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Section 1. Introduction.

For many years, a common view of takeovers was that if a firm is inefficiently run, then an

individual (whom we shall refer to as a raider) can, if he is more efficient than current management,

offer more than the current value of the stock, buy out the firm, run it more efficiently and thus

raise the value of the stock. Then reselling the stock would earn the raider a profit.1 More recently,2

it has been argued that individual stockholders have an incentive to free ride on the improvements

brought about by the raider. If the holding of each stockholder is a small proportion of the firm, no

stockholder will recognize the effect his decision has on whether or not the raid succeeds. Hence,

assuming stockholders have rational expectations, if the raid is going to succeed, no stockholder

will sell unless he is offered at least the post-takeover value of his stock. Consequently, the raider

cannot purchase any share unless he pays at least what it is worth to him if the raid succeeds. If

he does so, he cannot earn profits by taking over the firm. 3

For this reason, these authors conclude that raids can never succeed without mechanisms

which prevent minority stockholders from receiving all of the gains in the value of their shares.4

That is, since stockholders will not tender for less than the expected post-takeover value of their

shares to them, a divergence is created between this value and the value of these shares to the

raider. The idea behind these mechanisms is that "The only way to create proper incentives for

the production of a public good (i.e., guaranteeing that the firm is efficiently run) is to exclude

non-payers (minority stockholders) from enjoying the benefits of the public good."5

A key element in the argument above is that no shareholder perceives that he may affect

the outcome. We will show that, with a finite number of stockholders, this is not true-that is,

some stockholders must be pivotal. Making some stockholders pivotal is crucial because it forces

them to choose whether or not the raid succeeds. Hence, they cannot free ride. Consequently,

- - exclusion is not necessary for successful takeovers.

1 See, for example, Manne [1965].
- - 2 See, for example, Grossman and Hart [1980], Bradley [1980], Vermaelen [1981], and Bradley and Kim [1984].

3 This form of the argument is taken from Grossman and Hart [1980].
4 Vishny and Shleifer [1984] propose one alternative solution to the free rider problem. They posit the existence of a single

"large" stockholder who has enough at stake to assume much of the burden of maintaining the efficiency of management.

5 Grossman and Hart, page 59. The details in parentheses have been added.



This result differs from those of previous writers because we view the free rider problem

differently. This difference is much like the change in views in the Public Finance literature on this

subject. Prior to 1972, the accepted view of free rider problems was that the ability of agents to

free ride to avoid sharing the burden of providing some public good implies that private provision of

the public good will be suboptimal. Since then, the literature on incentive compatible mechanisms

have shown that there are ways to structure the environment (through the design of a mechanism)

to ameliorate the free rider problem. This is done by making some agents pivotal. Thus, we are

led to ask whether there are mechanisms, superior in some respects to exclusion, which the raider

himself can implement.

To answer this question, we explicitly analyze the equilibria in a takeover game when there

is a finite number of stockholders each of whom owns a noninfinitesimal share of the firm. In this

context, the raider's strategy choice induces a subgame among the stockholders. This is analogous

to the way a mechanism induces a game among the agents in the economy. Our approach is to

consider alternative strategy sets for the raider to determine which strategies enable him to design

an efficient mechanism, i.e., take over the firm when he is more efficient than current management.

Since the alternative strategy sets can represent various possible legal restrictions on takeover bids,

our results have implications for the ongoing debate on this subject.6

As in all of the papers cited above, we focus on games of complete information. Also as in

these papers, we assume that current management has no ability to fight the takeover.7 Finally,

we focus on the case of a single raider, rather than the more complex case of multiple raiders.8

After defining the game more precisely in Section 2, we turn to an analysis of bids without

exclusion. In Section 3A, we analyze the most restrictive strategy set we consider. In this section,

we only allow the raider to make so-called any-and-all bids. These bids specify a fixed price and

have the raider offering to buy every share tendered to him at this price. In this case, all equilibria

of the game involve a strictly positive probability of a successful raid if the raider is more efficient

-- than current management. In fact, some equilibria have the takeover succeeding with probability

1.

6 Discussed in detail in Bagnoli and Lipman 119851.
7 For discussion of some mechanisms by which managers can fight takeover attempts, see Bradley and Rosensweig [1985].
8 For a discussion of the effect multiple raiders may have, see Schwartz [1985].
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In Section 3B, we broaden the raider's strategy set to allow him what we refer to as condi-

tional bids.9 Here the raider offers a price per share if at least some specified number of shares are

tendered. If fewer are tendered, the raider purchases no shares. If more are tendered, the raider

purchases at least as many as he originally offered to buy at the specified price. Since the raider

can specify one share and since he can choose to buy every share that is offered, this strategy

set includes any-and-all bids. With this broader strategy set for the raider, there is a unique

equilibrium in which the raider takes over with probability 1 if he is more efficient than current

management. Furthermore, this is an equilibrium for any enlargement of the raider's strategy set

so long as exclusion is prohibited. Any other equilibrium with such a strategy set must have exactly

the same outcome as this one.

In Section 4, the raider has the ability to exclude minority stockholders from some of the

benefits from the takeover. Recall that previous writers have asserted that exclusion is necessary

for successful takeovers and, hence, is socially desirable. By contrast, in our model, if conditional

bids are allowed, exclusion creates the possibility of takeovers by raiders who are less efficient than

current managers. This is not true of all equilibria when exclusion is allowed. In fact, exclusion

has positive effects from a social point of view when the raider is restricted to any-and-all bids.

In the final section, we show that the social and private rankings of these alternatives differ.

However, because we only consider preferences over a limited range of alternatives, this does not

imply that the socially optimal restrictions on the raider's strategy set will necessarily differ from

the privately optimal restrictions. We offer a few concluding remarks on this subject, one which we

are continuing to research.

9 These are commnonily referred to as partial bids. However, we avoid this terminology as we allow "partial" bids for 100%
of the shares.
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Section 2. Notation and Definitions.

We consider a two-stage game with I stockholders who own all N shares of stock in the firm.

The i a stockholder has hi shares of stock where hi is an integer. We assume that 0 < hi < N - K

for all i, where K < N is the number of shares needed to control the corporation. Otherwise, some

shareholder can prevent the takeover from succeeding even if everyone else sells, as N - hi < K

for some i. We will let po be the value of a share of stock when the firm is run by the current

management and p1 the value of a share if the firm is run by the raider. If the raider is more

efficient than current management, then p1 > po.

In the first stage of the game, the raider will choose a strategy t from his strategy set T.

Because, as noted in Section 1, the raider's strategy set will differ in each of the following sections,

its precise definition will be postponed.

Given any t, the second stage is a subgame played by the stockholders in which each

shareholder simultaneously chooses (possibly via a mixed strategy) a number of shares to tender to

the raider. We require that the i t shareholder offer an integer number of shares between 0 and A.

A pure strategy by shareholder i will be denoted cg and we will let 9 = (r 1, o2,... , a1). A mixed

strategy for shareholder i, denoted F;, will be a choice of a probability distribution over the set of

integers between 0 and hi. Let F be the vector (F1, F22,... , F1).

We take all players to be risk neutral. Hence the expected payoff to the i ' stockholder is

the expected value of his h1 shares. The payoff to the raider is his expected profit on the takeover

bid ignoring any costs associated with actually making a bid.10 We assume that if the takeover bid

fails, each share continues to be worth po. Furthermore, we will take po to be constant throughout

the analysis. In particular, we do not consider how the threat of takeovers influences managerial

- efficiency. 1

10 One may wonder if the fact that we ignore costs associated with making a bid significantly affects our conclusions on the
- viability of takeover bids. This is not the case. Previous writers conclude that without exclusion, raiders will at best

break even if these costs are zero. We conclude that raiders will always earn strictly positive profits if these costs are zero.
Furthermore, it is straight-forward to include these costs and is easy to see that their inclusion would simply limit the
raiders who make bids to those who are sufficiently better than the current management at running the firm.

11 This issue is a central feature of Grossman and Hart's model. While we do not consider these effects, their inclusion would
complicate the mathematics but not change the basic results.
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We consider the subgame perfect equilibria of this game. In Section 3B, we will refine

this concept slightly (for reasons which we will explain there) and consider what we will call an

r-equilibrium (or refined equilibrium). An equilibrium is a vector {F(t), t} such that

(i) F=(t) maximizes the expected payoff to shareholder i given F(t) for j # i for each t

(i.e., Fi(t) is a best reply for shareholder i) and

(ii) t maximizes the raider's expected profits (over the set of allowed strategies for the raider)

given F(t).

That is, F(t) is an equilibrium in the subgame induced by the raider's choice of t and the

raider's choice of t is optimal for him given the set of equilibria induced by the possible choices of

t. An r-equilibrium is an equilibrium such that for all t, F(t) constitutes a trembling-hand perfect

equilibrium in the subgame induced by t. A complete explanation of this concept is provided in

Appendix B where the concept is used in Theorem 2. Also, an explanation for why this refinement

is utilized may be found in Section 3B.
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Section 3A. Any-and-All Bids without Exclusion.

In this section, we consider equilibria in our two-stage game when the raider's strategy set

T is restricted to so-called any-and-all bids. In this case, T will be taken to be the real line.

The raider's strategy choice, t, will be a bid price, b, a price per share which will be offered for

any and all shares the stockholders tender to him. Previous writers have claimed that no raid can

succeed with b < p1. In our model, there are many equilibria in the subgame induced by such a

b in which the raid may succeed even if b is made arbitrarily close to po. Before presenting our

general characterization of equilibria in this game, we present three examples of equilibria in the

subgame induced by a given b E (po, pi).

First, many asymmetric pure strategy equilibria exist in which exactly K shares are tendered

to the raider and so the raid succeeds with probability 1. In fact, any a such that o c,- = K and

a: < hi for all i is an equilibrium. Since the raid succeeds, a shareholder who tenders an additional

share foregoes p1 to earn b < p1. Sincethe raid would fail if fewer shares are tendered a shareholder

who tenders fewer shares earns po on each rather than b > po. Therefore no shareholder has an

incentive to deviate from his proposed equilibrium strategy. Furthermore, there is no pure strategy

equilibrium in which the number of shares tendered is not equal to K. If less than K are sold in

some proposed equilibrium, then any shareholder choosing og < hi prefers to choose a larger ag. If

more than K are sold, then any shareholder choosing oc > 0 prefers to choose a smaller ai. Hence,

in general, no symmetric pure strategy equilibria exist. 12

Notice that, because exactly K shares are sold in these equilibria, each seller is pivotal.

By this we mean that if any of them tenders any fewer shares, the raid will fail. Thus, given the

strategies of the other shareholders, each seller, in effect, must choose whether or not the raid

succeeds. Hence, no seller can free ride.

There are symmetric equilibria in mixed strategies if all shareholders have the same number

12 There is one special case in which there exists a symmetric pure strategy equilibrium in the subgame. In the event that
is anineger and every sharholder owns at least Kshre, then every stockholder offerrng is a symmetric pure

strategy equilibrium in the subgame.
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of shares.13 As an example, suppose that h= = 1 for all i. Suppose

Fj( i) 1- -1

for all j # i. That is, each shareholder other than i sells his share with probability 7. Then the i '
shareholder will also randomize if and only if

K-N1 

N-i1(N))bP=
(1) ib)=7N 1 - N-1-jp0+E N-) 1 (-7N-1-Ap

j=0 j=K

For any b strictly between po and pi, the right-hand side of the above is strictly smaller than b at

7 = 0 and strictly larger at y = 1. Since the right-hand side is continuous in y and strictly increasing

in 7 for all y strictly between zero and one, there is a unique 7 E (0, 1) satisfying equation (1).

Therefore, an equilibrium has each stockholder j choosing Fj(oy) as given above where y satisfies

(1).

Clearly if the asymmetric pure strategy equilibrium is the one which occurs in the subgame,

then the raider earns strictly positive profits for any b E (po, p1). It is less obvious but also true

that this holds if the symmetric mixed strategy equilibrium ensues instead. To see this, note that

the raider's expected profits are

K-1 N

N -1j 0  z N 1 -yjN- jp - Nyb

j=0oj)j=K

Substituting for b from (1) and rearranging shows that this is in fact equal to

(2) K( 1 - )N-K P- Po K> 0.

This expression has an interesting interpretation because ( ) yK(1 )N-K is the probability

that exactly K shares are tendered. Thus, the raider's profits are proportional to the probability

-- that each seller is pivotal. As with the asymmetric pure strategy equilibria, the raider's ability to

13 It is not clear how to define a symmetric equilibrium in mixed strategies when stockholders have different numbers of
shares.
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earn profits hinges on his ability to make each stockholder pivotal with positive probability.14

We can also explicitly analyze one particularly tractable class of asymmetric mixed strategy

equilibria. Suppose at least K + 1 stockholders own exactly one share. Suppose S > K + 1 of these

stockholders choose y as given by equation (1) where S replaces N. Also, suppose that each of

the remaining shareholders chooses not to tender any shares. This set of strategies constitutes an

asymmetric mixed strategy equilibrium. Note that the equation defining y implies that each of the

S shareholders is indifferent between selling and not selling. This means that the stockholders who

choose a nonzero probability of selling act to set b equal to the expected value of a share, where

the probability of a successful raid is a calculated conditional on the event that they do not sell.

Clearly, then, the expected value of a share when we do not condition on this event is larger than

b. Hence all the stockholders who choose a probability of zero of selling their shares are, in fact,

choosing optimally. Hence this is an equilibrium. '5 The raider's profits would be given by equation

(2) where S replaces N. Hence, again, his profits are proportional to the probability that each

seller is pivotal.

So we have shown that in three broad classes of equilibria in the induced subgame, the raider

earns strictly positive expected profits and the raid succeeds with strictly positive probability for

any b between po and p1. As discussed above, this occurs because the raider is able to make each

seller pivotal (with positive probability). As the following lemma shows, the raider is always able

to make at least one seller pivotal. In Theorem 1, we show that this ability insures that the raider

earns strictly positive expected profits and that the raid succeeds with strictly positive probability

in equilibrium. Lemma 1 and Theorem 1 are proved in Appendix A.

Lemma 1: When the raider is restricted to any-and-all bids, in every equilibrium in the

subgame induced by any b E (po, p1), at least one seller is pivotal with strictly positive

probability.

Theoremn 1: When the raider is restricted to any-and-all bids, in every equilibrium, (i)

po < b < p1, (ii) the raider earns strictly positive expected profits, and (iii) the raid

14 Interestingly, if the symmetric mixed strategy equilibrium arises in the subgamne induced by each I,, the raider chooses b to
maximise (2). This is equivalent to choosing a to maximize (2). This means that he chooses ay to maximize the probability
that each seller is pivotal. For additional details, see analagous calculations in Section 5.

15 Palfrey and Rosenthal [1983] refer to equilibria with this form as "quasi-symmetric."
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succeeds with probability strictly greater than zero as long as the raider is more efficient

than current management.

It is important to point out that this result does require the raider to be more efficient

than current management-i.e., that pi > po. Otherwise, the raid cannot succeed, as there is no

b E (p0, p1). Though this condition seems obvious, we will see in Section 4 that given some strategy

sets for the raider, there are equilibria in which less efficient raiders take over. In fact, we could

restate Theorem 1 as: if the raider is restricted to any-and-all bids, he has a nonzero probability

of taking over and will earn strictly positive profits in the attempt if and only if he is more efficient

than current management.

Notice that the raider's expected profit is strictly positive for any I and N. Thus for any

finite number of stockholders, the raid can succeed and earn profits for the raider. By contrast,

previous writers seem to have considered the case of an infinite number of shareholders each owning

an infinitesimal fraction of the firm. They have asserted that no equilibrium in such a game can

have the raid succeed and earn the raider positive profits. A question of some importance, then,

is what the set of equilibria converges to as the number of shareholders goes to infinity. That

is, as the number of stockholders becomes large, do the probability of a successful raid and the

expected profits of the raider go to zero? If so, then for sufficiently large N, our results would be

insignificantly different from those of previous writers. In Appendix C, we show that under certain

conditions, neither the probability of success nor the raider's expected profits go to zero. Because

of this, the infinite number of stockholders approach does not appear to adequately approximate

the large numbers case.
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Section 3B. Conditional Bids without Exclusion.

In this section, we will consider the situation in which T contains conditional bids as well

as any-and-all bids. With such a bid, the raider chooses three objects. First, he chooses a number

b which he will pay for shares offered to him. Second, he chooses an integer number of shares he

wishes to acquire; that is, he announces he will pay b for K shares. If fewer than that number is

offered to the raider, he buys no shares at all. If that number is offered, he buys all of them and

pays b for each. The third object he chooses is a rationing device which determines how many he

buys from whom in the event that more than K shares are offered. We always require him to choose

devices which specify that at least K shares are purchased in this event. As an example of such a

device, the Williams Act requires that in such an event, the raider must buy the same percentage

of shares from each person who offers shares to him and that he buy n shares in total. This is

commonly referred to as purchasing on a pro rata basis. We will not restrict the raider to this

specific device. However, the results we prove will not require that he has devices other than this

to choose from. Notice that if K = 1 and the raider chooses to buy all shares offered above x, then

the conditional bid is in fact identical to an any-and-all bid. Hence the strategy set considered

here strictly contains the set considered in the last section.

Consider the following strategy for the raider. Suppose he offers infinitesimally more than

Po for all N shares, i.e., r. = N. Clearly, one equilibrium in the induced subgame has all share-

holders offerring all their shares. Any deviation from the proposed equilibrium strategy causes the

shareholder to earn only hpo, while selling all shares earns hj times a number strictly larger than

Po. Notice also that another equilibrium has no one offering any shares for sale. If any shareholder

other than i chooses to withhold some shares, then i is indifferent between offerring all his shares

and offerring any number less since the raider will not purchase regardless of what i does.

This latter subgame equilibrium is not stable in the following sense. Suppose that i thinks

that there is some tiny chance that all other stockholders will sell all of their stock. No matter how

small that probability is, he will choose to sell all his stock. Thus the only stable equilibrium in the

subgame is where all stockholders sell all their stock. More precisely, this is the only trembling-hand
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perfect equilibrium in the subgame induced when the raider chooses this strategy.

Suppose we focus on equilibria in the two-stage game which have trembling-hand perfect

equilibria in the subgame induced by any strategy choice of the raider. These are what we have

defined as r-equilibria. In this case, if the raider offers the bid defined above, he will take over the

firm with probability one and earn profits which can be made arbitrarily close to (P1 - po)N. Thus

he can obtain an amount arbitrarily close to the increase in the value of the firm. As is intuitively

clear, this is the best he can do unless he is able to somehow take some of the firm's initial value

from the stockholders-that is, unless exclusion is allowed. So if exclusion is not allowed, we have

the following theorem which is proven more rigorously in the Appendix B.

Theorem 2: When the raider is restricted to conditional bids, the unique r-equilibrium

has t = (b*,*,-), where (i) b* = Po+S for S made arbitrarily close to but strictly greater

than 0,16 (ii) i&* = N,1' and (iii) the raid succeeds with probability 1 if the raider is more

efficient than current management.

This theorem implies that if conditional bids are allowed, then the raid succeeds with

probability 1 if and only if the raider is more efficient than current management. This is, of course,

stronger than the result of the last section. Notice also that this equilibrium is independent of I or

the "size" of each shareholder relative to the firm. Hence it continues to be the unique equilibrium

as each stockholder "becomes small" relative to the firm.

The strategy described in Theorem 2 yields profits for the raider that are arbitrarily close

to the increase in the value of the firm. Clearly, this is the best he can do unless he is able to take

some of the firm's initial value from the minority stockholders. A necessary condition for this is

that he be able to exclude.

Corollary: If the raider is allowed any strategy set containing conditional bids but not

exclusion, an equilibrium of the game is the equilibrium given in Theorem 2. Further-

16 Technically, the raider's best strategy is undefined, since he must choose 6 strictly greater than zero but always is better

off choosing it smaller. Since there is no smallest number strictly larger than zero, this leaves 6 undefined. We will ignore
this problem in all that follows and will simply write 6* = P0 + 6 where it is understood that 6 > 0, but can be taken to
be arbitrarily small.

17 The device is irrelevant because sx* = N implies that it is impossible to have more than ic* shares offered for sale to the

raider.
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more, any other r-equilibrium has the same outcome.18

Notice that, unlike in Section 3A, there is a unique equilibrium when the strategy set is

enlarged to permit conditional bids but bars any form of exclusion. A conditional bid with ic = N

makes every stockholder pivotal and thus willing to sell even for po +8S. The ability to make every

stockholder pivotal enables the raider to extract all of the gains from better management of the

firm. In Section 3A, the raider's strategy set was restricted to any-and-all bids. While the raider

was able to make at least one seller pivotal with strictly positive probability, he was unable to

extract all of the gains. Unlike when conditional bids are allowed, every stockholder selling every

share was not an equilibrium because no one was pivotal in that situation.

Section 4. Bids with Exclusion.

Earlier authors have suggested that no takeover bid less than p1 can succeed because no

individual shareholder can affect the probability that the raid will succeed. Thus, given rational

expectations, if a bid will succeed, no shareholder will tender for anything less than the value of

his shares given success. Hence, they conclude that successful takeovers require that the value of

a share to a minority stockholder be less than the value of that share to the raider if the raid

succeeds. Different authors have considered different exclusionary devices.

Grossman and Hart suggest that dilution is an exclusionary device. The idea of dilution

is that prior to a takeover the shareholders voluntarily accept a dilution of their property rights

in the event of a takeover by adopting rules which allow the raider to exclude them from some of

the increase in the value of a share. For example, the raider may do this by selling some of the

firm's assets to another firm he controls at less than the market value of these assets. This tactic

effectively transfers some of the value of the firm to him, preventing minority shareholders from

-receiving the full value of their shares in the event of a takeover.

18 With this strategy, the raider acquires all N shares at PO + 6 per share. With an enlarged strategy set, there may be
other strategies which induce the same outcome, so that the raider may choose one of these strategies instead. However,
any strategy which does not induce this outcome must yield lower profits.
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Bradley [1980] and Bradley and Kim [1984] focus on front-loaded two-tier bids as an ex-

clusionary device. These bids are conditional bids specifing two prices, the front-end and the

back-end price. The former is paid on the ic shares the raider seeks to acquire. If he takes over,

then the minority stockholders are forced to sell their shares for the back-end price.19 As long as

the back-end price is less than pi, the raider is able to exclude minority stockholders from some of

the increase in the value of the firm. Consequently, this acts like dilution.

In the last section, we showed that, with any finite number of shareholders and with any

distribution of those shares,20 allowing conditional bids without exclusion is sufficient to guarantee

that a takeover occurs whenever the raider is more efficient than current management. Hence

exclusion is unnecessary for this purpose. This does not imply, of course, that exclusion cannot

have any advantages. As we will show in this section, exclusion has beneficial effects from the

point of view of society if any-and-all bids are the only bids allowed, but has harmful effects if

conditional bids are allowed.

We will focus on dilution as an exclusionary device. Let 4 be the amount of dilution.

Following Grossman and Hart, this means that in the event of a takeover a minority shareholder

receives pi - 4 rather than p1. Thus if the raider takes over the firm by purchasing, say, k shares

at a price of b, then his profits are (p1 - b)k + (N - k)4'. Notice that setting the back-end price

equal to pi - 0 and allowing conditional bids extends our analysis to front-loaded two-tier bids.21

First, consider the effect of dilution when the raider is restricted to any-and-all bids. For

any b > po, if b is large enough so that p1 - 4 po, it is a dominant strategy in the subgame for

each shareholder to sell all his shares. To see this, note that selling a share earns b while holding

it earns po if the raid fails and p1 - @ if it succeeds. Since both of these are strictly less than b

by assumption, each shareholder will tender all h, shares. Since this is true for any b > po, clearly,

the raider will choose the smallest b in this range. If he chooses b outside this range-that is, he

sets b po, then the raid will not succeed as no one selling is an equilibrium. 22 Notice also that

19 The Williams Act requires that the back-end price of such a bid be no smaller than Po-

20 By any distribution of those shares, we mean only to include distributions which satisfy K > N - h;for alli.

21 Since the raider takes #1 as given, our treatment has the raider constrained to choose a particular back-end price. If the

raider's best front-loaded two-tier bid has the back-end price as low as legally allowed, then this formulation entails no
loss of generality.

22 Technically, we cannot conclude that he will not take over with such a bid. It is also an equilibrium in the subgamne for

everyone to sell. As Grossman and Hart argue, this is a fairly unreasonable equilibrium. Because of this, we will focus
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the raider's profits, which are arbitrarily close to N(pi - po), will only be positive if he is more

efficient than current management. If the raider is less efficient than current management, we must

have p1 - ' < po. Thus less efficient raiders cannot takeover. Hence we have proven the following

theorem and corollary.

Theorem 3: If the raider is restricted to any-and-all bids and p1 - # < po, then the

unique equilibrium has23 b = Po + b and each shareholder tenders all h, shares, if the

raider is more efficient than current management.

Corollary: If a raider is restricted to any-and-all bids and is less efficient than current

management, then the unique equilibrium has no bid made.

Notice that this equilibrium is identical to the equilibrium discussed in Theorem 2 in every

detail. In both equilibria, each stockholder sells all his shares and receives PO + for each. Thus the

raid succeeds with probability 1 if the raider is more efficient than current management and the

raid fails otherwise. Hence there is no difference to society or to the shareholders between allowing

conditional bids without dilution and restricting the raider to any-and-all bids with sufficient

dilution, i.e., 2 pi - po

If p1 -4,> po, then the effects of permitting dilution are not as pronounced. In this case, it

is simply as if pi had been made smaller from the point of view of shareholders. Thus, if the raider

chooses b E (po, p1 - 0), then all the possibilities for equilibria in the induced subgame discussed

in Section 3A are still possibilities here. If the raider chooses b E [pi - 0, pi), then the raider will

take over with probability 1.

In Grossman and Hart's model, dilution enables the raider to make a bid of the maximum

of p1 - 0 and po, which will succeed with probability 1. Any 4,> 0 enables the raider to choose a

b < p1 and to make tendering a dominant strategy for every shareholder. In our model, the same

is true. However, raids are possible and profitable even if #, = 0 because the raider can make some

sellers pivotal. For any 4,> 0, the raider can still choose such a strategy and will do so unless 'P is

only on the equilibrium in which no one sells in this subgame.
23 Where 6 is viewed in the same way as the 6 of Theorem 2.
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such that it is more profitable to make tendering a dominant strategy.24

The effects of allowing conditional bids and dilution are very different. To see this, suppose

that pi - 0 > po. If conditional bids are allowed, dilution will have no effect at all in this range.

Recall from Theorem 2 that the raider can make a bid t* which causes all N shares to be tendered

to him. In this event, his profits are (approximately) (p1 - po)N. In general, if the raider chooses a

bid of b and ,c> K shares are tendered, then his profits are xc(pi - b) + (N - I)#. Given that b > p0,

this expression is maximized at b = po. Also, if 0 < pi - po, this is maximized at c = N. Hence

the equilibrium of Theorem 2 would still be the unique r-equilibrium in the game. Consequently,

if 4 is in this range, dilution has no effect.

Now consider the case in which #' p1- p0. Then an equilibrium will have the raider taking

advantage of dilution. This equilibrium is presented and characterized in the following theorem.

First, we will define a particular class of rationing devices which may be used by the raider in the

event that more shares are tendered than he sought. An encouraging device will be defined as one

such that for all i, if Z5 og a; Ic, then the i' shareholder's best strategy is oa,= hi. In other words,

if the number of shares tendered by the other stockholders is at least the number requested by the

raider, then each stockholder's best strategy is to tender all his shares. 25

Theorem 4: If the raider can make conditional bids and if p1 - 4 po, then an

equilibrium has the raider offering the conditional bid 26 b = po + 6 for K = K shares

with any encouraging device. In this equilibrium, the raid succeeds with probability 1.

Proof First, we will show that given the raider's bid, it is an equilibrium in the induced

subgame for all stockholders to tender all their shares. This follows because if all

shareholders other than i tender all their shares, then at least N - hi shares will be

tendered. Since N - hi > K = K, this means that the number of shares tendered exceeds

the number the raider will purchase. Since the rationing device is an encouraging device,

by definition, this implies that the i a stockholder will choose of = hi.

24 This is not meant to imply that #b has no effect on the equilibrium in this case. This issue is discussed in Section 5.
25 It is easy to show that an example of such a device is precisely the device required by the Williams Act, namely, purchasing

on a pro-rata basis.
26 Again, see our earlier discussion on the treatment of 6.
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Given this equilibrium in the subgame, the raider's expected profit from this strategy

is arbitrarily close to K(pi - p0) + (N - K)4b. But the raider cannot earn any higher

profit than this from any alternative strategy. I

It is important to note that this equilibrium is not unique because the equilibrium in the

subgame induced by the raider's choice of this strategy is not unique. For example, as with the bid

made in Theorem 2, another equilibrium in the subgame would have all shareholders refusing to

tender any shares. Unlike the situation in that section, though, this equilibrium can be trembling-

hand perfect. There, the shareholder would gain S per share if everyone offered all their shares and

would gain nothing otherwise. Hence, with even a tiny probability that everyone else tenders all

their shares, the remaining shareholder would tender all of his. In this section, if everyone offers all

their shares, each shareholder receives po + S for some of his shares and the smaller amount pi - 0

for each of his remaining shares. Hence he is worse off if everyone offers all their shares and so the

instability of the analogous equilibrium in Section 3B is not present here.

One other important characteristic of this equilbrium is that it can be an equilibrium even

if the raider is less efficient than current management. The following theorem elucidates this point.

Theorem 5: If the raider is allowed conditional bids, then for any t@ > 0, there exists a

e(P) < po such that for any p1 > e(t), there is an equilibrium in which the raid succeeds

with probability 1. In other words, there always exists a lower bound on p1 which is

strictly smaller than po for which the raid succeeds with probability 1 in an equilibrium.

Proof: Since pi - 0 < po, the conditions for Theorem 4 are met.27 The raider's profit

in the equilibrium discussed there is arbitrarily close to K(pi - po) + (N - K)/#. This is

strictly positive if and only if

P1 > Po -[(N -K)/ Kp.

The right-hand side is strictly smaller than po for any t* > 0. Hence one can define

g('P) to be the right-hand side, which will complete the proof. I

27 Note that if p1 < Ps, then p1 - # < PO for any # > 0.
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Notice that this implies that with any nonzero level of dilution and conditional bids, there

is an equilibrium in which a raider who is less efficient than current management takes over. If the

raider is constrained to any-and-all bids or if the allowed level of dilution is zero, this is never true.

Section 5. Stockholders' and Society's Rankings.

In order to rank the outcomes implied by various strategy sets for the raider, we must

specify the criteria used. We present social and private rankings of these outcomes as viewed prior

to the observation of pi. This is as if, in a "stage 0," we rank corporate charters which restrict the

set of takeover bids that will be considered. At this time, the raider is not known and hence pi is

not known. Thus the stockholders and society will be taking expectations with respect to pi using

some exogenously given prior distribution. 28

We assume that society wishes to have the firm ran by the most efficient manager possible,

be that current management or the raider, and that society is indifferent about the distribution

of wealth between the stockholders and the raider.29 Given this goal, we immediately see that

society prefers conditional bids with no dilution to conditional bids with any positive level of

dilution. Recall that if the raider is allowed conditional bids with no dilution, the raid succeeds

with probability 1 if the raider is more efficient than current management and fails with probability

1 otherwise. By contrast, if dilution is allowed, then there are equilibria in which inefficient raiders

succeed with probability 1. While there are other equilibria, allowing dilution cannot improve the

set of outcomes and can lead to inefficient ones. Thus, regardless of which equilibria society expects

to obtain, no dilution is preferred.

Notice, though, that the equilibrium when dilution is sufficiently large and the raider is

28 The assumption that the priors are exogenous is important here. For example, we could imagine the following process

"generating" pi. Suppose that a raider observes the firm and can choose to undertake some expenditure to find out how
efficiently he could run the firm-that is, to find out his pi. Then the profit he could earn for any given P1 would crucially
affect whether or not he would undertake the expenditure. Since the provisions in the corporate charter would be a key
determinant of this, these provisions would affect the probability of observing a raider at all. Furthermore, if the raider
has incomplete information about the current value of the firm at the time he must make his decision, then the provisions
of the charter may provide information which would affect his decision.

29 This is analogous to maximizing the sum of consumer's surplus and profits.
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restricted to any-and-all bids is identical to the equilibrium with conditional bids and no dilution.

Hence society is indifferent between conditional bids with no dilution and any-and-all bids with

infinite dilution.3 0 Since both permit the raider to capture all of the increment in the value of the

firm and no more, the raider achieves the socially efficient outcome in either situation. Hence the

socially optimal level of dilution cannot be defined independently of the restrictions on the raider's

strategy set.

If the raider is restricted to any-and-all bids, society prefers infinite dilution to any finite

level. For any finite b, there is a strictly positive probability that p1 - b > p0. If so, there are

equilibria with a strictly positive probability of failure of an efficient takeover.

Society's preferences over finite values of 0, given a restriction to any-and-all bids, is more

complicated. Because of the multiplicity of equilibria, it is not possible to unambiguously compare

any equilibrium with one value of 0 to any equilibrium with a different value of 0. That is, consider

a fixed pi and suppose @b= 0. Consider an equilibrium where the b chosen by the raider induces a

pure strategy equilibrium in the subgame. In this equilibrium, the raid succeeds with probability

1. For the same p1 and some value of b> 0, we can focus on a mixed strategy equilibrium. In such

an equilibrium, the probability that the raid will succeed is strictly less than one. But clearly, we

cannot conclude that increases in b lower the probability of a successful takeover since we could

focus on the mixed strategy equilibrium at t = 0 and the pure strategy equilibrium for the strictly

positive 0 and reverse this conclusion.

However, we can analyze society's preferences within a class of equilibria. That is, it is clear

that society is indifferent about 0 given that, for any value of 0 under consideration, we focus only

on pure strategy equilibria. This is true because the probability of success for an efficient raider is

always 1 and the probability of failure for an inefficient raider is also 1. Suppose, instead, we focus

on symmetric mixed strategy equilibria. In this case, in comparing two values of 0, society always

prefers the larger value. To see this, note that '3 is now determined by

30 If the distribution of p1 has a finite support, we could replace "infinite dilution" with "if equal to the maximum possible

P1 ~ PO" in this statement.
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and the raider's profits 7r(b) are given by

N -N PjpO + S (\%(i - 7 )N-j[jp1 + (N - j)b] - Nyb

\ /7(1 - 7) - p0 + C. 1 - 7)N~ij (P1 - 0) - Ny b

j=0 j=K

+ N4 1 (N>- -

Substituting for b and rearranging,

(i>K(l - )N-K(P1 - 0 - Po) + NI (N i(1 -)N-J

1=K

(N>K( - 7 )NK(p - P0)

+ $/[N 1( (i - )N- _(N>K(j sy)N-KK]

j=K

By assumption, any b chosen induces the symmetric mixed strategy equilibrium. Thus, any b chosen

induces a 7 in the subgame so that the profit-maximizing bid corresponds to a profit-maximizing

-y. That is, the raider will choose -y to maximize this expression.3 1

The derivative of (3) with respect to b, is

N5 (j)+(1 - )N-3 - K(ZK ( -)

j=K

which may be rewritten as

( Ni 1 - )--

j=0

where
(0 forO i j K -1,

f(j)= N -K for j= K,.-
"N for K +1 ji N.

31 In other words, equation (3) above defines a functional relationship between ', and b. The raider chooses the point on

this function that maximizes his profit. All we are doing is substituting the constraint into the objective function and
maximizing with respect to 'y.
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Hence it is the expected value of a function increasing in j. Since an increase in 7 shifts the

distribution of j to the right in the sense of first-order stochastic dominance, this must increase

the expected value of any increasing function of j. Thus, this expression is strictly increasing in -y.

This implies that the cross partial of profits with respect to-y and # is strictly positive.

Using this condition, the application of the implicit function theorem immediately implies that

the raider's choice of y is increasing in 4. Since the equilibrium value of y increases with 4, the

probability of a successful takeover increases with 4. Thus society is always made better off by a

larger 4 given the restriction to any-and-all bids.32

Finally, we cannot determine society's preference between any-and-all bids with finite dilu-

tion and conditional bids with dilution. Recall that we have shown that when conditional bids and

dilution are allowed, there is an equilibrium in which a raider takes over with probability 1 whether

he is more or less efficient than current management. We have also shown that with any-and-all

bids with dilution, there are equilibria in which efficient takeovers succeed with probability 1, oth-

ers in which they succeed with positive probability (less than 1), but none in which an inefficient

takeover succeeds with nonzero probability. Consequently, without being able to specify which

equilibrium is attained, we cannot say which set of restrictions society prefers. Our problem is that

there is no accepted procedure in game theory to determine what outcome is obtained when there

exist multiple equilibria.

The natural way to analyze the preferences of the stockholders as a group would be to use

the Pareto ordering. In general, this is not possible because the stockholders may value equilibria

differently. However, if the stockholders can sell their stock to one another, then the preferred set

of restrictions will be that set which maximizes the total expected revenue to the stockholders. To

see this, suppose that we are comparing two alternative restrictions, A and B. Let the former lead

to an equilibrium in which the total returns to stockholders is smaller. If B is Pareto preferred

to A, then there is no difficulty ranking these alternatives. If, however, B is not Pareto preferred,

then some stockholder, say i , receives a higher expected payment when A is chosen. But since the

,- total expected payment is lower in this case, it must be true that some other stockholder, say j,
receives a lower expected payment and that his loss from the choice of A is greater than i 's gain.

32 Note that this result will extend, in a straightforward manner to the class of asymmetric mixed strategy equilibria discussed
in Section 3A. We conjecture that it extends to all asymmetric mixedl strategy equilibria.
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Then j would be willing to purchase i's stock for more than its value to i under option A in order

to ensure that B be chosen instead. Hence the relevant ranking of these two alternatives from the

stockholders' perspective would certainly be that B is preferred to A.

Given these criteria, we see immediately that the rankings of the stockholders differ from the

rankings of society. In particular, stockholders prefer requiring any-and-all bids with no dilution

to either conditional bids with no dilution or any-and-all bids with infinite dilution. This is

true because in the only equilibrium with either of the latter two strategy sets, total receipts to

stockholders are arbitrarily close to Npo. However, with any-and-all bids without dilution, total

receipts will always be higher because no share earns less than po and with positive probability

some shares earn p1.

As noted in the analysis of society's preferences, the multiplicity problem implies that we

cannot unambiguously compare any two equilibria with any-and-all bids and different values of 0.

Again, we can focus on comparisons within a class of equilibria. Here, however, difficulties remain.

Consider first the asymmetric pure strategy equilibria. Since total receipts to stockholders must be

Kb + (N - K)(p1 - b), stockholders prefer lower values of 0. Consider now the symmetric mixed

strategy equilibrium. Note that the expected payoff to each shareholder in such an equilibrium is

b. It is easy to construct examples in which the b which maximizes b for certain values of pi is

strictly positive and finite. Consequently, if these values of pi are very likely ex ante, the privately

optimal b is strictly positive and finite. Clearly, given the multiplicity of equilibria, it is impossible

to characterize the privately optimal b when the raider is restriced to any-and-all bids.

Of all of the alternatives we consider, the stockholders' least preferred alternative is condi-

tional bids with dilution. To see this, recall that the raider can guarantee N(pi - po) for himself

by using the strategy discussed in Theorem 2. Hence he will only choose a strategy which yields at

least the expected payoff from this strategy. Since the raid succeeds with probability 1 when the

raider uses this strategy, the total payoffs to all players are as large as they can possibly be. Thus

since no alternative strategy can increase total payoffs, any strategy which makes the raider better

off must lower expected payments to the stockholders. In short, not surprisingly, the stockholders

would prefer to give the raider less ability to take wealth from them.
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Thus, we see that the stockholders' prefer a socially inefficient outcome (any-and-all bids

without dilution) to the socially efficient outcomes (any-and-all bids with sufficient dilution or

conditional bids without dilution). The social and private rankings are summarized in the table

below where we have abbreviated "any-and-all" by A, and abbreviated "conditional bids" by C.

Entries in either of the column A's are listed so that moving up the column gives strictly better

outcomes. An entry in column B is noncomparable to the entry in column A appearing in the same

row. It is preferred to an entry in any lower row of column A. Thus, for example, C, b > 0 in the

same row as A, t 0 for society means that we cannot compare the two but that they are both

worse than A, = oo and C, 0 = 0.

Society Stockholders

A B A B

A,b=oo; C,b=0 A,4b=0 A, >0

A,'@b 0 C,t'> 0 C, #=0; A,- =coo
C, 4 > 0

Our results concerning exclusion differ from the conclusions of previous writers. Since we

have shown that exclusion is not necessary for takeover bids to succeed, exclusion is not necessarily

socially optimal. In particular, exclusion may allow inefficient raiders to take over. Also, the

trade-off for stockholders is different from that perceived by other writers. Grossman and Hart, for

example, suggest that an increase in 4' is beneficial in that it makes the takeover more probable and

is harmful in that it reduces the raider's bid. Consequently, they argue that the privately optimal

0Lis finite and strictly positive. In our model, increases in 0 may make the takeover more probable,

but may not.33 Furthermore, increases in 0 may actually increase the bid. Hence, neither of the

consequences of an increase in 0 identified by Grossman and Hart necessarily result.

Finally, we noted that the stockholders' ranking differed from the social ranking. This

occurs because in the socially efficient solutions presented, all of the gains from trade accrue to

the raider. Stockholders prefer restrictions on the raider which alter the distribution of the gains

SObviously, the probability of takeover cannot increase if it is already 1.
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from trade in their favor. The fact that stockholders' preferences over these alternatives differ from

society's does not necessarily imply that private corporate charters will be socially sub-optimal.

Since we have only considered a very restricted class of possible strategy sets for the raider, we

cannot conclude that there is no strategy set which is both socially and privately optimal.34

We believe that further analysis of this issue requires the inclusion of details that have been

omitted from this model. These include, especially, incomplete information, defensive efforts by

the current management, and competing raiders. We believe that an explicit multi-stage game

would facilitate a clearer understanding of the issue. For example, conditional bids with ic = N can

be blocked by a competing raider who has been able to acquire some shares. Given this, society

may prefer restricting the raider to any-and-all bids with infinite dilution. We are continuing to

research this issue.

r

34 To make this point forcefully, consider the following example. Suppose that stockholders can write into their corporate
charter that only conditional bids with x = N, b = p1 - 6, and no dilution will be considered. Such a restriction is
socially optimal because every efficient raider will takeover and no inefficient ones will. Also, this restriction is the best
that shareholders can do for themselves. Obviously, it seems unreasonable to allow such provisions in the model since this
relies heavily on the rather poor assumption of complete information.
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APPENDIX A: Proofs of Lemma 1 and Theorem 1.

Lemma 1: When the raider is restricted to any-and-all bids, in every equilibrium in the

subgame induced by some b E (po, p1), at least one seller is pivotal with strictly positive

probability.

Proof: Suppose not. Then the probability that any given shareholder is pivotal in equi-

librium is zero. This implies that we cannot have the raid succeed with probability 1. If it did,

because no shareholder is pivotal, each would prefer to sell no shares as pi > b. Also, we cannot

have the raid fail with probability 1. Since no shareholder is pivotal, in this event, each would

prefer to sell all shares because b > po, another contradiction.

So the raid succeeds with probability strictly between zero and one. Let si be the smallest

number of shares and 4 be the largest number of shares that the i a shareholder tenders with

nonzero probability in equilibrium.ss Since the raid may fail, Z', s, K - 1. Further, since no

shareholder is pivotal,

(A.1) E sg-i K- 1 Vi.

That is, since the probability that i affects the outcome is zero, then i cannot affect the outcome in

the event that each other shareholder sells sj shares. Further, since the raid may succeed, E>;f.j K.

Again, since no shareholder is pivotal,

(A.2) Z4+ si >K Vi.
jai

More generally, for any set of possible choices by the other shareholders, the choice of the i a

shareholder cannot affect the outcome. To develop the implications of this, we let 1 = {1, 2,... ,1)

be the set of shareholders and let I\{i} be the set of shareholders other than i. In equilibrium,

35 If i chooses a pure strategy, then o g
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for any partition of I\{i} into two sets, there is a nonzero probability that for each j in one set, j
chooses sj, and for each j in the other set, j chooses t. A typical partition is denoted by 1/ and

If, where the former is the set of j who choose si. Then the fact that i cannot be pivotal implies

that for any such partition, for all i, either

(A.3) sj+K-1-t
jEI sj EIf

1| je

or

(A.4) Zsj+Z4 i K - si.
jEI P 3EIe

We will now show by induction that (A.3) holds for all partitions.

First consider I, containing a single element, say {k}. Suppose (A.3) does not hold so that

(A.4) must. Then

sj + 4 K -si

joilk

which implies Z,k sj + 4 > K. But this contradicts (A.1). Therefore, (A.3) must hold for I'
containing one member.

Now we will show that if (A.3) holds for all If containing n members for all i, it holds for

all If containing n + 1 members for all i. By hypothesis, for any IJ containing n members,

Ssi + :i<K - 1 - Vk.
JE16 jEzI

Choose i E I4. Rearranging,

Zs+Zej,.±<K-1-si.

Since
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for a set If = I U {k}, we can write this as

Z s >+ < K -1- s1 < K - s .
jEI jEIe

Obviously, this contradicts (A.4) for this partition so that (A.3) must hold. Since if contains n+1

members and since every set containing n + 1 members can be constructed similarly, we have that

(A.3) holds for every partition.

In particular, (A.3) must hold for all I2 containing I - 2 members. Hence,

si+1 > i K-i- ek.

j#i,k

This implies that

s+Z i K- 1< K
j~gi

which contradicts (A.2). Therefore, it is impossible to have no one pivotal when the raid succeeds

with probability strictly between zero and one. Since we have already shown that it is impossible to

have no one pivotal otherwise, we must have at least one shareholder pivotal with strictly positive

probability in equilibrium. I

Theorem 1: When the raider is restricted to any-and-all bids, in every equilibrium, (i)

po < b < p1, (ii) the raider earns strictly positive expected profits, and (iii) the raid

succeeds with probability strictly greater than zero as long as the raider is more efficient

than current management.

Proof: Note that the raider earns zero profits by offering a bid less than or equal to po.36

Clearly, b P1, since otherwise the raider loses money on every share purchased. If b = pi, the

raider earns negative profits in the event that the raid fails and zero profits if it succeeds. Hence

b = P1 or b po will only be chosen if he cannot earn strictly positive expected profits with some

SAlso, a bid equal to p0 cannot succeed since no shareholder will sell at that price unless the probability of success of the
raid is zero.
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other bid. We now show that any b E (P0, p1) must earn strictly positive expected profits and so

some b in this range will be chosen.

First, notice that if b > po, then the probability that the raid succeeds must be strictly

positive. Otherwise, all shareholders will face a choice between b per share and po per share. If so,

all shareholders would choose to sell all their shares and the takeover would succeed with probability

1, a contradiction.

We have already seen that the only pure strategy equilibria possible in the subgame have

exactly K shares sold. In these equilibria, the raid succeeds with probability 1 and the raider earns

profits of K(p1 - b). Hence the statement of the theorem is clearly true if this is the equilibrium

in the induced subgame. So suppose instead that we have a mixed strategy equilibrium in the

subgame.

We will now show that in such an equilibrium, at least one of the shareholders who random-

izes is pivotal with strictly positive probability. By Lemma 1, some shareholder must be pivotal

with strictly positive probability. Suppose that every pivotal stockholder is one choosing a pure

strategy. Therefore, the outcome is independent of the choice of any other stockholder. Thus, the

raid either succeeds with probability 1 or fails with probability 1. In neither case will any other

shareholder randomize.

Let i be a shareholder who randomizes between selling two distinct numbers of shares and

who is pivotal with strictly positive probability. Let s be the smallest and £ be the largest number

of shares he tenders with positive probability. Define 41(k) as the probability that the shareholders

other than i offer at least K - k shares. That is, b(k) is the probability that the raid will succeed

given that i sells k shares.

Since i associates nonzero probability with selling a shares and £ shares, he must receive the

same expected payoff from either choice. Hence we must have

eb + (hi - e)[4;(e)pi + (1 - 4;(e))po] = sb+-F (h, - s)[4;(s)pi + (1 - 4k(s))po]
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which can be rewritten as

(3) (t - s)[b - 4;(s)pi - (1 - ci(s))po] + (h; - E)[#i(E) - 4k(s)](p1 - po) = 0

Since £ must be no larger than hi and since pi > po, the second term must be nonnegative if

$;(s) < 4()

Note that

$1(k) = 1- Prob[Zu, < K - k] = 1- Gi(K - k),

1ii

where G(-) is the distribution function for Z o;. But since the distribution function must be

nondecreasing in its argument, we have Gi(K - k) nonincreasing in k so that d$(k) is nondecreasing

in k. Hence the fact that s < £ implies that #5(s) < 4(t). Further, suppose that they are equal. If

so, then there is no event with strictly positive probability in which i's choice changes the outcome.

But then i is not pivotal, a contradiction. Thus, q5(s) < 4;(I). Therefore, the second term in (3)

must be nonnegative and so the first term is nonpositive. That is,

b 4;(s)p1 + (1 -4(s))po.

Now, let pi(k) = Fi(k) - Fi(k - 1) which is the probability that i sells exactly k shares. Also

let 4 be the probability that the raid succeeds. Then by the relationship between joint, marginal,

and conditional distributions,

= Z i(k)p;(k).
k=

That is, ( is a convex combination of 4;(k) for values of k that i chooses with nonzero probability.

Since 4;(E) > 4;(s), we have 4 > #h(s) which immediately implies

(P1+(1 - )po- b> 0.

That is, the raider's expected profit per share acquired is strictly positive. Since c > 0, it must

also be true that the expected number of shares acquired is strictly positive.

These two statements imply that the raider's expected profits are strictly positive. To see
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this, let n be the number of shares the raider acquires. Let p(n) be the value of a share given that

the raider acquires n shares. Of course, p(n) = p1 if n > K, and is po otherwise. Thus p(n) is an

increasing function of n. We have shown that E(p(n) - b) > 0 and that E(n) > 0. Since p(n) and

thus p(n) - b is increasing in n, one can show (see Tong [1980]) that Cov(p - b, n) > 0. But then

E[(p - b)n] > E(p - b)E(n). Since the latter is strictly positive, the former, which is the raider's

expected profit, is also strictly positive. I
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APPENDIX B: Proof of Theorem 2

Theorem 2: When the raider is restricted to conditional bids, the unique r-

equilibrium has t = (b*,icx*,-), where (i) b' = po + 6 for 6 made arbitrarily close to but strictly

greater than 0, (ii) ic" = N, and (iii) the raid succeeds with probability 1 if the raider is more

efficient than current management.

Proof: An c-equilibrium in the subgame induced by the raider's choice of t is defined as an

equilibrium in which each stockholder is restricted to choosing each of his possible pure strategies

with probability no less than c > 0. A trembling-hand perfect equilibrium in the subgame is any

equilibrium which is the limit of c-equilibria for some sequence of c's converging to 0. We proceed

by first showing that the only c-equilibrium in the subgame induced by this strategy for the raider

has each stockholder putting c weight on each possible pure strategy other than selling all shares.

This immediately implies that the only trembling-hand perfect equilibrium has each stockholder

tendering all his shares.

Given that every shareholder other than i has put nonzero probability on every one of his

possible pure strategies, it is clear that the probability of any specific number 37 of shares being

tendered by these stockholders is strictly positive. If any total number of shares other than N - hi

is offered by these shareholders, then the raid will not take place even if i sells all of his shares.

Thus, the i 4 stockholder is indifferent between all his possible strategies. But if the number of

shares tendered by the other stockholders is exactly N - hi, then i strictly prefers selling all his

shares as he receives b > po for each if he sells all and po otherwise. Thus the expected payoff to i

from selling all his shares is strictly larger than the expected payoff to selling any other number of

shares. Hence his best strategy, given that he must choose each possible pure strategy with positive

probability in an c-equilibrium, is to put c probability on each pure strategy other than selling all

his shares. Since this is true for each shareholder, the unique trembling-hand perfect equilibrium

in this subgame has each shareholder tendering all his shares.

37 Between 0 and N - hg, of course.
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This implies that if the raider chooses the strategy specified in the theorem, then in any

r-equilibrium, the raid must succeed with probability 1. Hence the raider's profit from this strategy

must be arbitrarily close to N(p1- p0). If a strategy is to earn higher profits, then, because exclusion

is prohibited, it would have to be true that stockholders sold some of their shares at a price less

than po, which they would never choose to do.

To show that this is the unique equilibrium, we must establish that no other strategy yields

as high a payoff for the raider. It is clear that any strategy yielding as high a payoff for the raider

must have all N shares sold to the raider with probability 1 for po +6 per share. Thus any such

strategy must have the same b as the strategy specified. Furthermore, any such strategy must have

n = N. To see this, suppose that the raider chooses b = po+8 and c < N. Then there is no pure

strategy equilibrium in the induced subgame with all N shares tendered. If every other stockholder

tenders all his shares, then stockholder i can withhold up to N - n shares and earn p1 > b per

share. Thus no other strategy earns profits as high as this one for the raider. Therefore, this is the

unique r-equilibrium. I
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APPENDIX C: Convergence of Equilibrium with Any-and-All Bids.

38

As discussed in the text, previous writers have argued that without exclusion, the free rider

problem prevents successful takeovers when there is an infinite number of "small" stockholders.

We examine the limit of the equilibria in our two-stage game as the number of stockholders

goes to infinity. The basic question to be answered is the following: Is the outcome with an

infinite number of stockholders a reasonable approximation to some equilibrium outcome with a

finite but "large" number of stockholders? If so, then differences between our conclusions and

those of previous writers would become irrelevant when considering very large corporations-firms

which provide much of the interest in takeovers. We will show that, under certain conditions, the

probability of success and the expected profits of the raider will not converge to zero. As a result,

the large, finite case is not similar to the infinite case considered previously. We will use the phrase

"convergence fails" to indicate this.

To show this, we will analyze how certain equilibria with some finite number of stockhold-

ers change as the number of stockholders increases without bound. The multiplicity of subgame

equilibria makes an analysis of convergence in the two-stage game difficult. For this reason, we

focus on equilibria in which the equilibrium in each subgame is of a particular type. For example,

we consider the case in which the asymmetric pure strategy equilibrium obtains in the subgame

induced by each b for each number of shareholders. We consider three cases corresponding to the

three examples in Section 3A.

Let po(N) be the value of po when there are N shares of stock and define p1(N) analogously.

Since the number of shares of stock in the firm will be increasing, the total value of the firm (Npo(N)

or Np1 (N), depending on which is relevant) will be approaching infinity if po(N) and p1(N) do not

approach 0 sufficiently quickly. If one argues that the value of an individual's holdings should not

be getting small as N increases, then po(N) and p1(N) should not decline with N. An alternative

38 We focus on any-and-all bids for two reasons. First, as noted in Section 3B, the analysis of convergence with conditional
bids is trivial. Second, this is the case considered by Grossrnan and Hart [1979].
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procedure would be to keep the value of the firm constant as N increases. However, it is clear

that a large firm typically is a more valuable firm-that is, firms with a larger number of shares

of stock outstanding tend to be worth more money in total. Therefore, when examining how the

equilibrium changes as the number of shareholders increases, we should allow the value of the firm

to increase as well. We will show that the equilibrium outcome will not converge to the outcome

previous writers have identified in general if Npo(N) and Np1 (N) rise sufficiently quickly with N.

In fact, some cases will only require that these terms be constant in N.

We will let K(N) be the smallest integer larger than aN, where a is some fixed fraction of

the firm which must be acquired for the raider to gain control. Thus this fraction is not a function

of N, though, of course, the total number of shares to be acquired will be.

Consider first the equilibria in the two-stage game when we restrict attention to the asym-

metric pure strategy equilibria in the induced subgame. In this case, for any b E (po, pi), the

raid succeeds with probability one and the raider's profits are K(N) (p1(N) - b). Hence, the raider

chooses b = po(N)+b. Clearly, since the probability that the raid succeeds is one for all N, the limit

of the probability of success as the number of shareholders goes to infinity is one. Furthermore, the

raider's profits converge to a strictly positive number if K(N) (p1(N) - po(N)) does not converge

to zero. Since K(N) is of order N, this will certainly hold if the value of the firm under either

management is non-decreasing in N. In other words, so long as p1(N) and po(N) are at least of

order N- 1, the raider's profits do not converge to zero. Therefore, this type of equilibrium fails to

converge.

Now, we restrict our attention to the symmetric mixed strategy equilibrium in the induced

subgame. In the text, we showed that the raider's profits for any N as a function of the equilibrium

value of ' are

N K - N-KK(p1 - po).

* Clearly, for any fixed N, we would replace K with K(N), etc., to obtain the correct expression for

profits in the notation of this Appendix:

( N K{N .N-K(N)K(N)( p1 (N) - po( N)).
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As argued in the Section 5, we can analyze the raider's choice of y to maximize this expression.

The first-order condition for this maximization problem is

K(N)-K(N)- - ))N)K(N) - (N K(N))K(N) (1- )N-K(N)-1 - o.

Clearly, the raider chooses y =KN which converges to a as N -+ oo. It is straightforward to use

standard central limit theorem arguments to show that this implies that the probability that the

takeover succeeds does not go to zero.

The raider's equilibrium expected profits are

N K(N) K(N) NT - K(N) N-K(N)

(C.1)NK(N)(p1(N) - po(N)).
K )N) N N

Note that the first term is the probability that exactly K(N) shareholders tender, i.e., the proba-

bility that every seller is pivotal in equilibrium. The second term is the increase in value of K(N)

shares. With an infinite number of stockholders, the probability that any stockholder is pivotal

is zero. This does not imply that the raider's profits go to zero because the second term goes to

infinity if the value of the firm goes to infinity. We now show that the first term only goes to 0 as

fast as Vi7 goes to infinity. 39

Stirling's formula (see, e.g., Billingsley [1979]) states that

n! 27rn+(1/2) a-n.

Substituting into (C.1) and rearranging yields

1 vK(N)p1(N) - p(N))

The first term converges to the constant, Since K(N) goes to infinity as fast as N, this

* requires p1(N) and po(N) to go to zero no faster than vW7 goes to infinity. T'hat is, if the value of

the firm rises at least as fast as VWN, then the raider's profits will not converge to zero as N -+ oo.

39 This result is a generalization of a result in Charnberlain and Rothschild [1981].
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