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A LACK-OF-FIT TEST WITH AN APPLICATION
TO AN EARNINGS FUNCTION FOR WOMEN*

This paper presents a lack-of-fit test of model specification
used by experimental statisticians but mostly unknown to
econometricians. The test is applicable in situations in which
there are replicated observations on the dependent variable. In
this paper the test is modified to allow for heteroskedasticity
usually ~ encountered when dealing with cross-sectional
observations, and applied to an earnings function estimated from
a sample survey of Norwegian women.
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1. Introduction

The lack-of-fit (LOF) test is a model specification test that

can be applied when there are replicated observations on the

dependent variable corresponding to observations on the

explanatory variables. Basically, the test utilizes the

additional information that comes from within-group variation.

As the situation of replicated observations is normal in

experimental work, the test is well known to experimental

statisticians but appears to be almost unknown to

econometricians. (A survey of econometric text books has

revealed no mention of the test.) This is probably due to the

strong emphasis in econometrics on the methodology applicable to

time-series data involving a single observation on the dependent

variable for each set of observed values of the explanatory

variables. By contrast, when cross-sectional data are used,

there can be many units (individuals, firms, families) that are

characterized by the same values of explanatory variables (e.g.,

incomes, prices, educational levels). In this situation a lack-

of-fit test could often be profitably applied as an aid to

appropriate model specification.

The main purpose of the paper is to draw the attention of

econometricians to the possibilities offered by the lack-of-fit

test (see also Battese [19771). The paper is organized as

follows. Section 2 contains a development and an explanation of

the test. In Section 3 the test is generalized to allow for
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heteroskedasticity which frequently characterizes relations

pertaining to cross-sectional observations. Finally, in Section

4 the test is applied to the standard semilog earnings function

due to Mincer [1974], utilizing data from the Norwegian Fertility

Survey of 1977.

2. The Lack-of-Fit Test

Suppose that an nMl random vector Y is normally distributed

with mean y and covariance matrix 02 n. The null hypothesis

specifies a linear model of the form,

= X#, (1)

where X and j3 are nMK and KMl, respectively. Let us suppose that

there are m (m > K) distinct observations on the explanatory

variables X, and that corresponding to the i-th such observation

there are n. observations on the dependent variable Y, where

n
n. > 1 and Z n. = m. We will refer to these n. observations as

i=1 1 1

the "i-th group". The alternative hypothesis is

y = Xj + Zy, (2)

where Z is a matrix of values of unspecified omitted explanatory

variables (including possibly higher powers of X) of dimensi-on

nML (L < in-K) such that Z'X # 0, and y # 0. Note that we assume

that if the model is misspecif ied, observations on Z within each
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group have the same mean. 1

The error sum of squares (SSE) from the regression of Y on X

is given by

m n
SSE = E E (Y. .

i=l j=1 i

A 2
1J

(3)

where Y. denotes the j-the observation on the dependent variable

in the i-th group. As the i-th group observations are all

characterized by the same observation on the explanatory

variables, the fitted values i ( j = 1, 2, ... ,n .) must all be
13 1

equal. Therefore we may'write

A A

Y. . =Y.
13 i .

and it follows that

m n.
SSE = E [(Y..J

i=1 j=1
- Y.) + (Y. - Z.))

m i
= (Y..

i=l j=1 .13
S+

1

m
: n.C. + Y")

i= 1 1 1

where Y. 'is a sample mean of the i-the group. Thus the error sum

1 If Z is not constant whenever X is constant, the distribution
of the test statistic in (11) is unchanged under H0 and the test

is still valid, but the power of the test is adversely affected.
In this situation the test is in the class of the Goldfeld-Quandt
test when used as specification error test. We are indebted to
Jerry Thursby for a lengthy comment on this point.



4

of squares can be partitioned into two components

n.

SSP = E E (Y.. - Y 2 (4)
i=1 j=l 1J 2

and

m _2
SSL = E n.(Y.- )2 (5)

il 1 1i=1

The first of these components represents the 'within-group'

variation which, following the experimental literature, we call

the 'pure error sum of squares' (SSP). The second component is

termed the 'lack-of-fit sum of squares' (SSL). It is the error

sum of squares which would be obtained if each group were

replaced by' its sample mean and these sample means regressed on

the same regressor variables with each observation weighted by

n.. Defining

n.

s3 =E 1-1(Y.-1?.2, (6)
j-1)1J

we may write

m2
SSP = L (n.-1)s$ (7)

1

and SSP/(n-m) is seen to be a weighted average of mn different

2 2estimates s. of a . This means that we have two different

estimators of a, SSE/(n-K) and SSP/(n-mn). Under H
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E[SSE/(n-K)] = E[SSP/(n-m)] = a2

whereas under HA

E[SSE/(n-K)l > E[SSP/(n-m)] = a2

since variation around any point other than the mean always

exceeds the variation around the mean. This provides the basis

for the lack-of-fit test. 2

Now, under H0

SSE/ ~ Xn.K (8)

and

SSP 2 2 
(

S/u Xn-mrn9

Further, it can easily be shown that SSL(=SSE-SSP) and SSP are

independent so that

SSL/u 2 =2 -

and, therefore, if the model is correctly specified

2 The paper is directed to situations in which all primary
replicated data are available. However, if the data are in the
form of aggregates such that for each group we are given (i) the
group size (ng), (ii) the group mean (Yg), and (iii) the group

variance (si), then the LOF test can also be applied.
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F = SSL/(m-K) F1
SSP/(n-m) m-k,n-m'

A simple way of calculating SSP follows from the fact that

SSP is simply the error sum of squares obtained by the

application of least squares to the unconstrained regression

equation

Yi .= 1D .+ 2D2j.+... him mj + uij (12)

where D. = 1 for all observations in the i-th group,

= 0 otherwise.

Thus SSE defined in (3) represents constrained (by the null

hypothesis) error sum of squares whereas SSP represents an

unconstrained error sum of squares. The F-statistic in (11) can

equivalently be written as

(SSE - SSP)/(m-K) (13)F - SSP/(n-rn)

Finally, using the well-known result that F approaches

2 1l'2
x /v as v + , we see that as n + , n(SSL/SSP) is

v.2 2
asymptotically distributed as xm-k. In general2o is, of course,

unknown. However, if a2 were known, a more powerful test would

be obtained by using the chi-square result (10) rather than (11)

or (13). This remark has relevance to the following section.

3. The Lack-of-Fit Test Under Heteroskedasticity

As mentioned in the introduction, the main area of usefulness
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in econometrics of the lack-of-fit test is in the analysis of

cross-sectional data. In this context the underlying assumption

that E[(Y-g)(Y-g)' = aIn is unlikely to be realistic. We will

generalize it by assuming that

E[(Y-g)(Y-y)') = I, (14)

where

-2 22
Z = diag(u In ' 2In , . m

1 n 1  2 n 2  ' mnm

2
and the o. are known. Then, defining

D=diag(oiIn ' 2 In' m.n '1 2 m

it follows that

D y ~ N(D ~p, I }

and the linear specification on the mean under the null

hypothesis takes the form

D~ 1 = (D x)3. (15)

Thus, provided the analysis is carried out in terms of the

weighted observations Y; /o; and X;/o. (i = 1,2,...,m), the test

described in the previous section follows through with one

dif ference, namely that a2is known to be equal to unity. Thus

by (10), if the model is correctly specified,

LSS* ~x2 ,.K (16)
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where we have used LSS* to emphasize that weighted observations

are used.

2
In practice the a. are rarely known and have to be estimated.

Provided the omitted variables are functions of the included

variables as specified at the outset, the within group variation

in the observations on Y provides consistent estimators of the

2
o.. These estimators are completely independent of the

specification y = X13. Thus the result in (16) is to be regarded

as a large sample result; if the observations are weighted

inversely by si, then as n. + i , the distribution of LSS* is

given by (16).

It is commonly assumed in econometrics that the variances o?

can be related to a single variable w. say, through a

relationship of the form

a = awa (17)
1 1

where a and 6 are unknown parameters. Typically, w. would be a

member of the regressor set, but this need not be the case. If

such a model is appropriate and m > 2, then there will be gains

in asymptotic efficiency if we make use of the information given

in (17). A simple method of using (17) proceeds as follows.

Defining s2 as in (6), we have
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2 2
(n - )si.

i = 2 ~xn.-l'

2. 1

Therefore, given that a2 = aw6,

in s2 = in a + Slnw. + ui11 1 (18 )

where

u. = In v - ln(n.-1).

11 1

Bartlett and Kendall [1946] have shown that for large n ,

(n.-2)u. is approximately normally distributed with mean zero
1 1

and variance 2. Furthermore, they showed that this approximation

is likely to be good for n. as small as 10.

Thus least squares regression of (n.-2)ln s on /(nhT2) and
111

v(n-2)ln w. will produce consistent and asymptotically efficient
1 1

estimates of a and 6.

4. An Application of the LOF Test to an Earnings Function for
Women

A question of considerable importance to human capital theory

concerns the effect of schooling on earnings. Of particular

-interest is how this effect applies to women whose work history

typically differs from that of men. The standard model of

earnings proposed by Mincer [1974] and frequently used in applied

labor economics -- most recently by~Behrman and Birdsall [1983)

and by Chiswick [1983] -- is of the form:



inW -.. = + X + 2 3Si +u(19)

where W is the wage-rate of the j-th individual in the i-th

group;

Xi is the 'on-job' work experience (common to all

individuals in the i-th group);

S. is the number of years of schooling (common to all

individuals in the i-th group);

and u is an independently distributed stochastic

disturbance. (The subscripts have been adapted to the replicated

data case considered by us.)

At least two types of possible misspecifications of equation

(19) have been discussed in the literature.2 First, a study by

Mincer and Polachek [1974] provides some evidence that the

marginal effect of schooling on the wage-rate of people of equal

work experience is not constant for women with families. A

similar conclusion with respect to heads of households (of any

sex) has been reached by Ryder, Stafford, and Stephan [1976] on

the basis of a model of life-cycle decision making with leisure

as a choice- variable. This suggests the possibility of an

incorrect functional form of the equation. Second, it is by no

means certain that the model in (19) contains all relevant

explanatory var iables . In par t icular, Gr ili ches [1977)] contends

that models such as that in (19) suffer from the fact that

SAlong with other applied research workers, we do not address
the problem of a simultaneous equation bias that may arise ~from
the endogeneity of schooling -- a point discussed at length by
Griliches [1977).
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individual ability -- likely to be correlated with schooling

-- has been left out. The LOF test can certainly be effective in

detecting incorrect functional form since this leaves the

"omitted" variable Z constant within each group. As for the

omitted "ability" variable, for the test to work well it would

have to be true that all individuals of given experience and

schooling are characterized by nearly the same ability, which may

be questionable.'

The preceding discussion leads to the conclusion that it may

be worthwhile to apply the LOF test not only to equation (19)

-- to be labeled Model 1 -- but also to an equation that allows

for a nonlinear effect of schooling as in

In W # 1X + 2X i+3 3Si + pS+ uj (20)

which we label Model 2. To carry out the test we used the data

on about 2,000 married women taking part in the Fertility Survey

1977 carried out by the Norwegian Central Bureau of Statistics.

(The survey involved a random sample of about 4,000 women but

this number was reduced to about one-half after eliminating all

observations that were incomplete or that corresponded to a small

number of replications.) Wages were measured by Kroner per hour;

they are represented by actual wages for working women and by

potential wages for women who did not work at the time of the

*See, however, footnote 1 above. Griliches [1977] refers to
"ability" as "an unobserved latent variable that both drives
people to get relatively more schooling and earn more income,
given schooling..." ~(p. 7).
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interview. Experience was measured by the number of years worked

since completing the highest education. Finally, education was

measured by years of schooling. 5

The results for both models are presented in Table 1. Part

(a) of the table contains the results before correcting for

heteroskedasticity whereas Part (b) shows the results after

heteroskedasticity has been corrected for. The details of the

correction are as follows. By reference to the large-sample

procedure described in Section 3, we postulate that

heteroskedasticity in the earnings equation takes the form

a2 = aS. (21)

and obtain the following estimates:

a = 0.429 6 = -0.610 (F = 15.52**).
(0.173) (0.112)

Correction for heteroskedasticity was then implemented in

accordance with equation (15).

The most important result of Table 1 is that Model 1 is

rejected by the LOF test whereas Model 2 passes the test. This

holds whether a correction for heteroskedasticity is carried out

or not. Thus the evidence of Mincer and Polachek (1974) is

confirmed by our results. The linear form of schooling in the

* When applying the LOF test to Model 2 we also used dummy
variables to represent various kinds of education instead of the
linear and quadratic number of years of schooling. Since the
results were very close for both formulations, we present only
the latter.
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earnings equation for married women appears to be inappropriate

according to our evidence.

We conclude by giving a more detailed consideration to the

marginal effect of schooling on the earnings of women. Using the

results for Model 2 after correcting for heteroskedasticity, we

estimate the marginal effect of schooling as

BE(In W. .)

[aE(= ln W X = -0.104 + 0.016S.. (22)

[ i xconstant

This result is consistent with that of Mincer and Polachek [1974]

in that the effect of schooling is an increasing function of

schooling. In addition, the marginal effect of schooling is

positive for Si > 6.5 years. As there are at least 8 years of

compulsory primary schooling, these data suggest that the

marginal effect of schooling (for fixed experience) is positive.

This is consistent with the result which has been found for men .



TABLE 1

Regression Results and Lack-of-Fit Computations.for Models 1 and 2 a

(a) Before Correcting for Heteroskedasticity

A0 P1 P2 13 134SE SSE SSP F

MODEL 1 2.23 0.031 -0.00068 0.078 ----- 283.2 255.7 1.29**
(n=1958, m=154, K=4) (0.05) (0.006) (0.00024) (0.004)

MODEL 2 2.95 0.030 -0.00066 -0.051 0.006 280.1 255.7 1.15
(n=1958, m=154, K=5) (0.16) (0.006) (0.00024) (0.028) (0.001)

(b) After Correcting for Heteroskedasticity

P0 A1 P2 13 14 SSE* SSP* 2

MODEL 1 2.34 0.042 -0.0013 0.066 ------ 1 616.7 1 514 102.7*
(n=1582, m=68, K=4) (0.05) (0.007) (0.0004) (0.003)

MODEL 2 3.26 0.036 -0.0010 -0.104 0.0080 1 588.8 1 514 74.8
(n=1582, m=68, K=5) (0.18) (0.007) (0.0004) (0.032) (0.0014)

a Standard errors are in parentheses. Single and double asterisks on statistics
represent significance at the five and one percent levels, respectively.
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