optimal income tax is valid.

I

Interpretations for the optimal tax schedule using a general social welfare function can

be found in Atkinson and Stiglitz (1980). Our result is different from Mirrlees due to the

endogeneity of the public good and the additional feasibility constraint. The integral

on the right-hand side of Equation (1) can be interpreted this way: suppose we reduce

the utility of everyone by a marginal unit, then the gain in increased social welfare

is A'u3. Therefore, the integral summarizes the net gain of the marginal reduction of

utility. The net gain depends on the form of the social welfare function, A(), which, as

we demonstrate in the later sections, is determined by the political institutions.

Having characterized the optimal income tax schedule, we proceed to analyse how

the social welfare functions are endogenously determined by political processes and

show that political institutions endogenously determine the weight of the social welfare

function.

4.2 Two Party Plurality System Under a Single District

From Corollary 1, the equilibrium tax schedule for two party plurality system under a

singel district is the solution to the following optimization problem,

max f0n nu(I(w) - r(w), 'U9 , bfnr(w)dF(w)dF(w)
r,l

s.t. I'(w) - r'(w) + 5!I'(w) = 0

I(w)-r(w) 0.

(IC)

(F)

Solving the above problem, we get the following proposition.

Proposition 2 (a) The equilibrium tax schedule under the single district, two party

plurality system satisfies (IC), (F) and the following equation:

(1 - T')(f /u - (') = bff u3 /udF(w)+e*((w)/w2"

(b) It is optimal if the welfare function is fn A(u)dF(w) = fn l nudF(w).
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Proof Substituting Inu for A(u) in Equation 1, we get the above result. I

The above result can be interpreted either as the equilibrium outcome of a single dis-

trict two party competition, or as the outcome of a national election, where the winning

party/candidate implements his platform. A more complicated political institution in-

volves a legislature where each legislator is elected by plurality rule, and the final policy

is the result of a legislative bargaining game.

4.3 Multiple Districts - Legislative Process

An alternative mechanism for deciding the income tax schedule in two party plurality

systems is through the election of a legislative body. In each legislative district, the

voting game determines each legislator's equilibrium platform and his/her objective

function in the legislature. Suppose voters are sophisticated in the sense that they know

their legislator is not going to be a dictator in the legislature, that the policy outcome is

through a complicated process according to some legislative rule, 7(.) : {(I,, Trj)}jEJ -+

(I, r). Then the probability that a w-person vote for the Incumbent from his district,

given the Incumbent's platform, (If , rT), and the Challenger's platform, (If, r-f), is

I = u(((I', f), (I.J, r.-))J
P(Ij> ),(I, 1) =u(7((Ij, rf ), (I-j, r-j))] + u[7((If , ry), (I-j,Tr-))]F

Then, applying Corollary 1 to each legislative district, maximizing expected plurality

or the expected probability of winning is equivalent to maximizing the Nash social

welfare function for the district in equilibrium, taking the legislative rules, 7(-), into

consideration. Therefore, we get the following corollary for the equilibrium in each

district.

Corollary 3 In the voting game in district i, the equilibrium platform satisfies

I, T; E argmazfn lnu[7((I;, r), (I-i,r-))dF(w)

s.t. I (w) - r( )+ -"I (w) = 0

I;(w) - r(w) ;>0

Although there are many different legislative processes, we consider a generalized

version of the Baron-Ferejohn random recognition rule and model the legislative process

as a stochastic game, rt = (St, t, ), where St is the set of pure strategy n tuples,

where rt : St -+ p(Z) is a transition function specifying for each s' E St a probability

distribution 'rt(st) on Z, the set of states that can be achieved in a game, and where ,'t:

St -+ X is an outcome function that specifies for each s' E S' an outcome 0t(8t) E X.

Finally, we use S = HETS* to denote the collection of pure strategy n tuples, where

= =iN s;. Formally, Z = R U P U V is the set of states. We uses to denote the

possible states the game moves to. We use R to denote the Recognition Game, P to

denote the Proposal Game, and V to denote the Voting Game.

At the beginning of period t, legislator jis recognized as a proposer with probability

pj E [0,1], E2,eJ p= 1, Vt. Whoever is recognized proposes a tax schedule, (Ij, rJ), then

every legislator votes yes or no simultaneously. If, under rn-majority rule, the number

who say "yes" is greater than or equal to m, (Ij,rf) becomes the new status quo and

the game ends; otherwise, the game proceeds to period t + 1. If nothing gets passed

forever, the payoff to the legislators is zero: U(4) = 0, for all j E J.

In the legislative game, each legislator's objective function is to maximize the Nash
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social welfare function of his/her district, given the legislative rules, subject to the

incentive compatibility constraint and the feasibility constraint, as stated in Corollary 3.

There are many equilibria to the stochastic game. The selection criteria we use

is "simplicity" - we want to characterize the simplest equilibria involving no stage

dominated strategies
8

. The simplest equilibrium can be described by an automaton of

size 4, with one "rest" state (the Recognition Game), one "propose" state (the Proposal

Game), and the "vote yes" and "vote no" state (the Voting Game), which gives us

the simplest automaton. The resulting equilibria from the automaton are stationary

equilibria
9
. The stationary equilibrium is characterized by a set of values {ve} c CI?" for

each stage of the game, and a strategy profile a* e E, such that

a) Vt, a* is a Nash equilibrium with payoff function C': Et -+ R" defined by

G'(o';v) = U(#'(o'))+ E W'( ')(z)v"
zEZ

= E,*[U(4'(s')) + E r(s')(z)v*]
zEZ

= E o'(s')[U(jt'(s')) + E 's)zv]

b) Vt,V = U'(o;v).

We use the average payoff for each legislator's payoff for the entire stochastic game.

So a legislator's payoff for the entire game is

N
U({I',T'}e) = lim EU'(';v).

e=1

Claim. There exists a vector of continuation values, U = (U,U 2,.-- ,U ), where

"See Baron and Kalai (1993) for an analysis of the simplest equilibrium in the majority rule divide-

the-dollar game with a random recognition rule.

Fr the existence and characterization of stationary equilibrium, see Sobel (1971).

U; = jEJrpjU,(Ijr), representing the expected payoffs to player i at the beginning of

each stage game.

In the following proposition, we prove that one equilibrium strategy for legislator

j is to vote yes with probability 1 if U,(I;,r;) > U,, and to vote no otherwise. The

simultaneous equilibrium strategy for any proposer is to maximize his own utility such

that the "least expensive" m - 1 members of the legislature would vote yes. Denote

the set of legislators whose payoffs from the proposed tax schedule are greater than

or equal to their continuation value as M = {k E J : Uk(I,, r,) Uk}. Therefore,

in equilibrium, proposer i proposes the tax schedule (I;,;) that maximizes the Nash

social welfare of his own district subject to the constraint that at least m - 1 other

players also vote yes, and his proposal will be accepted. Baron (1993) characterizes

similar equilibrium strategies with alternatives in the Euclidean space and presents a

closed-form characterization of the equilibrium when the utility function is quadratic.

Proposition 3 is a generalization of Baron's results when the set of alternatives lies in a

functional space with generalized utility functions.

We introduce some more notations used in solving for the equilibrium tax schedule

for the legislative game. We will use the indicator function,

0 if wEfl-f.

Proposition S The following is a simplest subgame perfect stationary Nash equilibrium

to the legislative game with stage undominated strategies:

For z E P and i = p (Proposer i):

I;, ir e argmaz fn x;(w) lnu(I;(w) - r(w), " ,"d,y)dF;(w)
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8.t.

i;(w) - r;(w) 0 m

|{k Ei J\{i} : Uk(I,,;) Uk}| m - 1

ForzEV andjEJ\{i) (Voter j):

1 if U(I;,T)> U7J,,
sj (Ii, ri) =

0 otherwise.

Proof. We start by defining the strategy sets, transition functions and outcome functions

for the game elements:

ForzER: Si={0},ViEJ,

(Recognition Game) xt(st)(z) = 1, if z E P

0*(a') = #, Ys*E S*.

The Recognition Game is indexed by z E R. The order of recognition is randomly

decided according to some exogenously given probabilities; therefore, the strategy set

of each player is {0}. The game proceeds to the Proposal Game with probability 1, and

the null outcome prevails.

ForzP: ~ J{fI,r;} ifi=p,
For z EP: S; =

{0} ifi EN-{p},

(Proposal Game) irt(st)(z) = 1,if z E V,

*,t(t) = #,Y
t e St.

In the Proposal Game, we use p to denote the Proposer. The strategy set for the

Proposer is the set of tax schedules {1;, r;}, while the strategy set for each voter is still

{0}. The game proceeds to the Voting Game with probability one, and the null outcome

prevails in this game.

ForzEV: S=(0,1),ViEJ,

(Voting Game) ir'(s
t)(z) = 1, z E R,

tt 19 , if E E JS; >m, Vs E St.

4 otherwise.

In the Voting Game, each player can vote either no or yes (0 or 1) to the proposed

tax schedule. If the new proposal, (I,,r;), is accepted by at least m of the legislators,

it becomes the new status quo; otherwise, the null outcome prevails for this period and

the game moves to a new round starting from the Recognition game with probability 1.

The main steps to prove Proposition 3 follow the definition of stationary Nash equi-

librium. We first specify the values associated with the equilibrium strategies, and then

show that these values are self-generating. The third step is to show that the strategies

specified in the proposition are subgame perfect Nash equilibria.

The values of the games are defined below. The interpretations of these values go

back to the definitions of each game element above.
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For zER6

(Recognition Game)

For zEP

(Proposal Came)

For zEV6

(Voting Game)

v Vi ER.

v;4(I.,, r-) = U(I.,.), for i= p,

vi (Ii,, T) = tU, for j E J1- {p},

where

1.,, r E argianaxix(w) lnu(Ii(w) - r,(w), 1'1 , yi)dFd(W)

s~t1(w - ~w)+ W I;(W) - 0

I. (W) - Ti (W) > 0

I{k E J\{is):U,,(Ig, 7T) > tT&II > m - 1.

v; = G(IMI)U(Id,Ti) + (1 - c(IMI))U(lI,rs),

j E J, where

For z E P: (Proposal Game)

For i = p (Proposer i):

GiO;v)= Eos[U(t(st )) + E rt(st)(z)vZJ
sEZ

=Ud(#) + 1.UA(Ii,,)

=U, (I, r.)

For j = J -{p} (Voter j):

G(a v)= E,,e[U( 1t(st)) + E ts)(~s
zEZ

For z 6 V: (Voting Game)

Gt(at, vt) = E ,4U(,t(st)) + E ts)(~j
zeZ

=a(IMI)Uj(J,,Ti) + (1 - i(IMI))(Ui(N) + U,(I., ri))

V.

Next, we verify that the strategies specified in Proposition 3 are subgame perfect

Nash equilibrium strategies. Since the strategies are history-independent, it suffices

to show that for each game element no player wilt benefit from a unilateral one-shot

deviation.

I i 1 if IMI >_m,
0 otherwise.

The next step is to verify that these values are self-generating, i.e., that they correspond

to the payoffs under the equilibrium strategies. To do this, we plug the equilibrium

strategies and other game elements into the definition of G, and show that they equal

the corresponding values.

For s E It (Recognition Game)

Gt
1 (, v) =E5i(U(4'(s')) + E s)(~s

27 
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For z E P, we want to show that tax proposal (I;, r.) is the equilibrium strategy for

Proposer i, where

I;, ri E argmaz fn Xi(w) lnu(I;(w) - r,(w), !i"-, yi)dFi(w)

s.t. I(w) - r(w)+ 2I(w) =0
I;(w)-r(w) 0

|{k E J\{i}: Uk(I;,ri) 2 Uk}I m - 1.

The corresponding payoff for Proposer i is

G(a,;v'(I,,r,)) = U,(I,,rj).

If the proposer defects to any other pure strategy (I°, r9) 6 (Ii, ri), Vi E J, there are

two possible consequences:

(i) Ui(I°, Tr°) < U(Ii, r ):

in which case he is not better off by defection, so he will not defect in this case.

(1i) U;(I°,Tr°) > Ui(Ii, ri):

in this case, if I{k E J\{i} : U(I0, rP) > Uk}| > m - 1 still holds, Yj 9 i, then

I, r; argma fn X;(w)lnu(I(w) - ri(w), !f j, yi)dF;(w)

s.t. +(w) - r:(w) + sI(w) = 0

I;(w) - r;(w) > 0

I{k E J\{i} : Uk(i, ri) > Uk}I m - 1.

but this contradicts the definition of (Ii,ri).

So the proposer has no positive incentive to defect unilaterally from his strategy

specified in Proposition 3, which means that it is a Nash equilibrium for the Proposer.

Since it is history independent, it is also a subgame perfect equilibrium.

For z E V, we want to check if voters' strategies specified in the proposition are

Nash equilbrium strategies. We consider three cases:

(1) When MI> m, no voter is pivotal, so they have no positive incentive to defect from

their equilibrium strategies.

(2) When |MI= m, any voter i E M is pivotal. Since G,(s; = 0, s ;) -G;(s, = 1, s,;) =

U; - U,(I;, i) < 0, i has no positive incentive to defect from his equilibrium strategy.

(3) When |MI= m - 1, any voter i E J\M is pivotal. Since G(s = 1, s.;) - G(s; =

0, sig) = U,(I;, r;) - U, ; 0, i has no positive incentive to defect either.

Therefore, the voter strategies specified in the proposition are Nash equilibrium

strategies. They are subgame perfect, since they are history independent. I
We use a three district example to solve the stationary equilibrium tax schedule

for the legislative game. It can be easily extended to the J district case. In the fol-

lowing legislative game, J = 3, m = 2, and p; = 1/3, for i = 1,2,3. The problem in

Proposition 3 reduces to

max fn x.(w)lnu(I;(w) - Tr(w), 'iA., y)dF;(w)

s.t. I(w) - r (w) + 9I(w) =0

I(w) - rdw) 0

U I,; Uj

(IC,)

(F;)

(MAe)
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where j is i's coalition member. Equation (MA;) can be expanded as condition requires

/ 1(w)lx,(w) lnu(fI(w) - ri(w),-,y)dFj(w) > A()g(Iri, I-,r-) =0, with A(w) 0,

X;(w)lnu(Jjw) - rj(w), ,y) + lanu(Ik(w) - Tk(w), ivy))dF(w). 9(w)(1, - r) = 0, with 9(w) 0.

Apart from the usual incentive compatibility constraint and balanced budget constraint, The rest of the proof is similar to that of Proposition 1, with A(u) = [x,(w)f,(w) +

the tax schedule has to pass a majority of the legislature. The last constraint, (MA), Ax(w)f,(w) n u.

requires the payoff to legislator j to be greater than or equal to his continuation value.
Notice the equilibrium tax schedule of the legislative process is different from that

Proposition 4 (a) The equilibrium tax schedule, (Ii, r;), for the legislative game under of the two candidate competition. The difference comes from the specific forms of the

a random recognition rule in the three district case, satisfies (IC,) ,(F) and the following social welfare functions. Therefore, the welfare weight of individuals in districts whose

equation: legislators are not in the majority coalition is zero, while the welfare of individuals

(1 - )(x;(w)f;(w) + AX(w)fj(w))/u -() whose legislators are in the majority coalition is taken into account when solving for

the equilibrium income tax schedule. This confrms our conjecture that the welfare
= b Iu3[X,(w)f,(w) + AX;(w)f,(w)]/udF(w) + e((w)/w

2
,

A weights of the optimal income tax schedule are endogenously determined by the political

where A 0, i is the proposer and j is the legislator in the majority coalition eith i. processes.

(b) It is optimal if the welfare function is We have characterized the ex post equilibrum income tax schedule. One question is

A(u)dP(w) = (x(wf (w)+ Ax,(w)f,(w)]lnudw. if the ex ante resulit is the same as the single district case. To see that this is usually

not the case, consider the following situation. Suppose we have three districts, and the

Proof. Define the function J as
distribution of types are such that if 1 is the proposer, he will form a coalition with 2;

J = J([xi(w)f.(w) + Ax(w)f,(w)]lnu if 2 or 3 is the proposer, they will form a coalition with each other. Let the probability

+((w)(I'(w) - u(w)+'I (w)]+ (w)(I;(w) - r;())}dw. of i being recognized be pi. Then the ex ante equilibrium tax schedule will be
w

Let g(I;, r, I-, r..t) = fa X aw)lnu(li(w)-r(w), ,y)dF(w)-) fnx(w)[lnu(I,(w)- ,r argmna z J[pi(xi(w)fi(w) + A12x(w)fa(w))+pa(X2(w)f2(w)

r+(w), id,y,) + lnu(Ie(w) - rk(w), f W , y)JdF(w). The complementary slackness +A23X3(w)f3(w)) +p(Xs(w)fs(w)+ As 2x2(w)f2(w))lnudP(w).
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The ex ante result will be the same as the single district case if and only if

pi(Xi(w)fi(w) + A12X2(w)/2(w)) + P2(X2(w)f2(w) + A23X 3(w)f3(w))

+P3 (X3 (w)f 3(w)+ A32X2(w)12(w)) = 1.

One special case is when all districts are identical, i.e., when A,, = 0 for all i $ j, then

the single district case has the same outcome with the multiple district case.

When the districts are hetereogeneous, however, the outcome of the legislative pro-

cess in multiple districts will usually be different from that of single district. We illus-

trate this with an example.

5 An Example

We will use a simplified economy to show the difference in income tax structures under

different political institutions. Suppose wage rate, w, is uniformly distributed in the

interval (1,4]. Individuals have quasilinear utility function of the form, I - r + ln(1 -

I/w) + In y + e, where y is the amount of public good produced, and e is the initial

endowment.

Under a two-party, plurality system in a single district, the equilibrium tax structure,

r(w), maximizes the Nash social welfare function of the whole district subject to the

incentive compatibility constraint and the feasibility constraint. This is a calculus of

variation problem, which is set up as follows.

Define

J = j r{ln[I-+ln(1 -I/w) + ln(jr/3d) + eJ

(w)(I' - r' - --- ) +O(w)(I - r)}dw.

JJ(r, h) = dJ(r + eh)I,=o

= j -h(w) + Ii d,- C(w)h(w) - O(w)hdw
u &r(w)dw

= 
4  

- + +('(w) - (w)] w

= 0, for all h(w), which implies

- 1 + +('(w) - 0(w) = 0.
u f r(w)dw

(5)

Define

F = In[I -,r + In(1 - I/w) + In( 1r/3dw) + e] +((w)(I' - T' - 1 ) + 6(w) (I - r).

Using Euler's equation, we get

OF _d(_4=)

(w - I)(w - I - 1)(u - ('(w)) - ((w)I' + 0(w)(w - I)2 = 0. (6)

There is no analytical solution to the set of equations (Equation 3, 4, 5, 6), so we

resort to numerical solutions. For simplicity of calculation, we normalize r(1) = 0, and

let e = 5.0.

Figure 1 shows the equilibrium income function, I(w), and revenue requirement

function, r(w). Both the income function and the revenue requirement function are

monotone increasing in w, but I"(w) > 0 while r'(w) starts from zero, increases, then

maxf In[I - T +1n(1 - I/w)+ln(ff r/3d)+ eJdw

a.t. I' -T'=w-

(2)

(3)

(4)I->0r
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Figure 2 shows the income tax schedule. The marginal tax rate at both ends of

income is zero. Tax is an increasing function of income.

The level of public goods provided in this case is 0.2892.

It is interesting to compare the outcome of single district case with that of the

multiple district case. We consider the case when there are three districts, each with a

uniform distribution of wage rates over the intervals, [1, 2), [2,3) and [3, 4]. Then there

are eight cases of legislative coalition formation. We use the symbol, -+, to represent

"propose to and form coalition with". The eight cases are (1 -+ 2,2 -+ 3,3 -+ 1), (1 -+

2,2 - 3,3 - 2), (1 -+ 2,2 -4 1,3 -4 1), (1 -42,2 -+ 1,3-+ 2), (1 -+ 3,2 -+3,3-4 1),

(1 -+ 3,2 -+h3,3 -+ 2), (1 -+3,2 -+ 1,3 - 1), (1 - 3,2 -+ 1,3 -+ 2). As an example,

the first case is set up as the following,

max

s.t.

max
...

at.

f' ln[Ij - Ti + ln(1 - li/w) + n(jf r/3dw) + e]dw

II- Ti = *

Ii - i = 0

f2 ln[Ii - Ti + ln(1 - I1/w) + In(f1 r/3dw) + e]dwu>

{{f23n[I2 - T2 + In(1 - I21w) + ln(fj T2 /3dw) + e]dw

+ f2ln(1I 3 - T3 + ln(1 - 13/w) + ln(f, r3 /3dw) + e]dw}

fa In[I2 - T2 + ln(1 - 12/w)+ ln(fg T2/3dw) + e]dw

12 - T2 0

Ja ln(I - r2 + ln(1 - 121w) + in(J T2 /3dw) + eldw >

}{f3 ln[Is - r3 + ln(1 - 13/W) + ln(f1 r3 /3dw) + e]dw

+ fa ln[Ii - ri + ln(1 - Ii/w) + ln(f 4 r,/3dw) + e]dw}

max f3 ln[Is - r3 + ln(1 - I3/U) + ln(f 4 r3 /3dw) + e]dw

s.t. I3-r3=W

13 -3 >0

f ln[I3 - r3 + ln(1 - I/) + ln(f r3/3dw) + e]d>

Iff ln[It - ri + ln(1 - Ii/w) + ln(f 4 
ri /3dW) + e]dw

+ fi ln[I2 - r2 + ln(1 - 12/W)+ ln(f T2/3dw)JdW}

The equilibrium proposals of all three legislators can be calculated using numerical

solutions. Figure 3 and 4 shows the numerical solutions to the three district case. It is

interesting to observe that the equilibrium proposal of Legislator 2, the representative of

the "middle productivity" district, coincides with the equilibrium proposal of the single

district case. The public goods levels as outcomes of the three proposals are 0.3087,

0.2892, and 0.3272 respectively.

Although analytical solutions and comparative statics results are hard to obtain, we

learned from the example that we can form some testable implications if the distribution

of the wage rates are known and if we can parameterize the utility function somehow.

6 Conclusions

In this paper we address two shortcomings of the optimal income taxation literature,

i.e., exogenous social welfare functions and the neglect of institutional constraints. We
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characterize the optimal income tax schedule using a general equilibrium model with

a public good entering consumers' utility functions. We show that the social welfare

functions can be determined endogenously by political processes, i.e., electoral systems

and the legislative process. We characterize the equilibrium tax schedules under the

two party plurality system, including the single-district case and the multiple-district

case. It is shown that under the two party plurality system, the equilibrium income

tax is equivalent to an optimal tax schedule which puts equal weight over the whole

population when there is a single district; when there are multiple districts, however,

in the simplest subgame perfect stationary equilibrium to the legislative game, the

equilibrium is equivalent to an optimal tax schedule which puts more welfare weight

on the subsets of the population whose legislators are in the winning coalition of the

legislature. Thus we have shown that the political processes endogenously determine

the welfare weights of the optimal income taxation problem.

The characterizations of the equilibrium tax schedules in this paper provide con-

siderable insight into the factors influencing the equilibrium marginal tax rates under

different political processes, and the way they interact. More general results are hard to

obtain from these formulas. Given the distribution of the productivity levels, however,

we can form some testable implications by parameterizing the utility functions to get

the explicit equilibrium income tax schedules.
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Figure 1: Revenue Requirement Function and Income Function: Single District Figure 2: Income Tax Function: Single District

r(I)

tau(w) & 1(w)

L Ijj

1.5

0.5

41 42



Figure 3: Revenue Requirement Functions and Income Functions: Three Districts Figure 4: Income Tax Fun
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