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Section 1. Introduction.

Virtually all of the theoretical models of takeovers produced in recent years assume atomistic

stockholders. 1 Analogous to standard "price-taking" assumptions, the idea is that there are many,

small stockholders, none of whom can affect the outcome of a bid. Informal analyses of models

with a single bidder (or raider) and atomistic stockholders have concluded that there is a free rider

problem associated with takeovers. In the presence of this free rider problem, certain exclusionary

devices are necessary for successful takeovers.

Clearly. the atomistic stockholder assumption is intended to model a very widely held firm.

Do similar conclusions hold for firms which are not as widely held? The importance of this question

is underscored by the fact that, as Demsetz and Lehn [1985] note, there are many very large firms

which are controlled by a relatively small number of stockholders. In their sample of 511 large

firms, the 20 largest stockholders own controlling interest in 22% of the firms and 37% of the stock

on average. To answer this question, we consider a model with a finite number of stockholders.

We will show that the outcome with a finite number of stockholders is quite different from the

atomistic stockholder outcome. In fact, with a finite number of stockholders, successful takeovers

are possible without exclusionary devices. Hence it is important to know when the conclusions

of the atomistic stockholder model do hold, in order to determine when exclusionary devices are

necessary for successful takeovers.

The assumption of atomistic stockholders can mean one of two things. Either it is actually

true that no stockholder can affect the outcome or else some stockholders believe they have no

effect when, in fact, they do. Since the latter is inconsistent with rational agents. we will identify

the atomistic stockholder assumption with the former. We discuss two ways to formalize this

assumption. The standard formalization of many, small agents who cannot individually influence

aggregate outcomes is the infinite player game.2 We will show that the infinite stockholder outcome

is quite different from the atomistic stockholder outcome. An alternative approach is to study the

1 A survey of this area is provided by Spatt [1986]. Examples of models with a single bidder and atomistic stockholders
include Grossrnan and Hart [1980], Bradley [1980], and Bradley and Rosenzweig [1985). The atomistic stockholder
assumption is used differently in models with multiple raiders, a case we do not consider.

2 See Green [19841.
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limiting game, rather than the game at the limit. We will consider a sequence of firms, each of

which is more widely held than its predecessor. We will give conditions under which the atornistic

stockholder outcome obtains in the limit-that is, when exclusionary devices are necessary for

successful takeovers.

The atomistic stockholder models conclude that exclusionary devices are socially desirable

as they are necessary for successful takeovers. Since we have shown that they often are not necessary,

we reconsider their effects. We show that, with a finite number of stockholders, these devices can

lead to very undesirable consequences.3

To give the intuition for our results, we must first give an overview of the atoraistic stock-

holder models. These models4 have shown that atomistic stockholders have an incentive to free

ride on the improvements brought about by the raider. Since no stockholder can affect the outcome

of the takeover bid, then, assuming stockholders have rational expectations, if the bid is going to

succeed, no stockholder will sell unless he is offered at least the post-takeover value of his stock.

Consequently, the raider cannot purchase a share unless he pays at least what the share is worth

to him if the bid succeeds. If he does so, then even ignoring any costs of making a bid. he cannot

earn profits by taking over the firm. 5 Since stockholders will not tender for less than the expected

post-takeover value of their shares to them, successful takeovers require a divergence between this

value and the value of these shares to the raider. We will call such a divergence exclusion. The idea

behind these mechanisms is that "The only way to create proper incentives for the production of a

public good (i.e., guaranteeing that the firm is efficiently run) is to exclude non-payers (minority

stockholders) from enjoying the benefits of the public good." 6

Several different exclusionary devices have been discussed in the literature. Grossman and

Hart focus on dilution. The idea is that prior to a takeover, the shareholders voluntarily accept a

dilution of their property rights in the event of a takeover by adopting rules which allow the raider

to exclude them from some of the increase in the value of a share.7 Bradley and Bradley and Kim

focus on front-loaded two-tier bids. These bids specify two prices, the front-end and back-end

3 The further policy implications of our model are discussed in detail in Bagnoli and Lipman [198Ga).
4~ See, for example, Grossman and Hart, Bradley, Vermaelen 11981], and Bradley and Kim [19841.
5 This form of the argument is taken from Grossman and Hart.
6 Grossman and Hart, page 59. The details in parentheses have been added.

For example, the raider may do this by selling some of the firm's assets to another firm that he controls at less thani t he
market value of these assets.
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prices. The raider offers to pay the front-end price for controlling interest in the firm. If he takes

over, then the minority stockholders are forced to sell their shares for the back-end price. As long

as the back-end price is less than the value of share under the raider's management, this is a form

of exclusion.

Note that the crucial part of the argument that exclusion is necessary for successful takeovers

is that no stockholder perceives the effect his decision has on the outcome of the bid. Since this

is precisely the atomistic stockholder assumption, one would expect a different outcome without

atomistic stockholders. In fact, we will show that when there is a finite number of stockholders,

some stockholders must be pivotal in the sense that they do recognize that they may affect the

outcome. Making some stockholders pivotal is crucial because it forces them to choose whether

or not the bid succeeds. Hence, they cannot free ride, so exclusion is not necessary for successful

takeovers.

There are a few papers on takeovers which do not assume atomistic stockholders. 8 Shleifer

and Vishny 11986], Bebchuk [1985], and Hirschleifer and Titman [1987] consider models in which

not all stockholders are atomistic. None of these papers focus on the same issues we are interested

in. The paper most closely related to ours is a mimeo by Kovenock [1984). He calculates the same

mixed strategy subgame equilibrium we calculate below and makes some points related to ours.

However. he does not consider the raider's optimal strategy.

Our analysis is divided into three parts. After defining the game more precisely in Section 2,

we turn to an analysis of the differences between the finite and atomistic stockholder outcomes with

nonexclusionary bids. In Section 3A, we consider any-and-all bids. These bids are very commonly

used, ' possibly because they are less regulated than conditional bids. We show that if the raider

is more efficient than current management, then all equilibria have a probability of a successful

takeover strictly larger than the fraction of the per share increase in the value of the firm which

the stockholders receive. In fact, some equilibria have the takeover succeeding with probability 1.

In Section 3B, we consider conditional bids. With this broader strategy set for the raider, there is

a unique equilibrium0 in which the raider takes over with probability 1 if he is more efficient than

8 A related paper which does not explicitly consider takeovers is Palfrey and Rosenthal's [19831 participation game.

9 For example, in a sample analyzed by Desai [1985], 79 out of 170 bids analyzed were any-and-all bids.
10 Since conditional bids include any-and-all bids as a special case and since the unique equilibrium does not have an any-

and-all bid made, the model does not predict the coexistence of both types of bids. However, it is clear that including
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current management and fails with probability one otherwise.

Intuitively, one would expect that as the firm becomes more widely held, it becomes harder

for the raider to make stockholders pivotal and thus exclusion becomes necessary. In Section

4, we ask if and when this is true. More precisely, under what conditions is it true that the

atomistic stockholder outcome obtains when the firm is sufficiently widely held? We first show that

the infinite stockholder game will never yield the atomistic stockholder outcome. We then give

conditions under which the limiting equilibria of the finite game is the same as the outcome with

atomistic stockholders. Thus if a firm is sufficiently widely held and these conditions hold, exclusion

is necessary for successful takeovers. However, even if the firm is very widely held, exclusion is not

necessary if these other conditions do not hold. In Section 5, we show that with a finite number of

stockholders, exclusion can lead to inefficient outcomes. Thus in Section 6, we conclude that the

differences between the finite and atomistic stockholder games are substantial, important, and may

not vanish in the limit.

Section 2. Notation and Definitions.

Except for the finite stockholder assumption, our game uses assumptions which are quite

common in this literature. For example, our assumptions are virtually the same as those made by

Grossman and Hart. We consider a two-stage game with 1 stockholders who own all N shares of

stock in the firm. The i t stockholder has h= shares of stock where hi is an integer. We assume that

0 < h, < N - K for all i, where K < N is the number of shares needed to control the corporation.

Otherwise, some shareholder can prevent the takeover from succeeding even if everyone else sells.

We will let po be the value11 of a share of stock when the firm is run by the current management

and pi the value of a share if the firm is controlled by the raider. If the raider is more efficient than

current management, then p1 > po. All of these parameters are common knowledge.

In the first stage of the game, the raider will choose a strategy t from his strategy set T.

Since we will consider several different strategy sets, the precise definition of T will be postponed.

the differences in regulatory treatment of these bids or other more realistic considerations would alter this conclusioni.

11 By "value," we mean the per share expected discounted value of the firrn's profits under a given manager. Thus pt na
not be the same as the pre-takeover price of a share of stock if a takeover bid is anticipated.
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However, one element of the raider's strategy choice will always be a price per share he offers to

pay, which we will call b.

Given any t, the second stage is a subgame played by the stockholders in which each

shareholder simultaneously chooses (possibly via a mixed strategy) a number of shares to tender to

the raider.12 We require that the i t shareholder offer an integer number of shares between 0 and hi.

A pure strategy by shareholder iwill be denoted c,(t) and we will let o(t) = (i(t),o 2(t),...,ay(t)).

A mixed strategy for shareholder i, denoted Fi(- I t), will be a choice of a (cumulative) probability

distribution over the set of integers between 0 and Ai. Let

F(-" t) = (Fi1(-" t), F2(-" t), .. . , FI(- |t).

We will further restrict the stockholders' strategy sets by prohibiting any stockholder from tendering

shares to the raider if b < po. That is, for any t such that b < po, Fi( - t) = 1 for all a > 0.13 We

will frequently omit the argument t for notational simplicity.

We take all players to be risk neutral. Hence the expected payoff to the i * stockholder is

the expected value of his hi shares. The payoff to the raider is his expected profit on the takeover

bid ignoring any costs associated with actually making a bid. We assume that if the takeover bid

fails. each share continues to be worth p0.

We consider the subgame perfect equilibria of this game. On occasion, we will require that

no stockholder play a weakly dominated strategy. The reason for this will be explained when we

impose this requirement. An equilibrium is a vector (F(- t), t) such that

(i) for each t, F=(- t) maximizes the expected payoff to shareholder i given F(- | t) for j 7 i

(i.e., F=(- t) is a best reply for shareholder i) and

(ii) t maximizes the raider's expected profits (over the set of allowed strategies for the raider)

given F(- | t).

12 Notice that the management is not able to fight the takeover in our model. This assumption is quite common in this
literature.' For an examination of defensive tactics, see Bradley and Rosenzweig or Bagnoli, Gordon, and Lipman [1987].

13 In general, there are equilibria in which stockholders do tender some shares and the raider may take over when b < p0-
In these cases, however, there is another equilibrium in which the bid fails with probability one. The latter equilibrium
seems intuitively much more sensible and so we focus on it.
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That is, F(- I t) is an equilibrium in the subgame induced by the raider's choice of t and

the raider's choice of t is optimal for him given the set of equilibria induced by the possible choices

of t.

Section 3. The Finite Stockholder Game without Exclusion.

A. Any-and-All Bids.

In this section, we restrict the raider to any-and-all bids. In this case, 7 will be taken to

be the real line. The raider's strategy choice will be a bid price, b, a price per share which will be

offered for any and all shares the stockholders tender to him. In models with atomistic stockholders,

no bid can succeed with b < pi. In our model, in each of the equilibria in the subgame induced by

such a b. the bid may succeed even if b is made arbitrarily close to po. Before presenting our general

characterization of equilibria in this game, we present two examples of equilibria in the subgame

induced by a given b E (p0, pi).

First, many pure strategy equilibria exist in which exactly K shares are tendered to the

raider and so the bid succeeds with probability 1. In fact. any a such that Z ja = K and a < h,
for all i is an equilibrium. Since the bid succeeds, a shareholder who tenders an additional share

foregoes pi to earn b < p1. Since the bid would fail if fewer shares are tendered a shareholder

who tenders fewer shares earns po on each rather than b > po. Therefore no shareholder has an

incentive to deviate from his proposed equilibrium strategy. Furthermore, there is no pure strategy

equilibrium in which the number of shares tendered is not equal to K. If less than K are sold in

some proposed equilibrium, then any shareholder choosing vg < h; prefers to choose a larger oi. If

more than K are sold, then any shareholder choosing a> 0 prefers to choose a srnaller o.

To understand these equilibria intuitively, notice that, because exactly K shares are sold

in these equilibria, each seller is pivotal. By this we mean that if any of them tenders any fewer

shares, the bid will fail. Thus, given the strategies of the other shareholders, each seller, in effect,

must choose whether or not the bid succeeds. Hence, no seller can free ride.
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It is easily shown that these equilibria are strong Nash equilibria. 14 As van Damme [1983]

shows, such equilibria are very robust. For example, one could add a "small" amount of uncertainty

arid find an equilibrium "close" to one of this type.15 It is also easily shown that any subgame

equilibrium which is not in pure strategies is Pareto dominated by some pure strategy equilibrium.

It is also easy to show that there will often exist symmetric pure strategy equilibria. By

'symmetric," we mean that stockholders who are identically situated-i.e., have the same number

of shares-behave identically. While a rigorous formulation and proof is quite complicated, it is

clear that a symmetric pure strategy equilibrium exists whenever there is sufficient heterogeneity in

the holdings of stockholders. (A trivial case of this is when all stockholders own different numbers

of shares. In this case, symmetry imposes no restrictions.) 16

There are often also symmetric equilibria in mixed strategies. 17 These are much easier to

calculate when all stockholders have the same number of shares. The example we present has hi = 1

for all i. Suppose that

1- .1-0,F(og) =(1 - e=10

for all j # i. That is. each shareholder other than i sells his share with probability 7. Then the i n

shareholder will also randomize if and only if

K-1 N. 1NN-1N 1 Ti

(1) b = E (N )(1 - )N-1-jPo - i P1

j=0 j=K

Notice that the first term on the right is the probability the bid fails given that i does not tender

his share times the value of the share in this event. Similarly, the second term is the probability

the takeover succeeds if i does not tender his share times the value of the share in this event. That

is, the right-hand side is the expected value of i's share if he does not tender. For any b strictly

between po and p1, the right-hand side of the above is strictly smaller than b at 'y = 0 and strictly

14 A strong Nash equilibrium is a pure strategy equilibrium in which each player is using his unique best response. See van
Dammne ( 1983).

15 Some possible forms for this uncertainty would include uncertainty about the number of shareholders "loyal" to current
management, the number who don't find out about the bid, or other unknown heterogeneity among the shareholders.

16 As an example, suppose there are three stockholders with one share, two with two shares, and two with three shares.
Then there are 13 shares outstanding. If K = 7, then a symmetric equilibrium would have all stockholders with one or
two shares tendering all their shares. As an example of when there is no symmetric pure strategy equilibrium, suppose
all stockholders have exactly one share. More generally, if all stockholders have the same number of shares, then there
exists a symmetric pure strategy equilibrium if and only if K/I is an integer.

17 There are values of K and I such that the only symmetric equilibrium is in pure strategies.
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larger at y = 1. Since the right-hand side is continuous and strictly increasing in y, there is a

unique y E (0, 1) satisfying equation (1). Therefore, an equilibrium has each stockholder j choosing

Fj(o-j) as given above where y satisfies (1).

Clearly if the pure strategy equilibrium is the one which occurs in the subgame, then the

raider earns strictly positive profits for any b E (P0, P1). It is less obvious but also true that this

holds if this mixed strategy equilibrium ensues instead. To see this, note that the raider's expected

profits are
K-1 NA'N
s ( i(1 -+)N-j i > -7)N-jjP - N b,

j=0 9=K

which is simply the probability of the takeover failing times the value of the acquired shares plus

the probability of the takeover succeeding times the value of the acquired shares in this event less

the expected costs of acquiring the shares. Substituting for b from (1) and rearranging shows that

this is in fact equal to

(2) (Z>K(i - Y)N-K( 1 - po)K > 0.

This expression has an interesting interpretation because (K) -y(1- )NK is the probability

that exactly K shares are tendered. Thus, the raider's profits are proportional to the probability

that each seller is pivotal. In other words, his ability to earn profits hinges on his ability to make

each seller pivotal with positive probability. 18

So we have shown that in two types of equilibria in the induced subgame, the raider earns

strictly positive expected profits and the bid succeeds with strictly positive probability because

he makes some stockholders pivotal. In fact, it is not hard to see that the raider must always

be able to make at least some stockholders pivotal with positive probability. Consider any bid

strictly between P0 and pi. If no stockholder is pivotal with positive probability, then there is

no set of possible choices for the other stockholders such that the choice of the i * stockholder

affects the outcome. But if the takeover succeeds with probability strictly between zero and one,

this is impossible. Consider all the outcomes which have positive probability in which the takeover

SInterestingly, if the mixed strategy equilibrium arises in the subgamne induced by each b, the raider chooses b to maximnize

(2). This is equivalent to choosing -y to maximize (2). This means that he chooses 'a to maximize the probability t hat
each seller is pivotal.
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succeeds and choose the one with the smallest number of shares tendered. Any stockholder who sells

fewer shares with positive probability would cause the takeover to fail if he chose a smaller number.

Thus such. a stockholder is pivotal at this outcome and hence is pivotal with positive probability.

There must be at least one shareholder in this position as there is a positive probability that the

bid fails. It is easy to see that the takeover cannot fail with probability one. Furthermore, the

only way it can succeed with probability one is if we have a pure strategy equilibrium as discussed

above. Hence there must be at least one stockholder who is pivotal in any equilibrium.

In Theorem 1, we show that this ability ensures that the raider earns strictly positive

expected profits and that the bid succeeds with strictly positive probability in any equilibrium.

Theorem 1: If the raider is more efficient than current management and is restricted

to any-and-all bids, then, in every equilibrium, (i) p0 < b < P1, (ii) the raider earns

strictly positive expected profits, and (iii) the bid succeeds with probability (P> b 0.

Proof: Obviously, if the raider can earn strictly positive profits from some bid strictly

between po and pi, (i) must follow. So consider any bid in this range. It is easy to see

that it is not an equilibrium for the bid to fail with probability one. The only equilibria

where it succeeds with probability one are the pure strategy equilibria discussed above.

It is easy to see that the theorem holds for these equilibria.

So suppose that the bid succeeds with probability strictly between zero and one. Clearly.

then, some stockholder must associate positive probability with two different numbers

of shares to tender. Let this stockholder be i and let s be the smallest and t the largest

number of shares i sells with positive probability. Define pe(k) as the probability that

the bid will succeed given that i sells k shares. Since i associates nonzero probability

with selling s shares and £ shares. he must receive the same expected payoff from either

choice. Hence we must have

Lb + (h; - L)[4;(L)pi + (1 - 4;(L))po] = sb + (h; - s)[d;(s)pi + (1 - #;(s))poJ
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which can be rewritten as

(C - s)[b - #i(s)pi - (1 - 4i(s))po] + (hi - e)[4(e) - ;(s)] (p1 - Po) = 0

Since £ must be no larger than hi and since p1 > po, the second term must be nonnegative

as hi(s) < 4;(t). Therefore,

b pi(s)pi + (1 - ci(s))po.

Let c be the probability the takeover succeeds. Since s is the smallest number of shares

i may sell, c> cdi(s). Therefore,

b p + (1 - )po

which immediately yields the lower bound in the theorem.

Let n be the (random) number of shares tendered to the raider. Then we must have

0 < Pr[n K) = 4 < 1. Then we can write the raider's expected profits as

(1 - )E~n I n < K](po - b) + @ IEln n > K)(p1 - b).

Using the inequality above, we can substitute in and rearrange to show that this is at

least

((1 - (n)(p1 - po) E >n n > K]-Ern n<K:}.

Since neither probability is zero, p1 > po, and the term in brackets must be strictly

positive, we see that the raider's expected profits are strictly positive. The fact that

profits per share and the number of shares tendered are positively correlated implies

that the raider's expected profits are strictly positive even if his expected profit per

share is zero.

It is important to point out that this result does require the raider to be more efficient

than current managernent--i.e., that Pi > po. Otherwise, the bid cannot succeed, as there is nio

b E (po, p1). Though this condition seems obvious, we will see in Section 5 that for sonme strategy
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sets for the raider, there are equilibria in which less efficient raiders take over. In fact, we could

restate Theorem I as: if the raider is restricted to any-and-all bids, he has a nonzero probability

of taking over and will earn strictly positive profits in the attempt if and only if he is more efficient

than current management.

B. Conditional Bids.

In this section, we will consider conditional bids. With such a bid, the raider chooses three

objects. First, he chooses a number b which he will pay for shares offered to him. Second, he

chooses an integer number of shares he wishes to acquire; that is, he announces he will pay b for K

shares. If fewer than that number is offered to the raider, he buys no shares at all. If that number

is offered, he buys all of them and pays b for each. The third object he chooses is a rationing device

which determines how many he buys from whom in the event that more than K shares are offered.

As an example of such a device, the Williams Act of 1968 requires that in such an event, the raider

must buy the same percentage of shares from each person who offers shares to him and that he

buy h shares in total. This is commonly referred to as purchasing on a pro rata basis. We will not

restrict the raider to this specific device. However, our results hold if such a device is used. Notice

that if n, = 1 and the raider chooses to buy all shares offered above n, then the conditional bid is

identical to an any-and-all bid. Hence the strategy set considered here strictly contains the set

considered in Section 3A.

Consider the following strategy for the raider. Suppose he offers infinitesimally more than

pC for all N shares. i.e.. = N. Clearly, one equilibrium in the induced subgame has all share-

holders offering all their shares. Any deviation from the proposed equilibrium strategy causes the

shareholder to earn only hipo, while selling all shares earns hi times a number strictly larger than

po. Notice also that another equilibrium has no one offering any shares for sale. If any shareholder

other than i chooses to withhold some shares, then i is indifferent between offering all his shares

and offering any number less since the raider will not purchase regardless of what i does. Note,

though, that withholding some shares is a weakly dominated strategy. Thus if there is even a tiny

probability that all other stockholders will tender all their shares, each stockholder wishes to tender

all of his. In this sense, the subgame equilibrium where players choose weakly dominated strategies

11



is not stable.19

Suppose we focus on equilibria in the two-stage game where no player uses a weakly dom-

inated strategy. In this case, if the raider offers the bid defined above, he will take over the firm

with probability one and earn profits which can be made arbitrarily close to (p1 - po)N. Thus he

can obtain an amount arbitrarily close to the increase in the value of the firm. As is intuitively

clear, this is the best he can do unless he is able to somehow take some of the firm's initial value

from the stockholders-that is, unless exclusion is allowed. So if exclusion is not allowed, we have

the following theorem.

Theorem 2: If the raider is more efficient than current management and is restricted

to conditional bids, the unique equilibrium has t = (b',icV , -),20 where (i) b' = po + 6 for

6 arbitrarily close to but strictly greater than 0,21 (ii) rK = N, and (iii) the bid succeeds

with probability 1.

The intuition of this theorem is not difficult to see. A conditional bid with , = N makes

every stockholder pivotal and thus willing to sell even for po + 6. The ability to make every

stockholder pivotal enables the raider to extract all of the gains from better management of the

firm.

Clearly, the outcome in the finite game with conditional bids is quite different from the

outcome with atomistic stockholders. But, of course, conditional bids for 100% of the shares are

rarely observed for some obvious reasons. For one, not all stockholders will even realize that a bid

has been made. Furthermore, stockholders loyal to current management, including possibly the

managers themselves, can easily block the takeover. Some factors like these are easily incorporated

into the analysis. For example, if it is common knowledge that M < N - K shares are owned by

stockholders who cainot be induced to tender to the raider for whatever reason, the raider can

set ic = N - M and the bid will succeed with probability one.22 Unobserved heterogeneity of the

19 More precisely, this subgame equilibrium is not trembling-hand perfect.

20 The rationing device is irrelevant because x" = N implies that it is impossible to have more than K. shares offered for
sale to the raider.

21 Technically, the raider's best strategy is undefined, since he must choose 6 > 0, but is always better off choosing it
smaller. Since there is no smallest number strictly larger than zero, this leaves 6 undefined. We will ignore this problem
in all that follows and will often use 6 to denote a strictly positive, but arbitrarily small number.

22 Other kinds of complicating factors, when the raider has complete information about them, are also easily dealt with. For
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stockholders is much more complex.

Theorem 2 implies that if conditional bids are allowed, then the raider's profits are arbi-

trarily close to the increase in the value of the firm. Clearly, this is the best he can do unless he is

able to take some of the firm's initial value from the minority stockholders. A necessary condition

for this is that he be able to exclude.

Corollary: If the raider is allowed any strategy set containing conditional bids but not

exclusion, an equilibrium of the game is the equilibrium given in Theorem 2. Further-

more, any other equilibrium 23 has the same outcome.

In short, we have seen that there are very major differences between the finite and atomistic

stockholder outcomes. The existence of these differences does not depend on the type of bid the

raider can make. Instead, these differences are present because, with a finite number of stockholders,

the raider can always make some stockholders pivotal. The important distinction between the

different types of bids is how easily the raider can make stockholders pivotal.

example, if there is a nonzero cost to the stockholders of selling their shares, the raider can adjust his bid up accordingly
if these costs are known to him.

23 More precisely, this is true for any other equilibrium in which no player chooses a weakly dominated strategy.
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Section 4. Widely Held Firms without Exclusion.

In Section 3, we showed that the outcome with a finite number of stockholders is different

from the atomistic stockholder outcome. However, it seems more plausible that no individual

stockholder will be able to affect the outcome of a takeover bid for a very widely held firm. Does

this imply that exclusion is necessary for successful takeovers of very widely firms? In other words.

does the atomistic stockholder outcome obtain for very widely held firms?

For most of this section, we will consider the case where the raider is restricted to any-

and-all bids. We will show that the atomistic stockholder outcome does not obtain in the infinite

stockholder game. If any equilibrium exists in this game, then the raider earns strictly positive

expected profits from the takeover attempt. Thus either there is no equilibrium and so the infinite

stockholder game yields no predictions or there is an equilibrium in which the free rider problem

does not prevent successful and profitable takeovers without exclusion. The alternative approach is

to consider the limiting outcome of the finite stockholder game for a sequence of ever more widely

held firms. We will show that the limiting outcome may be, but is not necessarily, the same as

the atomistic stockholder outcome. We give conditions under which these outcomes are the same,

thus delimiting the cases where exclusion is necessary for successful takeovers. The analysis of

conditional bids is far simpler and concludes the section.

First consider the infinite stockholder game. We will reinterpret our notation slightly to

analyze this game. In particular, we will let I be the set of stockholders, which we will take to be

the unit interval. Let h(i) be the holdings of stockholder i, K be the measure of shares which must

be tendered for the raider to succeed, and N be the measure of shares outstanding. That is. N is

the integral over I of h(i). We will let a(i) be the portion of his holdings tendered by stockholder

i where 0 < u(i) h(i). Finally, the bid price, b, and po and pi are "per unit'' values. That is,

the value of a stockholder's shares if the bid is successful and he tendered u(i), for example, is

a(i) b -r-(h(i) - or(i))pi.

Consider what happens if the raider makes an any-and-all bid of b where Po < b <Pi.

Can we have an equilibrium in which the bid succeeds with probability one? Clearly, the answer is
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no. No stockholder can influence the outcome because we can always remove one point from the

-integral over a (i) without affecting the value of the integral. Hence if the bid is going to succeed

with probability one, then a given stockholder would prefer to tender nothing as b < pl. Hence

this is not an equilibrium. Can we have an equilibrium in which the bid succeeds with probability

zero? Again, the answer is no. Since no stockholder can influence the outcome, if the bid is going

to succeed with probability zero, each stockholder will wis to tender h(i) as b > po. Hence if there

is an equilibrium, the takeover must succeed with probability strictly between zero and one.

If only a finite number of stockholders randomize, then the outcome is determined by those

who do not randomize and hence is certain. Thus we must have an infinite number randomizing.

But with an infinite number of stockholders randomizing, it is not obvious that the aggregate

outcome can be stochastic.2 4 Rather than determining when (or if) the outcome here can be

stochastic, let us consider what happens for either case. If the analogue of the strong law of large

numbers holds, the aggregate outcome will be nonstochastic. In this event, there is no equilibrium.

On the other hand, suppose that the aggregate outcome is stochastic. It is straightforward to

imitate the proof of Theorem 1 to show that the raider's expected profits are strictly positive.

In that proof we showed that the strictly positive correlation between profits per share and the

measure of shares tendered implies that the raider's expected profits are strictly positive even if his

expected profit per share is zero.

Hence the raider's profit from any given b E (po, pi) must be strictly positive if an equilib-

rium exists in the induced subgame. For an equilibrium to exist in the two-stage game, there must

be an equilibrium in each possible subgame. Hence if an equilibrium exists, it must have the raider

earning strictly positive profits. Thus we see that either there is no equilibrium or the equilibrium

is quite different from the atomistic stockholder outcome. Either way, the infinite stockholder game

does not yield the atomistic stockholder prediction.

Another way to determine if the atomistic stockholder outcome obtains for a firm which is

sufficiently widely held is to consider a sequence of firms each of which is more widely held than

the previous firms in the sequence. Associate an equilibrium and thus an equilibrium outcome with

each firm in the sequence. We can then analyze the sequence of equilibrium outcomes to determine

24 Judd [19851 and other~s have analyzed when a continuum of independent randorn variables can generate a stochastic
outcome.
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if this sequence converges to the atomistic stockholder outcome. To do this formally, we must

consider the following three issues.

First, what does it mean to say that one firm is more widely held than another? Intuitively,

a firm with more stockholders than another is more widely held. Thus we would like to choose our

sequence of firms by increasing the number of stockholders along the sequence holding everything

else constant. Unfortunately, this cannot be done. If the stock price is held fixed, then the total

value of the firm must increase along the sequence. If the value of the firm is fixed, the stock price

must be falling. One would expect that whether or not we converge to the atomistic stockholder

outcome depends on which extreme the sequence is closer to-a fixed stock price with the value of

the firm going to infinity or a fixed value with the stock price going to zero. In the fixed stock price

case, the size of the "pie"-the value created by the takeover or N(pi - p0)-is going to infinity.

Hence even if the raider's share of the pie falls because it becomes harder to make stockholders

pivotal, successful and profitable takeovers without exclusion may still be possible. In the fixed

value case, the size of the pie is constant so that if the free rider problem shrinks the raider's share

of the pie, it must also shrink his profits, so that exclusion becomes necessary.

Second, once the sequence of firms is chosen, we must associate an equilibrium with each

firm. Since there are many equilibria for each firm, this choice may also affect the conclusion.

Third, we must precisely define what is meant by convergence to the atomistic stockholder

outcome. In models with atomistic stockholders, any nonexclusionary takeover bid which succeeds

(with positive probability) must yield zero profits for the raider absent any costs of bidding. Con-

sequently, we consider whether or not the raider's expected profits from a bid, absent such costs,

converge to zero.

We will show that in the fixed stock price case, the raider's profits do not go to zero,

regardless of how we choose the equilibrium for each firm in the sequence. We will also show, by

example, that in the fixed value case, the raider's profits rnay or may not go to zero, depending

on how we choose the equilibrium for each firm. In short, the general conclusion depends on

which extreme the sequence of firms is closer to and, given the sequence of firms, which sequence of

equilibria is chosen. intuitively, a firm which is more valuable relative to the dispersion of ownership
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of its stock is, in general, more appropriately described by the finite stockholder model than the

atomistic stockholder model.

We consider a sequence of firms, one for each N. We will let K(N) be the number of shares

the raider must acquire to control the' k firm in the sequence. For simplicity, we will assume

K(N) is the smallest integer larger than aN. where a is some fixed fraction of the firm which must

be acquired for the raider to gain control. We assume throughout that the value of a share under

the raider's management is strictly greater than the value under current management.

First, we consider the fixed stock price extreme. Here, for each firm in the sequence, po is

the value of a share if the firm remains under current management and p1 is the value of a share

under the raider's management. For this case, we have the following theorem.

Theorem 3: If the raider is restricted to any-and-all bids, then for any sequence of

equilibria with a fixed stock price, the limit of the raider's profits is strictly positive.

Proof: We will show that there exists a b E (po, p1) such that if the raider makes this

bid for each firm in the sequence, the limit of his profits from this bid must be strictly

positive. Hence the limit of his profits from the optimal sequence of bids must also

be strictly positive. Clearly, if the probability of success goes to zero for this bid, the

raider's profits cannot be strictly positive in the limit. However, recall that Theorem 1

showed that the probability of success must be strictly larger than (b - po)/(p1 - po).

Hence as long as b > po, the probability of success must be bounded away from zero for

each N. Therefore, it cannot go to zero.

So suppose that the probability of success goes to 1. Clearly. then, the probability of

any outcome with fewer than K(N) shares tendered must go to zero so that the raider's

profits for N sufficiently large must be at least K(N) (Pi - b)> 0.

Suppose, then, that the probability of success does not converge to zero or one.25 It is

25 This possibility may seem peculiar. However, we have produced an example in which the equilibrium probability of
success converges to e-I.
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straightforward to imitate the proof of Theorem 1 to show that profits are greater than

a number which does not go to zero.I

We now turn to the opposite extreme-the fixed value case. Here we will provide two

examples which demonstrate that the raider's profits may or may not go to zero in the limit

depending on the exact sequence of equilibria chosen. We now assume that the value of a share in

the NA firm in the sequence is tn/N if the firm remains under current management and v1 /N if the

raider gains control. Of course, v1 > vo.

In our first example, we focus on the case where all players always choose pure strategies.

In this case, for any N, for any b e (vo/N, v1/N), the bid succeeds with probability one and the

raider's profits are K(N)(vi/N - b). Hence, the raider chooses26 b = t,.'N + and the raider's

profits for a given N are arbitrarily close to [K(N)/N](v1 - vo), which converges to a (v1 - v)) > 0.

Notice that the raider's limiting profits are just the fraction of the firm he acquires times the total

increase in the value of the firm from the change in management.

For our second example, suppose that each stockholder in each firm in the sequence has

exactly one share. Suppose that the symmetric mixed strategy equilibrium obtains in each subgame

for every N. As shown in Section 3A. the raider's profits for a given N and b are

(3) ( A' (1 - )N-K(N) K(N) (vi - vo).
\K(N)P A

Since the raider chooses b to maximize his profits given the - it induces in the subgame, the optimal

b maximizes profits subject to the constraint given in (1). Since (3) is obtained by substituting

the constraint into the objective function, we can analyze the raider's choice of - to maximize this

expression. It is easy to show that the raider chooses y = K(N) which converges to a as N -+ oo.

Stirling's formula (see, e.g., Feller [1966)) states that

26 Recall our use of 6 described in the last section.
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Substituting for 7 into (3) and using Stirling's formula shows that the raider's profits are approxi-

mately

1 2 (,(1 - t ( / K(N)

\1 -_K(N) ) \45
N

The first term converges to the constant, . The second term is a constant and the third term

goes to zero so that the raider's expected profits converge to zero for this sequence of equilibria.

Hence we see that the sequence of equilibria corresponding to a sequence of more and more

widely held firms converges to the atomistic stockholder outcome only if we are "close enough" to

the fixed value case and then only for certain sequences of equilibria. 27 Thus the fact that one

firm is more widely held than another does not necessarily imply that it is better modelled by the

atomistic stockholder assumption. Which model is more appropriate for a given takeover depends

on the value of the firm relative to how widely held it is. The atomistic stockholder model is more

appropriate when the firm is not very valuable relative to the dispersion of ownership of its stock.

The finite stockholder model is more appropriate in the opposite situation.2" Hence we conclude

that neither model is always appropriate for any-and-all bids.

The analysis of conditional bids is much easier. Recall that the equilibrium of Theorem 2

is the unique equilibrium for any finite number of stockholders and any distribution of the shares.

Hence the particular sequence of firms or the particular sequence of equilibria chosen-that is,

whether the stock price or value is fixed or which intermediate case we consider-is not relevant

when conditional bids are allowed. 29 The atomistic stockholder outcome does not obtain in the

limit.

To summarize, with a finite number of stockholders, exclusion is not necessary for successful

takeovers. Whether or not exclusion becomes necessary as we consider more widely held firms

2'7 Recall that we have ignored costs associated with making a takeover bid. If these costs increase with N, we could restate
our results as follows. When profits as we have defined them go to infinity, net profits-that is, profits minus costs-are
bounded away from zero only if costs rise sufficiently slowly. When profits converge to some positive but finite number,
net profits are bounded away from zero only if costs are bounded below this limit. As noted, when profits as we have
defined them go to zero, successful and profitable takeovers without exclusion are impossible for firms with a finite but
sufficiently large number of stockholders.

* Recall from the introduction that there are many large firms 'controlled by a small number of stockholders.
29 We do not discuss the infinite game with conditional bids because of some formal problems. In particular, consider the

bid discussed in Theorem 2. If the bid is conditioned on every stockholder tendering, then this is still an equilibrium.
However, if the bid is conditioned only on the measure of shares tendered, it is no longer an equilibrium because any
single stockholder can withhold his shares without affecting the measure tendered.
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depends in part on the types of strategies the raider can use and the equilibria focused on. It also

depends on the value of the firm relative to how widely held it is.

Section 5. The Finite Stockholder Game with Exclusion.

Having shown that exclusion is unnecessary, a logical question to ask is what its effects are

with a finite number of stockholders. As we will show in this section, exclusion can have harmful

effects if conditional bids are allowed. 30

Let w be the amount of exclusion. Following Grossman and Hart, this means that in the

event of a takeover a minority shareholder receives p1 - ' rather than p1. Thus if the raider takes

over the firm by purchasing, say, k > K shares at a price of b, then his profits are (pi - b)k-(N - k)

Suppose 2 pi - p0.31 In this situation, the raider is not only able to exclude minority

stockholders from all of the increase in the value of their shares, he is able to take some of the

original value of these shares. As one might expect, this can enable an inefficient raider to take

over profitably. An equilibrium in which this occurs is presented in the following theorem. First,

we will define a particular class of rationing devices which may be used by the raider in the event

that more shares are tendered than he sought. An encouraging device will be defined as one such

that for all i, if Zg, og 2 K, then the i * shareholder's best strategy is of = hi. In other words, if

the number of shares tendered by the other stockholders is at least the number requested by the

raider, then each stockholder's best strategy is to tender all his shares. It is easy to show that an

example of such a device is precisely the device required by the Williams Act, namely, purchasing

on a pro rata basis.

Theorem 4: If the raider can make conditional bids and if P1 - tk po, then an

equilibrium has the raider offering the conditional bid b = Pa + S for K = K shares

with any encouraging device. In this equilibrium, the bid succeeds wit/h probability 1.

30 It can be shown that exclusion does not have harmful effects in our model when only any-and-all bids are allowed. W it hi
an any-and-all bid, a stockholder can always tender his share and avoid the losses imposed by exclusion.

31 If g is smaller than this quanitity, the equilibrium of Theorem 2 is still the unique equilibrium.
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Proof: First, we will show that given the raider's bid, it is an equilibrium in the induced

subgame for all stockholders to tender all their shares. This follows because if all

shareholders other than i tender all their shares, then at least N - hi shares will be

tendered. Since N - hi,> K = r, this means that the number of shares tendered exceeds

the number the raider will purchase. Since the rationing device is an encouraging device,

by definition, this implies that the i stockholder will choose o= = h=.

Given this equilibrium in the subgame, the raider's expected profit from this strategy

is arbitrarily close to K(pi - po) + (N - K)tb. But the raider cannot earn any higher

profit than this from any alternative strategy. I

It is important to note that this equilibrium is not unique because the equilibrium in the

subgame induced by the raider's choice of this strategy is not unique. For example, as with the

bid made in Theorem 2, another equilibrium in the subgame would have all shareholders refusing

to tender any shares. Unlike the situation in that section, though, this equilibrium can be stable.

There, the shareholder would gain b per share if everyone offered all their shares and would gain

nothing otherwise. Hence, with even a tiny probability that everyone else tenders all their shares,

the remaining shareholder would tender all of his. In the equilibrium of Theorem 4, if everyone

offers all their shares, each shareholder receives po-6- for some of his shares and the smaller amount

p1 - w for each of his remaining shares. Hence he is worse off if everyone offers all their shares and so

not tendering is not a weakly dominated strategy. However, it is easily shown that all stockholders

tendering is a strong Nash equilibrium and the other subgame equilibria are not.

Notice that this can be an equilibrium even if the raider is less efficient than current

management-that is, even if p1 po. The following theorem elucidates this point.

Theorem 5: If the raider is less efficient than current management and is allowed

conditional bids, then for any tP > 0, there is a lower bound on p1 which is strictly

smaller than po for which the bid succeeds with probability 1 in an equilibrium.

Proof: Since pi - #P < po, the conditions for Theorem 4 are met.32 The raider's profit

32 Note that if p1 _<po,thenpik#<p0 for any > 0.
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in the equilibrium discussed there is arbitrarily close to K(p1 - po) + (N - K)tb. This is

strictly positive if and only if

P1> Po- [(N - K)/Ktb.

The right-hand side is strictly smaller than po for any '> 0. Hence the lower bound

is the right-hand side, which will complete the proof. I

One could interpret the statement that the raider is less efficient in either of two ways.

First. one could interpret this as saying that the raider cannot control the managers of the firm as

well as current stockholders. In this case, we can have p1 < po and the takeover moves assets to

less efficient use. Alternatively, one could interpret less efficient as saying that the raider cannot

run the firm as well as current management. In this case, he could retain current management, so

that pi = po. If so, the takeover does not result in less efficient use of the firm's assets. However.

if there is any cost to the takeover process (such as costs of making a bid, legal fees, etc.), then

social resources are used up in generating a simple transfer of wealth. In this case, the takeover is

an example of pure rent-seeking.

Numerous authors have suggested that competition among raiders or defensive tactics by

current management will prevent inefficient takeovers.33 However, it is not obvious that there

will always be a more efficient raider to compete for the firm. As to current management, any

expenditure of resources by the manager in an attempt to block the takeover must reduce the

value of the firm. 34 Thus even if the takeover is prevented, the attempt would still lead to pure

social waste. Hence unless the threat of defensive tactics completely deters takeover attempts by

inefficient raiders, the possibility of such tactics does not solve this problem. Furthermore, defensive

tactics may block some efficient takeovers. Clearly, more research is needed on this subject.3 5

33 See, for example, Bradley and Rosenzweig.

34 A similar problem is noted by Bradley and Rosenzweig in the context of defensive stock repurchases.

35 Some of these issues are addressed by Bagnoli, Gordon, and Liprnan 11987].
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Section 6. Conclusion.

We noted at the outset that most of the literature on takeovers assumes atomistic stock-

holders. As we pointed out, however, there are many large firms for which this assumption is

obviously inappropriate. This led us to consider the finite stockholder game. We showed that there

are substantial differences between the finite game and the atomistic stockholder models. In par-

ticular, because some stockholders must be pivotal and hence cannot free ride, successful takeovers

are possible without exclusion.

Since the equilibrium outcome in the finite stockholder game is quite different from the

atomistic stockholder outcome, the natural question to ask is under what conditions the atomistic

stockholder outcome obtains for firms which are sufficiently widely held. We showed that the

atomistic stockholder outcome does not obtain in the infinite stockholder game. We also showed

that the difference between the finite and atomistic stockholder outcomes may not vanish in the

limit. We argued that atomistic stockholder models may provide a reasonable approximation to

the outcome for takeovers with any-and-all bids if the firm is not sufficiently valuable relative to

the dispersion of stock ownership. Otherwise, the finite stockholder model is likely to provide a

more accurate prediction, so that exclusion is not necessary for successful takeovers. Since, all else

equal. stockholders generally benefit more from takeovers without exclusion, our analysis suggests

that stockholders would prefer to invest in firms which are valuable relative to the dispersion of

stock ownership. This, in turn, suggests that a given firm's stock will not be "too" widely held

relative to its value. This seems like an interesting topic for future research.

After delineating the conditions under which exclusion is not necessary, we turned to an

analysis of its effects in this situation. When exclusion is not necessary, it is no longer clear that it

is socially desirable. In fact, exclusion can have very negative consequences if conditional bids are

allowed.

In short, the finite stockholder and atomistic stockholder models yield dramatically different

outcomes and different conclusions about the social consequences of exclusion. The fact that these

differences are so strong and important together with the fact that these differences need not vanish

in the limit suggests that the finite stockholder analysis should be carefully considered.
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